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Abstract

In partially molten regions inside the Earth melt buoyancy may trigger upwelling of both solid and fluid
phases, i.e. diapirism. If the melt is allowed to move separately with respect to the matrix, melt
perturbations may evolve into solitary porosity waves. While diapirs may form on a wide range of scales,
porosity waves are restricted to sizes of a few times the compaction length. Thus, the size of a partially
molten perturbation in terms of compaction length controls whether material is dominantly transported
by porosity waves or by diapirism. We study the transition from diapiric rise to solitary porosity waves
by solving the two-phase flow equations of conservation of mass and momentum in 2D with porosity
dependent matrix viscosity. We systematically vary the initial size of a porosity perturbation from 1.8
to 120 times the compaction length.

If the perturbation is of the order of a few compaction lengths, a single solitary wave will emerge, either
with a positive or negative vertical matrix flux. If melt is not allowed to move separately to the matrix
a diapir will emerge. In between these end members we observe a regime where the partially molten
perturbation will split up into numerous solitary waves, whose phase velocity is so low compared to the
Stokes velocity that the whole swarm of waves will ascend jointly as a diapir, just slowly elongating

due to a higher amplitude main solitary wave.

Only if the melt is not allowed to move separately to the matrix no solitary waves will build up, but as
soon as two-phase flow is enabled solitary waves will eventually emerge. The required time to build
them up increases non-linearly with the perturbation radius in terms of compaction length and might be

for many cases too long to allow for them in nature.
1 Introduction

In geodynamic settings such as mid-ocean ridges, hotspots, subduction zones or orogenic belts partial
melts are generated within the asthenosphere or lower continental crust and ascend by fluid migration
within deforming rocks (e.g., Sparks and Parmentier, 1991; Katz, 2008; Keller et al., 2017; Schmeling
et al., 2019). Inherent tectonic or rock heterogeneities in such systems may result in spatially varying
melt fractions on length scales varying over several orders of magnitudes. These length scales play an
important role in determining whether melt anomalies may rise as porous waves (Jordan et al., 2018) or

by other mechanisms such as diapirs (Rabinowicz et al., 1987), focused channel networks (Spiegelman
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et al., 2001) or dykes (Rivalta et al., 2015). Here we focus on the effect of the length scale on the

formation and evolution of buoyancy driven porous waves or diapirs.

The physics of fluid moving relatively to a viscously deformable porous matrix were firstly described
by McKenzie (1984) and it was later shown by several authors that these equations allow for the
emergence of solitary porosity waves (Scott & Stevenson, 1984; Barcilon & Lovera 1989; Wiggins &
Spiegelman, 1995). Porosity waves are regions of localized excess fluid that ascend with permanent
shape and constant velocity, controlled by compaction and decompaction of the surrounding matrix.
They have extensively been studied as mechanisms transporting geochemical signatures or magma
through the asthenosphere, lower and middle crust (e.g. Watson & Spiegelman, 1994; McKenzie, 1984;
Connolly, 1997; Connolly & Podladchikov, 2013, Jordan et al., 2018, Richard et al., 2012). It has been
shown that the dynamics of porous waves strongly depends on the porosity dependence of the matrix
rheology (e.g. Connolly & Podladchikov, 1998; Yarushina et al., 2015; Connolly & Podladchikov, 2015;
Omlin et al., 2017; Dohmen et al., 2019). Yet, one open question is how the length scale of solitary
porosity waves relates to an arbitrary length scale of a possible porosity anomaly in given geodynamic

settings.

The size of a solitary porosity wave is usually of the order of a few compaction lengths (McKenzie,
1984; Scott & Stevenson, 1984; Simpson & Spiegelman, 2011), but this length scale varies over a few
orders of magnitude, depending on the shear and bulk viscosity of the matrix, fluid viscosity and
permeability (see eq. (19)) with typical values of 100-10000 meters (McKenzie, 1984; Spiegelman,
1993). However, partially molten regions in the lower crust or upper mantle are prone to gravitational
instabilities such as Rayleigh-Taylor instabilities or diapirism (e.g. Griffith, 1986; Bittner and
Schmeling, 1995; Schmeling et al., 2019). Originating from the Greek “diapeirein”, i.e. “to pierce
through”, diapirism describes the “buoyant upwelling of relatively light rock” (Turcotte & Schubert,
1982) through and into a denser overburden. In the general definition the rheology of the diapir and
ambient material is not specified, both can be ductile as in our case. Buoyancy may be of compositional
or phase related origin, e.g., due to the presence of non-segregating partial melt (Wilson, 1989). In this
model we describe a diapir as a partially molten perturbation, whose rising velocity, characterizable by

the Stokes velocity, is lower than the corresponding solitary waves phase velocity.

As characteristic wavelengths of Rayleigh-Taylor instabilities may be similar, but also of significantly
different order of those of porosity waves, and the Stokes velocity is strongly affected by the spatial
expansion, the question arises how these two mechanisms interact and how does the transition from a
porosity wave to a rising partially molten diapir look like. Scott (1988) already investigated a similar
scenario. He calculated porosity waves changing the compaction length by altering the constant shear
to bulk viscosity ratio. In contrast, we vary the radius of a partially molten perturbation in terms of

compaction lengths but keeping the porosity dependent viscosity law the same. While Scott (1988) was
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not able to reach the single-phase flow endmember due to his setup, we can reach this endmember with

our description and can explore the transition.

In this work we will address the question of length scale of a partially molten region with respect to the
length scale of a solitary porosity wave, by varying the sizes of initial porosity perturbations. We further

focus on the numerical implications on modelling magma transport.
2 Methods
2.1 Governing equations

The formulation of the governing equations for the melt-in-solid two-phase flow dynamics is based on
McKenzie (1984), Spiegelman & McKenzie (1987) and Schmeling (2000) assuming an infinite Prandtl
number, a low fluid viscosity w.r.t. the effective matrix viscosity, zero surface tension, and the
Boussinesq approximation. In the present formulation the Boussinesq approximation assumes the same
constant density for the solid and fluid except for the buoyancy terms of the momentum equations for
the solid and fluid. In the following all variables associated with the pore fluid (melt) have the subscript
f and those associated with the solid matrix have the subscript s. The equation for the conservation of
the mass of the melt is

d = R
L+ 7 (o) =0, (1)
and the mass conservation of the solid is

L2+ (- o) =0, 2)

¢ is the volumetric rock porosity (often called melt fraction), v and v are the fluid and solid velocities,

respectively. The momentum equations are given as a generalized Darcy equation for the fluid

separation flow
- - k(p - =
Vp — Vs = —@(fo — 0rd), 3

where p¢ is the fluid density and P is the fluid pressure (including the lithostatic pressure), whose
gradient is driving the fluid segregation by porous flow, p is the melt dynamic viscosity and g is the

gravitational acceleration. k,, is the permeability that depends on the rock porosity

ky = koo™, 4)

with n being the power-law exponent constant, usually equal to 2 or 3. This relation is known as the

Kozeny-Carman relation (e.g. Costa, 2006). The Stokes equation for the mixture is given as

pg— VP +V-T=0. (5)
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p is the density of the melt — solid mixture and  is the effective viscous stress tensor of the matrix

including both shear and compaction components

asi as' -
‘t=n<v +L>+({—§n)6ﬁv-vg. (6)

6xj 6xi
¢ is the volume viscosity. The linearized equation of state for the mixture density is given as
p=po(1-cro) (7)
with p, as the solid density and ¢ = % . The shear and volume viscosity are given by the equations
0
n=1n01-¢) (8)
and
1_
¢=no Tq) 9)
where 7, is the constant intrinsic shear viscosity of the matrix.

As in both equations (3) and (5) Pr is the fluid pressure (see McKenzie, 1984, Appendix A), these

equations can be merged to eliminate the pressure resulting in

- - ko(pn_l
Vg — Vg = —
F = Vs p

(Pocrdg(1— @) +V - 7). (10)

This equation states that the fluid separation flow (i.e. melt segregation velocity) is driven by the
buoyancy of the fluid with respect to the solid and the viscous stress in the matrix including compaction

and decompaction.

Following Sramek et al. (2010), the Stokes equation (3) can be rewritten by expressing the matrix
velocity, ¥, as the sum of the incompressible flow velocity, ¥;, and the irrotational (compaction) flow

velocity, 7,, as:

o x
~ox oz

with 1 as stream function and y as the irrotational velocity potential, given as the solution of the Poisson

equation
Viy =V- . (12)
The divergence term V- v, can be derived from egs. 1 and 2 to give

V-5 ==V [o(3; — 5)]. (13)
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In the small fluid viscosity limit the viscous stresses within the fluid phase are neglected, resulting in a
viscous stress tensor in the Stokes equation of the mixture (equ. 5), in which only the stresses in the
solid phase are relevant. This is evident from the definition of the viscous stress tensor, which only
contains matrix and not fluid viscosities. Melt viscosities of carbonatitic, basaltic or silicic wet or dry
melts span a range from < 1 Pa s to extreme values up to 104 Pa s (see the discussion in Schmeling et
al., 2019), while effective viscosities of mafic or silicic partially molten rocks may range between 10%°
Pa s and 10%° Pa s, depending on melt fraction, stress, and composition. Thus, in most circumstances the
small fluid viscosity limit is justified.

In the limit of this small viscosity assumption, inserting the above solid velocity (11) into the viscous
stress (6), this into the Stokes equation (5), and taking the curl of the x- and z equations the pressure is

eliminated and one gets

G (-3 i) - ottea0 oo
with
100 =20 (A2 (S D) nit]  ae

To describe the transition from solitary waves to diapirs it is useful to non-dimensionalize the
equations. As scaling quantities we use the radius r of the anomaly, the reference viscosity 7y, and the
scaling Stokes sphere velocity (e.g. Turcotte & Schubert, 1982) based on the maximum porosity of the
anomaly @qx

_ ‘pma;\cApgT2
Vse = Cst T (15)

resulting to the following non-dimensionalization where non-dimensional quantities are primed:

)=z By =T v t=tgn (T P) = @ P) R

M=) n0, W)= x) rvs (16)

For r the half width of the prescribed initial perturbation, consisting of a 2D Gaussian bell, is chosen.
This is reasonable as the rising velocity in our code is best described by the Stokes velocity, using this

radius. The exact shape of the perturbation is given later in the model setup.

Cs; is calculated by using the analytic solution of an infinite Stokes cylinder within another cylinder
(Popov and Sobolev (2008), based on the drag force derived by Slezkin (1955)), because, due to

k?-1

boundary effects, the cylinder gets effectively slowed. Cs; is calculated using Cs; = In(k) el

where k is the ratio of outer cylinder’s to inner cylinder’s radius. For our model setup Cg; is equal to

0.17.
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With these rules the Darcy equation (10) is given in non-dimensional form

2 _ —
B -7 = -2 (6,524 V. 7) (17)

r2ij'e z Pmax

where é, is the unit vector in z-direction and 7" is equal to ¢’ + gn’. The momentum equation of the

mixture (12) is given by

02 _ 02 r (0% _ 9%y 92 r 9%Pr _ 1 a_ﬁ” 1o r
(axrz azﬂ) [ns (6er dz12 )] +4 dx19z1 [7]5 6xrazl] " Qmax 90X +A' GO (18)
52 /r? in equation (17) is the squared ratio of compaction length &, to the system length scale r, which
is the main parameter describing our system. The compaction length is a natural length scale emerging
from the problem and of particular importance in our context, because 2D porosity waves have half

width radii of the order of 3 - 6. to 5 - 6. (Simpson and Spiegelman, 2011). It is defined as:

4
5 = /“?ﬂk (19)
c L 9]

All quantities in the other equations are simply replaced by their non-dimensional primed equivalents
(egs. (1), (2), (6), (11), (12), (13), and (14a)).

We now compare the two limits, where segregation or two-phase flow dominates (solitary wave regime),
and where fluid and solid rise together with the same velocity as partially molten bodies, which we
identify with the diapir regime. We compare the characteristic segregation velocity within solitary

waves, which scales as

k maxn_1 o/ k maxn_1A (1_ max)
Vsgr = WT(Apg(l - (pmax) -V T) = ngr of Hpg £ (20)

where Cs,- is of the order % for 2D solitary waves (Schmeling, 2000), with the characteristic Stokes

sphere rising velocity given by (15). The ratio of these is given by

Usgr _ Csgr 5_50 Pmax" *(1=Pmax) (21)

2 =~ n
Vst Cst T Mo Po

Here 77" refers to 7§’ for the background porosity ¢, and ., to the compaction length of the
background porosity. In contrast to Scott (1988), who varies the volume viscosity in his model series,

we vary the ratio of initial Stokes radius to compaction length.

Thus, in the solitary wave limit

C 52 n-—2 1—
sgr Lzoﬁomax ~’( n¢max) > 1 (22)
Cst T Mo $o

Darcy’s law (17) results in large segregation velocity, which scales as
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r_ Csgr 550 §0maxn_2(1_§0max)
Vggr = =2 L0 —— (23)
g Cst 12 No Po

From equation (13) it follows that the irrotational part of the matrix velocity scales with
V1 = —PmaxVsgr (24)

while the rotational part is given by (18): In that equation A scales with y’, which, via equation (12) and
(13), scale with vy, i.e. with 82,/72. In other words, the second term on the RHS of (18) dominates

for small 2 /5%, as the first term is of the order 1. Thus, the rotational matrix velocity has the same

order as the irrotational compaction velocity and serves to accommodate the compaction flow. In this

1 dp

limit the buoyancy term in equation (18), T

is of vanishing importance for the matrix velocity

and the matrix velocity, ¥; + U,, is of the order of @p,q,Vsgr. In the small porosity limit, matrix

velocities are negligible with respect to fluid velocities.
In the diapir limit,

C. T2 n-2 1—
sgr _prmax ~’( nfpmax) &1 (25)
Cs¢ 6¢ No ¥Po

and equation (17) predict vanishing segregation velocities. As A’ and y’ scale with r2 /87, , both vanish
in the diapir limit, no irrotational matrix velocity occurs and equ. (18) reduces to the classical biharmonic
equation (i.e. Stokes equation) driven by melt buoyancy and describing classical diapiric ascent.

Segregation velocities are negligible with respect to matrix velocities.

In Fig. 1 the results of this simple analysis are shown, where we calculated the velocity ratios as a
function of initial perturbation radius for several perturbation radii. In our models we use a @,,4, Of
2%, for which we get a switch from solitary wave to diapir dominant behavior at r = 48 - §.. Smaller

amplitudes lead to a switch at a smaller radius and larger amplitudes to a switch at a larger radius.
2.2 Model setup

The model consists of a L' x L' box with a background porosity, ¢, of 0.5%. L’ is the non-dimensional
side length of the box and equal to 6 times the initial radius of the perturbation. As initial condition a
non-dimensional Gaussian bell-shaped porosity anomaly is placed in the middle of the model at x{, = 3
and zy, = 3. The Gaussian wave is given by

P = Pmax - €XP (— (ﬂ)2 - (ﬂ)z) (26)

wi w/

Where @4, 1S the amplitude equal to 0.02 in our models and w' corresponds to the width where ¢ has

reached @,,4,/€. In our case w' is equal to 1.2.



205

210

215

220

225

230

235

In our model series we vary the ratio of Stokes radius to compaction length from 1.8 to 48 to explore
the transition from solitary wave towards diapiric regime. The resolution of the models is chosen to be
at least 201 x 201 grid points and was increased for higher ratios of Stokes radius to compaction length
so that the compaction length is resolved by at least 3-4 grid points.

At the top and the bottom domain boundaries, we prescribe an out- and inflow for both melt and solid,
respectively, to prevent melt accumulations at the top. The segregation velocity of the background
porosity ¢, is calculated using equation (17) without the viscous stress term. The corresponding matrix
velocity is calculated using the conservation of mass.

At the sides we enforce no horizontal flux boundary conditions. The permeability-porosity relation

exponent in our models is always n = 3.

To run models for a longer, practically infinite, amount of time we let the models coordinate system

follow the maximum melt fraction.
2.3 Numerical approach

We discretize the set of equations using finite differences on a staggered grid and solve the system using
the code FDCON (Schmeling et al., 2019). Starting from the prescribed initial condition for ¢, and
assuming A’(x") = 0 at time 0, the time loop is entered and the biharmonic equation (19) is solved for
' by Cholesky decomposition, from which v, is derived. Together with 7, the resulting solid velocity
is used to determine the viscous stress term in the segregation velocity equation (17). This equation and
the melt mass equation (1) are solved iteratively with strong underrelaxation for ¢ and 7" — ¥ for the
new time step using upwind and an implicit formulation of equ. (1). During this internal iteration these
quantities are used, via equ. (13), to give V- g, the divergence of the matrix velocity, which is needed

in the viscous stress term (equ. 6). After convergence V- s is used via equ. (12) to determine y by LU-
decomposition and then to get 7,". Now A’(x") can be determined to be used on the RHS of equ (18).

The procedure is then repeated upon entering the next time step.

Time steps are dynamically adjusted by the Courant criterion times 0.2 based on the fastest velocity,

either melt or solid.

The model resolution is a critical parameter in this kind of numerical calculations and should always be
kept in mind. With increasing length scale ratio, the compaction length in the model gets smaller and

the resolution needs to be increased to keep it equally resolved.

According to several authors (e.g. R&ss et al., 2019; Keller et al., 2013), the compaction length should
be at least resolved by 4-8 grid points to solve for waves sufficiently accurately. For small length scale
ratios this is no problem, where, with a model resolution of 201 x 201, up to nearly 30 grid points per

compaction length can be achieved. The highest resolution our code can run is 601 x 601, which is
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enough to resolve the compaction length by three grid points for the model with a length scale ratio of

48. Everything above that cannot be sufficiently resolved with respect to studying solitary waves.

Fig. 2 shows the resulting models for a length scale ratio of 12 for six different resolutions. The model
states after ¢,,,4, has risen approximately 0.25 times the initial Stokes radius (t' = 0.25) are shown.
With increasing resolution, the maximum melt fraction increases strongly from 101 x 101 to
401 x 401 by approximately 20% but the velocity of ¢, 4, decreases by 7% (not shown in the figure).
Both values converge for resolutions higher than 51x51, corresponding to §./dx = 1. Even though the
compaction length is not sufficiently resolved in Fig. 2d, one can still observe the main features of the
model: A main solitary wave has emerged from the original gaussian perturbation and secondary
porosity waves are beginning to emerge within its wake. Even with 6./dx = 1 these features can be
observed but are clearly underresolved. With even lower resolutions accumulations at the top of the
perturbation can be seen, which can be broadly interpreted as the attempt of a solitary wave to build up.
With 6./dx = 0.24, the model is too coarse and the results cannot be trusted anymore.

The solitary waves modeled with our code have been compared to the semi-analytical solution of
Simpson & Spiegelman (2011), and more benchmarking was carried out in Dohmen et al. (2019).

In a single-phase flow case, where the melt is not allowed to move relatively to the solid, the initial
perturbation ascends, shortly after beginning, with a velocity of 0.95 times the calculated Stokes

velocity, and then slowly decreases as the original Gauss-shaped wave deforms and loses in amplitude.
3 Results
3.1 The transition from porosity wave to diapirism: Varying the initial wave radius

In this model series we vary the initial wave radius to cover the transition from porosity waves towards
diapirism. As a reminder, due to our scaling the initial wave has always the same size w.r.t. the model
box, and “increasing the initial wave radius” is equivalent to decreasing the compaction length or the
size of the emerging solitary waves w.r.t. the model box. In Fig. 3 the models are shown at t’ = 0.2. For
small radii (r < 12 - §,) a single porosity wave emerges from the original perturbation. The melt that is
not situated within the emerging wave is left behind and has, for the most part, already left the model
region. For r = 2.4 - §. the emerged solitary wave is about the size of the initial perturbation and even
smaller radii would lead to too big waves that would not fit into the model. With increasing radius, the
emerging solitary wave gets smaller. With r = 12 - §., the resulting wave has just a size of ~20% the

initial perturbation size.

We compare the observed solitary wave velocities of Fig. 3b-e to equivalent Stokes velocities for a
diapir based on equation (15). While the dimensional Stokes velocity of a porosity anomaly is
proportional to the amplitude of porosity and the square of the radius, the non-dimensional Stokes

velocity is always equal to 1. In Fig. 4 this non-dimensional Stokes velocity is indicated by the dashed

9
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line with the value 1. The colored lines give 2D solitary wave velocities with their appropriate radii,
given by Simpson & Spiegelman (2011), normalized by the Stokes velocity corresponding to different
initial perturbation radii. These semi analytical solutions are in good agreement to our solitary wave
models and differ only by 3-5% percent in velocity, as already shown in Dohmen et al. (2019). The
velocities in this figure correspond to ratios of solitary wave velocity to initial perturbation Stokes
velocity. Inspection of Fig. 4 reveals that for the first four cases of Fig. 3b-e with radii smaller or equal
12 - 6, the phase velocities are always larger than the Stokes velocity. For example, forr = 12 - §., an
emerging solitary wave with a typical radius of 4.5 - . has a higher phase velocity thanar = 12 - 6§,
melt anomaly rising by Stokes flow. Thus, the cases are always in the solitary wave regime.

For greater radii (e.g. r = 18 - §, — 30 - &., Fig. 3e-g) the phase velocities of solitary waves are of the
order of the Stokes velocity (see Fig. 4) and they therefore need more time to separate from the remaining
melt of the initial perturbation, still rising with order of Stokes velocity. The amount of melt
accommodated within the main solitary wave is just a small percentage of the original perturbation and
secondary waves evolve in its remains. With further ascending, more and more solitary waves build up
and the former perturbation will sooner or later consist of solitary waves in an ordered cluster or a
formation. This formation elongates during ascent as the main wave has a larger amplitude than all the
following waves, whose amplitudes are also decreasing with depth, as a higher proportion of melt
accumulated at the top of the perturbation. Similar formations of strongly elongated fingers can be also
observed in 3D as shown by Rass et al. (2019) who used decompaction weakening. In the models with
smaller radii, the main solitary wave consisted of the majority of melt originally situated within the
perturbation and the emergence of secondary waves turns out zero or small, but with greater radii enough

melt is left behind to observe the emergence of second and higher generations of solitary waves.

For greater radii (e.g. r = 24 - 5§, — 48 - &., Fig. 3 f—j) the phase velocities of solitary waves are almost
equal to the Stokes velocity (See Fig. 4). This leads to almost no separation after t' = 0.2. While for
r = 36 - §, a solitary wave has already built up and is rising just ahead of the perturbation, for r = 42 -
6. and r = 48 - §, just the accumulation of melt at the top of the perturbation can be observed, which
will eventually lead to a solitary wave. Secondary waves also build up with higher runtimes, as can be

already seen for r = 36 - §,.

For even greater radii the compaction length cannot be sufficiently resolved with our approach, but tests
with not sufficiently resolved models have shown that solitary waves can be observed for r > 48 - §..
At some point they do no longer appear, probably due to lack of sufficient resolution, but our tests show
that solitary waves should always emerge, even if its phase velocity is way below the Stokes velocity.
As long as the ascending time is long enough and melt is able to move separately to the matrix,
independently of segregation velocity, a diapir will evolve into a swarm of a certain number of solitary

waves, based on the compaction length. Because the phase velocities of each small solitary wave is

10
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small compared to the Stokes velocity of the full swarm we consider such a rising formation of melt as

a large scale diapir.

Fig. 3l shows the required time for the initial perturbation to build up a solitary wave. This status is
achieved after the dispersion relation of the main wave reaches a point from where it follows the solitary
wave dispersion relation. This time increases nearly linearly for small radii (r < 48 - §,.) but increases
non-linearly for greater radii. This might be due to lack of proper resolution, but a non-linear trend can
be already observed for small radii. The transition time for radii smaller than 30 - §,. is smaller than 0.2,
the time at which the models in Fig. 3b-j are shown. The other models already show solitary wave like
blobs but did not yet reach their final form.

A classical diapir will evolve only in cases with zero compaction length (r = « - §,), i.e., melt is not
able to move w.r.t. the matrix (Fig. 3k). Here, no focusing into solitary waves can be observed and

transition time is infinity.

Summarizing Fig. 4, the comparison of Stokes and porosity wave velocities explains well our
observations shown in Fig. 3: For small initial radii the solitary wave velocity is clearly higher and will
therefore build up and separate from the melt left behind quickly. For cases with approximately equal
perturbation to solitary wave radius only one solitary wave will build up, which includes most of the
melt of the initial perturbation. With increasing perturbation radius, the velocity ratio decreases and
multiple solitary waves, requiring more time, will emerge, each including only a fraction of the melt
originally situated in the initial perturbation. But even with velocity ratios smaller than 1, solitary waves

emerge and, not able to separate, rise just ahead of the remains, slowly elongating the initial perturbation.
3.2 Effects on the mass flux

It is important to study the partitioning between rising melt and solid mass fluxes in partially molten
magmatic systems because melts and solids are carriers of different chemical components. Within our
Boussinesq approximation we may neglect the density differences between solid and melt. Then our
models allow to evaluate vertical mass fluxes of solid or fluid by quantifying the vertical velocity

components multiplied with the melt or solid fractions, respectively:
Gz =1 — @) V',

Afz =@ V'rs.
Horizontal profiles of the mass fluxes through rising melt bodies at the vertical positions of maximum

(29)

melt fraction at timesteps where the main wave has just reached the status of a solitary wave are
calculated (Fig. 5).

The mass fluxes of solid and fluid are strongly affected by the change of the initial radius from the
solitary wave regime towards the diapiric regime. For r = 2.4 - §., where we observe a solitary wave,

the fluid has its peak mass flux in the middle of the wave and the solid is going downwards, against the

11
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phase velocity. In the center the fluid flux is about 10 times higher than the solid net flux. The upward
flow in the center is balanced by the matrix dominated downward flow inside and outside the wave. For
r =12 - §, the wave area is much smaller and the ratio between solid and fluid flux is still around the
order of 10. At the boundary of the wave the solid is nearly not moving at all, but a minimum can be
observed within the center of it. For ' = 24 - §, the solid flux is just above zero in the center and
increases to a maximum towards the flanks of the wave, that is still about ten times smaller than the

maximum fluid flux.

With ' = 48 - §, the solid flux is just about three times smaller than the fluid flux, but most of the

material ascent is accomplished by the solid. This suggests that diapiric rise begins to dominate.

The transition from solitary waves towards diapirism on qualitative model observations was so far only
based on observations. We now invoke a more quantitative criterion. In a horizontal line passing through

the anomaly’s porosity maximum we define the total vertical mass flux of the rising magma body by

f<P>(P0(qf + qs)dx where the integration is carried out only in the region of increased porosity ¢ > ¢@,.
This mass flux is partitioned between the fluid mass flux, f(p>(p0 qrdx, and the solid mass flux,

f(pwo gsdx. With these we define the partition coefficients

) qrdx
Cooli = ———2 (30)
f(p>g00(qf + qs)dx
and
f> qu‘x
Ciia = ——22 (31)

f(p>(p0(qf + qs)dx
The sum Cyq)i + Caia IS always 1 and if Cgqp; > Cq4ia then the solitary wave proportion is dominant, while
for Cso1; < Cgia diapirism is dominant. In Fig. 6a these partition coefficients for several initial radii are

shown. In red are the diapir and in blue the solitary wave partition coefficients.

Forr =1.8- 8., Cso is equal to 5 and Cy;, is equal to -4, i.e. we have a downward solid flux. With
increasing radius Cg;, increases until it changes its sign, and the matrix flows upward, at r = 20 - §,. It
eventually becomes bigger than C,;; at r = 36 - 6. and then approaches 1 for bigger radii. Cgq;
changes so that the sum of both is always equal to 1. Even though diapirism is dominant for r > 36 - 6,
we still observe solitary waves, yet their phase velocities are much smaller than the large-scale rising

velocities of the full melt formation.

The ratio of maximum fluid velocity (i.e. v5) to absolute matrix velocity (Fig. 6b) shows, that for small

radii, where Csq); > Cgia, this ratio is approximately constant with a high value of about 100. The

absolute velocity maxima itself are not constant but decrease with the same rate until the switch of
12
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negative to positive matrix mass flux, where the absolute matrix velocity starts to increase, while the
fluid velocity keeps decreasing. At this zero crossing we would expect a ratio of infinity, but while the
zero crossing takes place within the center of the solitary wave, other regions near the wave still have
finite vertical velocities. This switch from negative to positive mass flux was already observed by Scott
(1988), but while they changed the viscosity ratio as an independent constant model parameter, we
change the radius and keep the viscosity law the same, still evolving with ¢. Both describe the transition
from a two-phase limit towards the Stokes limit, but in our formulation, we are able to reach the Stokes
limit while Scott’s formulation (1988) is restricted to two-phase flow. With even greater radii the
velocity ratio will eventually converge towards 1, where melt is no longer able to move relatively to the
matrix (i.e. v = v;) and material will be transported collectively as in single-phase flow. These last
models are not sufficiently resolved to obtain leading and secondary solitary waves, but still show the

expected behavior in terms of macroscopically rising partially molten diapir.

Based on these observations, the evolution of these models can be divided into two regimes: (1) In the
solitary wave regime (r < 36 - 6.) Cqqy 1S larger than Cg4;, and the initial perturbation emerges into
waves that have the properties of solitary waves and ascend with constant velocity and staying in shape.
This regime can be further divided into 1la (r < 20 - §.), where the solid mass flux is negative, and 1b
(20- 6, <1 < 36-6.), where the solid moves upwards with the melt. Waves in these regimes are very
similar but the further we are in regime la the less solitary waves will emerge out of the initial
perturbation. For radii smaller than about 4.8 - §. only one wave will merge. In regime 1b the

perturbation will always emerge into multiple solitary waves.

In the diapirism-dominated regime (2) (r = 36 - §,.), Cgqia IS larger than Cgoy; but, as the fluid melt is still
able to move relatively to the solid matrix, solitary waves build up and the whole partially molten region
will evolve into a swarm of them. The phase velocities of these waves are very small compared to the
Stokes velocity of the perturbation and the whole swarm will rise as a diapir, whose buoyancy is still

comparable to the buoyancy of the initial perturbation’s.

The endmember of the second regime can be reached by prohibiting the relative movement of fluid (r =
o - §,), for which the compaction length has not to be sufficiently resolved. In this regime the initial
perturbation will not disintegrate into solitary waves but rise as a well-formed partially molten diapir.
In every other case, in the present model, where fluid is able to move w.r.t. the solid, at some point all
diapirs will evolve into a swarm of solitary waves which can be infinitely small compared to the initial
perturbation. However, this is expected to happen only after a long distance of diapiric rise. In cases
where the size of solitary waves is comparable to the perturbation (e.g. regime (1)) this will occur sooner
and in cases, where solitary waves are much smaller, later. Their observation is mostly limited by
resolution. For models that allow for the diapir to grow (e.g. Keller et al., 2013) they may not dissolve

into solitary waves, as it approaches the single-phase limit.
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4 Discussion
4.1. Application to nature

While in our models the perturbation size in terms of compaction lengths was systematically varied but
kept constant within in each model, our results might also be applicable to natural cases in which the
compaction length varies vertically. In the case of compaction length decreasing with ascent a porosity
anomaly might start rising as a solitary wave but then at some point might enter the second regime where
diapiric rise is dominant. If this boundary is sharp, the solitary wave might disintegrate into several
smaller solitary waves that rise as a diapiric swarm. If the boundary is a continuous transition the wave
should slowly shrink and become slower. The melt left behind might also evolve into secondary solitary

waves.

A decreasing compaction length could be accomplished by decreasing the matrix viscosity or the
permeability, or by increasing the fluid viscosity. Decreasing matrix viscosity might be for example
explainable by local heterogeneities, temperature anomalies for example due to secondary convective
overturns in the asthenosphere or by a vertical gradient of water content, which may be the result of melt
segregation aided volatile enrichment at shallow depths in magmatic systems. This could lead to the
propagation of magma-filled cracks (Rubin, 1995) as already pointed out in Connolly & Podladchikov
(1998). The latter authors have looked at the effects of rheology on compaction-driven fluid flow and
came to similar results for an upward weakening scenario. The decrease of permeability due to decrease
in background porosity might be an alternative explanation. In the hypothetic case of a porosity wave
reaching the top of partially molten region within the Earth’s upper mantle or lower crust, the
background porosity might decrease which would most certainly lead to focusing, because the
compaction length will decrease, and eventually, when reaching melt free rocks, the solitary waves

might be small enough and its amplitude might be high enough to trigger the initiation of dykes.

Even though most diapirs should, according to our models, disintegrate into numerous solitary waves,
not all will inevitably. Within regime (1) solitary waves are possible and most probably expected but
the deeper we are in regime (2) the less expected is the disintegration because a long time is needed to
build up. In nature, different from our models, they cannot rise for an infinite amount of time. The time
needed to build up a solitary wave increases non-linearly with r (c.f. Fig. 3 I). For example, while for
r = 4.8-§, asolitary wave is completely evolved after t' = 0.02, for r = 48 - §, it needs until t' =
0.4, i.e., equivalent to the diapiric rise time necessary to ascend the distance approximately half the
initial radii. Additionally, as already pointed out, if a model setup allows for the diapir to grow, it could

approach the single-phase flow, prohibiting the emergence of solitary waves (cf. Keller et al., 2013).
4.2. Model limitations

The introduced partition coefficients help to distinguish whether solitary wave or diapiric rise is

dominant but cannot be solely consulted whether a solitary wave or a diapir can be expected. As the
14



440

445

450

455

460

465

470

fluid velocity and flux is still very high in the waves center for diapiric dominant cases, small solitary
waves will build up. However, the net mass flux is dominated by the large scale rising solid, and the
formation time of small solitary waves might be long. Additionally, the internal circulation of diapirs
can be faster than the phase velocity which would smear out the emergence of solitary waves and not
allow for them to emerge. Due to limitations of our model, we are not able to reach regions where

solitary waves are small enough and their phase velocity slow enough to observe this.

While the minimum size of solitary waves in nature might be in some way limited by the grain size, in
numerical models the minimum size is limited by the model’s resolution. We restrict our models in this
study to cases where the compaction length is at least resolved by 3 grid lengths dx (i.e. 6, = 3 - dx) to
get fairly resolved solitary waves, but they can be also observed for much worse resolved compaction
lengths. The resolution test (Fig. 2) shows that, even though they are not solved decently, probable
solitary waves can be observed for cases with §, = dx. Smaller resolutions can show indications of
solitary waves but should not be trusted as other tests (not shown here) with similar resolutions result in
spurious channeling. For very poorly resolved compaction lengths (6. < 0.25 - dx for our models) no
indications of solitary waves can be observed, and the partially molten perturbation ascends as a diapir.
The deeper we are in regime 2, the more dominant are the dynamics of diapirism on a length scale of r
compared to Darcy flow or solitary waves on the unresolved length scale of 6. Thus, two-phase flow,
either Darcy flow or solitary waves, becomes negligible for r > §,. and partially molten diapirs can be

regarded as well resolved.
5 Conclusion

This work shows, that depending on the extent of a partially molten region within the Earth, the resulting
ascent of melt may not only occur by solitary waves or by diapirs, but by a composed mechanism, where
a diapir splits up into numerous solitary waves. Their phase velocities might become so slow that the
whole swarm will ascend as a diapir, just slowly elongating due to the main solitary wave having a
higher amplitude and therefore higher phase velocity than the following ones. Depending on the ratio of
the melt anomalies size to the compaction length, or rather the models length scale to compaction length
ratio, we can classify the ascent behavior into two different regimes using mass flux and velocity of
matrix and melt: (1a + b) Solitary wave a and b, and (2) diapirism-dominated. In regime 1a the matrix
sinks with respect to the rising melt, in 1b also the matrix rises, but very slowly. The further we are in
this regime the less solitary waves will emerge out of the initial perturbation until, eventually, only one
solitary wave will emerge. On first order these regimes can be explained by comparing Stokes velocity
of the rising perturbation with the solitary waves phase velocity. If the solitary wave velocity is higher
than the Stokes velocity a solitary wave will evolve and, if lower, diapirism is dominant, but still solitary
waves will build up if the ascending time is long enough. The deeper we are in regime 2, the more time

is needed to build up solitary waves and the less likely it is that they will appear in nature. The
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endmember of regime (2), pure diapirism, can be reached if fluid is not allowed to move separately to

the matrix.

Especially around the transition of the regimes numerical resolution plays an important role as the
compaction length may be under-resolved to allow for the emergence of solitary waves. Hence it should
be generally important for two-phase flow models to inspect whether solitary waves are expected and if

so, do they have a major influence on the conclusions made.
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Fig. 1: The segregation to Stokes velocity ratio, following equation (21), is given as a function of
initial perturbation radius r in terms of compaction length §.. Each colored line refers to

585 different values of perturbation amplitude @,,,4x, given in the legend.
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Fig. 2: The six panels depict a model with an initial perturbation radius of 12 times the compaction

length but with different numerical grid resolutions: a) 13x13 b) 26x26 c¢) 51x51 d) 101x101, e)

201x201, f) 401x401. In the lower left corner in each figure the size of the compaction length in
590 terms of grid length is given.
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Fig. 3: Melt ascent morphology as function of initial perturbation radius in terms of compaction
length. a) Initial conditions of the model valid for all cases apart of the change in compaction
595 length. b-j) Melt fraction distribution after t' = 0.2 for length scale ratios varying between 2.4
and 48. k) Diapiric rise resulting from a compaction length of zero at t' = 9. |) Models’ transition
time as function of length scale ratios varying between 1.8 and 120. The transition time gives the

time after which the main wave has reached a solitary wave status.
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610  Quantitative parameters as function of initial perturbation radius in terms of compaction length.
a) Solitary wave (blue) and diapir (red) partition coefficients for several initial perturbation radii.
b) Ratio of maximum fluid velocity to maximum absolute solid velocity in the entire model.
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