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Abstract 5 

In partially molten regions inside the Earth melt buoyancy may trigger upwelling of both solid and fluid 

phases, i.e. diapirism. If the melt is allowed to move separately with respect to the matrix, melt 

perturbations may evolve into solitary porosity waves. While diapirs may form on a wide range of scales, 

porosity waves are restricted to sizes of a few times the compaction length. Thus, the size of a partially 

molten perturbation in terms of compaction length controls whether material is dominantly transported 10 

by porosity waves or by diapirism. We study the transition from diapiric rise to solitary porosity waves 

by solving the two-phase flow equations of conservation of mass and momentum in 2D with porosity 

dependent matrix viscosity. We systematically vary the initial size of a porosity perturbation from 1.8 

to 120 times the compaction length.   

If the perturbation is of the order of a few compaction lengths, a single solitary wave will emerge, either 15 

with a positive or negative vertical matrix flux. If melt is not allowed to move separately to the matrix 

a diapir will emerge. In between these end members we observe a regime where the partially molten 

perturbation will split up into numerous solitary waves, whose phase velocity is so low compared to the 

Stokes velocity that the whole swarm of waves will ascend jointly as a diapir, just slowly elongating 

due to a higher amplitude main solitary wave.  20 

Only if the melt is not allowed to move separately to the matrix no solitary waves will build up, but as 

soon as two-phase flow is enabled solitary waves will eventually emerge. The required time to build 

them up increases non-linearly with the perturbation radius in terms of compaction length and might be 

for many cases too long to allow for them in nature. 

1 Introduction 25 

In geodynamic settings such as mid-ocean ridges, hotspots, subduction zones or orogenic belts partial 

melts are generated within the asthenosphere or lower continental crust and ascend by fluid migration 

within deforming rocks (e.g., Sparks and Parmentier, 1991; Katz, 2008; Keller et al., 2017; Schmeling 

et al., 2019). Inherent tectonic or rock heterogeneities in such systems may result in spatially varying 

melt fractions on length scales varying over several orders of magnitudes. These length scales play an 30 

important role in determining whether melt anomalies may rise as porous waves (Jordan et al., 2018) or 

by other mechanisms such as diapirs (Rabinowicz et al., 1987), focused channel networks (Spiegelman 
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et al., 2001) or dykes (Rivalta et al., 2015).  Here we focus on the effect of the length scale on the 

formation and evolution of buoyancy driven porous waves or diapirs.      

The physics of fluid moving relatively to a viscously deformable porous matrix were firstly described 35 

by McKenzie (1984) and it was later shown by several authors that these equations allow for the 

emergence of solitary porosity waves (Scott & Stevenson, 1984; Barcilon & Lovera 1989; Wiggins & 

Spiegelman, 1995). Porosity waves are regions of localized excess fluid that ascend with permanent 

shape and constant velocity, controlled by compaction and decompaction of the surrounding matrix. 

They have extensively been studied as mechanisms transporting geochemical signatures or magma 40 

through the asthenosphere, lower and middle crust (e.g. Watson & Spiegelman, 1994; McKenzie, 1984; 

Connolly, 1997; Connolly & Podladchikov, 2013, Jordan et al., 2018, Richard et al., 2012). It has been 

shown that the dynamics of porous waves strongly depends on the porosity dependence of the matrix 

rheology (e.g. Connolly & Podladchikov, 1998; Yarushina et al., 2015; Connolly & Podladchikov, 2015; 

Omlin et al., 2017; Dohmen et al., 2019). Yet, one open question is how the length scale of solitary 45 

porosity waves relates to an arbitrary length scale of a possible porosity anomaly in given geodynamic 

settings.   

The size of a solitary porosity wave is usually of the order of a few compaction lengths (McKenzie, 

1984; Scott & Stevenson, 1984; Simpson & Spiegelman, 2011), but this length scale varies over a few 

orders of magnitude, depending on the shear and bulk viscosity of the matrix, fluid viscosity and 50 

permeability (see eq. (19)) with typical values of 100-10000 meters (McKenzie, 1984; Spiegelman, 

1993). However, partially molten regions in the lower crust or upper mantle are prone to gravitational 

instabilities such as Rayleigh-Taylor instabilities or diapirism (e.g. Griffith, 1986; Bittner and 

Schmeling, 1995; Schmeling et al., 2019). Originating from the Greek “diapeirein”, i.e. “to pierce 

through”, diapirism describes the “buoyant upwelling of relatively light rock” (Turcotte & Schubert, 55 

1982) through and into a denser overburden. In the general definition the rheology of the diapir and 

ambient material is not specified, both can be ductile as in our case. Buoyancy may be of compositional 

or phase related origin, e.g., due to the presence of non-segregating partial melt (Wilson, 1989). In this 

model we describe a diapir as a partially molten perturbation, whose rising velocity, characterizable by 

the Stokes velocity, is lower than the corresponding solitary waves phase velocity. 60 

As characteristic wavelengths of Rayleigh-Taylor instabilities may be similar, but also of significantly 

different order of those of porosity waves, and the Stokes velocity is strongly affected by the spatial 

expansion, the question arises how these two mechanisms interact and how does the transition from a 

porosity wave to a rising partially molten diapir look like. Scott (1988) already investigated a similar 

scenario. He calculated porosity waves changing the compaction length by altering the constant shear 65 

to bulk viscosity ratio. In contrast, we vary the radius of a partially molten perturbation in terms of 

compaction lengths but keeping the porosity dependent viscosity law the same. While Scott (1988) was 
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not able to reach the single-phase flow endmember due to his setup, we can reach this endmember with 

our description and can explore the transition.  

In this work we will address the question of length scale of a partially molten region with respect to the 70 

length scale of a solitary porosity wave, by varying the sizes of initial porosity perturbations. We further 

focus on the numerical implications on modelling magma transport. 

2 Methods 

2.1 Governing equations 

The formulation of the governing equations for the melt-in-solid two-phase flow dynamics is based on 75 

McKenzie (1984), Spiegelman & McKenzie (1987) and Schmeling (2000) assuming an infinite Prandtl 

number, a low fluid viscosity w.r.t. the effective matrix viscosity, zero surface tension, and the 

Boussinesq approximation. In the present formulation the Boussinesq approximation assumes the same 

constant density for the solid and fluid except for the buoyancy terms of the momentum equations for 

the solid and fluid. In the following all variables associated with the pore fluid (melt) have the subscript 80 

𝑓 and those associated with the solid matrix have the subscript 𝑠. The equation for the conservation of 

the mass of the melt is  

𝜕𝜑

𝜕𝑡
+ �⃗� ∙ (𝜑𝑣 𝑓) = 0,      (1) 

and the mass conservation of the solid is 

𝜕(1−𝜑)

𝜕𝑡
+ ∇⃗⃗ ∙ ((1 − 𝜑)𝑣 𝑠) = 0.     (2) 85 

𝜑 is the volumetric rock porosity (often called melt fraction), 𝑣 𝑓 and 𝑣 𝑠 are the fluid and solid velocities, 

respectively. The momentum equations are given as a generalized Darcy equation for the fluid 

separation flow  

𝑣 𝑓 − 𝑣 𝑠 = −
𝑘𝜑

𝜇𝜑
(∇⃗⃗ 𝑃𝑓 − 𝜌𝑓𝑔 ),      (3) 

where 𝜌𝑓 is the fluid density and 𝑃𝑓 is the fluid pressure (including the lithostatic pressure), whose 90 

gradient is driving the fluid segregation by porous flow, μ is the melt dynamic viscosity and 𝑔  is the 

gravitational acceleration. 𝑘𝜑 is the permeability that depends on the rock porosity 

𝑘𝜑 = 𝑘0𝜑
𝑛,        (4) 

with 𝑛 being the power-law exponent constant, usually equal to 2 or 3. This relation is known as the 

Kozeny-Carman relation (e.g. Costa, 2006). The Stokes equation for the mixture is given as 95 

�̅�𝑔 − ∇⃗⃗ 𝑃𝑓 + ∇⃗⃗ ⋅ 𝝉 = 0.       (5) 
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 �̅� is the density of the melt – solid mixture and 𝝉 is the effective viscous stress tensor of the matrix 

including both shear and compaction components 

𝝉 = 𝜂 (
𝜕𝑣𝑠𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑠𝑗

𝜕𝑥𝑖
) + (𝜁 −

2

3
𝜂)𝛿𝑖𝑗∇ ∙ 𝑣 𝑠.    (6) 

𝜁 is the volume viscosity. The linearized equation of state for the mixture density is given as 100 

�̅� = 𝜌0(1 − 𝑐𝑓𝜑)                                                                        (7) 

with 𝜌0 as the solid density and 𝑐𝑓 =
𝜌0−𝜌𝑓

𝜌0
 . The shear and volume viscosity are given by the equations 

𝜂 = 𝜂0(1 − 𝜑)                                                                        (8) 

and 

𝜁 = 𝜂0
1−𝜑

𝜑
                                                                        (9) 105 

where 𝜂0 is the constant intrinsic shear viscosity of the matrix. 

As in both equations (3) and (5) 𝑃𝑓  is the fluid pressure (see McKenzie, 1984, Appendix A), these 

equations can be merged to eliminate the pressure resulting in  

𝑣 𝑓 − 𝑣 𝑠 = −
𝑘0𝜑

𝑛−1

𝜇
(𝜌0𝑐𝑓𝑔 (1 − 𝜑) + ∇⃗⃗ ⋅ 𝝉).    (10) 

This equation states that the fluid separation flow (i.e. melt segregation velocity) is driven by the 110 

buoyancy of the fluid with respect to the solid and the viscous stress in the matrix including compaction 

and decompaction.  

Following Šrámek et al. (2010), the Stokes equation (3) can be rewritten by expressing the matrix 

velocity, 𝑣 𝑠, as the sum of the incompressible flow velocity, 𝑣 1, and the irrotational (compaction) flow 

velocity, 𝑣 2, as: 115 

𝑣 𝑠 = 𝑣 1 + 𝑣 2 = (

𝜕𝜓

𝜕𝑧

−
𝜕𝜓

𝜕𝑥

) + (

𝜕𝜒

𝜕𝑥
𝜕𝜒

𝜕𝑧

)     (11) 

with 𝜓 as stream function and 𝜒 as the irrotational velocity potential, given as the solution of the Poisson 

equation 

∇⃗⃗ 2𝜒 = ∇⃗⃗ ∙ 𝑣 𝑠.        (12) 

The divergence term  ∇⃗⃗  ⋅ 𝑣𝑠⃗⃗  ⃗ can be derived from eqs. 1 and 2 to give 120 

∇⃗⃗ ∙ 𝑣 𝑠 = −∇⃗⃗ ∙ [φ(𝑣 𝑓 − 𝑣 𝑠)].     (13) 
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In the small fluid viscosity limit the viscous stresses within the fluid phase are neglected, resulting in a 

viscous stress tensor in the Stokes equation of the mixture (equ. 5), in which only the stresses in the 

solid phase are relevant. This is evident from the definition of the viscous stress tensor, which only 

contains matrix and not fluid viscosities. Melt viscosities of carbonatitic, basaltic or silicic wet or dry 125 

melts span a range from < 1 Pa s to extreme values up to 1014 Pa s (see the discussion in Schmeling et 

al., 2019), while effective viscosities of mafic or silicic partially molten rocks may range between 1016  

Pa s and 1020 Pa s, depending on melt fraction, stress, and composition. Thus, in most circumstances the 

small fluid viscosity limit is justified. 

In the limit of this small viscosity assumption, inserting the above solid velocity (11) into the viscous 130 

stress (6), this into the Stokes equation (5), and taking the curl of the x- and z equations the pressure is 

eliminated and one gets 

(
𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2) [𝜂𝑠 (
𝜕2𝜓

𝜕𝑥2 −
𝜕2𝜓

𝜕𝑧2)] + 4
𝜕2

𝜕𝑥𝜕𝑧
[𝜂𝑠

𝜕2𝜓

𝜕𝑥𝜕𝑧
] = −𝑔

𝜕𝜌

𝜕𝑥
+ 𝐴(𝜒)  (14) 

with  

𝐴(𝜒) = −2
𝜕2

𝜕𝑥𝜕𝑧
[𝜂𝑠 (

𝜕2𝜒

𝜕𝑥2 −
𝜕2𝜒

𝜕𝑧2)] + 2 (
𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2) [𝜂𝑠
𝜕2𝜒

𝜕𝑥𝜕𝑧
]   (14a) 135 

To describe the transition from solitary waves to diapirs it is useful to non-dimensionalize the 

equations. As scaling quantities we use the radius 𝑟 of the anomaly, the reference viscosity 𝜂0, and the 

scaling Stokes sphere velocity (e.g. Turcotte & Schubert, 1982) based on the maximum porosity of the 

anomaly 𝜑𝑚𝑎𝑥  

𝑣𝑆𝑡 = 𝐶𝑠𝑡
𝜑𝑚𝑎𝑥Δ𝜌𝑔𝑟2

𝜂0
     (15) 140 

resulting to the following non-dimensionalization where non-dimensional quantities are primed: 

(𝑥, 𝑧) = (𝑥′, 𝑧′) ∙ 𝑟 , 𝑣 𝑠,𝑓 = 𝑣 𝑠,𝑓′ ∙ 𝑣𝑆𝑡, 𝑡 = 𝑡′ ∙
𝑟

𝑣𝑆𝑡
,  (𝜏𝑖𝑗 , 𝑃) = (𝝉′, 𝑃′) ∙

𝜂0𝑣𝑆𝑡

𝑟
,  

(𝜂, 𝜁) = (𝜂′, 𝜁′) ∙ 𝜂0,   (𝜓, 𝜒) = (𝜓′, 𝜒′) ∙ 𝑟𝑣𝑆𝑡    (16) 

For 𝑟 the half width of the prescribed initial perturbation, consisting of a 2D Gaussian bell, is chosen. 

This is reasonable as the rising velocity in our code is best described by the Stokes velocity, using this 145 

radius. The exact shape of the perturbation is given later in the model setup. 

𝐶𝑆𝑡 is calculated by using the analytic solution of an infinite Stokes cylinder within another cylinder 

(Popov and Sobolev (2008), based on the drag force derived by Slezkin (1955)), because, due to 

boundary effects, the cylinder gets effectively slowed. 𝐶𝑆𝑡  is calculated using 𝐶𝑆𝑡 = ln(𝑘) −
𝑘2−1

𝑘2+1
, 

where k is the ratio of outer cylinder’s to inner cylinder’s radius. For our model setup 𝐶𝑆𝑡 is equal to 150 

0.17. 
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With these rules the Darcy equation (10) is given in non-dimensional form 

𝑣 𝑓′ − 𝑣 𝑠′ = −
𝛿𝑐

2

𝑟2

1

�̃�′𝜑
(𝑒 𝑧

(1−𝜑)

𝜑𝑚𝑎𝑥
+ ∇′⃗⃗  ⃗ ⋅ 𝝉′)    (17) 

where 𝑒 𝑧 is the unit vector in z-direction and �̃�′ is equal to 𝜁′ +
4

3
𝜂′. The momentum equation of the 

mixture (12) is given by 155 

(
𝜕2

𝜕𝑥′2
−

𝜕2

𝜕𝑧′2
) [𝜂𝑠′ (

𝜕2𝜓′

𝜕𝑥′2
−

𝜕2𝜓′

𝜕𝑧′2
)] + 4

𝜕2

𝜕𝑥′𝜕𝑧′
[𝜂𝑠′

𝜕2𝜓′

𝜕𝑥′𝜕𝑧′
] =

1

𝜑𝑚𝑎𝑥

𝜕𝜑

𝜕𝑥′
+ 𝐴′(𝜒′).  (18) 

𝛿𝑐
2/𝑟2 in equation (17) is the squared ratio of compaction length 𝛿𝑐 to the system length scale 𝑟, which 

is the main parameter describing our system. The compaction length is a natural length scale emerging 

from the problem and of particular importance in our context, because 2D porosity waves have half 

width radii of the order of 3 ⋅ 𝛿𝑐 to 5 ⋅ 𝛿𝑐  (Simpson and Spiegelman, 2011). It is defined as: 160 

𝛿𝑐 = √
𝜁 +

4
3𝜂

𝜇
𝑘𝜑 

 

(19) 

All quantities in the other equations are simply replaced by their non-dimensional primed equivalents 

(eqs. (1), (2), (6), (11), (12), (13), and (14a)). 

We now compare the two limits, where segregation or two-phase flow dominates (solitary wave regime), 

and where fluid and solid rise together with the same velocity as partially molten bodies, which we 

identify with the diapir regime. We compare the characteristic segregation velocity within solitary 165 

waves, which scales as 

𝑣𝑠𝑔𝑟 ≈
𝑘0𝜑𝑚𝑎𝑥

𝑛−1

𝜇
(∆𝜌𝑔(1 − 𝜑𝑚𝑎𝑥) − ∇′⃗⃗  ⃗ ⋅ 𝝉) = 𝐶𝑠𝑔𝑟

𝑘0𝜑𝑚𝑎𝑥
𝑛−1∆𝜌𝑔(1−𝜑𝑚𝑎𝑥)

𝜇
  (20) 

where 𝐶𝑠𝑔𝑟 is of the order ½ for 2D solitary waves (Schmeling, 2000), with the characteristic Stokes 

sphere rising velocity given by (15). The ratio of these is given by 

𝑣𝑠𝑔𝑟

𝑣𝑠𝑡
=

𝐶𝑠𝑔𝑟

𝐶𝑠𝑡

𝛿𝑐0
2

𝑟2

𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

𝜂0̃
′𝜑0

𝑛        (21) 170 

Here 𝜂0̃
′
 refers to �̃�′ for the background porosity 𝜑0 and 𝛿𝑐0 to the compaction length of the 

background porosity. In contrast to Scott (1988), who varies the volume viscosity in his model series, 

we vary the ratio of initial Stokes radius to compaction length.    

Thus, in the solitary wave limit  

𝐶𝑠𝑔𝑟

𝐶𝑠𝑡
 
𝛿𝑐0

2

𝑟2

𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

𝜂0̃
′𝜑0

𝑛 ≫ 1      (22) 175 

Darcy’s law (17) results in large segregation velocity, which scales as 
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𝑣𝑠𝑔𝑟′ =
𝐶𝑠𝑔𝑟

𝐶𝑠𝑡
 
𝛿𝑐0

2

𝑟2

𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

𝜂0̃
′𝜑0

𝑛       (23) 

From equation (13) it follows that the irrotational part of the matrix velocity scales with  

𝑣1 ≈ −𝜑𝑚𝑎𝑥𝑣𝑠𝑔𝑟      (24) 

while the rotational part is given by (18): In that equation 𝐴′ scales with 𝜒′, which, via equation (12) and 180 

(13), scale with 𝑣𝑠𝑔𝑟, i.e. with 𝛿𝑐0
2 𝑟2⁄ . In other words, the second term on the RHS of (18) dominates 

for small 𝑟2 𝛿𝑐0
2⁄  as the first term is of the order 1. Thus, the rotational matrix velocity has the same 

order as the irrotational compaction velocity and serves to accommodate the compaction flow. In this 

limit the buoyancy term in equation (18), 
1

𝜑𝑚𝑎𝑥

𝜕𝜑

𝜕𝑥′
, is of vanishing importance for the matrix velocity 

and the matrix velocity, 𝑣 1 + 𝑣 2 , is of the order of 𝜑𝑚𝑎𝑥𝑣𝑠𝑔𝑟 . In the small porosity limit, matrix 185 

velocities are negligible with respect to fluid velocities. 

In the diapir limit,   

𝐶𝑠𝑔𝑟

𝐶𝑠𝑡
 
𝑟2

𝛿𝑐
2

𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

𝜂0̃
′𝜑0

𝑛 ≪ 1     (25) 

and equation (17) predict vanishing segregation velocities. As 𝐴′ and 𝜒′ scale with 𝑟2 𝛿𝑐0
2⁄  , both vanish 

in the diapir limit, no irrotational matrix velocity occurs and equ. (18) reduces to the classical biharmonic 190 

equation (i.e. Stokes equation) driven by melt buoyancy and describing classical diapiric ascent. 

Segregation velocities are negligible with respect to matrix velocities. 

In Fig. 1 the results of this simple analysis are shown, where we calculated the velocity ratios as a 

function of initial perturbation radius for several perturbation radii. In our models we use a 𝜑𝑚𝑎𝑥  of 

2%, for which we get a switch from solitary wave to diapir dominant behavior at 𝑟 = 48 ⋅ 𝛿𝑐. Smaller 195 

amplitudes lead to a switch at a smaller radius and larger amplitudes to a switch at a larger radius. 

2.2 Model setup 

The model consists of a 𝐿′ × 𝐿′ box with a background porosity, 𝜑0, of 0.5%. 𝐿′ is the non-dimensional 

side length of the box and equal to 6 times the initial radius of the perturbation. As initial condition a 

non-dimensional Gaussian bell-shaped porosity anomaly is placed in the middle of the model at 𝑥0
′ = 3 200 

and 𝑧0
′ = 3. The Gaussian wave is given by 

𝜑 = 𝜑𝑚𝑎𝑥 ⋅ exp (−(
𝑥′−𝑥0′

𝑤′
)
2
− (

𝑧′−𝑧0′

𝑤′
)
2
)    (26) 

Where 𝜑𝑚𝑎𝑥  is the amplitude equal to 0.02 in our models and 𝑤′ corresponds to the width where 𝜑 has 

reached 𝜑𝑚𝑎𝑥/𝑒. In our case 𝑤′ is equal to 1.2. 
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In our model series we vary the ratio of Stokes radius to compaction length from 1.8 to 48 to explore 205 

the transition from solitary wave towards diapiric regime. The resolution of the models is chosen to be 

at least 201 × 201 grid points and was increased for higher ratios of Stokes radius to compaction length 

so that the compaction length is resolved by at least 3-4 grid points. 

At the top and the bottom domain boundaries, we prescribe an out- and inflow for both melt and solid, 

respectively, to prevent melt accumulations at the top. The segregation velocity of the background 210 

porosity 𝜑0 is calculated using equation (17) without the viscous stress term. The corresponding matrix 

velocity is calculated using the conservation of mass. 

At the sides we enforce no horizontal flux boundary conditions. The permeability-porosity relation 

exponent in our models is always 𝑛 = 3. 

To run models for a longer, practically infinite, amount of time we let the models coordinate system 215 

follow the maximum melt fraction.   

2.3 Numerical approach 

We discretize the set of equations using finite differences on a staggered grid and solve the system using 

the code FDCON (Schmeling et al., 2019). Starting from the prescribed initial condition for 𝜑, and 

assuming 𝐴′(𝜒′) = 0 at time 0, the time loop is entered and the biharmonic equation (19) is solved for 220 

𝜓′ by Cholesky decomposition, from which 𝑣 1′ is derived. Together with 𝑣 2′ the resulting solid velocity 

is used to determine the viscous stress term in the segregation velocity equation (17). This equation and 

the melt mass equation (1) are solved iteratively with strong underrelaxation for 𝜑 and 𝑣 𝑓′ − 𝑣 𝑠′ for the 

new time step using upwind and an implicit formulation of equ. (1). During this internal iteration these 

quantities are used, via equ. (13), to give ∇⃗⃗ ∙ 𝑣 𝑠, the divergence of the matrix velocity, which is needed 225 

in the viscous stress term (equ. 6). After convergence ∇⃗⃗ ∙ 𝑣 𝑠 is used via equ. (12) to determine 𝜒 by LU-

decomposition and then to get 𝑣 2′. Now 𝐴′(𝜒′) can be determined to be used on the RHS of equ (18). 

The procedure is then repeated upon entering the next time step. 

Time steps are dynamically adjusted by the Courant criterion times 0.2 based on the fastest velocity, 

either melt or solid.  230 

The model resolution is a critical parameter in this kind of numerical calculations and should always be 

kept in mind. With increasing length scale ratio, the compaction length in the model gets smaller and 

the resolution needs to be increased to keep it equally resolved.  

According to several authors (e.g. Räss et al., 2019; Keller et al., 2013), the compaction length should 

be at least resolved by 4-8 grid points to solve for waves sufficiently accurately. For small length scale 235 

ratios this is no problem, where, with a model resolution of 201 × 201,  up to nearly 30 grid points per 

compaction length can be achieved. The highest resolution our code can run is 601 × 601, which is 



 

9 
 

enough to resolve the compaction length by three grid points for the model with a length scale ratio of 

48. Everything above that cannot be sufficiently resolved with respect to studying solitary waves.  

Fig. 2 shows the resulting models for a length scale ratio of 12 for six different resolutions. The model 240 

states after 𝜑𝑚𝑎𝑥 has risen approximately 0.25 times the initial Stokes radius (𝑡′ = 0.25) are shown. 

With increasing resolution, the maximum melt fraction increases strongly from 101 × 101  to 

401 × 401 by approximately 20% but the velocity of 𝜑𝑚𝑎𝑥 decreases by 7% (not shown in the figure). 

Both values converge for resolutions higher than 51x51, corresponding to 𝛿𝑐/𝑑𝑥 = 1. Even though the 

compaction length is not sufficiently resolved in Fig. 2d, one can still observe the main features of the 245 

model: A main solitary wave has emerged from the original gaussian perturbation and secondary 

porosity waves are beginning to emerge within its wake. Even with 𝛿𝑐/𝑑𝑥 = 1 these features can be 

observed but are clearly underresolved. With even lower resolutions accumulations at the top of the 

perturbation can be seen, which can be broadly interpreted as the attempt of a solitary wave to build up. 

With 𝛿𝑐/𝑑𝑥 = 0.24, the model is too coarse and the results cannot be trusted anymore. 250 

The solitary waves modeled with our code have been compared to the semi-analytical solution of 

Simpson & Spiegelman (2011), and more benchmarking was carried out in Dohmen et al. (2019).  

In a single-phase flow case, where the melt is not allowed to move relatively to the solid, the initial 

perturbation ascends, shortly after beginning, with a velocity of 0.95 times the calculated Stokes 

velocity, and then slowly decreases as the original Gauss-shaped wave deforms and loses in amplitude. 255 

3 Results 

3.1 The transition from porosity wave to diapirism: Varying the initial wave radius 

In this model series we vary the initial wave radius to cover the transition from porosity waves towards 

diapirism. As a reminder, due to our scaling the initial wave has always the same size w.r.t. the model 

box, and “increasing the initial wave radius” is equivalent to decreasing the compaction length or the 260 

size of the emerging solitary waves w.r.t. the model box. In Fig. 3 the models are shown at 𝑡′ = 0.2. For 

small radii (𝑟 ≤ 12 ⋅ 𝛿𝑐) a single porosity wave emerges from the original perturbation. The melt that is 

not situated within the emerging wave is left behind and has, for the most part, already left the model 

region. For 𝑟 = 2.4 ⋅ 𝛿𝑐 the emerged solitary wave is about the size of the initial perturbation and even 

smaller radii would lead to too big waves that would not fit into the model. With increasing radius, the 265 

emerging solitary wave gets smaller. With 𝑟 = 12 ⋅ 𝛿𝑐, the resulting wave has just a size of ~20% the 

initial perturbation size.  

We compare the observed solitary wave velocities of Fig. 3b-e to equivalent Stokes velocities for a 

diapir based on equation (15). While the dimensional Stokes velocity of a porosity anomaly is 

proportional to the amplitude of porosity and the square of the radius, the non-dimensional Stokes 270 

velocity is always equal to 1. In Fig. 4 this non-dimensional Stokes velocity is indicated by the dashed 
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line with the value 1. The colored lines give 2D solitary wave velocities with their appropriate radii, 

given by Simpson & Spiegelman (2011), normalized by the Stokes velocity corresponding to different 

initial perturbation radii. These semi analytical solutions are in good agreement to our solitary wave 

models and differ only by 3-5% percent in velocity, as already shown in Dohmen et al. (2019). The 275 

velocities in this figure correspond to ratios of solitary wave velocity to initial perturbation Stokes 

velocity. Inspection of Fig. 4 reveals that for the first four cases of Fig. 3b-e with radii smaller or equal 

12 ⋅ 𝛿𝑐 the phase velocities are always larger than the Stokes velocity. For example, for 𝑟 = 12 ⋅ 𝛿𝑐, an 

emerging solitary wave with a typical radius of 4.5 ⋅ 𝛿𝑐 has a higher phase velocity than a 𝑟 = 12 ⋅ 𝛿𝑐 

melt anomaly rising by Stokes flow. Thus, the cases are always in the solitary wave regime. 280 

For greater radii (e.g. 𝑟 = 18 ⋅ 𝛿𝑐 − 30 ⋅ 𝛿𝑐, Fig. 3e-g) the phase velocities of solitary waves are of the 

order of the Stokes velocity (see Fig. 4) and they therefore need more time to separate from the remaining 

melt of the initial perturbation, still rising with order of Stokes velocity. The amount of melt 

accommodated within the main solitary wave is just a small percentage of the original perturbation and 

secondary waves evolve in its remains. With further ascending, more and more solitary waves build up 285 

and the former perturbation will sooner or later consist of solitary waves in an ordered cluster or a 

formation. This formation elongates during ascent as the main wave has a larger amplitude than all the 

following waves, whose amplitudes are also decreasing with depth, as a higher proportion of melt 

accumulated at the top of the perturbation. Similar formations of strongly elongated fingers can be also 

observed in 3D as shown by Räss et al. (2019) who used decompaction weakening. In the models with 290 

smaller radii, the main solitary wave consisted of the majority of melt originally situated within the 

perturbation and the emergence of secondary waves turns out zero or small, but with greater radii enough 

melt is left behind to observe the emergence of second and higher generations of solitary waves. 

For greater radii (e.g. 𝑟 = 24 ⋅ 𝛿𝑐 − 48 ⋅ 𝛿𝑐, Fig. 3 f – j) the phase velocities of solitary waves are almost 

equal to the Stokes velocity (See Fig. 4). This leads to almost no separation after 𝑡′ = 0.2. While for 295 

𝑟 = 36 ⋅ 𝛿𝑐 a solitary wave has already built up and is rising just ahead of the perturbation, for 𝑟 = 42 ⋅

𝛿𝑐 and 𝑟 = 48 ⋅ 𝛿𝑐 just the accumulation of melt at the top of the perturbation can be observed, which 

will eventually lead to a solitary wave. Secondary waves also build up with higher runtimes, as can be 

already seen for 𝑟 = 36 ⋅ 𝛿𝑐. 

For even greater radii the compaction length cannot be sufficiently resolved with our approach, but tests 300 

with not sufficiently resolved models have shown that solitary waves can be observed for 𝑟 ≥ 48 ⋅ 𝛿𝑐. 

At some point they do no longer appear, probably due to lack of sufficient resolution, but our tests show 

that solitary waves should always emerge, even if its phase velocity is way below the Stokes velocity. 

As long as the ascending time is long enough and melt is able to move separately to the matrix, 

independently of segregation velocity, a diapir will evolve into a swarm of a certain number of solitary 305 

waves, based on the compaction length. Because the phase velocities of each small solitary wave is 
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small compared to the Stokes velocity of the full swarm we consider such a rising formation of melt as 

a large scale diapir. 

Fig. 3l shows the required time for the initial perturbation to build up a solitary wave. This status is 

achieved after the dispersion relation of the main wave reaches a point from where it follows the solitary 310 

wave dispersion relation. This time increases nearly linearly for small radii (𝑟 ≤ 48 ⋅ 𝛿𝑐) but increases 

non-linearly for greater radii. This might be due to lack of proper resolution, but a non-linear trend can 

be already observed for small radii. The transition time for radii smaller than 30 ⋅ 𝛿𝑐 is smaller than 0.2, 

the time at which the models in Fig. 3b-j are shown. The other models already show solitary wave like 

blobs but did not yet reach their final form. 315 

A classical diapir will evolve only in cases with zero compaction length (𝑟 = ∞ ⋅ 𝛿𝑐), i.e., melt is not 

able to move w.r.t. the matrix (Fig. 3k). Here, no focusing into solitary waves can be observed and 

transition time is infinity. 

Summarizing Fig. 4, the comparison of Stokes and porosity wave velocities explains well our 

observations shown in Fig. 3: For small initial radii the solitary wave velocity is clearly higher and will 320 

therefore build up and separate from the melt left behind quickly. For cases with approximately equal 

perturbation to solitary wave radius only one solitary wave will build up, which includes most of the 

melt of the initial perturbation. With increasing perturbation radius, the velocity ratio decreases and 

multiple solitary waves, requiring more time, will emerge, each including only a fraction of the melt 

originally situated in the initial perturbation. But even with velocity ratios smaller than 1, solitary waves 325 

emerge and, not able to separate, rise just ahead of the remains, slowly elongating the initial perturbation. 

3.2 Effects on the mass flux 

It is important to study the partitioning between rising melt and solid mass fluxes in partially molten 

magmatic systems because melts and solids are carriers of different chemical components. Within our 

Boussinesq approximation we may neglect the density differences between solid and melt. Then our 330 

models allow to evaluate vertical mass fluxes of solid or fluid by quantifying the vertical velocity 

components multiplied with the melt or solid fractions, respectively:  

𝑞𝑠𝑧
′ = (1 − 𝜑) ⋅ 𝑣′

𝑠𝑧 

𝑞𝑓𝑧
′ = 𝜑 ⋅ 𝑣′𝑓𝑧. 

 
(29) 

Horizontal profiles of the mass fluxes through rising melt bodies at the vertical positions of maximum 

melt fraction at timesteps where the main wave has just reached the status of a solitary wave are 

calculated (Fig. 5).  335 

The mass fluxes of solid and fluid are strongly affected by the change of the initial radius from the 

solitary wave regime towards the diapiric regime. For 𝑟 = 2.4 ⋅ 𝛿𝑐, where we observe a solitary wave, 

the fluid has its peak mass flux in the middle of the wave and the solid is going downwards, against the 
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phase velocity. In the center the fluid flux is about 10 times higher than the solid net flux. The upward 

flow in the center is balanced by the matrix dominated downward flow inside and outside the wave. For 340 

𝑟 = 12 ⋅ 𝛿𝑐 the wave area is much smaller and the ratio between solid and fluid flux is still around the 

order of 10. At the boundary of the wave the solid is nearly not moving at all, but a minimum can be 

observed within the center of it. For 𝑟′ = 24 ⋅ 𝛿𝑐  the solid flux is just above zero in the center and 

increases to a maximum towards the flanks of the wave, that is still about ten times smaller than the 

maximum fluid flux. 345 

With 𝑟′ = 48 ⋅ 𝛿𝑐 the solid flux is just about three times smaller than the fluid flux, but most of the 

material ascent is accomplished by the solid. This suggests that diapiric rise begins to dominate. 

The transition from solitary waves towards diapirism on qualitative model observations was so far only 

based on observations. We now invoke a more quantitative criterion. In a horizontal line passing through 

the anomaly’s porosity maximum we define the total vertical mass flux of the rising magma body by 350 

∫ (𝑞𝑓 + 𝑞𝑠)𝑑𝑥
𝜑>𝜑0

 where the integration is carried out only in the region of increased porosity 𝜑 > 𝜑0. 

This mass flux is partitioned between the fluid mass flux, ∫ 𝑞𝑓𝑑𝑥
𝜑>𝜑0

, and the solid mass flux, 

∫ 𝑞𝑠𝑑𝑥
𝜑>𝜑0

. With these we define the partition coefficients 

𝐶soli =
∫ 𝑞𝑓𝑑𝑥
𝜑>𝜑0

 ∫ (𝑞𝑓 + 𝑞𝑠)𝑑𝑥
𝜑>𝜑0

 

 

(30) 

and 

𝐶dia =
∫ 𝑞𝑠𝑑𝑥
𝜑>𝜑0

 ∫ (𝑞𝑓 + 𝑞𝑠)𝑑𝑥
𝜑>𝜑0

 

 

(31) 

The sum 𝐶soli + 𝐶dia is always 1 and if 𝐶soli > 𝐶dia then the solitary wave proportion is dominant, while 355 

for 𝐶soli < 𝐶dia diapirism is dominant. In Fig. 6a these partition coefficients for several initial radii are 

shown. In red are the diapir and in blue the solitary wave partition coefficients. 

For 𝑟 = 1.8 ⋅ 𝛿𝑐, 𝐶soli is equal to 5 and 𝐶dia is equal to -4, i.e. we have a downward solid flux. With 

increasing radius 𝐶dia increases until it changes its sign, and the matrix flows upward, at 𝑟 ≈ 20 ⋅ 𝛿𝑐. It 

eventually becomes bigger than 𝐶soli  at 𝑟 = 36 ⋅ 𝛿𝑐  and then approaches 1 for bigger radii. 𝐶soli 360 

changes so that the sum of both is always equal to 1. Even though diapirism is dominant for 𝑟 > 36 ⋅ 𝛿𝑐, 

we still observe solitary waves, yet their phase velocities are much smaller than the large-scale rising 

velocities of the full melt formation. 

The ratio of maximum fluid velocity (i.e. 𝑣𝑓⃗⃗⃗⃗ ) to absolute matrix velocity (Fig. 6b) shows, that for small 

radii, where 𝐶soli ≫ 𝐶dia, this ratio is approximately constant with a high value of about 100. The 365 

absolute velocity maxima itself are not constant but decrease with the same rate until the switch of 



 

13 
 

negative to positive matrix mass flux, where the absolute matrix velocity starts to increase, while the 

fluid velocity keeps decreasing. At this zero crossing we would expect a ratio of infinity, but while the 

zero crossing takes place within the center of the solitary wave, other regions near the wave still have 

finite vertical velocities. This switch from negative to positive mass flux was already observed by Scott 370 

(1988), but while they changed the viscosity ratio as an independent constant model parameter, we 

change the radius and keep the viscosity law the same, still evolving with 𝜑. Both describe the transition 

from a two-phase limit towards the Stokes limit, but in our formulation, we are able to reach the Stokes 

limit while Scott’s formulation (1988) is restricted to two-phase flow. With even greater radii the 

velocity ratio will eventually converge towards 1, where melt is no longer able to move relatively to the 375 

matrix (i.e.  𝑣𝑓⃗⃗⃗⃗ = 𝑣𝑠⃗⃗  ⃗) and material will be transported collectively as in single-phase flow. These last 

models are not sufficiently resolved to obtain leading and secondary solitary waves, but still show the 

expected behavior in terms of macroscopically rising partially molten diapir. 

Based on these observations, the evolution of these models can be divided into two regimes: (1) In the 

solitary wave regime (𝑟 ≤ 36 ⋅ 𝛿𝑐) 𝐶soli is larger than 𝐶dia and the initial perturbation emerges into 380 

waves that have the properties of solitary waves and ascend with constant velocity and staying in shape. 

This regime can be further divided into 1a (𝑟 < 20 ⋅ 𝛿𝑐), where the solid mass flux is negative, and 1b 

(20 ⋅ 𝛿𝑐 ≤ 𝑟 < 36 ⋅ 𝛿𝑐), where the solid moves upwards with the melt. Waves in these regimes are very 

similar but the further we are in regime 1a the less solitary waves will emerge out of the initial 

perturbation. For radii smaller than about 4.8 ⋅ 𝛿𝑐  only one wave will merge. In regime 1b the 385 

perturbation will always emerge into multiple solitary waves. 

In the diapirism-dominated regime (2) (𝑟 ≥ 36 ⋅ 𝛿𝑐), 𝐶dia is larger than 𝐶soli but, as the fluid melt is still 

able to move relatively to the solid matrix, solitary waves build up and the whole partially molten region 

will evolve into a swarm of them. The phase velocities of these waves are very small compared to the 

Stokes velocity of the perturbation and the whole swarm will rise as a diapir, whose buoyancy is still 390 

comparable to the buoyancy of the initial perturbation’s.  

The endmember of the second regime can be reached by prohibiting the relative movement of fluid (𝑟 =

∞ ⋅ 𝛿𝑐), for which the compaction length has not to be sufficiently resolved. In this regime the initial 

perturbation will not disintegrate into solitary waves but rise as a well-formed partially molten diapir. 

In every other case, in the present model, where fluid is able to move w.r.t. the solid, at some point all 395 

diapirs will evolve into a swarm of solitary waves which can be infinitely small compared to the initial 

perturbation. However, this is expected to happen only after a long distance of diapiric rise. In cases 

where the size of solitary waves is comparable to the perturbation (e.g. regime (1)) this will occur sooner 

and in cases, where solitary waves are much smaller, later. Their observation is mostly limited by 

resolution. For models that allow for the diapir to grow (e.g. Keller et al., 2013) they may not dissolve 400 

into solitary waves, as it approaches the single-phase limit.  
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4 Discussion 

4.1. Application to nature 

While in our models the perturbation size in terms of compaction lengths was systematically varied but 

kept constant within in each model, our results might also be applicable to natural cases in which the 405 

compaction length varies vertically. In the case of compaction length decreasing with ascent a porosity 

anomaly might start rising as a solitary wave but then at some point might enter the second regime where 

diapiric rise is dominant. If this boundary is sharp, the solitary wave might disintegrate into several 

smaller solitary waves that rise as a diapiric swarm. If the boundary is a continuous transition the wave 

should slowly shrink and become slower. The melt left behind might also evolve into secondary solitary 410 

waves. 

A decreasing compaction length could be accomplished by decreasing the matrix viscosity or the 

permeability, or by increasing the fluid viscosity. Decreasing matrix viscosity might be for example 

explainable by local heterogeneities, temperature anomalies for example due to secondary convective 

overturns in the asthenosphere or by a vertical gradient of water content, which may be the result of melt 415 

segregation aided volatile enrichment at shallow depths in magmatic systems. This could lead to the 

propagation of magma-filled cracks (Rubin, 1995) as already pointed out in Connolly & Podladchikov 

(1998). The latter authors have looked at the effects of rheology on compaction-driven fluid flow and 

came to similar results for an upward weakening scenario. The decrease of permeability due to decrease 

in background porosity might be an alternative explanation. In the hypothetic case of a porosity wave 420 

reaching the top of partially molten region within the Earth’s upper mantle or lower crust, the 

background porosity might decrease which would most certainly lead to focusing, because the 

compaction length will decrease, and eventually, when reaching melt free rocks, the solitary waves 

might be small enough and its amplitude might be high enough to trigger the initiation of dykes. 

Even though most diapirs should, according to our models, disintegrate into numerous solitary waves, 425 

not all will inevitably. Within regime (1) solitary waves are possible and most probably expected but 

the deeper we are in regime (2) the less expected is the disintegration because a long time is needed to 

build up. In nature, different from our models, they cannot rise for an infinite amount of time. The time 

needed to build up a solitary wave increases non-linearly with 𝑟 (c.f. Fig. 3 l). For example, while for 

𝑟 = 4.8 ⋅ 𝛿𝑐  a solitary wave is completely evolved after 𝑡′ = 0.02, for 𝑟 = 48 ⋅ 𝛿𝑐 it needs until 𝑡′ =430 

0.4, i.e., equivalent to the diapiric rise time necessary to ascend the distance approximately half the 

initial radii. Additionally, as already pointed out, if a model setup allows for the diapir to grow, it could 

approach the single-phase flow, prohibiting the emergence of solitary waves (cf. Keller et al., 2013). 

4.2. Model limitations 

The introduced partition coefficients help to distinguish whether solitary wave or diapiric rise is 435 

dominant but cannot be solely consulted whether a solitary wave or a diapir can be expected. As the 
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fluid velocity and flux is still very high in the waves center for diapiric dominant cases, small solitary 

waves will build up. However, the net mass flux is dominated by the large scale rising solid, and the 

formation time of small solitary waves might be long. Additionally, the internal circulation of diapirs 

can be faster than the phase velocity which would smear out the emergence of solitary waves and not 440 

allow for them to emerge. Due to limitations of our model, we are not able to reach regions where 

solitary waves are small enough and their phase velocity slow enough to observe this.  

While the minimum size of solitary waves in nature might be in some way limited by the grain size, in 

numerical models the minimum size is limited by the model’s resolution. We restrict our models in this 

study to cases where the compaction length is at least resolved by 3 grid lengths 𝑑𝑥 (i.e. 𝛿𝑐 ≥ 3 ⋅ 𝑑𝑥) to 445 

get fairly resolved solitary waves, but they can be also observed for much worse resolved compaction 

lengths. The resolution test (Fig. 2) shows that, even though they are not solved decently, probable 

solitary waves can be observed for cases with 𝛿𝑐 = 𝑑𝑥. Smaller resolutions can show indications of 

solitary waves but should not be trusted as other tests (not shown here) with similar resolutions result in 

spurious channeling. For very poorly resolved compaction lengths (𝛿𝑐 < 0.25 ⋅ 𝑑𝑥 for our models) no 450 

indications of solitary waves can be observed, and the partially molten perturbation ascends as a diapir. 

The deeper we are in regime 2, the more dominant are the dynamics of diapirism on a length scale of r 

compared to Darcy flow or solitary waves on the unresolved length scale of 𝛿𝑐. Thus, two-phase flow, 

either Darcy flow or solitary waves, becomes negligible for 𝑟 ≫ 𝛿𝑐 and partially molten diapirs can be 

regarded as well resolved. 455 

5 Conclusion 

This work shows, that depending on the extent of a partially molten region within the Earth, the resulting 

ascent of melt may not only occur by solitary waves or by diapirs, but by a composed mechanism, where 

a diapir splits up into numerous solitary waves. Their phase velocities might become so slow that the 

whole swarm will ascend as a diapir, just slowly elongating due to the main solitary wave having a 460 

higher amplitude and therefore higher phase velocity than the following ones. Depending on the ratio of 

the melt anomalies size to the compaction length, or rather the models length scale to compaction length 

ratio, we can classify the ascent behavior into two different regimes using mass flux and velocity of 

matrix and melt: (1a + b) Solitary wave a and b, and (2) diapirism-dominated. In regime 1a the matrix 

sinks with respect to the rising melt, in 1b also the matrix rises, but very slowly. The further we are in 465 

this regime the less solitary waves will emerge out of the initial perturbation until, eventually, only one 

solitary wave will emerge. On first order these regimes can be explained by comparing Stokes velocity 

of the rising perturbation with the solitary waves phase velocity. If the solitary wave velocity is higher 

than the Stokes velocity a solitary wave will evolve and, if lower, diapirism is dominant, but still solitary 

waves will build up if the ascending time is long enough. The deeper we are in regime 2, the more time 470 

is needed to build up solitary waves and the less likely it is that they will appear in nature. The 
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endmember of regime (2), pure diapirism, can be reached if fluid is not allowed to move separately to 

the matrix. 

Especially around the transition of the regimes numerical resolution plays an important role as the 

compaction length may be under-resolved to allow for the emergence of solitary waves. Hence it should 475 

be generally important for two-phase flow models to inspect whether solitary waves are expected and if 

so, do they have a major influence on the conclusions made. 

Code availability 

The used finite difference code, FDCON, is available on request. 

Author Contribution 480 

Janik Dohmen wrote this article and carried out all models shown here. Harro Schmeling helped 

preparing this article and initialized this project. 

References 

Aharonov, E., J. Whitehead, P. B. Kelemen, and M. Spiegelman: Channeling instability of upwelling 

melt in the mantle. J. Geophys. Res. 100, 20,433 – 20,450, 1995. 485 

Barcilon, V., & Lovera, O. M.: Solitary waves in magma dynamics. Journal of Fluid Mechanics, 

204(1989), 121–133. https://doi.org/10.1017/S0022112089001680, 1989. 

Bittner, D., & Schmeling, H.: Numerical modelling of melting processes and induced diapirism in the 

lower crust. Geophysical Journal International, 123(1), 59-70, 1995. 

Connolly, J. A. D.: Devolatilization‐generated fluid pressure and deformation‐propagated fluid flow 490 

during prograde regional metamorphism. Journal of Geophysical Research: Solid 

Earth, 102(B8), 18149-18173, 1997. 

Connolly, J. A. D., & Podladchikov, Y. Y.: Compaction-driven fluid flow in viscoelastic rock. 

Geodinamica Acta, 11(2–3), 55–84. https://doi.org/10.1080/09853111.1998.11105311, 1998. 

Connolly, J. A. D., & Podladchikov, Y. Y.: A hydromechanical model for lower crustal fluid flow. 495 

In Metasomatism and the chemical transformation of rock (pp. 599-658). Springer, Berlin, 

Heidelberg, 2013. 

Connolly, J. A. D., & Podladchikov, Y. Y.: An analytical solution for solitary porosity waves: 

Dynamic permeability and fluidization of nonlinear viscous and viscoplastic rock. Geofluids, 

15(1–2), 269–292. https://doi.org/10.1111/gfl.12110, 2015. 500 

https://doi.org/10.1017/S0022112089001680
https://doi.org/10.1080/09853111.1998.11105311
https://doi.org/10.1111/gfl.12110


 

17 
 

Costa, A.: Permeability-porosity relationship: A reexamination of the Kozeny-Carman 

equation based on a fractal pore-space geometry assumption. Geophysical Research 

Letters, 33(2), 1–5. https://doi.org/10.1029/2005GL025134, 2006. 

Dohmen, J., Schmeling, H., & Kruse, J. P.: The effect of effective rock viscosity on 2-D magmatic 

porosity waves. Solid Earth, 10(6), 2103-2113, 2019. 505 

Golabek, G. J., Schmeling, H., & Tackley, P. J.: Earth's core formation aided by flow channelling 

instabilities induced by iron diapirs. Earth and Planetary Science Letters, 271(1-4), 24-33, 

2008. 

Griffiths, R. W.: The differing effects of compositional and thermal buoyancies on the evolution of 

mantle diapirs. Physics of the earth and planetary interiors, 43(4), 261-273, 1986. 510 

Jordan, J. S., Hesse, M. A., & Rudge, J. F.: On mass transport in porosity waves. Earth and Planetary 

Science Letters, 485, 65–78. https://doi.org/10.1016/j.epsl.2017.12.024, 2018. 

Katz, R.: Magma dynamics with enthalpy method: Benchmark solutions and magmatic focusing ad mid-

ocean ridges. J. Petr. 49, 2099 – 2121, 2008. 

Keller, T., R. F. Katz, and M. Hirschmann: Volatiles beneath mid-ocean ridges: Depp melting, 515 

channelized transport, focusing, and metasomatism, Earth Planet. Sci. Lett., 464, 55 - 68., 2017. 

Keller, T., May, D. A., & Kaus, B. J.: Numerical modelling of magma dynamics coupled to tectonic 

deformation of lithosphere and crust. Geophysical Journal International, 195(3), 1406-1442, 

2013. 

McKenzie, D.: The generation and compaction of partially molten rock. Journal of Petrology, 25(3), 520 

713–765. https://doi.org/10.1093/petrology/25.3.713, 1984. 

Omlin, S., Malvoisin, B., & Podladchikov, Y. Y.: Pore Fluid Extraction by Reactive Solitary Waves in 

3-D. Geophysical Research Letters, 44(18), 9267–9275. https://doi.org/10.1002/2017GL074293, 

2017. 

Popov, A. A., S.V. Sobiolev: SLIM3D: A tool for three-dimensonal thermomechanical modeling of 525 

lithospheric deformation with elasto-visco-plastic rheology. Phys. Earth Planet. Int., 171, 55 – 

75, 2008. 

Rabinowicz, M., Ceuleneer, G., & Nicolas, A.: Melt segregation and flow in mantle diapirs below 

spreading centers: Evidence from the Oman Ophiolite. Journal of Geophysical Research, 92(B5), 3475. 

doi:10.1029/jb092ib05p03475, 1987. 530 

https://doi.org/10.1029/2005GL025134
https://doi.org/10.1016/j.epsl.2017.12.024
https://doi.org/10.1093/petrology/25.3.713
https://doi.org/10.1002/2017GL074293


 

18 
 

Räss, L., Duretz, T., & Podladchikov, Y. Y.. Resolving hydromechanical coupling in two and 

three dimensions: Spontaneous channelling of porous fluids owing to decompaction 

weakening. Geophysical Journal International, 218(3), 1591–1616. 

https://doi.org/10.1093/gji/ggz239, 2019. 

Richard, G. C., Kanjilal, S., & Schmeling, H. (2012). Solitary-waves in geophysical two-phase viscous 535 

media: A semi-analytical solution. Physics of the Earth and Planetary Interiors, 198–199, 61–

66. https://doi.org/10.1016/j.pepi.2012.03.001 

Richardson, C. N.: Melt flow in a variable viscosity matrix. Geophysical Research Letters, 25(7), 

1099-1102, 1998. 

Rivalta, E., B. Taisne, A. P. Bunger, R.F. Katz: A review of mechanical models of dike propagation: 540 

Schools of thought, results and future directions Tectonophysics, 638, 1 – 42, 2015. 

Rubin, A. M.: Propagation of magma-filled cracks. Annual Review of Earth and Planetary Sciences, 

287–336, 1995. 

Schmeling, H.: Partial melting and melt segregation in a convecting mantle. In Physics and Chemistry 

of Partially Molten Rocks. Springer, 2000. 545 

Schmeling, H., Marquart, G., Weinberg, R., & Wallner, H.: Modelling melting and melt segregation 

by two-phase flow: New insights into the dynamics of magmatic systems in the continental crust. 

Geophysical Journal International, 217(1), 422–450. https://doi.org/10.1093/gji/ggz029, 2019. 

Scott, D. R.: The competition between percolation and circulation in a deformable porous medium. 

Journal Of Geophysical Research, 93(B6), 6451–6462. 550 

https://doi.org/10.1029/JB093iB06p06451, 1988 

Scott, D. R., & Stevenson, D. J.: Magma solitons. Geophysical Research Letters, 11(11), 1161–1164, 

1984. 

Simpson, G., & Spiegelman, M.: Solitary wave benchmarks in magma dynamics. Journal of Scientific 

Computing, 49(3), 268–290. https://doi.org/10.1007/s10915-011-9461-y, 2011. 555 

Sparks, D., Parmentier, E.: Melt extraction from the mantle beneath spread-ing centers. Earth Planet. 

Sci. Lett.105, 368–377. http://dx.doi.org/10.1016/0012-821X(91)90178-K, 1991. 

Spiegelman, M.: Physics of Melt Extraction: Theory, Implications and Applications. Philosophical 

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 

342(1663), 23–41. https://doi.org/10.1098/rsta.1993.0002, 1993. 560 

https://doi.org/10.1093/gji/ggz239
https://doi.org/10.1016/j.pepi.2012.03.001
https://doi.org/10.1093/gji/ggz029
https://doi.org/10.1029/JB093iB06p06451
https://doi.org/10.1007/s10915-011-9461-y
http://dx.doi.org/10.1016/0012-821X(91)90178-K
https://doi.org/10.1098/rsta.1993.0002


 

19 
 

Spiegelman, M.: Flow in deformable porous media. Part 2 Numerical analysis - the relationship 

between shock waves and solitary waves. J. Fluid Mech., 247, 39–63. 

https://doi.org/10.1017/S0022112093000370, 1993. 

Spiegelman, M., & McKenzie, D.: Simple 2-D models for melt extraction at mid-ocean ridges and 

island arcs. Earth and Planetary Science Letters, 83(1-4), 137-152, 1987. 565 

Šrámek, O., Ricard, Y., & Dubuffet, F. : A multiphase model of core formation. Geophysical Journal 

International, 181(1), 198-220, 2010. 

Stevenson, D. J.: Spontaneous small‐scale melt segregation in partial melts undergoing 

deformation. Geophysical Research Letters, 16(9), 1067-1070, 1989. 

Slezkin, A.: Dynamics of viscous incompressible fluid. Gostekhizdat, Moscow (in Russian), 1955. 570 

Turcotte, D. L., & Schubert, G.,. Geodynamics. Cambridge university press., 1982. 

Watson, S., & Spiegelman, M.: Geochemical Effects of Magmatic Solitary Waves—I. Numerical 

Results. Geophysical Journal International, 117(2), 284–295. https://doi.org/10.1111/j.1365-

246X.1994.tb03932.x, 1994. 

Wiggins, C., & Spiegelman, M.: Magma migration and magmatic solitary waves in 3D. Geophysical 575 

Research Letters, 22(10), 1289–1292. https://doi.org/10.1029/95GL00269, 1995. 

Collins, W. J.: Polydiapirism of the Archean Mount Edgar Batholith, Pilbara Block, Western 

Australia. Precambrian Research, 43(1-2), 41-62, 1989. 

Yarushina, V. M., Podladchikov, Y. Y., & Connolly, J. A. D.: (De)compaction waves in porous 

viscoelastoplastic media: Solitary porosity waves. Journal of Geophysical Research: Solid Earth, 580 

1–20. https://doi.org/10.1002/2014JB011260.Received, 2015. 

https://doi.org/10.1017/S0022112093000370
https://doi.org/10.1111/j.1365-246X.1994.tb03932.x
https://doi.org/10.1111/j.1365-246X.1994.tb03932.x
https://doi.org/10.1029/95GL00269
https://doi.org/10.1002/2014JB011260.Received


 

20 
 

 

Fig. 1: The segregation to Stokes velocity ratio, following equation (21), is given as a function of 

initial perturbation radius 𝒓 in terms of compaction length 𝜹𝒄. Each colored line refers to 

different values of perturbation amplitude 𝝋𝒎𝒂𝒙, given in the legend. 585 
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Fig. 2: The six panels depict a model with an initial perturbation radius of 12 times the compaction 

length but with different numerical grid resolutions: a) 13x13 b) 26x26 c) 51x51 d) 101x101, e) 

201x201, f) 401x401. In the lower left corner in each figure the size of the compaction length in 

terms of grid length is given. 590 

 

 

Fig. 3: Melt ascent morphology as function of initial perturbation radius in terms of compaction 

length. a) Initial conditions of the model valid for all cases apart of the change in compaction 

length. b-j) Melt fraction distribution after 𝒕′ = 𝟎. 𝟐 for length scale ratios varying between 2.4 595 

and 48. k) Diapiric rise resulting from a compaction length of zero at 𝒕′ = 𝟗. l) Models’ transition 

time as function of length scale ratios varying between 1.8 and 120. The transition time gives the 

time after which the main wave has reached a solitary wave status. 
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Fig. 4: The dashed line marks the velocity of the Stokes sphere (𝒗′ = 𝟏). The colored lines refer to 600 

the velocity of a 2D solitary wave, calculated semi-analytically by Simpson & Spiegelman (2011), 

in our non-dimensionalization, based on the radii shown in the legend. 

 

Fig. 5: The upper row panels depict the solid and fluid mass fluxes of a horizontal line cutting 

through the maximum melt fraction at timesteps where the main wave has just reached the status 605 

of a solitary wave. These timesteps are 𝒕′ = 𝟎. 𝟎𝟐; 𝟎. 𝟎𝟔𝟖; 𝟎. 𝟏𝟓𝟓;𝟎. 𝟒𝟏𝟔  from left to right, 

respectively. The bottom row panels depict the corresponding melt porosity fields. All quantities 

shown are non-dimensional. 
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Quantitative parameters as function of initial perturbation radius in terms of compaction length. 610 

a) Solitary wave (blue) and diapir (red) partition coefficients for several initial perturbation radii. 

b) Ratio of maximum fluid velocity to maximum absolute solid velocity in the entire model. 

 


