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Abstract 5 

In partially molten regions inside the earth melt buoyancy may trigger upwelling of both solid and fluid 

phases, i.e. diapirism. If the melt is allowed to move separately with respect to the matrix, melt 

perturbations may evolve into solitary porosity waves. While diapirs may form on a wide range of scales, 

porosity waves are restricted to sizes of a few times the compaction length. Thus, the size of a partially 

molten perturbation in terms of compaction length controls whether a diapir or a porosity wave is 10 

dominant. We study the transition from diapiric rise to solitary porosity waves by solving the two-phase 

flow equations of conservation of mass and momentum in 2D with porosity dependent matrix viscosity. 

We systematically vary the initial size of a porosity perturbation from 1.8 to 120 times the compaction 

length.   

If the perturbation is of the order of a few compaction lengths, a single solitary wave will emerge, either 15 

with a positive or negative vertical matrix flux and if melt is not allowed to move separately to the matrix 

a diapir will emerge. In between these end members we observe a regime where the partially molten 

perturbation will split up into numerous solitary waves, whose phase velocity is so low compared to the 

Stokes velocity that the whole swarm of waves will ascend jointly as a diapir, just slowly elongating 

due to a higher amplitude main solitary wave.  20 

Only if the melt is not allowed to move separately to the matrix no solitary waves will build up, but as 

soon as two-phase flow is enabled solitary waves will eventually emerge. The required time to build 

them up increases non-linearly with the perturbation radius in terms of compaction length and might be 

for many cases too long to allow for them in nature. 

1 Introduction 25 

In many scenarios inside the earth the process of a fluid moving relatively to a viscously deformable 

porous matrix is an important transport mechanism. The physics of these scenarios were firstly described 

by McKenzie (1984) and it was later shown by several authors that these equations allow for the 

emergence of solitary porosity waves (Scott & Stevenson, 1984; Barcilon & Lovera 1989; Wiggins & 

Spiegelman, 1995). Porosity waves are regions of localized excess fluid that ascend with permanent 30 

shape and constant velocity, controlled by compaction and decompaction of the surrounding matrix. 

Porosity waves were of vast interest for many authors over the last decades and the possible 

consequences on geochemistry and fluid flow in lower and middle crust in general (e.g. Watson & 

Tobias Keller
While that statement is generally true, it might be more helpful to state explicitly what processes the authors have in mind (e.g., melt transport in the asthenosphere)

Tobias Keller
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Spiegelman, 1994; McKenzie, 1984; Connolly, 1997; Connolly & Podladchikov, 2013, Jordan et al., 

2018, Richard et al., 2012) or the effects of matrix rheology on porosity waves (e.g. Connolly & 35 

Podladchikov, 1998; Yarushina et al., 2015; Connolly & Podladchikov, 2015; Omlin et al., 2017; 

Dohmen et al., 2019) have been examined. However, there are still open questions, regarding, for 

example, that of the scaling. The size of a solitary porosity wave is usually of the order of a few 

compaction lengths (McKenzie, 1984; Scott & Stevenson, 1984; Simpson & Spiegelman, 2011),  but 

this length scale varies over a few orders of magnitude, depending on the shear and bulk viscosity of the 40 

matrix, fluid viscosity and permeability (see 1) with typical values of 100-10000 meters (McKenzie, 

1984; Spiegelman, 1993). 

On the other hand, partially molten regions in the lower crust or upper mantle are prone to gravitational 

instabilities such as Rayleigh-Taylor instabilities or diapirism (e.g. Griffith, 1986; Bittner and 

Schmeling, 1995; Schmeling et al., 2019). As characteristic wavelengths of Rayleigh-Taylor instabilities 45 

may be similar, but also of significantly different order of those of porosity waves, the question arises 

how these two mechanisms interact and how the transition between magmatic rise due to diapirism or 

porosity wave look like. Scott (1988) already investigated a similar scenario. He calculated porosity 

waves changing the compaction length by altering the constant shear to bulk viscosity ratio. In contrast, 

we vary the radius of a partially molten perturbation in terms of compaction lengths but keeping the 50 

porosity dependent viscosity law the same. While Scott (1988) was not able to reach the single-phase 

flow endmember due to his setup, we can reach this endmember with our description and can explore 

the transition.  

The extent of partially molten scenarios inside the earth’s mantle vary over many orders of magnitude 

and this transition might have an important effect on the evolution of these regions. In this work we 55 

want to address this problem and look especially on what happens for different sizes of initial 

perturbations and what are the numerical implications on modelling magma transport. 

Addressing different melt ascent mechanisms, it may be useful to specify our definition of diapirism. 

Originating from the Greek “diapeirein”, i.e. “to pierce through”, diapirism describes the “buoyant 

upwelling of relatively light rock” (Turcotte & Schubert, 1982) through and into a denser overburden. 60 

In the general definition the rheology of the diapir and ambient material is not specified, both can be 

ductile as in our case, but often, the overburden is assumed being more viscous or even brittle. Buoyancy 

may be of compositional or phase related origin, e.g. due to the presence of non-segregating partial melt 

(Wilson, 1989). Based on these definitions in our case a diapir is a rising, partially molten body or 

porosity anomaly with zero fluid-solid separation velocity. Mathematically the equations of motion of 65 

the two-phase system degenerate to the Stokes equation (see below). 

2 Theoretical Approach 

2.1 Governing equations 

Tobias Keller
“the scaling” is not a clearly defined expression in the present context. Instead the authors might refer to “length scales”? Although, the length scales of solitary waves are not really an open question since the compaction length analysis has now been understood and routinely applied for a number of decades. It would be helpful to more clearly define what the open question is this work will address.

Tobias Keller
Language: this expression usually follows as a juxtapposition to a previous statement beginning with “on the one hand…”. 

Tobias Keller
It may not be self-evident for some readers that diapirism represents a single-phase flow regime. It might be helpful to more carefully build up the juxtapposition between the two-phase process of compaction waves to the single-phase process of collective diapirism in the Introduction. 

Tobias Keller
-> domains

Tobias Keller
I don’t think it necessary to define diapirism as involving zero segregation. Rather, the important feature of the flow regime transition is that, depending on the relative length scale of melt perturbations to compaction length, segregation speed may either exceed the speed of diapir rise, or vice versa. Overall, the Introduction does not lay out this regime transition in a sufficiently clear and systematic manner. A rewrite of the Introduction for clarity focused on introducing the important concepts and physical scales of the problem in sequence would certainly proof helpful to the reader.

Tobias Keller
This contribution does not really lay out new theory, but instead implements existing theory in the form of a numerical model. Perhaps best to stick with the traditional section header of “Methods”?
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The formulation of the governing equations for the melt-in-solid two-phase flow dynamics is based on 

McKenzie (1984), Spiegelman & McKenzie (1987) and Schmeling (2000) assuming an infinite Prandtl 70 

number, a low fluid viscosity w.r.t. the effective matrix viscosity, zero surface tension, and the 

Boussinesq approximation. In the present formulation the Boussinesq approximation assumes the same 

constant density for the solid and fluid except for the buoyancy terms of the momentum equations for 

the solid and fluid. In the following all variables associated with the fluid (melt) have the subscript 𝑓 

and those associated with the solid have the subscript 𝑠. Applying the Boussinesq approximation the 75 

equation for the conservation of the mass of the melt is  

𝜕𝜑

𝜕𝑡
+ �⃗� ∙ (𝜑𝑣 𝑓) = 0,      (1) 

and the mass conservation of the solid is 

𝜕(1−𝜑)

𝜕𝑡
+ ∇⃗⃗ ∙ ((1 − 𝜑)𝑣 𝑠) = 0.     (2) 

𝜑 is the volumetric rock porosity (often called melt fraction), 𝑣 𝑓 and 𝑣 𝑠 are the fluid and solid velocities, 80 

respectively. The momentum equations are given as a generalized Darcy equation for the fluid 

separation flow  

𝑣 𝑓 − 𝑣 𝑠 = −
𝑘𝜑

𝜂𝑓 𝜑
(∇⃗⃗ 𝑃 − 𝜌𝑓𝑔 ),      (3) 

where 𝜌𝑓 is the fluid density and 𝑃 is the fluid pressure (including the lithostatic pressure), whose 

gradient is driving the motion. The Stokes equation for the mixture is given as 85 

𝜌𝑔 − ∇⃗⃗ 𝑃 +
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
= 0.       (4) 

𝑘𝜑 is the permeability that depends on the rock porosity 

𝑘𝜑 = 𝑘0𝜑
𝑛,        (5) 

𝜂𝑓 is the melt dynamic viscosity, 𝑔  is the gravitational acceleration, 𝜌 is the density of the melt – solid 

mixture and 𝜏𝑖𝑗 is the viscous stress tensor 90 

𝜏𝑖𝑗 = 𝜂𝑠 (
𝜕𝑣𝑠𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑠𝑗

𝜕𝑥𝑖
) + (𝜂𝑏 −

2

3
𝜂𝑠) 𝛿𝑖𝑗∇ ∙ 𝑣 𝑠.    (6) 

𝜂𝑏 is the bulk viscosity. The linearized equation of state for the mixture density is given as 

𝜌 = 𝜌0(1 − 𝑐𝑓𝜑)                                                                        (7) 

with 𝜌0 as the solid density and 𝑐𝑓 =
𝜌0−𝜌𝑓

𝜌0
 . The shear and bulk viscosity are given by the simple 

equations 95 

Tobias Keller
-> solid matrix

Tobias Keller
-> pore fluid

Tobias Keller

Tobias Keller
-> fluid segregation by porous flow

Tobias Keller
why not -> \nabla \cdot \boldsymbol{\tau} ? mixing nabla notation with index notation is inconsistent and does not add to clarity.

Tobias Keller
the traditional symbol for mixture density is \bar{\rho}

Tobias Keller
once again, mixed notation is not helpful

Tobias Keller
-> compaction viscosity. “bulk” viscosity is a misnomer that has persisted in the literature for far too long and should be abandoned. It suggests a comparable role to bulk modulus in elastic deformation, which is not at all the case.

Tobias Keller
-> effective viscous stress tensor of the matrix including both shear and compaction components.
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𝜂𝑠 = 𝜂𝑠0(1 − 𝜑)                                                                        (8) 

and 

𝜂𝑏 = 𝜂𝑠0
1−𝜑

𝜑
                                                                        (9) 

where 𝜂𝑠0 is the constant intrinsic shear viscosity of the matrix. 

As in both equations (3) and (4) 𝑃 is the fluid pressure (see McKenzie, 1984, Appendix A), these 100 

equations can be merged to eliminate the pressure resulting in  

𝑣 𝑓 − 𝑣 𝑠 = −
𝑘0𝜑

𝑛−1

𝜂𝑓
(𝜌0𝑐𝑓𝑔 (1 − 𝜑) +

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
).    (10) 

This equation states that the fluid separation flow (i.e. melt segregation velocity) is driven by the 

buoyancy of the fluid with respect to the solid and the viscous stress in the matrix including compaction 

and decompaction.  105 

Following Šrámek et al. (2010), the Stokes equation (3) can be rewritten by expressing the matrix 

velocity, 𝑣 𝑠, as the sum of the incompressible flow velocity, 𝑣 1, and the irrotational (compaction) flow 

velocity, 𝑣 2, as: 

𝑣 𝑠 = 𝑣 1 + 𝑣 2 = (

𝜕𝜓

𝜕𝑧

−
𝜕𝜓

𝜕𝑥

) + (

𝜕𝜒

𝜕𝑥
𝜕𝜒

𝜕𝑧

)     (11) 

with 𝜓 as stream function and 𝜒 as the irrotational velocity potential, given as the solution of the Poisson 110 

equation 

∇⃗⃗ 2𝜒 = ∇⃗⃗ ∙ 𝑣 𝑠.        (12) 

The divergence term  ∇⃗⃗  ⋅ 𝑣𝑠⃗⃗  ⃗ can be derived from eqs. 1 and 2 to give 

∇⃗⃗ ∙ 𝑣 𝑠 = −∇⃗⃗ ∙ [φ(𝑣 𝑓 − 𝑣 𝑠)].     (13) 

In the small fluid viscosity limit the viscous stresses within the fluid phase are neglected, resulting in a 115 

viscous stress tensor in the Stokes equation of the mixture (equ. 4), in which only the stresses in the 

solid phase are relevant. This is evident from the definition of the viscous stress tensor, which only 

contains matrix and not fluid viscosities. Melt viscosities of carbonatitic, basaltic or silicic wet or dry 

melts span a range from < 1 Pa s to extreme values up to 1014 Pa s (see the discussion in Schmeling et 

al., 2019), while effective viscosities of mafic or silicic partially molten rocks may range between 1020  120 

Pa s and 1016 Pa s, depending on melt fraction, stress, and composition. Thus, in most circumstances the 

small fluid viscosity limit is justified. 
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In the limit of this small viscosity assumption, inserting the above solid velocity (11) into the viscous 

stress (6), this into the Stokes equation (4), and taking the curl of the x- and z equations the pressure is 

eliminated and one gets 125 

(
𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2) [𝜂𝑠 (
𝜕2𝜓

𝜕𝑥2 −
𝜕2𝜓

𝜕𝑧2)] + 4
𝜕2

𝜕𝑥𝜕𝑧
[𝜂𝑠

𝜕2𝜓

𝜕𝑥𝜕𝑧
] = −𝑔

𝜕𝜌

𝜕𝑥
+ 𝐴(𝜒)  (14) 

with  

𝐴(𝜒) = −2
𝜕2

𝜕𝑥𝜕𝑧
[𝜂𝑠 (

𝜕2𝜒

𝜕𝑥2 −
𝜕2𝜒

𝜕𝑧2)] + 2 (
𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2) [𝜂𝑠
𝜕2𝜒

𝜕𝑥𝜕𝑧
]   (14a) 

To describe the transition from solitary waves to diapirs it is useful to non-dimensionalize the 

equations. As scaling quantities we use the radius 𝑟 of the anomaly, the reference viscosity 𝜂0, and the 130 

scaling Stokes sphere velocity (e.g. Turcotte & Schubert, 1982) based on the maximum porosity of the 

anomaly 𝜑𝑚𝑎𝑥  

𝑣𝑆𝑡 = 𝐶𝑠𝑡
𝜑𝑚𝑎𝑥Δ𝜌𝑔𝑟2

𝜂0
     (15) 

resulting to the following non-dimensionalization where non-dimensional quantities are primed: 

(𝑥, 𝑧) = (𝑥′, 𝑧′) ∙ 𝑟 , 𝑣 𝑠,𝑓 = 𝑣 𝑠,𝑓′ ∙ 𝑣𝑆𝑡, 𝑡 = 𝑡′ ∙
𝑟

𝑣𝑆𝑡
,  (𝜏𝑖𝑗 , 𝑃) = (𝜏𝑖𝑗′, 𝑃′) ∙

𝜂0𝑣𝑆𝑡

𝑟
,  135 

(𝜂𝑠, 𝜂𝑏) = (𝜂𝑠′, 𝜂𝑏′) ∙ 𝜂0,   (𝜓, 𝜒) = (𝜓′, 𝜒′) ∙ 𝑟𝑣𝑆𝑡    (16) 

For 𝑟 the half width of the prescribed initial perturbation, consisting of a 2D Gaussian bell, is chosen. 

This is reasonable as the rising velocity in our code is best described by the Stokes velocity, using this 

radius. The exact shape of the perturbation is given later in the model setup. 

𝐶𝑆𝑡 is calculated by using the analytic solution of an infinite Stokes cylinder within another cylinder 140 

(Popov and Sobolev (2008), based on the drag force derived by Slezkin (1955)), because, due to 

boundary effects, the cylinder gets effectively slowed. 𝐶𝑆𝑡  is calculated using 𝐶𝑆𝑡 = ln(𝑘) −
𝑘2−1

𝑘2+1
, 

where k is the ratio of outer cylinder’s to inner cylinder’s radius. For our model setup 𝐶𝑆𝑡 is equal to 

0.17. 

With these rules the Darcy equation (10) is given in non-dimensional form 145 

𝑣 𝑓′ − 𝑣 𝑠′ = −
𝛿𝑐

2

𝑟2

1

�̃�′𝜑
(𝑒 𝑧

(1−𝜑)

𝜑𝑚𝑎𝑥
+

𝜕𝜏𝑖𝑗′

𝜕𝑥𝑗′
)    (17) 

where 𝑒 𝑧 is the unit vector in z-direction and �̃�′ is equal to 𝜂𝑏
′ +

4

3
𝜂𝑠

′ , which is occasionally referred to 

as compaction viscosity. The momentum equation of the mixture (12) is given by 

(
𝜕2

𝜕𝑥′2
−

𝜕2

𝜕𝑧′2
) [𝜂𝑠′ (

𝜕2𝜓′

𝜕𝑥′2
−

𝜕2𝜓′

𝜕𝑧′2
)] + 4

𝜕2

𝜕𝑥′𝜕𝑧′
[𝜂𝑠′

𝜕2𝜓′

𝜕𝑥′𝜕𝑧′
] =

1

𝜑𝑚𝑎𝑥

𝜕𝜑

𝜕𝑥′
+ 𝐴′(𝜒′).  (18) 

Tobias Keller
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𝛿𝑐
2/𝑟2 in equation (17) is the squared ratio of compaction length 𝛿𝑐 to the system length scale 𝑟, which 150 

is the main parameter describing our system. The compaction length is a typical length scale used in 

two-phase flow problems and of particular importance in our context, because 2D porosity waves have 

half width radii of the order of 3 ⋅ 𝛿𝑐  to 5 ⋅ 𝛿𝑐 (Simpson and Spiegelman, 2011). It is defined as: 

𝛿𝑐 = √
𝜂𝑏 +

4
3
𝜂𝑠

𝜂𝑓
𝑘𝜑 

 

(19) 

 

In the other equations (1), (2), (6), (11), (12), (13), and (14a) all quantities are simply replaced by their 155 

non-dimensional primed equivalents. 

We now can compare the two limits, where segregation or two-phase flow dominates (solitary wave 

regime), and where fluid and solid rise together with the same velocity as partially molten bodies (batch 

melting), which we identify with the diapir regime. This can be done by comparing the characteristic 

segregation velocity within solitary waves, which scales as 160 

𝑣𝑠𝑔𝑟 ≈
𝑘0𝜑𝑚𝑎𝑥

𝑛−1

𝜂𝑓
(∆𝜌𝑔(1 − 𝜑𝑚𝑎𝑥) −

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
) = 𝐶𝑠𝑔𝑟

𝑘0𝜑𝑚𝑎𝑥
𝑛−1∆𝜌𝑔(1−𝜑𝑚𝑎𝑥)

𝜂𝑓
  (20) 

where 𝐶𝑠𝑔𝑟 is of the order ½ for 2D solitary waves (Schmeling, 2000), with the characteristic Stokes 

sphere rising velocity given by (15). The ratio of these is given by 

𝑣𝑠𝑔𝑟

𝑣𝑠𝑡
=

𝐶𝑠𝑔𝑟

𝐶𝑠𝑡
 
𝑟2

𝛿𝑐
2

𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

𝜂0̃
′𝜑0

𝑛        (21) 

Here 𝜂0̃
′
 refers to �̃�′ for the background porosity 𝜑0. In contrast to Scott (1988), who varies the 165 

compaction viscosity in his model series, we vary the ratio of initial Stokes radius to compaction 

length.    

Thus, in the solitary wave limit  

𝐶𝑠𝑔𝑟

𝐶𝑠𝑡
 
𝑟2

𝛿𝑐
2

𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

𝜂0̃
′𝜑0

𝑛 ≫ 1      (22) 

Darcy’s law (17) results in large segregation velocity, which scales as 170 

𝑣𝑠𝑔𝑟′ =
𝐶𝑠𝑔𝑟

𝐶𝑠𝑡
 
𝑟2

𝛿𝑐
2

𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

𝜂0̃
′𝜑0

𝑛       (23) 

From equation (13) it follows that the irrotational part of the matrix velocity scales with  

𝑣1 ≈ −𝜑𝑚𝑎𝑥𝑣𝑠𝑔𝑟      (24) 

Tobias Keller
-> is a natural length scale emerging from the problem

Tobias Keller
I would not use this term here as it refers to a petrological model of melt production in the absence of segregation. However, the present model does not include melting or any other petrological variables, therefore it does not apply at all to either batch or any other type of melting.

Tobias Keller
For simplicity I would omit the geometric prefactors in the analysis. They contribute a constant factor of order one which does not modify the analysis in any meaningful way.

Tobias Keller
Is the compaction length here defined as a variable quantity with viscosities and permeability as a function of \phi as indicated in (19)? Given that you list all the depndence on \phi_max separately in this equation, it may be that you are referring to a slightly different definition of compaction length here calculated as a constant scale based on the reference viscosity and reference permeability. Please double check your notation and definitions here.
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while the rotational part is given by (18): In that equation 𝐴′ scales with 𝜒′, which, via equ (12) and 

(13), scale with 𝑣𝑠𝑔𝑟, i.e. with 
𝑟2

𝛿𝑐
2. In other words, the second term on the RHS of (18) dominates for 175 

small 
𝛿𝑐

2

𝑟2 as the first term is of the order 1. Thus, the rotational matrix velocity has the same order as the 

irrotational compaction velocity and serves to accommodate the compaction flow. In this limit the 

buoyancy term in equation (18), 
1

𝜑𝑚𝑎𝑥

𝜕𝜑

𝜕𝑥′
, is of vanishing importance for the matrix velocity and the 

matrix velocity, 𝑣 1 + 𝑣 2, is of the order of 𝜑𝑚𝑎𝑥𝑣𝑠𝑔𝑟. In the small porosity limit, matrix velocities are 

negligible with respect to fluid velocities. 180 

In the diapir limit,   

𝐶𝑠𝑔𝑟

𝐶𝑠𝑡
 
𝑟2

𝛿𝑐
2

𝜑𝑚𝑎𝑥
𝑛−2(1−𝜑𝑚𝑎𝑥)

𝜂0̃
′𝜑0

𝑛 ≪ 1     (25) 

and equation (17) predict vanishing segregation velocities. As 𝐴′ and 𝜒′ scale with 
𝑟2

𝛿𝑐
2 , both vanish in 

the diapir limit, no irrotational matrix velocity occurs and equ. (18) reduces to the classical biharmonic 

equation (i.e. Stokes equation) driven by melt buoyancy and describing classical diapiric ascent. 185 

Segregation velocities are negligible with respect to matrix velocities. 

In Fig. 1 the results of this simple analysis are shown, where we calculated the velocity ratios as a 

function of initial perturbation radius for several perturbation radii. In our models we use a 𝜑𝑚𝑎𝑥  of 

2%, for which we get a switch from solitary wave to diapir dominant behavior at 𝑟 = 48 ⋅ 𝛿𝑐. For bigger 

amplitudes this switch happens at a bigger radius and for smaller amplitudes the other way around. 190 

2.2 Model setup 

The model consists of a 𝐿′ × 𝐿′ box with a background porosity, 𝜑0, of 0.5%. 𝐿′ is the non-dimensional 

side length of the box and equal to 6 times the initial radius of the perturbation. As initial condition a 

non-dimensional Gaussian wave porosity anomaly is placed in the middle of the model at 𝑥0
′ = 3 and 

𝑧0
′ = 3. The Gaussian wave is given by 195 

𝜑 = 𝜑𝑚𝑎𝑥 ⋅ exp (−(
𝑥′−𝑥0′

𝑤′
)
2
− (

𝑧′−𝑧0′

𝑤′
)
2
)    (26) 

Where 𝜑𝑚𝑎𝑥  is the amplitude equal to 0.02 in our models and 𝑤′ corresponds to the width where 𝜑 has 

reached 𝜑𝑚𝑎𝑥/𝑒. In our case 𝑤′ is equal to 1.2. 

In our model series we vary the ratio of Stokes radius to compaction length from 1.8 to 48 to explore 

the parameter range towards the diapiric regime. The resolution of the models is chosen to be at least 200 

201 × 201 and was increased for higher length scale ratios so that the compaction length is resolved by 

at least 3-4 grid points. 
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At the top and the bottom, we prescribe an out- and inflow for both melt and solid, respectively, which 

is calculated analytically for the background porosity. This is necessary because we have a background 

melt fraction 𝜑0 that would lead to melt accumulation at the top of the model. We therefore calculate 205 

the segregation velocity of the background porosity 𝜑0 using equation (17) without the viscous stress 

term. The corresponding matrix velocity is calculated using the conservation of mass. 

At the sides we use mirroring boundary conditions, which corresponds to a symmetry axis, where no 

horizontal flow is allowed. The permeability-porosity relation exponent in our models is always 𝑛 = 3. 

To run models for a longer, practically infinite, amount of time we let the models coordinate system 210 

follow the maximum melt fraction. This is done by shifting the whole model down one grid length after 

𝜑𝑚𝑎𝑥 has risen above 
𝐿′

2
+ 𝑑𝑧. This procedure allows us to zoom into the perturbation and follow it, not 

knowing its velocity and without carrying out any interpolations, which would strongly influence the 

model.  

 215 

2.3 Numerical approach 

The above equations in non-dimensional form are solved by the finite differences code FDCON 

developed essentially by one of the authors (Schmeling et al., 2019). Starting from the prescribed initial 

condition for 𝜑, and assuming 𝐴′(𝜒′) = 0 at time 0, the time loop is entered and the biharmonic equation 

(19) is solved for 𝜓′ by Cholesky decomposition, from which 𝑣 1′ is derived. Together with 𝑣 2′ the 220 

resulting solid velocity is used to determine the viscous stress term in the segregation velocity equation 

(17). This equation and the melt mass equation (1) are solved iteratively with strong underrelaxation for 

𝜑 and 𝑣 𝑓′ − 𝑣 𝑠′ for the new time step using upwind and an implicit formulation of equ. (1). During this 

internal iteration these quantities are used, via equ. (13), to give ∇⃗⃗ ∙ 𝑣 𝑠, the divergence of the matrix 

velocity, which is needed in the viscous stress term (equ. 6). After convergence ∇⃗⃗ ∙ 𝑣 𝑠 is used via equ. 225 

(12) to determine 𝜒 by LU-decomposition and then to get 𝑣 2′. Now 𝐴′(𝜒′) can be determined to be used 

on the RHS of equ (18). The procedure is then repeated upon entering the next time step. 

Time steps are dynamically adjusted by the Courant criterion times 0.2 based on the fastest velocity, 

either melt or solid.  

The model resolution is a critical parameter in this kind of numerical calculations and should always be 230 

kept in mind. With increasing length scale ratio, the compaction length in the model gets smaller and 

the resolution needs to be increased to keep it equally resolved.  

According to several authors (e.g. Räss et al., 2019; Keller et al., 2013), the compaction length should 

be at least resolved by 4-8 grid points to solve for waves sufficiently accurately. For small length scale 

ratios this is no problem, where, with a model resolution of 201 × 201,  up to nearly 30 grid points per 235 

Tobias Keller
-> because a model domain closed to melt segregation would lead to …

Tobias Keller
To “zoom into” would involve increasing spatial resolution. Instead, it appears that your algorithm simply “tracks” the vertical ascent of the melt pulse.

Tobias Keller
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compaction length can be achieved. The highest resolution our code can run is 601 × 601, which is 

enough to resolve the compaction length by three grid points for the model with a length scale ratio of 

48. Everything above that cannot be sufficiently resolved with respect to studying solitary waves.  

Fig. 2 shows the resulting models for a length scale ratio of 12 for six different resolutions. The pictures 

were taken after 𝜑𝑚𝑎𝑥 has risen approximately 0.25 times the initial Stokes radius (𝑡′ = 0.25). With 240 

increasing resolution, the maximum melt fraction increases strongly from 101 × 101 to 401 × 401 by 

approximately 20% but the velocity of 𝜑𝑚𝑎𝑥 decreases by 7% (not shown in the figure). Both values 

converge. Even though the compaction length is not sufficiently resolved in Fig. 2d, one can still observe 

the main features of the model: A main solitary wave has emerged from the original gaussian 

perturbation and secondary porosity waves are beginning to emerge within its wake. Even with 𝛿𝑐/𝑑𝑥 =245 

1  these features can be observed but are much worse emphasized. With even lower resolutions 

accumulations at the top of the perturbation can be seen, which can be broadly interpreted as the attempt 

of a solitary wave to build up. With 𝛿𝑐/𝑑𝑥 = 0.24, the model is too coarse and the results cannot be 

trusted anymore. 

The solitary waves modeled with our code have been compared to the semi-analytical solution of 250 

Simpson & Spiegelman (2011), and more benchmarking was carried out in Dohmen et al. (2019).  

In a single-phase flow case, where the melt is not allowed to move relatively to the solid, the initial 

perturbation ascends, shortly after beginning, with a velocity of 0.95 times the calculated Stokes 

velocity, and then slowly decreases as the original Gauss-shaped wave deforms and loses in amplitude. 

3 Results 255 

3.1 The transition from porosity wave to diapirism: Varying the initial wave radius 

In this model series we vary the initial wave radius to cover the transition from porosity waves towards 

diapirism. As a reminder, due to our scaling the initial wave has always the same size w.r.t. the model 

box, and “increasing the initial wave radius” is equivalent to decreasing the compaction length or the 

size of the emerging solitary waves w.r.t. the model box. In Fig. 3 the models are shown at 𝑡′ = 0.2. For 260 

small radii (𝑟 ≤ 12 ⋅ 𝛿𝑐) a single porosity wave emerges from the original perturbation. The melt that is 

not situated within the emerging wave is left behind and has, for the most part, already left the model 

region. For 𝑟 = 2.4 ⋅ 𝛿𝑐 the emerged solitary wave is about the size of the initial perturbation and even 

smaller radii would lead to too big waves that would not fit into the model. With increasing radius, the 

emerging solitary wave gets smaller. With 𝑟 = 12 ⋅ 𝛿𝑐, the resulting wave has just a size of ~20% the 265 

initial perturbation size.  

We can compare the observed rising velocities of these solitary waves of Fig. 3b-e with hypothetical 

Stokes velocities of an equivalent diapir based on equation (15). While the dimensional Stokes velocity 

of a porosity anomaly is proportional to the amplitude of porosity and the square of the radius, the non-

Tobias Keller
-> model states are shown
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dimensional Stokes velocity is always equal to 1. In Fig. 4 this non-dimensional Stokes velocity is 270 

indicated by the dashed line with the value 1. The colored lines give 2D solitary wave velocities with 

their appropriate radii, given by Simpson & Spiegelman (2011), normalized by the Stokes velocity 

corresponding to different initial perturbation radii. These semi analytical solutions fit quite nicely to 

our solitary wave models, as already shown in Dohmen et al. (2019). The velocities in this figure can be 

understood as ratios of solitary wave velocity to initial perturbation Stokes velocity. Inspection of Fig. 275 

4 reveals that for the first four cases of Fig. 3b-e with radii smaller or equal 12 ⋅ 𝛿𝑐 the phase velocities 

are always larger than the Stokes velocity. For example, for 𝑟 = 12 ⋅ 𝛿𝑐, an emerging solitary wave with 

a typical radius of 4.5 ⋅ 𝛿𝑐 has a higher phase velocity than a 𝑟 = 12 ⋅ 𝛿𝑐 melt anomaly rising by Stokes 

flow. Thus, the cases are always in the solitary wave regime. 

For greater radii (e.g. 𝑟 = 18 ⋅ 𝛿𝑐 − 30 ⋅ 𝛿𝑐, Fig. 3e-g) the phase velocities of solitary waves are of the 280 

order of the Stokes velocity (see Fig. 4) and they therefore need more time to separate from the remaining 

melt of the initial perturbation, still rising with order of Stokes velocity. The amount of melt 

accommodated within the main solitary wave is just a small percentage of the original perturbation and 

secondary waves can evolve in its remains. With further ascending, more and more solitary waves build 

up and the former perturbation will sooner or later consist of solitary waves in an ordered cluster or a 285 

formation. This formation elongates during ascend as the main wave has a larger amplitude than all the 

following waves, whose amplitudes are also decreasing with depth, as a higher proportion of melt 

accumulated at the top of the perturbation. Similar formations of strongly elongated fingers can be also 

observed in 3D as shown by Räss et al. (2019) who used decompaction weakening. In the models with 

smaller radii, the main solitary wave consisted of the majority of melt originally situated within the 290 

perturbation and the emergence of secondary waves turns out zero or small, but with greater radii enough 

melt is left behind to observe the emergence of second and higher generations of solitary waves. 

For greater radii (e.g. 𝑟 = 24 ⋅ 𝛿𝑐 − 48 ⋅ 𝛿𝑐, Fig. 3 f – j) the phase velocities of solitary waves are almost 

equal to the Stokes velocity (See Fig. 4). This leads to almost no separation after 𝑡′ = 0.2. While for 

𝑟 = 36 ⋅ 𝛿𝑐 a solitary wave has already build up and is rising just ahead of the perturbation, for 𝑟 = 42 ⋅295 

𝛿𝑐 and 𝑟 = 48 ⋅ 𝛿𝑐 just the accumulation of melt at the top of the perturbation can be observed, which 

will eventually lead to a solitary wave. Secondary waves also build up with higher runtimes, as can be 

already seen for 𝑟 = 36 ⋅ 𝛿𝑐. 

For even greater radii the compaction length cannot be sufficiently resolved with our approach, but tests 

with not sufficiently resolved models have shown that solitary waves can be observed for 𝑟 ≥ 48 ⋅ 𝛿𝑐. 300 

At some point they do no longer appear, probably due to lack of sufficient resolution, but our tests show 

that solitary waves should always emerge, even if its phase velocity is way below the Stokes velocity. 

As long as the ascending time is long enough and melt is able to move separately to the matrix, 

independently of segregation velocity, a diapir will evolve into a swarm of a certain number of solitary 

waves, based on the compaction length. Because the phase velocities of each small solitary wave is 305 

Tobias Keller
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small compared to the Stokes velocity of the full swarm we consider such a rising formation of melt as 

a large scale diapir. 

Fig. 3l shows the required time for the initial perturbation to build up a solitary wave. This status is 

achieved after the dispersion relation of the main wave reaches a point from where it follows the solitary 

wave dispersion relation. This time increases nearly linearly for small radii (𝑟 ≤ 48 ⋅ 𝛿𝑐) but increases 310 

non-linearly for greater radii. This might be due to lack of proper resolution, but a non-linear trend can 

be already observed for small radii. The transition time for radii smaller than 30 ⋅ 𝛿𝑐 is smaller than 0.2, 

the time at which the models in Fig. 3b-j are shown. The other models already show solitary wave like 

blobs but did not yet reach their final form. 

Just in the case where the compaction length is zero (𝑟 = ∞ ⋅ 𝛿𝑐), i.e. melt is not able to move w.r.t. the 315 

matrix, a classical diapir, as shown in Fig. 3k, will evolve. Here, no focusing into solitary waves can be 

observed and the transition time in infinity. 

Summarizing Fig. 4, the comparison of Stokes and porosity wave velocities correlates nicely with our 

observations shown in Fig. 3: For small initial radii the solitary wave velocity is clearly higher and will 

therefore build up and separate from the melt left behind quickly. With increasing radius, the velocity 320 

ratio decreases, and the waves need more time to build up and separate. But even with velocity ratios 

smaller than 1, solitary waves emerge and, not able to separate, rise just ahead of the remains, slowly 

elongating the initial perturbation. 

3.2 Effects on the mass flux 

It is important to study the partitioning between rising melt and solid mass fluxes in partially molten 325 

magmatic systems because melts and solids are carriers of different chemical components. Within our 

Boussinesq approximation we may neglect the density differences between solid and melt. Then our 

models allow to evaluate vertical mass fluxes of solid or fluid by depicting the vertical velocity 

components multiplied with the melt or solid fractions, respectively:  

𝑞𝑠𝑧
′ = (1 − 𝜑) ⋅ 𝑣′

𝑠𝑧 

𝑞𝑓𝑧
′ = 𝜑 ⋅ 𝑣′𝑓𝑧. 

 
(29) 

Fig. 5 shows horizontal profiles through rising melt bodies at the vertical positions of maximum melt 330 

fraction at timesteps where the main wave has just reached the status of a solitary wave.  

The mass fluxes of solid and fluid are strongly affected by the change of the initial radius from the 

solitary wave regime towards the diapiric regime. For 𝑟 = 2.4 ⋅ 𝛿𝑐, where we observe a solitary wave, 

the fluid has its peak mass flux in the middle of the wave and the solid is going downwards, against the 

phase velocity. In the center the fluid flux is about 10 times higher than the solid net flux. The upward 335 

flow in the center is balanced by the matrix dominated downward flow inside and outside the wave. For 

𝑟 = 12 ⋅ 𝛿𝑐 the wave area is much smaller and the ratio between solid and fluid flux is still around the 
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order of 10. At the boundary of the wave the solid is nearly not moving at all, but a minimum can be 

observed within the center of it. For 𝑟′ = 24 ⋅ 𝛿𝑐  the solid flux is just above zero in the center and 

increases to a maximum towards the flanks of the wave, that is still about ten times smaller than the 340 

maximum fluid flux. 

With 𝑟′ = 48 ⋅ 𝛿𝑐 the solid flux is just about three times smaller than the fluid flux, but most of the 

material ascend is accomplished by the solid. This suggests that diapiric rise begins to dominate. 

So far, we have based our discussion of the transition from solitary waves towards diapirism on 

qualitative model observations. We now try to invoke a more quantitative criterion. In a horizontal line 345 

passing through the anomalies porosity maximum we define the total vertical mass flux of the rising 

magma body by ∫ (𝑞𝑓 + 𝑞𝑠)𝑑𝑥
𝜑>𝜑0

 where the integration is carried out only in the region of increased 

porosity 𝜑 > 𝜑0. This mass flux is partitioned between the fluid mass flux, ∫ 𝑞𝑓𝑑𝑥
𝜑>𝜑0

, and the solid 

mass flux, ∫ 𝑞𝑠𝑑𝑥
𝜑>𝜑0

. With these we define the partition coefficients 

𝐶𝑠𝑜𝑙𝑖 =
∫ 𝑞𝑓𝑑𝑥
𝜑>𝜑0

 ∫ (𝑞𝑓 + 𝑞𝑠)𝑑𝑥
𝜑>𝜑0

 

 

(30) 

and 350 

𝐶𝑑𝑖𝑎 =
∫ 𝑞𝑠𝑑𝑥
𝜑>𝜑0

 ∫ (𝑞𝑓 + 𝑞𝑠)𝑑𝑥
𝜑>𝜑0

 

 

(31) 

The sum 𝐶𝑠𝑜𝑙𝑖 + 𝐶𝑑𝑖𝑎 is always 1 and if 𝐶𝑠𝑜𝑙𝑖 > 𝐶𝑑𝑖𝑎 then the solitary wave proportion is dominant, 

while for 𝐶𝑠𝑜𝑙𝑖 < 𝐶𝑑𝑖𝑎 diapirism is dominant. In Fig. 6a these partition coefficients for several initial 

radii are shown. In red are the diapir and in blue the solitary wave partition coefficients. 

For 𝑟 = 1.8 ⋅ 𝛿𝑐, 𝐶𝑠𝑜𝑙𝑖 is equal to 5 and 𝐶𝑑𝑖𝑎 is equal to -4, i.e. we have a downward solid flux. With 

increasing radius 𝐶𝑑𝑖𝑎 increases until it changes its direction at 𝑟 ≈ 20 ⋅ 𝛿𝑐, eventually becomes bigger 355 

than 𝐶𝑠𝑜𝑙𝑖 at 𝑟 = 36 ⋅ 𝛿𝑐 and then approaches 1 for bigger radii. 𝐶𝑠𝑜𝑙𝑖 changes so that the sum of both is 

always equal to 1. Even though diapirism is dominant for 𝑟 > 36 ⋅ 𝛿𝑐, we still observe solitary waves, 

yet their phase velocities are much smaller than the large scale rising velocities of the full melt formation. 

In Fig. 6b the ratio of maximum fluid velocity (i.e. 𝑣𝑓⃗⃗⃗⃗ ) to absolute matrix velocity is shown. For small 

radii, where 𝐶𝑠𝑜𝑙𝑖 ≫ 𝐶𝑑𝑖𝑎 , this ratio is approximately constant with a high value of about 100. The 360 

absolute velocity maxima itself are not constant but decrease with the same rate until the switch of 

negative to positive matrix mass flux, where the absolute matrix velocity starts to increase, while the 

fluid velocity keeps decreasing. At this zero crossing we would expect a ratio of infinity, but while the 

zero crossing takes place within the center of the solitary wave, other regions near the wave still have 

finite vertical velocities. This switch from negative to positive mass flux was already observed by Scott 365 
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(1988), but while he changed the viscosity ratio as an independent constant model parameter, we change 

the radius and keep the viscosity law the same, still evolving with 𝜑. Both describe the transition from 

a two-phase limit towards the Stokes limit, but in our formulation, we are able to reach the Stokes limit 

while Scott (1988) is still in the two-phase flow regime. With even greater radii the velocity ratio will 

eventually converge towards 1, where melt is no longer able to move relatively to the matrix (i.e.  𝑣𝑓⃗⃗⃗⃗ =370 

𝑣𝑠⃗⃗  ⃗) and material will be transported by a single phase. These last models are not sufficiently resolved to 

obtain leading and secondary solitary waves, but still show the expected behavior in terms of 

macroscopically rising partially molten diapir. 

Based on these observations, the evolution of these models can be divided into two regimes: (1) In the 

solitary wave regime (𝑟 ≤ 36 ⋅ 𝛿𝑐) 𝐶𝑠𝑜𝑙𝑖 is larger than 𝐶𝑑𝑖𝑎 and the initial perturbation emerges into 375 

waves that have the properties of solitary waves and ascend with constant velocity and staying in shape. 

This regime can be further divided into 1a (𝑟 < 20 ⋅ 𝛿𝑐), where the solid mass flux is negative, and 1b 

(20 ⋅ 𝛿𝑐 ≤ 𝑟 < 36 ⋅ 𝛿𝑐), where the solid moves upwards with the melt. Waves in these regimes are very 

similar and differ only in the matrix flux. 

In the solitary wave composed diapiric uprise regime (2) (𝑟 ≥ 36 ⋅ 𝛿𝑐), 𝐶𝑑𝑖𝑎 is larger than 𝐶𝑠𝑜𝑙𝑖 but, as 380 

the fluid melt is still able to move relatively to the solid matrix, solitary waves build up and the whole 

partially molten region will evolve into a swarm of them. The phase velocities of these waves are very 

small compared to the Stokes velocity of the perturbation and the whole swarm will rise as a diapir, 

whose buoyancy is still comparable to the buoyancy of the initial perturbation’s.  

A third regime can be reached by prohibiting the relative movement of fluid (𝑟 = ∞ ⋅ 𝛿𝑐), for which the 385 

compaction length has not to be sufficiently resolved. In this regime the initial perturbation will not 

disintegrate into solitary waves but rise as a well-formed partially molten diapir. In every other case 

where fluid is able to move w.r.t. the solid, at some point all diapirs will evolve into a swarm of solitary 

waves which can be infinitely small compared to the initial perturbation. However, this is expected to 

happen only after a long distance of diapiric rise. In cases where the size of solitary waves is comparable 390 

to the perturbation (e.g. regime (1)) this will occur sooner and in cases, where solitary waves are much 

smaller, later. Their observation is mostly limited by resolution.  

4 Discussion 

4.1. Application to nature 

While in our models the perturbation size in terms of compaction lengths was systematically varied but 395 

kept constant within in each model, our results might also be applicable to natural cases in which the 

compaction length varies vertically. In the case of compaction length decreasing with ascent a porosity 

anomaly might start rising as a solitary wave but then at some point might enter the second regime where 

diapiric rise is dominant. If this boundary is sharp, the solitary wave might disintegrate into several 
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smaller solitary waves that rise diapiric as a swarm. If the boundary is a continuous transition the wave 400 

should slowly shrink and become slower. The melt left behind might also evolve into secondary solitary 

waves. 

A decreasing compaction length could be accomplished by decreasing the matrix viscosity or the 

permeability, or by increasing the fluid viscosity. Decreasing matrix viscosity might be for example 

explainable by local heterogeneities, temperature anomalies for example due to secondary convective 405 

overturns in the asthenosphere or by a vertical gradient of water content, which may be the result of melt 

segregation aided volatile enrichment at shallow depths in magmatic systems. This could lead to the 

propagation of magma-filled cracks (Rubin, 1995) as already pointed out in Connolly & Podladchikov 

(1998). The latter authors have looked at the effects of rheology on compaction-driven fluid flow and 

came to similar results for an upward weakening scenario. The decrease of permeability due to decrease 410 

in background porosity might be an alternative explanation. In the hypothetic case of a porosity wave 

reaching the top of a magma chamber, the background porosity might decrease which would most 

certainly lead to focusing, because the compaction length will decrease, and eventually, when reaching 

melt free rocks, the solitary waves might be small enough and its amplitude might be high enough to 

trigger the initiation of dykes. 415 

While we propose that all partially molten diapirs which allow for two-phase flow will inevitably 

disintegrate into numerous solitary waves when two-phase flow is allowed, it doesn’t mean that there 

are no classical diapirs in nature. Within regime (1) solitary waves are possible and most probably 

expected but the deeper we are in regime (2) the less expected is the disintegration because they need a 

long time to build up. In nature compared to the time scale of diapiric rise, different from our models, 420 

they cannot rise for an infinite amount of time. The time needed to build up a solitary wave increases 

non-linearly with 𝑟 (c.f. Fig. 3 l). For example, while for 𝑟 = 4.8 ⋅ 𝛿𝑐  a solitary wave is completely 

evolved after 𝑡′ = 0.02, for 𝑟 = 48 ⋅ 𝛿𝑐 it needs until 𝑡′ = 0.4, i.e. equivalent to the diapiric rise time 

necessary to ascend the distance approximately half the initial radii. 

Our results show that large partially molten bodies with sizes of about  𝑟 > 20 ⋅ 𝛿𝑐 are expected to rise 425 

as diapirs but have the potential to split up into a number of solitary waves. Such sizes translate to > 2 

km – 200 km for typical compaction length within the earth. If such swarms of solitary waves reach the 

base of the lithosphere each solitary wave may trigger a melt extraction and volcanic event. Given the 

size of the original diapir, its rising velocity and the number of solitary waves, we might speculate that 

the episodicity of melt extraction may be related to the time-dependent arrival of the solitary waves. For 430 

example, assuming a compaction length of 100 m to1 km, a 3D diapir with 𝑟 = 40 ⋅ 𝛿𝑐 = 40 𝑘𝑚 would 

possibly split up into several hundred to several 100 thousand solitary waves each having a radius of 

order 4 ⋅ 𝛿𝑐. With a typical Stokes velocity of a 10 cm/a for the whole body it would release magmas 

from each solitary wave with a rate of order one per 1 ka to 1 per year. Such extraction rates are in good 

agreement with observed eruption rates e.g. in Hawaii (e.g. Schmeling, 2006, and references therein). 435 
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4.2. Other issues 

The introduced partition coefficients help to distinguish whether solitary wave or diapiric rise is 

dominant but cannot be solely consulted whether a solitary wave or a diapir can be expected. As the 

fluid velocity and flux is still very high in the waves center for diapiric dominant cases, small solitary 

waves will build up. However, the net mass flux is dominated by the large scale rising solid, and the 440 

formation time of small solitary waves might be long. 

Nevertheless, we propose that all partially molten perturbations allowing for two-phase flow emerge 

into solitary waves, while those with batch melting rise as diapirs. While the minimum size of solitary 

waves in nature might be in some way limited by the grain size, in numerical models the minimum size 

is limited by the model’s resolution. We restrict our models in this study to cases where the compaction 445 

length is at least resolved by 3 grid lengths 𝑑𝑥 (i.e. 𝛿𝑐 ≥ 3 ⋅ 𝑑𝑥) to get fairly resolved solitary waves, 

but they can be also observed for much worse resolved compaction lengths. The resolution test (Fig. 2) 

shows that, even though they are not solved decently, probable solitary waves can be observed for cases 

with 𝛿𝑐 = 𝑑𝑥. Smaller resolutions can show indications of solitary waves but should not be trusted as 

other tests (not shown here) with similar resolutions result in spurious channeling. For very poorly 450 

resolved compaction lengths no indications of solitary waves can be observed, and the partially molten 

perturbation ascends as a diapir. The deeper we are in regime 2, the more dominant are the dynamics of 

diapirism on a length scale of r compared to Darcy flow or solitary waves on the unresolved length scale 

of 𝛿𝑐. Thus, two-phase flow, either Darcy flow or solitary waves, becomes negligible for 𝑟 ≫ 𝛿𝑐 and 

partially molten diapirs can be regarded as well resolved. 455 

5 Conclusion 

This work shows, that depending on the extent of a partially molten region within the earth, the resulting 

ascent of melt may not only occur by solitary waves or by diapirs, but by a composed mechanism, where 

a diapir splits up into numerous solitary waves. Their phase velocities might become so slow that the 

whole swarm will ascend as a diapir, just slowly elongating due to the main solitary wave having a 460 

higher amplitude and therefore higher phase velocity than the following ones. Depending on the ratio of 

the melt anomalies size to the compaction length, or rather the models length scale to compaction length 

ratio, we can classify the ascent behavior into three different regimes using mass flux and velocity of 

matrix and melt: (1) Solitary wave a and b, (2) solitary wave composite diapirism and (3) diapirism. In 

regime 1a the matrix sinks with respect to the rising melt, in 1b also the matrix rises, but very slowly. 465 

On first order these regimes can be explained by comparing Stokes velocity of the rising perturbation 

with the solitary waves phase velocity. If the solitary wave velocity is higher than the Stokes velocity a 

solitary wave will evolve and, if lower, diapirism is dominant, but still solitary waves will build up if 

the ascending time is long enough. The deeper we are in regime 2, the more time is needed to build up 

Tobias Keller
This subsection strikes me as repetitive. It does not state anything that has not been clearly discussed before. I recommend dropping it or else clarify the additional point that needs to be made.
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solitary waves and the less likely it is that they will appear in nature. The third regime can be only 470 

reached if fluid is not allowed to move separately to the matrix. 

Especially in the second regime numerical resolution plays an important role as the compaction length 

might be no longer resolved properly to allow for the emergence of solitary waves. Hence it should be 

generally important for two-phase flow models to inspect whether solitary waves are expected and if so, 

do they have a major influence on the conclusions made. 475 
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Fig. 1: The segregation to Stokes velocity ratio, following equation (21), is given as a function of 565 

initial perturbation radius 𝒓 in terms of compaction length 𝜹𝒄. Each colored line refers to 

different values of perturbation amplitude 𝝋𝒎𝒂𝒙, given in the legend. 

https://doi.org/10.1002/2014JB011260.Received
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Fig. 2: All six figures show a model with an initial perturbation radius of 12 times the compaction 

length but with different resolutions: a) 13x13 b) 26x26 c) 51x51 d) 101x101, e) 201x201, f) 570 

401x401. In the lower left corner in each figure the size of the compaction length in terms of grid 

length is given. 
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Fig. 3: a) Shows the initial condition of our models, which looks equal for all cases. Only the 575 

compaction length is changed. b-j) give the resulting melt fraction distribution after 𝒕′ = 𝟎. 𝟐 for 

different length scale ratios between 2.4 and 48. k) shows a classical diapir, referring to a 

compaction length of zero, at 𝒕′ = 𝟗. l) shows the transition time of models with length scale ratios 

between 1.8 and 120. The transition time gives the time after which the main wave has reached a 

solitary wave status. 580 
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Fig. 4: The dashed line marks the velocity of the Stokes sphere (𝒗′ = 𝟏). The colored lines show 

the velocity of a 2D solitary wave, calculated semi-analytically by Simpson & Spiegelman (2011), 

in our non-dimensionalization, based on the radii shown in the legend. 

 585 

Fig. 5: The upper row gives the solid and fluid mass fluxes of a horizontal line cutting through the 

maximum melt fraction at timesteps where the main wave has just reached the status of a solitary 

wave. These timesteps are 𝒕′ = 𝟎.𝟎𝟐; 𝟎. 𝟎𝟔𝟖; 𝟎. 𝟏𝟓𝟓;  𝟎. 𝟒𝟏𝟔, respectively from left to right. The 

bottom row gives the corresponding melt porosity fields. All quantities shown are non-

dimensional. 590 
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Fig. 6: a) The graph shows the solitary wave (blue) and diapir (red) partition coefficients for 

several initial perturbation radii. The dashed lines describe the borders of the regimes. Figure b) 

shows the ratio of maximum fluid velocity to maximum absolute solid velocity in the whole model.  

 595 


