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Abstract 5 

In partially molten regions inside the earth melt buoyancy may trigger upwelling of both solid and fluid 

phases, i.e. diapirism. If the melt is allowed to move separately with respect to the matrix, melt 

perturbations may evolve into solitary porosity waves. While diapirs may form on a wide range of scales, 

porosity waves are restricted to sizes of a few times the compaction length. Thus, the size of a partially 

molten perturbation controls whether a diapir or a porosity wave will emerge. We study the transition 10 

from diapiric rise to solitary porosity waves by solving the two-phase flow equations of conservation of 

mass and momentum in 2D with porosity dependent matrix viscosity. We systematically vary the initial 

size of a porosity perturbation from 1.5 to 100 times the compaction length.  If the perturbation is much 

larger than a regular solitary wave, its Stokes velocity is large and therefore faster than the segregating 

melt. Consequently, the fluid is not able to form a porosity wave and a diapir emerges. For small 15 

perturbations solitary waves emerge, either with a positive or negative vertical matrix velocity inside. 

In between the diapir and solitary wave regimes we observe a third regime of porosity wave or diapir 

induced melt focusing and channeling. In these cases, diapirism is dominant but the fluid is still fast 

enough to locally build up channels and rise in front of the bigger perturbation. These channels have a 

scale of the order of a few compaction lengths and evolve as long as this length scale is decently 20 

resolved. We assume, based on resolution tests, that channels will also build up in the diapir regime with 

higher resolution. 

1 Introduction 

In many scenarios inside the earth the process of a fluid moving relatively to a viscously deformable 

porous matrix is an important transport mechanism. The physics of these scenarios were firstly described 25 

by McKenzie (1984) and it was later shown by several authors that these equations allow for the 

emergence of solitary porosity waves (Scott & Stevenson, 1984; Barcilon & Lovera 1989; Wiggins & 

Spiegelman, 1995). Porosity waves are regions of localized excess fluid that ascend with permanent 

shape and constant velocity, controlled by compaction and decompaction of the surrounding matrix. 

Even though these porosity waves were of vast interest for many authors over the last decades and the 30 

possible consequences on geochemistry and fluid flow in lower and middle crust in general (e.g. Watson 

& Spiegelman, 1994; McKenzie, 1984; Connolly, 1997; Connolly & Podladchikov, 2013, Jordan et al., 

2018, Richard et al., 2012) or the effects of matrix rheology on porosity waves (e.g. Connolly & 

Podladchikov, 1998; Yarushina et al., 2015; Connolly & Podladchikov, 2015; Omlin et al., 2017; 


ambiguous
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Dohmen et al., 2019) have been examined, there are still open questions. One open question is that of 35 

the scaling. The size of a solitary porosity wave is usually of the order of a few compaction lengths 

(McKenzie, 1984; Scott & Stevenson, 1984; Simpson & Spiegelman, 2011),  but this length scale varies 

over a few orders of magnitude, depending on the shear and bulk viscosity of the matrix, fluid viscosity 

and permeability (see 1) with typical values of 100-10000 meters (McKenzie, 1984; Spiegelman, 1993). 

On the other hand, partially molten regions in the lower crust or upper mantle are prone to gravitational 40 

instabilities such as Rayleigh-Taylor instabilities or diapirism (e.g. Griffith, 1986; Bittner and 

Schmeling, 1995; Schmeling et al., 2019). As characteristic wavelengths of Rayleigh-Taylor instabilities 

may be similar, but also of significantly different order of those of porosity waves, the question arises 

how these two mechanisms interact and how does the transition between magmatic rise due to diapirism 

or porosity wave look like. Scott (1988) already had a look at a similar scenario. He calculated porosity 45 

waves changing the compaction length by altering the shear to bulk viscosity ratio, while we want to 

change the radius of a partially molten perturbation in terms of compaction lengths but keeping the 

viscosity the same. While Scott (1988) was not able to reach the single-phase flow endmember due to 

his setup we can reach this endmember with our description and can show how the transition looks like.  

The extent of partially molten scenarios inside the earth’s mantle vary over many orders of magnitude 50 

and this transition might have an important effect on the evolution of these regions. In this work we 

want to address this problem and look especially on what happens for different sizes of initial 

perturbations and what are the numerical implications on modelling magma transport. 

Addressing different melt ascent mechanisms, it may be useful to specify our definition of diapirism. 

Originating from the Greek “diapeirein”, i.e. “to pierce through”, diapirism describes the “buoyant 55 

upwelling of relatively light rock” (Turcotte & Schubert, 1982) through and into a denser overburden. 

In the general definition the rheology of the diapir and ambient material is not specified, both can be 

ductile as in our case, but often, the overburden is assumed being more viscous or even brittle. Buoyancy 

may be of compositional or phase related origin, e.g. due to the presence of non-segregating partial melt 

(Wilson, 1989). Based on these definitions in our case a diapir is a rising, partially molten body or 60 

porosity anomaly with zero fluid-solid separation velocity. Mathematically the equations of motion of 

the two-phase system degenerate to the Stokes equation (see below). 

2 Theoretical Approach 

2.1 Governing equations 

The formulation of the governing equations for the melt-in-solid two-phase flow dynamics is based on 65 

McKenzie (1984), Spiegelman & McKenzie (1987) and Schmeling (2000) assuming an infinite Prandtl 

number, a low fluid viscosity w.r.t. the effective matrix viscosity, zero surface tension, and the 

Boussinesq approximation. In the present formulation the Boussinesq approximation (BA) assumes the 

same constant density for the solid and fluid except for the buoyancy terms of the momentum equations 
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for the solid and fluid. In the following all variables associated with the fluid (melt) have the subscript 70 

𝑓 and those associated with the solid have the subscript 𝑠. Applying the BA the equation for the 

conservation of the mass of the melt is  

𝜕𝜑

𝜕𝑡
+ �⃗� ∙ (𝜑𝑣 𝑓) = 0,      (1) 

and the mass conservation of the solid is 

𝜕(1−𝜑)

𝜕𝑡
+ ∇⃗⃗ ∙ ((1 − 𝜑)𝑣 𝑠) = 0.     (2) 75 

𝜑 is the volumetric rock porosity (often called melt fraction), 𝑣 𝑓 and 𝑣 𝑠 are the fluid and solid velocities, 

respectively. The momentum equations are given as a generalized Darcy equation for the fluid 

separation flow  

𝑣 𝑓 − 𝑣 𝑠 = −
𝑘𝜑

𝜂𝑓 𝜑
(∇⃗⃗ 𝑃 − 𝜌𝑓𝑔 ),      (3) 

where 𝜌𝑓 is the fluid density, and the Stokes equation for the mixture 80 

𝜌𝑔 − ∇⃗⃗ 𝑃 +
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
= 0.       (4) 

𝑘𝜑 is the permeability that depends on the rock porosity 

𝑘𝜑 = 𝑘0𝜑
𝑛,        (5) 

𝜂𝑓 is the melt dynamic viscosity, 𝑔  is the gravitational acceleration, 𝜌 is the density of the melt – solid 

mixture, 𝑃 is the fluid pressure (including the lithostatic pressure), whose gradient is driving the motion, 85 

and 𝜏𝑖𝑗 is the viscous stress tensor 

𝜏𝑖𝑗 = 𝜂𝑠 (
𝜕𝑣𝑠𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑠𝑗

𝜕𝑥𝑖
) + (𝜂𝑏 −

2

3
𝜂𝑠) 𝛿𝑖𝑗∇ ∙ 𝑣 𝑠.    (6) 

𝜂𝑏 is the bulk viscosity. The linearized equation of state for the mixture density is given as 

𝜌 = 𝜌0(1 − 𝑐𝑓𝜑)                                                                        (7) 

with 𝜌0 as the solid density and 𝑐𝑓 =
𝜌0−𝜌𝑓

𝜌0
 . The shear and bulk viscosity are given by the simple 90 

equations 

𝜂𝑠 = 𝜂𝑠0(1 − 𝜑)                                                                        (8) 

and 

𝜂𝑏 = 𝜂𝑠0
1−𝜑

𝜑
                                                                        (9) 

where 𝜂𝑠0 is the intrinsic shear viscosity of the matrix. 95 


pressure not declared in text following equation; for consistency this should be P_f


disregards exponentail decay with phi which is important control on contraction of compaction length


not stated explicitly, but the reader is led to assume this is constant. if so, the discussion of channelling instabilities in the results section is highly misleading since channelling instabilities referred to in the literature are the result of porosity and stress-weakening intrinsic shear viscosity of the matrix.
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As in both equations (3) and (4) 𝑃 is the fluid pressure, these equations can be merged to eliminate the 

pressure resulting in  

𝑣 𝑓 − 𝑣 𝑠 = −
𝑘0𝜑

𝑛−1

𝜂𝑓
(𝜌0𝑐𝑓𝑔 (1 − 𝜑) +

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
).    (10) 

This equations states that the fluid separation flow i.e. melt segregation velocity) is driven by the 

buoyancy of the fluid with respect to the solid and the viscous stress in the matrix including compaction 100 

and decompaction.  

Following Šrámek et al. (2007) the Stokes equation (3) can be rewritten by expressing the matrix 

velocity, 𝑣 𝑠, as the sum of the incompressible flow velocity, 𝑣 1, and the irrotational (compaction) flow 

velocity, 𝑣 2, as: 

𝑣 𝑠 = 𝑣 1 + 𝑣 2 = (

𝜕𝜓

𝜕𝑧

−
𝜕𝜓

𝜕𝑥

) + (

𝜕𝜒

𝜕𝑥
𝜕𝜒

𝜕𝑧

)     (11) 105 

with 𝜓 as stream function and 𝜒 as the irrotational velocity potential, given as the solution of the Poisson 

equation 

∇⃗⃗ 2𝜒 = ∇⃗⃗ ∙ 𝑣 𝑠.        (12) 

The divergence term  ∇⃗⃗  ⋅ 𝑣𝑠⃗⃗  ⃗ can be derived from eqs. 1 and 2 to give 

∇⃗⃗ ∙ 𝑣 𝑠 = −∇⃗⃗ ∙ [φ(𝑣 𝑓 − 𝑣 𝑠)].     (13) 110 

In the small fluid viscosity limit the viscous stresses within the fluid phase are neglected, resulting in a 

viscous stress tensor in the Stokes equation of the mixture (equ. 4), in which only the stresses in the 

solid phase are relevant. This is evident from the definition of the viscous stress tensor, which only 

contains matrix and not fluid viscosities. Melt viscosities of carbonatitic, basaltic or silicic wet or dry 

melts span a range from < 1 Pa s to extreme values up to 1014 Pa s (see the discussion in Schmeling et 115 

al., 2019), while effective viscosities of mafic or silicic partially molten rocks may range between 1020  

Pa s and 1016 Pa s, depending on melt fraction, stress, and composition. Thus, in most circumstances the 

small fluid viscosity limit is justified. 

In the limit of this small viscosity assumption, inserting the above solid velocity (11) into the viscous 

stress (6), this into the Stokes equation (4), and taking the curl of the x- and z equations the pressure is 120 

eliminated and one gets 

(
𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2) [𝜂𝑠 (
𝜕2𝜓

𝜕𝑥2 −
𝜕2𝜓

𝜕𝑧2)] + 4
𝜕2

𝜕𝑥𝜕𝑧
[𝜂𝑠

𝜕2𝜓

𝜕𝑥𝜕𝑧
] = −𝑔

𝜕𝜌

𝜕𝑥
+ 𝐴(𝜒)  (14) 

with  


for variable viscosity?


confusing since pressure was already eliminated once above
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𝐴(𝜒) = −2
𝜕2

𝜕𝑥𝜕𝑧
[𝜂𝑠 (

𝜕2𝜒

𝜕𝑥2 −
𝜕2𝜒

𝜕𝑧2)] + 2 (
𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2) [𝜂𝑠
𝜕2𝜒

𝜕𝑥𝜕𝑧
]   (14a) 

To describe the transition from solitary waves to diapirs it is useful to non-dimensionalize the 125 

equations. As scaling quantities we use the radius 𝑟 of the anomaly, the reference viscosity 𝜂0, and the 

scaling Stokes sphere velocity (e.g. Turcotte & Schubert, 1982) based on the maximum porosity of the 

porosity anomaly 𝜑𝑚𝑎𝑥  

𝑣𝑆𝑡 =
𝜑𝑚𝑎𝑥Δ𝜌𝑔𝑟2

𝜂0
     (15) 

resulting to the following non-dimensionalization where non-dimensional quantities are primed: 130 

(𝑥, 𝑧) = (𝑥′, 𝑧′) ∙ 𝑟 , 𝑣 𝑠,𝑓 = 𝑣 𝑠,𝑓′ ∙ 𝑣𝑆𝑡, 𝑡 = 𝑡′ ∙
𝑟

𝑣𝑆𝑡
,  (𝜏𝑖𝑗 , 𝑃) = (𝜏𝑖𝑗′, 𝑃′) ∙

𝜂0𝑣𝑆𝑡

𝑟
,  

(𝜂𝑠, 𝜂𝑏) = (𝜂𝑠′, 𝜂𝑏′) ∙ 𝜂0,   (𝜓, 𝜒) = (𝜓′, 𝜒′) ∙ 𝑟𝑣𝑆𝑡    (16) 

We use the width corresponding to a 1/𝑒 drop of the initial perturbation as radius for the Stokes 

velocity. This is reasonable as the amount of melt in the perturbation is approximately equal to the 

amount of melt in a spheres cut with a sharp boundary of radius 𝑟, for what the Stokes equation is valid. 135 

With these rules the Darcy equation (10) is given in non-dimensional form 

𝑣 𝑓′ − 𝑣 𝑠′ = −
𝜑𝑛−1

𝑅𝑡
(𝑒 𝑧

(1−𝜑)

𝜑𝑚𝑎𝑥
+

𝜕𝜏𝑖𝑗′

𝜕𝑥𝑗′
)    (17) 

where  

𝑅𝑡 =
𝜂𝑓𝑟2

𝜂0𝑘0
      (18) 

is the retention number based on the length scale of the anomaly and 𝑒 𝑧 is the unit vector in z-direction, 140 

and the momentum equation of the mixture (12) is given by 

(
𝜕2

𝜕𝑥′2
−

𝜕2

𝜕𝑧′2
) [𝜂𝑠′ (

𝜕2𝜓′

𝜕𝑥′2
−

𝜕2𝜓′

𝜕𝑧′2
)] + 4

𝜕2

𝜕𝑥′𝜕𝑧′
[𝜂𝑠′

𝜕2𝜓′

𝜕𝑥′𝜕𝑧′
] =

1

𝜑𝑚𝑎𝑥

𝜕𝜑

𝜕𝑥′
+ 𝐴′(𝜒′)  (19) 

In the other equations (1), (2), (6), (11), (12), (13), and (14a) all quantities are simply replaced by their 

non-dimensional primed equivalents. 

We now can compare the two limits, where segregation or two-phase flow dominates (solitary wave 145 

regime), and where fluid and solid rise together with the same velocity as partially molten bodies (batch 

melting), which we identify with the diapir regime. This can be done by comparing the characteristic 

segregation velocity within solitary waves, which scales as 

𝑣𝑠𝑔𝑟 ≈
𝑘0𝜑𝑚𝑎𝑥

𝑛−1

𝜂𝑓
(∆𝜌𝑔(1 − 𝜑𝑚𝑎𝑥) −

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
) = 𝐶

𝑘0𝜑𝑚𝑎𝑥
𝑛−1∆𝜌𝑔(1−𝜑𝑚𝑎𝑥)

𝜂𝑓
  (20) 


worth pointing out that this is in fact the ratio between the square system length scale r and the square compaction length. it has been pointed out before that this ratio of squared length scales is predictive of the ratio between melt segregation and collective flow of the partially molten rock (Keller & Suckale, 2019)
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where 𝐶 is of the order ½ for 2D solitary waves (Schmeling, 2000), with the characteristic Stokes sphere 150 

rising velocity given by (15). The ratio of these is given by 

𝑣𝑠𝑔𝑟

𝑣𝑠𝑡
= 𝐶

𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

𝑅𝑡
       (21) 

Thus, in the solitary wave limit  

𝑅𝑡

𝐶𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

≪ 1      (22) 

and Darcy’s law (17) results in large segregation velocity, which scales as 155 

𝑣𝑠𝑔𝑟′ = 𝐶
(1−𝜑𝑚𝑎𝑥)𝜑𝑚𝑎𝑥

𝑛−1

𝑅𝑡
      (23) 

From equation (13) it follows that the irrotational part of the matrix velocity scales with  

𝑣1 ≈ −𝜑𝑚𝑎𝑥𝑣𝑠𝑔𝑟      (24) 

while the rotational part is given by (19): In that equation A’ scales with 𝜒′, which, via equ (12) and 

(13), scale with 𝑣𝑠𝑔𝑟, i.e. with 
1

𝑅𝑡
. In other words, the second term on the RHS of (19) dominates for 160 

small 𝑅𝑡 as the first term is of the order 1. Thus, the rotational matrix velocity has the same order as the 

irrotational compaction velocity and serves to accommodate the compaction flow. In this limit the 

buoyancy term in equation (19), 
1

𝜑𝑚𝑎𝑥

𝜕𝜑

𝜕𝑥′
, is of vanishing importance for the matrix velocity and the 

matrix velocity, 𝑣 1 + 𝑣 2, is of the order of 𝜑𝑚𝑎𝑥𝑣𝑠𝑔𝑟. In the small porosity limit, matrix velocities are 

negligible with respect to fluid velocities. 165 

In the diapir limit,   

𝑅𝑡

𝐶𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

≫ 1       (25) 

and equation (17) predict vanishing segregation velocities. As 𝐴′ and 𝜒′ scale with 
1

𝑅𝑡
 , both vanish in 

the diapir limit, no irrotational matrix velocity occurs and equ. (19) reduces to the classical biharmonic 

equation (i.e. Stokes equation) driven by melt buoyancy. Segregation velocities are negligible with 170 

respect to matrix velocities.  

We will often refer to the compaction length, 𝛿𝑐, which is a typical length scale used in two-phase flow 

problems (McKenzie, 1984). Of particular importance in our context, 2D porosity waves have half 

widths radii of the order of 3𝛿𝑐 to 5𝛿𝑐 (Simpson and Spiegelman, 2011). The compaction length is 

defined as: 175 


as this number is used to distinguish the regimes, why not use this as the governing dimensionless number rather than Rt?


flipping this ratio upside down here doesn’t help the reader parse the analysis


strange that the compaction length is attached here almost as an afterthought, whereas it could have been introduced in the scaling analysis above instead of the more opaque and less frequently used Rt number. this change of notation would go a long way towards clarifying this analysis.
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𝛿𝑐 = √
𝜂𝑏 +

4
3
𝜂𝑠

𝜂𝑓
𝑘𝜑 

 

(26) 

The non-dimensional value 𝛿𝑐
′ =

𝛿𝑐

𝑟
 can be calculated using 𝑅𝑡 with 

𝛿𝑐
′ =

√𝜂𝑏
′ +

4
3𝜂𝑠

′

𝑅𝑡
𝜑𝑛 

 

(27) 

2.2 Model setup 

The model consists of a 𝐿′ × 𝐿′ box with a background porosity, 𝜑0, of 0.5%. 𝐿′ is the the non-

dimensional side length of the box and equal to 20 times the initial radius of the perturbation. As initial 

condition a non-dimensional Gaussian wave porosity anomaly is placed at 𝑥0′ = 10  and 𝑧0′ = 4. It has 180 

the form of 

𝜑 = 𝐴 ⋅ exp(−(
𝑥′ − 𝑥0′

𝑟′
)

2

− (
𝑧′ − 𝑧0′

𝑟′
)

2

) 
 

(28) 

where 𝐴 is the amplitude equal to 0.03 in our models and 𝑟′ the non-dimensional width of the wave. 𝑟′ 

in the model is always equal to 1, as it is used for non-dimensionalization. To vary the radius of the 

anomaly in terms of compaction lengths we change the retention number, which varies the compaction 

length. While the radius of an emerging solitary wave is always in the order of a few compaction lengths, 185 

by varying 𝑅𝑡, the radius of the initial anomaly is varied between 1.5 and 100 times the compaction 

length to explore the parameter range in which diapirs might become dominant. The model box has 

always the same resolution, but the compaction length is differently resolved for each model. Even 

though this might lead to problems, as the compaction length should be always resolved equally, we are 

not able to do this, because our model series will inevitably lead to very small compaction lengths and 190 

keeping it equally resolved would require model resolutions we are not capable of performing. The 

numerical issues regarding this will be addressed later in this work. 

At the top and the bottom, we prescribe an out- and inflow for both melt and solid, respectively, which 

is calculated analytically for the background porosity. This is necessary because we have a background 

melt fraction 𝜑0, that has a certain buoyancy which would lead to an accumulation of melt at the top of 195 

the model. We therefore calculate the segregation velocity of the background porosity 𝜑0 using equation 

(17) without the viscous stress term. The corresponding matrix velocity is calculated using the 

conservation of mass. 

At the sides we use mirroring boundary conditions, which corresponds to a symmetry axis, where no 

horizontal flow is allowed. The permeability-porosity relation exponent in our models is always 𝑛 = 3. 200 


overall a circuitous route to present this analysis comparing length scales and speeds involved. would all flow much easier if compaction length were introduced during non-dimensionalisation above and the use the ratio of r^2/delta^2 to discuss the ratio of Stokes to segregation speed


I presume there is some concern of domain size to do with Stokes flow being sensitive to boundary conditions. choosing periodic boundaries would be optimal if the problem of diapirsm vs compaction waves should be studied in isolation. should consider though that in natural systems potential confining boundary effects (overlying layers, unmolten wall rock) are never far away.


this was already opaquely alluded to above, should therefore be introduced further above to clarify. also, avoid ambiguity of A (used twice) and instead use phi_max as in analysis above


again, the analysis could simply replace the retention number with the ratio of length scales in the first place to clarify that relationship. 


more helpful would be to present a clear benchmark or resolution convergence test to demonstrate the limits of how far you can go in the small-compaction length limit


as stated above, periodic boundaries would appear to be the better choice


this choice would allow the initial perturbation to be place on one side boundary, meaning only half the previous domain needs to be calculated, thus allowing higher resolutions to be tested in the same time.
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Our strategy is to vary the width of the initial porosity wave to cover the range from solitary waves to 

diapiric rise. Practically this is done by varying 𝑅𝑡 and keep the non-dimensional radius constant. Here 

we give a small example: 

For 𝑅𝑡 = 10−4 the initial perturbation, which has always a non-dimensional radius of 𝑟′ = 1,  has a 

dimensional radius of 𝑟 = 1.5 ⋅ 𝛿𝑐. With 𝑅𝑡 = 2.5 ⋅ 10−3, the dimensional radius will be equal to 𝑟 =205 

10 ⋅ 𝛿𝑐, while 𝑟′ is still equal to 1. Suppositious a solitary wave has always a similar radius in terms of 

compaction lengths, in the first case a solitary wave with 𝑟𝑠𝑤 = 5 ⋅ 𝛿𝑐 will in our non-dimensionalization 

have a radius of 𝑟𝑠𝑤
′ = 2.5. While in the second case the same wave will have a radius of 𝑟𝑠𝑤

′ = 0.5. In 

a dimensional world this might correspond to enlarging the initial perturbation and keeping the 

compaction length constant or vice versa. 210 

2.3 Numerical strategy 

The above equations in non-dimensional form are solved by the finite differences code FDCON 

developed essentially by one of the authors (Schmeling). In the following, the non-dimensional versions 

of all equations are used. Starting from the prescribed initial condition for 𝜑, and assuming 𝐴′(𝜒′) = 0 

at time 0, the time loop is entered and the biharmonic equation (19) is solved for 𝜓′ by Cholesky 215 

decomposition, from which 𝑣 1′ is derived. Together with 𝑣 2′ the resulting solid velocity is used to 

determine the viscous stress term in the segregation velocity equation (17). This equation and the melt 

mass equation (1) are solved iteratively with strong damping for 𝜑 and 𝑣 𝑓′ − 𝑣 𝑠′ for the new time step 

using upwind and an implicit formulation of equ. (1). During this internal iteration these quantities are 

used, via equ. (13), to give ∇⃗⃗ ∙ 𝑣 𝑠, the divergence of the matrix velocity, which is needed in the viscous 220 

stress term (equ. 6). After convergence ∇⃗⃗ ∙ 𝑣 𝑠 is used via equ. (12) to determine 𝜒 by LU-decomposition 

and then to get 𝑣 2′. Now 𝐴′(𝜒′) can be determined to be used on the RHS of equ (19). The procedure is 

then repeated upon entering the next time step. 

Time steps are dynamically adjusted by the Courant criterion times 0.2 based on the fastest velocity, 

either melt or solid. We use a regular grid with 201 x 201 grid points. 225 

3 Results 

3.1 The transition from porosity wave to diapirism: Varying the initial wave radius 

In this model series we vary the initial wave radius to cover the transition from porosity waves to diapirs. 

For small radii (𝑟 ≤ 10 ⋅ 𝛿𝑐) we can clearly see the emergence of solitary waves (Fig. 1 top row). 𝑟 =

1.5 ⋅ 𝛿𝑐 leads to a wave that is nearly the size of the initial perturbation. Even smaller radii would lead 230 

to bigger waves but with a smaller porosity amplitude as the melt needs to be conserved. For bigger 

radii the resulting solitary waves become smaller with respect to the initial size and lead to a focusing 

of melt. With an initial radius of 10 ⋅ 𝛿𝑐 the resulting wave has just a size of ~20% the initial wave size 

after it has risen half a box length. 


repetition


this paragraph is rather opaque, could again be avoided if the actual control parameter were the ratio of length scales as it is standard to do with these equations in previous research


to avoid ambiguity please refer to equation numbers


if developed and published previously, method should be referenced through peer-reviewed publications


repetition


not sure what this means in the context. what iterative method? what damping?


at this resolution, and knowing that the domain is 20x r, r is only resolved by 10 grid cells. this means that even in the segregation limit where r ~ delta, the compaction length is only just resolved adequately. in any case where r > delta, resolution will not be sufficient. this is a critical flaw in the method, results would not inspire much confidence at such resolution.
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We can compare the observed rising velocities of these solitary waves of Fig. 1 a to d with hypothetical 235 

Stokes velocities of an equivalent diapir based on equ. (15). While the dimensional Stokes velocity of a 

porosity anomaly is proportional to the amplitude of porosity and the square of the radius, the non-

dimensional Stokes velocity is always equal to 1.  In Fig. 2 this non-dimensional Stokes velocity is 

indicated by the dashed line with the value 1. The colored lines in Fig. 2 give 2D solitary wave velocities, 

given by Simpson & Spieglman (2011), normalized by the Stokes velocity corresponding to different 240 

initial perturbation radii. Inspection of Fig. 2 reveals that for the first 4 cases of Fig. 1a to d with radii 

smaller or equal 10 ⋅ 𝛿𝑐 the phase velocities are always larger than the Stokes velocity, i.e. the cases are 

in the solitary wave regime.  

For greater radii (e.g. 𝑟 = 20 ⋅ 𝛿𝑐 or 30 ⋅ 𝛿𝑐, Fig. 1e or f, respectively) we see a focusing of melt in a 

narrow channel with a width of a few grid sizes. Inspection of Fig. 2 reveals that the solitary wave phase 245 

velocity of these cases is smaller than the Stokes velocity of the total porosity anomaly. We expect that 

the Stokes velocity of the non-circular porosity anomaly at later stages such as the stages shown in Fig. 

1 is still of the order of the circular anomaly which approximately obeys equ. (15). Thus, the observed 

channel is no more the wake of a very small leading porosity wave, which is no more properly resolved 

by the numerical grid. Instead, we conjecture that these cases represent the transition to diapiric rise of 250 

the porosity anomaly, during which horizontal extensive stresses and strain rates within the upper, 

frontal part of the diapir lead to a channeling instability. Such channeling instabilities have been 

predicted in 1D by Stevenson (1989) and have been modelled without buoyancy by Richardson (1998) 

in 2D. Golabek et al. (2008) obtained such channels in a partially molten mantle in front of sinking dense 

bodies. The channels were oriented radially away from the frontal hemisphere of the body, with the 255 

dominating channel pointing in the direction of the movement of the dense body. According to 

Stevenson (1989) the characteristic wavelength of such channels is expected to be of the order of 2𝜋𝛿𝑐. 

In Fig. 1e and f the width of the observed channels is about  6 − 9 ⋅ 𝛿𝑐, i.e. on the order of the 

characteristic wavelength. With a grid size of  2 ⋅ 𝛿𝑐  and  3 ⋅ 𝛿𝑐 for the cases shown in Fig. 1e and f the 

channels are close to but still above the resolution limit. In contrast to Golabek et al. (2008) the leading 260 

channel immediately dominates and is fed by buoyant melt out of the following porosity anomaly, no 

side channels evolve as in Golabek et al., (2008). This is probably due to their different compositional 

approach which prohibits such feeding. This channeling instability will be further discussed below. 

For  𝑟 > 40 ⋅ 𝛿𝑐 the channeling instability disappears, probably because it is below the resolution limit 

(grid size  <  4 ⋅ 𝛿𝑐  for 𝑟 > 40 ⋅ 𝛿𝑐) and we enter the diapir regime. In the diapir regime all perturbations 265 

evolve similar with a comparable velocity and in the same shape. In this diapir regime (𝑟 > 40 ⋅ 𝛿𝑐) Fig. 

2 shows that the solitary wave velocities are at least one order of magnitude below the Stokes velocity 

of the diapir.  

Summarizing Fig. 2, the comparison of Stokes and porosity wave velocities correlates nicely with the 

transition from diapirism to solitary waves shown in Fig. 1: For bigger radii the Stokes velocities are 270 


this is a crucial junction on which hinges the confidence readers can have in the results. unfortunately it is presented in very poor language that mostly obfuscates the precise meaning of the statement.


since there’s no strain-rate or stress-dependence in the rheology used here, the authors should not interpret the results as a channeling instability in the sense that the term has been used before in the community. most likely, what is observed is spurious model behavior at the limit of porosity wave resolution.


the cited literature observed channelling instabilities based on exponential porosity-weakening and powerlaw stress-weakening rheology, both of which are not part of this model.
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higher than the solitary wave velocity and the latter is therefore not the driving force of the ascending 

process and consequently not able to build up. For small radii the solitary wave velocity is clearly higher 

and therefore able to build up. Just by comparison of these curves, perturbations with 𝑟 > 20 ⋅ 𝛿𝑐 should 

lead to diapirism while 𝑟 < 20 ⋅ 𝛿𝑐 should lead to solitary waves. 

3.2 Effects on the mass flux 275 

It is important to study the partitioning between rising melt and solid mass fluxes in partially molten 

magmatic systems, because melts and solids are carriers of different chemical components. Within our 

Boussinesq approximation we may neglect the density differences between solid and melt. Then our 

models allow to evaluate vertical mass fluxes of solid or fluid by depicting the vertical velocity 

components multiplied with the melt or solid fractions, respectively:  280 

𝑞𝑠𝑧
′ = (1 − 𝜑) ⋅ 𝑣′

𝑠𝑧 

𝑞𝑓𝑧
′ = 𝜑 ⋅ 𝑣′𝑓𝑧. 

 
(29) 

Fig. 3 shows horizontal profiles through rising melt bodies at the vertical positions of maximum melt 

fraction. 

The mass fluxes of solid and fluid are strongly affected by the change of the initial radius from the 

solitary wave regime to the diapiric regime. For 𝑟 = 1.5 ⋅ 𝛿𝑐, where we observe a solitary wave, the 

fluid has its peak mass flux in the middle of the wave and the solid is going downwards, against the 285 

phase velocity. In the center the fluid flux is more than 10 times higher than the solid. The net upward 

flow in the center is balanced by the matrix dominated downward flow outside the wave. For 𝑟 = 10 ⋅

𝛿𝑐 the wave area is much smaller and the ratio between solid and fluid flux is around the order of one. 

Even though we observe a local minimum in the center of the wave for the solid flux it is not negative. 

However, the solid matrix around the wave is affected in a much greater area and, contrary to the case 290 

for 𝑟 = 1.5 ⋅ 𝛿𝑐, the rising net mass flux in and around the melt anomaly is dominated by the solid rather 

than melt flux.  

For 𝑟 = 50 ⋅ 𝛿𝑐 and 𝑟 = 100 ⋅ 𝛿𝑐 the solid flux is significantly higher than the fluid flux also within the 

melt anomaly. 

So far, we have based our discussion of the transition between solitary waves and diapirs on qualitative 295 

model observations. We now try to invoke a more quantitative criterion. In a horizontal line passing 

through the anomalies porosity maximum we define the total vertical mass flux of the rising magma 

body by ∫ (𝑞𝑓 + 𝑞𝑠)𝑑𝑥
𝜑>𝜑0

 where the integration is carried out only in the region of increased porosity 

𝜑 > 𝜑0. This mass flux is partitioned between the fluid mass flux, ∫ 𝑞𝑓𝑑𝑥
𝜑>𝜑0

, and the solid mass flux, 

∫ 𝑞𝑠𝑑𝑥
𝜑>𝜑0

. With these we define the partition coefficients 300 


it would be important to point out that comparing the volume flux of the phases is not the same as comparing fluxes of compositional concentrations. in the diapirism regime, both phases are advected together, meaning that concentrations of elements in the fluid and solid would remain the same in the moving reference frame of the collective flow velocity. the same would not be true in the compaction wave regime, where any compositional gradients in the solid and fluid would advect in opposite directions and hence local bulk composition may evolve.
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𝐶𝑠𝑜𝑙𝑖 =
∫ 𝑞𝑓𝑑𝑥
𝜑>𝜑0

 ∫ (𝑞𝑓 + 𝑞𝑠)𝑑𝑥
𝜑>𝜑0

 

 

(30) 

and 

𝐶𝑑𝑖𝑎 =
∫ 𝑞𝑠𝑑𝑥
𝜑>𝜑0

 ∫ (𝑞𝑓 + 𝑞𝑠)𝑑𝑥
𝜑>𝜑0

 

 

(31) 

The sum 𝐶𝑠𝑜𝑙𝑖 + 𝐶𝑑𝑖𝑎 is always 1 and if 𝐶𝑠𝑜𝑙𝑖 > 𝐶𝑑𝑖𝑎 then the solitary wave proportion is dominant, 

while for 𝐶𝑠𝑜𝑙𝑖 < 𝐶𝑑𝑖𝑎 diapirism is dominant. In Fig. 4a these partition coefficients for several initial 

radii are shown. In red are the partition coefficients calculated at a horizontal line at the height of 

maximum melt fraction. The blue markers are calculated for horizontal lines at all grid points below the 305 

maximum melt fraction as long as 𝜑 ≥
𝜑𝑚𝑎𝑥

2
. For 𝑟 = 1.5 ⋅ 𝛿𝑐, 𝐶𝑠𝑜𝑙𝑖 is equal to 1.5 and 𝐶𝑑𝑖𝑎 is equal to 

-0.5, i.e. we have a downward solid flux. With increasing radius 𝐶𝑑𝑖𝑎 increases until it changes its 

direction at 𝑟 = 4 ⋅ 𝛿𝑐 . For even bigger radii 𝐶𝑑𝑖𝑎 increases further until it approaches 1 at approximately 

𝑟 = 40 ⋅ 𝛿𝑐. 𝐶𝑠𝑜𝑙𝑖 changes so that the sum of both is always equal to 1. Even though diapirism is 

dominant for 𝑟 > 7.5 ⋅ 𝛿𝑐 we still observe a small solitary wave for 𝑟 = 10 ⋅ 𝛿𝑐 (c.f. Fig. 1) and the 310 

formation of channels until 𝑟 = 40 ⋅ 𝛿𝑐 where the melt segregation velocity 𝑣𝑓⃗⃗⃗⃗  becomes slower than the 

matrix velocity  𝑣𝑠⃗⃗  ⃗. In Fig. 4b the ratio of maximum fluid velocity (i.e. 𝑣𝑓⃗⃗⃗⃗ ) to absolute matrix velocity 

is shown. For small radii, where 𝐶𝑠𝑜𝑙𝑖 ≫ 𝐶𝑑𝑖𝑎, this ratio is approximately constant with a high value of 

about 300. The absolute velocity maxima itself are not constant but decrease with the same rate until the 

switch of negative to positive matrix mass flux, where the absolute matrix velocity starts to increase, 315 

while the fluid velocity keeps decreasing. At this zero crossing we would expect a ratio of infinity, but 

with our models we are far enough away to not see this in the data. This switch from negative to positive 

mass flux was already observed by Scott (1988), but while he changed the viscosity ratio, we change 

the radius and keep the viscosity ratio constant. Both describe the transition from a two-phase limit 

towards the Stokes limit, but in our formulation, we are able to reach the Stokes limit while Scott (1988) 320 

is still in the two-phase flow regime. In the regime where a channel forms near the front of the porosity 

anomaly (𝑟 = 20 ⋅ 𝛿𝑐 to  𝑟 = 40 ⋅ 𝛿𝑐) the ratio decreased from 20 to 2 (i.e. to 𝑣𝑓⃗⃗⃗⃗ = 𝑣𝑠⃗⃗  ⃗). In this regime, 

porous flow within the evolving channels is still very effective, and strongly exceeds the diapiric rising 

velocity. Above this point the channeling instability is no longer observed and clear diapirism can be 

observed. The calculated partition coefficients at lower elevations show that within the point of 325 

maximum melt fraction, 𝐶𝑠𝑜𝑙𝑖 is highest and decreases behind the ascending peak. Apparently, the fluid 

is locally able to build up a high porosity channel with segregating melt even though diapirism is 

dominant in the whole region. For small radii the partition coefficients vary strongest because the melt 

fraction decreases strongly behind the center of the wave. 


It would be helpful to remind the reader that the viscosity ratio is not in fact constant here but instead evolves as 1/phi, whereas in Scott 1988 the ratio is taken as an independent model parameter
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Based on these observations the evolution of these models can be divided into 3 regimes: (1) In the 330 

solitary wave regime (𝑟 ≤ 7.5 ⋅ 𝛿𝑐) 𝐶𝑠𝑜𝑙𝑖 is larger than 𝐶𝑑𝑖𝑎 and the initial perturbation emerges into 

waves that have the properties of solitary waves and ascend with constant velocity and staying in shape. 

This regime can be further divided into 1a (𝑟 < 4 ⋅ 𝛿𝑐) ,where the solid mass flux is negative, and 1b 

(4 ⋅ 𝛿𝑐 < 𝑟 ≤ 7.5 ⋅ 𝛿𝑐), where the solid moves upwards with the melt. Waves in these regimes are very 

similar and differ only in the matrix flux.  335 

In the transitional regime (2) (7.5 ⋅ 𝛿𝑐 > 𝑟 ≥ 40 ⋅ 𝛿𝑐) 𝐶𝑑𝑖𝑎 is bigger than 𝐶𝑠𝑜𝑙𝑖 but either a small solitary 

wave may form near the front of a diapir (𝑟 = 10 ⋅ 𝛿𝑐) or diapirs with leading high porosity channels 

can be observed. Even though diapiric ascend is dominant, melt is locally able to focus into channels 

because the fluid is still faster than the matrix. This leads to a small peak of high porosity at the front of 

the channel followed by a broader area ascending as diapir. We may call this regime “porosity wave or 340 

diapir induced melt focusing and channeling”. 

In regime (3) (𝑟 > 40 ⋅ 𝛿𝑐) the segregation velocity is smaller than the matrix velocity (i.e. 
max(𝑣𝑓)

max(𝑣𝑠)
≤

2) and the fluid is therefore no longer able to separate fast enough to build up a solitary wave or a 

focusing channel. Dominated by solid mass flux a well-developed diapir will ascend. 

3.3 Numerical Issues 345 

In Fig. 5 a model with an initial perturbation radius of 𝑟 = 60 ⋅ 𝛿𝑐 is shown in three different model 

resolutions. While for the lowest resolution (Fig. 5a) a diapir can be observed, an increased resolution 

of 301x301 shows some localization of melt at the top of the diapir. With the highest resolution the grid 

size is equal to approximately two times the compaction length, and a strongly focused channel in front 

of the initial perturbation builds up, and two weak side lobes appear at a distance of about 28 ⋅ 𝛿𝑐 on 350 

each side of the channel. Inspecting the wavelength dependence of channeling instabilities (Stevenson, 

1989), this is about four times the wavelength at which the growth curve approaches its maximum value 

and remains constant for smaller wavelengths. Richardson (1998) investigated the melt channeling 

instability and found that it is grid space dependent: “when the grid spacing is of the order of the 

compaction length”, as in our case in Fig. 5c, “the instability locks onto a small multiple of the grid 355 

spacing, and so the solution is affected by the discretization for the numerical calculation”  In the cases 

of Fig. 5a and b the grid spacing is larger than the compaction length prohibiting the evolution of the 

channeling instability, while in case of Fig. 5c Richardson’s (1998) criterion is met and channeling 

occurs. 

With this perception it is interesting to reevaluate the model series in Fig. 1. The models within the 360 

diapir-regime and 𝑟 > 40 ⋅ 𝛿𝑐 do not show any sign of developing a frontal channel. This may be 

explained by the coarse resolution, because the compaction lengths are significantly less than the grid 

size. We expect, that if the grid resolution would be increased appropriately as in the resolution test in 


I’m left unconvinced that this regime indeed exists, with the evidence given the reader is left with no other option than to interpret it as a numerical artefact


it is critical to present benchmarks or numerical convergence tests in the Method section before results are presented and discussed. to attach this part as a mere afterthought as it appears is a critical flaw of the study


this convergence test is flawed since the highest resolution does not resolve the feature at the focus of the analysis. to be convinced of the validity of the model, a resolution test should go to a resolution where one compaction length is resolved by at least 4-8 grid steps. that can obviously not be achieved with the present method and setup, and therefore the study cannot in present form be published.


either way both the absence and the presence of what is termed a channelling instability is a grid-dependent feature. it remains unclear if the feature would persist in adequately resolved simulations
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Fig. (5), also these models would show frontal channel(s) on the scale of small multiple of the grid 

spacing. Because of practical reasons we did not test this conjecture for other 𝑟’s than that in Fig. 5. 365 

 4 Discussion 

4.1 The channeling instability 

In this chapter we compare the observed formation of channels at the top of some of the porosity 

anomalies with the growth rate of the channeling instability analytically derived by Stevenson (1989). 

For wavelengths of the order of 2𝜋𝛿𝑐 and smaller the growth rate of channel like porosity perturbations 370 

oriented perpendicular to the direction of a background extensional strain rate �̇�0 is given by 

𝛼0 =
2𝜂𝑠𝑎𝜂�̇�0

(𝜂𝑏+
4

3
𝜂𝑠)

       (32) 

where 𝑎𝜂 gives the porosity dependence of the shear viscosity 

𝑎𝜂 = −
𝑑 ln (𝜂𝑠)

𝑑𝜑
      (33) 

 Using our rheology laws (8) and (9) we arrive at 375 

𝛼0 =
2𝜑�̇�0

(1−𝜑2)
      (34) 

We non-dimensionalize the growth rate by using our scaling velocity and scaling length, i.e. 
𝑣𝑆𝑡

𝑟
. This 

quantity happens to scale with the characteristic strain rate near the top of the circular porosity wave, 

i.e. with �̇�0. Thus, the non-dimensional channeling growth rate reduces to 

𝛼0′ =
2𝜑

(1−𝜑2)
  (35) 380 

Inspecting the time-dependence of our high resolution model with 𝑟 = 60 ⋅ 𝛿𝑐 (Fig. 5c) which show 

focusing of fluid within a narrow channel at the top of the porosity anomaly allows to estimate the 

growth rate of the porosity increase within the channel. If at some early stage 𝑡0′ of the channel evolution 

the amplitude is 𝐴0 = 𝜑𝑐ℎ𝑎𝑛𝑛𝑒𝑙 − 𝜑𝑎𝑚𝑏𝑖𝑒𝑛𝑡 and the amplitude grows exponentially as 𝐴(𝑡′) =

𝐴0𝑒𝑥𝑝(𝛼0′(𝑡′ − 𝑡0′)) we can determine 𝛼0′ by 385 

𝛼0′ = 𝑙𝑛 (
𝐴

𝐴0
) (𝑡 − 𝑡0)⁄   (36) 

These experimentally determined 𝛼0′  range between 0.5 and 0.72 with a mean of 0.60, which is larger 

than the analytical 𝛼0′ derived from equ. (35) by a factor of about 7. We explain this higher experimental 

growth rate by a) circular geometry, according to which the central channel grows faster than any other 

channels. Actually, in Fig. 5c this is visible: beside the central channel two weak side lobes appear, and 390 

it can be conjectured that the main channel has grown faster by about a factor 3 on the expense of these 

side channels. b) In Stevenson’s (1989) analysis buoyancy has not been included. In our case the fluid 


this conclusion is critically flawed
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within the channel rises and accumulates in the upper part. If we would redistribute that fluid along the 

whole channel, the amplitude 𝐴(𝑡) would be smaller, perhaps by a factor 2. Altogether, taking these two 

effects into account, the agreement between the observed growth of the channeling instability and the 395 

analytical growth rate can be regarded as reasonably good. This justifies our interpretation of these 

channels resulting from this instability and being roughly resolved when the grid size is of the order of 

the compaction length. 

4.2. Application to nature 

While in our models the perturbation size in terms of compaction lengths was systematically varied but 400 

kept constant within in each model, our results might also be applicable to natural cases in which the 

compaction length varies vertically. In the case of compaction length decreasing with ascent a porosity 

anomaly might start rising as a solitary wave but then passes through the transition towards diapiric rise. 

In this case the solitary wave would most certainly enter the regime 2 characterized by strong focusing 

or channeling followed by a bigger perturbation. A decreasing compaction length could be accomplished 405 

by decreasing the matrix viscosity or the permeability, or by increasing the fluid viscosity. Decreasing 

matrix viscosity might be for example explainable by local heterogeneities, temperature anomalies for 

example due to secondary convective overturns in the asthenosphere or by a vertical gradient of water 

content, which may be the result of melt segregation aided volatile enrichment at shallow depths in 

magmatic systems. This could lead to the propagation of magma-filled cracks (Rubin, 1995) as already 410 

pointed out in Connolly & Podladchikov (1998). The latter authors have looked at the effects of rheology 

on compaction-driven fluid flow and came to similar results for an upward weakening scenario. But this 

upward weakening might not be strong enough to lead to the focusing needed for the nucleation of 

dykes. The decrease of permeability due to decrease in background porosity might be an alternative 

explanation. In the hypothetic case of a porosity wave reaching the top of a magma chamber, the 415 

background porosity might decrease which would most certainly lead to focusing, because the 

compaction length will decrease, and eventually, when reaching melt free rocks, the melt rich fingers 

may stall as in our models at 𝑟 > 50 ⋅ 𝛿𝑐 and the rising melt will accumulate and enter the pure diapirism 

regime. But if the focusing is strong enough and the fluid pressure high enough this scenario could 

alternatively be a good explanation for the nucleation of dykes. Indeed, if the initiation of dyking is 420 

induced by melt channeling instabilities (Stevenson, 1989), our models constrain the minimum size for 

focused melt anomalies, namely a few compaction lengths. As discussed above, for a partially molten 

region subject to horizontal extensive stresses Stevenson (1989) determined the growth rate of a 

channeling instability and found that it reaches a flat maximum plateau for wavelengths smaller than the 

order of the compaction length. Thus, at the top of our porous diapirs the conditions for melt channeling 425 

and subsequent dyking may well be met. As discussed above due to limited resolution in our models we 

are not able to test this combination of diapiric rise and subsequent channeling on the sub-compaction 

length scale, however, our resolution test (Fig. 5) is a strong indication for this mechanism. 
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4.3. Other issues 

The introduced partition coefficients help distinguish between a solitary wave and diapirism but there is 430 

more information needed, i.e. the matrix and fluid velocity, to really distinguish between the three 

regimes. For some cases focusing into solitary waves or channels can be observed despite diapirism 

being dominant. Not until the segregation velocity becomes slower than the matrix, pure diapirism can 

be observed. These regimes might be not directly applicable to different models e.g. with different 

amplitudes, rheology laws, permeability laws or background porosities, but their well-defined existence 435 

shows that they should exist in generality and the models shown here give an order of magnitude for 

which perturbation to compaction length ratios one needs to be careful. 

The used equation for the Stokes velocity is valid for a sphere and not an infinite long cylinder like the 

initial perturbation in our 2D model. But still, the velocities fit quite nicely to the observed model 

velocities. There is no analytic solution for an infinite long cylinder in an infinite medium, but only the 440 

solution of a cylinder inside a cylinder with finite radius, where the ratio of both cylinders has some 

influence on the velocity. For the size of the initial cylindrical wave in a lager cylinder of characteristic 

size of our model box this solution is nearly identical to the solution of a sphere and therefore it doesn’t 

make sense to use the mathematically more complex solution of a cylinder.  

5 Conclusion 445 

This work shows that, depending on the extent of a partially molten region within the earth, the resulting 

ascent of melt may not only occur by solitary waves or by diapirs, but by an intermediate new mechanism 

which we call “porosity wave or diapir induced melt focusing and channeling”. Depending on the ratio 

of the melt anomalies size to the compaction length, quantitatively we can classify the ascent behavior 

into three different regimes using mass flux and velocity of matrix and melt: (1) Solitary wave a and b, 450 

(2) porosity wave or diapir induced melt focusing and channeling and (3) diapirism. In regime 1a the 

matrix sinks with respect to the rising melt, in 1b also the matrix rises, but very slowly. On first order 

these regimes can be explained by comparing Stokes velocity of the rising perturbation with the solitary 

waves phase velocity. If the Stokes velocity is higher a diapir will evolve, if lower, a solitary wave will 

evolve. But even if the Stokes velocity is higher, melt channeling instabilities might be able to focus 455 

melt locally within the rising diapiric plume into a frontal channel. These focused channels have a scale 

of the order of a few compaction lengths. Not until the segregation velocity becomes smaller than the 

matrix velocity, solitary waves are no longer able to evolve. 

Especially in the second regime numerical resolution plays an important role as the compaction length 

might be no longer resolved properly. Hence it should be generally important for two-phase flow models 460 

to inspect the size of partially molten areas with respect to the compaction length, to decide whether 

possible solitary waves or channeling instabilities are resolved or not. 
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Fig. 1: Resulting melt fraction fields after the maximum melt fraction in the model has reached 

70% of the boxes height for different initial perturbation sizes. The surface color gives the melt 

fraction in percent. The initial perturbation radius of the model is given in white in terms of 545 

compaction lengths. 
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Fig. 2: The dashed line marks the velocity of the Stokes sphere (𝒗′ = 𝟏). The colored lines show 

the velocity of a 2D solitary wave, calculated semi-analytically by Simpson & Spiegelman (2011), 

in our non-dimensionalization, based on the radii shown in the legend. 550 

 

Fig. 3: The upper row gives the solid and fluid mass fluxes of a horizontal line cutting through the 

maximum melt fraction of the model after it has reached 70% of the models height for different 

initial perturbation radii. The bottom row gives the corresponding melt porosity fields. All 

quantities shown are non-dimensional. 555 

 

Fig. 4: a) The graph shows the solitary wave and diapir partition coefficients for several initial 

perturbation radii. The red marker gives the coefficients calculated on a horizontal line at the 

height of maximum melt fraction. All blue dots give the coefficients calculated at all grid points 

below the maximum melt fraction as long as at these horizontal lines maximum melt fraction is 560 

higher than half the model’s maximum. The dashed lines are the borders of the regimes. Figure 

b) shows the ratio of maximum fluid velocity to maximum solid velocity in the whole model. The 
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small pictures show typical melt fraction perturbations for each regime. The pictures are from 

models with an initial perturbation radius of 2, 6, 20 and 60 times the compaction length from left 

to right. 565 

 

Fig. 5: All three figures show a model with an initial perturbation radius of 60 times the 

compaction length but with different resolutions: a) 151x151, b) 301x301, c) 501x501. In the lower 

left corner in each figure the size of the compaction length in terms of grid length is given. 

 570 


