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Testing Fracture Distributions 

 

Mitzenmacher (2004) showed that difference in the tail of the power-law, log-normal and 

double Pareto (a distribution with the body of a log-normal and tail of power-law 

distribution) are may be better visualized in complementary cumulative distribution plots at 

logarithmic scale (ccdf, Fig. S1). Legitimate data points (data occurring in the yellow box in 

Fig. S1) are well fitted by power-law, log-normal and double Pareto distribution 

(Mitzenmacher, 2004). However, when data are affected by censoring and truncation effects, 

the power-law distribution type shows the least similarity to the biased data. More 

specifically, when datasets include truncated data (blue box in Fig. S1), both log-normal and 

double Pareto distributions fit the data (see Truncation blue box in Fig. S1a) and therefore it 

is not correct to base the distribution choice on these biased data (Mitzenmacher, 2004). 

 

Fig S1: Sketch showing the similarity in the shape of (a) power-law, (b) log-normal and (c) double 
pareto complementary cumulative distribution function (ccdf) as illustrated in Mitzenmacher (2004). 
The yellow region represents the truncated part of the population that do not suffer of truncation and 
censoring biases, blue regions represent truncated and censored data.  

 



1.1.1 Maximum likelihood estimator (MLE) and Kolmogorov-Smirnoff (KS) 

The determination of which type of population is most likely to have generated the sample 

recorded is a key part of any fracture attribute analysis (Rizzo et al., 2017). As pointed out by 

Clauset et al. (2009), use of the maximum likelihood estimator (MLE) should be preferred 

over use of least square regression analyses (R2) for the fitting of power-law distributions 

because a power-law may appear to be a good fit even when the data are non-power-law. 

Rizzo et al. (2017) performed the MLE on power-law, log-normal and exponential 

distributions by using a suite of custom MATLAB™ functions, integrated into FracPaQ 

(Healy et al., 2017). They compared the MLE to the linear regression method for synthetic 

data in order to demonstrate the validity and ability of this approach to correctly estimate 

statistical parameters. The MLE approach maximizes the likelihood, gives estimate of the 

governing parameters (α for power-law distribution, λ for exponential distribution and μ and 

σ for the log-normal distribution) of the different fitting equations:  
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 Exponential:   𝑝𝑝(𝑥𝑥|𝜆𝜆) = 𝜆𝜆 exp(−𝜆𝜆𝜆𝜆) Eq. 3 

 

where xmin in the power-law distribution, is a required parameter representing the lower 

bound below which the power-law distribution is not valid (Clauset et al., 2009). The xmin 

parameter can be estimated using the Kolmogorov-Smirnoff (KS) test which minimizes the 

difference between the data and the synthetic data generated using the parameter derived 

from the MLE (Clauset et al., 2009; Rizzo et al., 2017). Two percentage outputs are obtained 

from the MLE method. The P-percentage (PP) and H-percentage (HP) are the percentages of 

the p-value larger than 0.05 over the total n-cycles and the percentage of the H0 (null 



hypothesis) result over the total n-cycles, respectively. If the p-value is less than or equal to 

0.05, the test suggests that “the observed data are inconsistent with the null hypothesis, so the 

null hypothesis must be rejected, while if the p-value is far from zero and close to 1, the 

observed data are not inconsistent with the null hypothesis, and the chosen fitting method can 

be applied” (Hung et al., 1997). However having a p-value larger than 0.05, does not prove 

that the tested hypothesis is true. Clauset et al. (2009) have shown that the p-value for 

alternative distributions can be calculated to test against other possibilities.  

 

When testing the entire sample we might obtain misleading fitting results because we have 

included censored and truncated data. On the other hand, when testing truncated populations 

we could be removing legitimate points and increasing the error; for example, if the upper cut 

is too high (xmin too high) (Clauset et al., 2009). In order to address this problem, the 

methodology proposed by Rizzo et al. (2017) and used by FracPaQ (Healy et al., 2017), was 

implemented here by calculating the MLE on progressively truncated populations for power-

law, exponential and log-normal distributions. Knowing that attributes collected from outcrop 

are naturally affected by truncation and censoring bias, we performed the MLE and KS test 

and calculated the PP and HP for truncated populations defined by progressive variation in 

the upper cut (uc) and lower cut (lc). 40 values of censoring for both uc and lc were 

considered, resulting in 800 simulations. The resulting values of percentages (HP and PP) 

were visualized in two lc vs. uc checkerboard-like plots (e.g. Fig. S2). The best-fit results in 

the highest percentage values obtained, with the minimum lower and upper cuts (red colours 

in Fig. S2 and corresponding distribution plot in Fig. S3). This methodology is more robust 

than the very commonly used visual estimation (Fig. S2). Such an analysis shows that the 

upper cut (lower values) has a consistently greater influence over the population fit compared 

to the lower cut (see Fig. S2 and percentages reported in Tables 3 and 4).  



 

Fig. S2: (Top) Example of MLE for (a) exponential, (b) log-normal and (c) power-law distributions 
for the entire length population; (Bottom) “Checkerboard” diagrams showing the values of HP and PP 
for (d) exponential, (e) log-normal and (f) power-law distributions of progressively truncated 
population. Data are from the transect at St. John’s Point (SJ) in this study. 

 

Fig. S3: MLE plot of the highest value of HP and PP for (a) exponential distribution, (b) log-normal 
distribution and (c) power-law distributions obtained with the minimum truncation (lc = 0; uc = 0 for 
exponential and log-normal and lc = 0; uc = 22.5) in the population. Dashed blue line is the fitting 
curve and red squares are the truncated data used for the fitting. Data are from the transect at St. 
John’s Point (SJ) in this study. 

Tab. 1: H-percentage, P-percentage and coefficients obtained by using the MLE in both un-truncated 
and truncated power-law population for length. EX = exponential, LN = log-normal, PL = power-law. 

Length 

   BTr1 BTr2 CTr1 CTr2 TTr1 TTr2 SK DO SJ 

E
nt

ir
e 

po
pu

la
tio

n 

EX 
PP 
HP 
λ: 

82 
82 
1.3 

12.5 
12.5 
1.1 

97.9 
97.9 
0.4 

98.3 
98.3 
0.6 

99.7 
99.7 
2.4 

92.4 
92.4 
3.2 

97.2 
97.2 

73474.28 

91.7 
91.7 

0.0165 

95.2 
95.2 

0.0163 

LN 

PP 
HP 
μ: 
σ: 

95.8 
95.8 
-0.9 

1.225 

98.9 
89.9 
-1.1 

1.303 

97.7 
97.7 
0.2 
1.27 

99.7 
99.7 
0.1 

0.929 

99.6 
99.6 
-1.3 

1.038 

96.7 
96.7 
-1.5 

1.036 

99.7 
99.7 

-11.42 
0.851 

98.6 
98.6 
3.7 

0.901 

99.7 
99.7 
3.8 

0.900 

PL 

PP:  
HP: 
α: 

xmin 

0 
0 

1.3 
0.01 

0 
0 

1.2 
0.005 

49.8 
64 
1.4 

0.155 

2.6 
12.6 
1.49 

0.115 

50.2 
77.5 
1.5 
0.05 

16.5 
30.6 
1.4 

0.023 

58.2 
74.6 
1.5 

1.5e-06 

0.12 
0.56 
1.4 
3.5 

13.3 
33.8 
1.5 
7.9 
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PL 

uc: 
lc: 
PP:  
HP: 
α: 

xmin 

- 
- 
 
 
 
 

0 
30 

95.5 
97.8 

1.840 
0.185 

0 
30 
61 

77.1 
1.781 
0.88 

0 
30 

89.4 
94.4 

2.156 
0.80 

2.5 
45 

87.7 
94.8 

2.152 
0.27 

- 
- 
 
 
 
 

0 
10 

92.5 
97.6 

1.793 
3.8e-06 

0 
15 

84.2 
95.2 

1.994 
20.5 

0 
12 

91.6 
97.6 

1.923 
19.9 

 

Tab. 2: H-percentage, P-percentage and coefficients obtained by using the MLE in both un-trucated 
and power-law truncated population for aperture. EX = exponential, LN = log-normal, PL = power-
law. 

Aperture 

   BTr1 BTr2 CTr1 CTr2 TTr1 TTr2 SK 
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nt

ir
e 

 p
op

ul
at

io
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EX 
PP:  
HP: 
λ: 

54.8% 
54.8% 

197.461 

72.6% 
72.6% 

482.655 

81.9% 
81.9% 

341.705 

16.4% 
16.4% 

263.194 

99.8% 
99.8% 

1055.5947 

81.2% 
81.2% 

328.879 

97.8% 
97.8% 

73474.286 

LN 
 

PP:  
HP: 
μ: 
σ: 

99.6% 
99.6% 
-6.803 

2 

99.6% 
99.6% 
-7.608 
1.773 

99.9% 
99.9% 
-7.289 
2.043 

99.3% 
99.3% 
-7.395 
1.980 

99.4% 
99.4% 
-7.743 

1.507 

99.6% 
99.6% 
-6.840 
1.3055 

99.8% 
99.8% 
-11.42 
0.851 

PL 
 

PP:  
HP: 
α: 

xmin 

51.7% 
71.2% 
1.202 
1e-05 

69.9% 
86.6% 
1.240 
1e-05 

82.5% 
82.5% 
1.252 
2e-05 

78.5% 
78.5% 
1.231 
1e-05 

71.1% 
88.1% 
1.248 
1e-05 

95.8% 
98.9% 
1.516 
0.0002 

52.9% 
74.6% 
1.489 

1.5555e06 
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tio

n 

PL 

uc: 
lc: 
PP:  
HP: 
α: 

xmin 

0 
15 

93.2% 
98.1% 
1.414 

0.0002 

0 
15 

97.4% 
97.4% 
1.454 

0.0001 

0 
22.5 

97.3% 
97.3% 
1.4343 
0.0002 

0 
20 

95.2 
98.8 

1.3964 
0.0001 

0 
27.5 

97.6% 
97.6% 
1.8177 
0.0003 

0 
0 

95.8% 
98.9% 
1.516 
0.0002 

0 
15 

96.4% 
96.4% 
1.8781 
4.66e-06 

 



Fig. S3: Raw images used for 2D analysis: (a) Bathymetric data from the area between St. John's 
Point and Stroma Island and (b) outcrop pavement photograph. 
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