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Testing Fracture Distributions

Mitzenmacher (2004) showed that difference in the tail of the power-law, log-normal and
double Pareto (a distribution with the body of a log-normal and tail of power-law
distribution) are may be better visualized in complementary cumulative distribution plots at
logarithmic scale (ccdf, Fig. S1). Legitimate data points (data occurring in the yellow box in
Fig. S1) are well fitted by power-law, log-normal and double Pareto distribution
(Mitzenmacher, 2004). However, when data are affected by censoring and truncation effects,
the power-law distribution type shows the least similarity to the biased data. More
specifically, when datasets include truncated data (blue box in Fig. S1), both log-normal and
double Pareto distributions fit the data (see Truncation blue box in Fig. S1a) and therefore it

is not correct to base the distribution choice on these biased data (Mitzenmacher, 2004).
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Fig S1: Sketch showing the similarity in the shape of (a) power-law, (b) log-normal and (c) double
pareto complementary cumulative distribution function (ccdf) as illustrated in Mitzenmacher (2004).
The yellow region represents the truncated part of the population that do not suffer of truncation and
censoring biases, blue regions represent truncated and censored data.



1.1.1 Maximum likelihood estimator (MLE) and Kolmogorov-Smirnoff (KS)

The determination of which type of population is most likely to have generated the sample
recorded is a key part of any fracture attribute analysis (Rizzo et al., 2017). As pointed out by
Clauset et al. (2009), use of the maximum likelihood estimator (MLE) should be preferred
over use of least square regression analyses (R?) for the fitting of power-law distributions
because a power-law may appear to be a good fit even when the data are non-power-law.
Rizzo et al. (2017) performed the MLE on power-law, log-normal and exponential
distributions by using a suite of custom MATLAB™ functions, integrated into FracPaQ
(Healy et al., 2017). They compared the MLE to the linear regression method for synthetic
data in order to demonstrate the validity and ability of this approach to correctly estimate
statistical parameters. The MLE approach maximizes the likelihood, gives estimate of the
governing parameters (a for power-law distribution, 4 for exponential distribution and x and

o for the log-normal distribution) of the different fitting equations:

_ -a
Power-law: p(x|la) = xa _1 (x x' ) Eq.1
1 (Inx—p)? .
Log-normal: p(x|u, o) = —=€Xp (— n;cazu ) Eq.2
Exponential: p(x|A) = 1exp(—1x) Eq. 3

where xmin in the power-law distribution, is a required parameter representing the lower
bound below which the power-law distribution is not valid (Clauset et al., 2009). The Xmin
parameter can be estimated using the Kolmogorov-Smirnoff (KS) test which minimizes the
difference between the data and the synthetic data generated using the parameter derived
from the MLE (Clauset et al., 2009; Rizzo et al., 2017). Two percentage outputs are obtained
from the MLE method. The P-percentage (PP) and H-percentage (HP) are the percentages of

the p-value larger than 0.05 over the total n-cycles and the percentage of the HO (null



hypothesis) result over the total n-cycles, respectively. If the p-value is less than or equal to
0.05, the test suggests that “the observed data are inconsistent with the null hypothesis, so the
null hypothesis must be rejected, while if the p-value is far from zero and close to 1, the
observed data are not inconsistent with the null hypothesis, and the chosen fitting method can
be applied” (Hung et al., 1997). However having a p-value larger than 0.05, does not prove
that the tested hypothesis is true. Clauset et al. (2009) have shown that the p-value for

alternative distributions can be calculated to test against other possibilities.

When testing the entire sample we might obtain misleading fitting results because we have
included censored and truncated data. On the other hand, when testing truncated populations
we could be removing legitimate points and increasing the error; for example, if the upper cut
is too high (xmin too high) (Clauset et al., 2009). In order to address this problem, the
methodology proposed by Rizzo et al. (2017) and used by FracPaQ (Healy et al., 2017), was
implemented here by calculating the MLE on progressively truncated populations for power-
law, exponential and log-normal distributions. Knowing that attributes collected from outcrop
are naturally affected by truncation and censoring bias, we performed the MLE and KS test
and calculated the PP and HP for truncated populations defined by progressive variation in
the upper cut (uc) and lower cut (Ic). 40 values of censoring for both uc and Ic were
considered, resulting in 800 simulations. The resulting values of percentages (HP and PP)
were visualized in two Ic vs. uc checkerboard-like plots (e.g. Fig. S2). The best-fit results in
the highest percentage values obtained, with the minimum lower and upper cuts (red colours
in Fig. S2 and corresponding distribution plot in Fig. S3). This methodology is more robust
than the very commonly used visual estimation (Fig. S2). Such an analysis shows that the
upper cut (lower values) has a consistently greater influence over the population fit compared

to the lower cut (see Fig. S2 and percentages reported in Tables 3 and 4).
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Fig. S2: (Top) Example of MLE for (a) exponential, (b) log-normal and (c¢) power-law distributions
for the entire length population; (Bottom) “Checkerboard” diagrams showing the values of HP and PP
for (d) exponential, (e) log-normal and (f) power-law distributions of progressively truncated
population. Data are from the transect at St. John’s Point (SJ) in this study.
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Fig. S3: MLE plot of the highest value of HP and PP for (a) exponential distribution, (b) log-normal
distribution and (c) power-law distributions obtained with the minimum truncation (Ic = 0; uc = 0 for
exponential and log-normal and Ic = 0; uc = 22.5) in the population. Dashed blue line is the fitting
curve and red squares are the truncated data used for the fitting. Data are from the transect at St.
John’s Point (SJ) in this study.

Tab. 1: H-percentage, P-percentage and coefficients obtained by using the MLE in both un-truncated
and truncated power-law population for length. EX = exponential, LN = log-normal, PL = power-law.

Length
BTrl BTr2 CTrl CTr2 TTrl TTr2 SK DO SJ
PP 82 12.5 97.9 98.3 99.7 92.4 97.2 91.7 95.2
EX HP 82 12.5 97.9 98.3 99.7 924 97.2 91.7 95.2
g A 1.3 1.1 0.4 0.6 24 32 73474.28 0.0165 | 0.0163
ki PP 95.8 98.9 97.7 99.7 99.6 96.7 99.7 98.6 99.7
E_ LN HP 95.8 89.9 97.7 99.7 99.6 96.7 99.7 98.6 99.7
g e -0.9 -1.1 0.2 0.1 -1.3 -1.5 -11.42 3.7 3.8
® g: 1.225 1.303 1.27 0.929 | 1.038 1.036 0.851 0.901 | 0.900
b= PP: 0 0 49.8 2.6 50.2 16.5 58.2 0.12 133
= PL HP: 0 0 64 12.6 77.5 30.6 74.6 0.56 33.8
a: 1.3 1.2 1.4 1.49 1.5 1.4 1.5 1.4 1.5
Xmin 0.01 0.005 0.155 | 0.115 0.05 0.023 1.5¢% 3.5 7.9




uc: - 0 0 0 2.5 - 0 0 0
TE le: - 30 30 30 45 - 10 15 12
SE pL | PP 95.5 61 894 | 877 92.5 842 | 916
S5 HP: 97.8 77.1 | 944 | 9438 97.6 952 | 97.6
e g a 1.840 | 1781 | 2.156 | 2.152 1.793 1.994 | 1.923
Xmin 0.185 | 088 | 0.80 | 027 3.8¢% 205 | 199

Tab. 2: H-percentage, P-percentage and coefficients obtained by using the MLE in both un-trucated
and power-law truncated population for aperture. EX = exponential, LN = log-normal, PL = power-
law.

Aperture
BTrl BTr2 CTrl CTr2 TTrl TTr2 SK
PP: 54.8% 72.6% 81.9% 16.4% 99.8% 81.2% 97.8%
EX HP: 54.8% 72.6% 81.9% 16.4% 99.8% 81.2% 97.8%
A 197.461 482.655 341.705 263.194 1055.5947 328.879 73474.286
= PP: 99.6% 99.6% 99.9% 99.3% 99.4% 99.6% 99.8%
_g '§ LN HP: 99.6% 99.6% 99.9% 99.3% 99.4% 99.6% 99.8%
= w -6.803 -7.608 -7.289 -7.395 -7.743 -6.840 -11.42
= g o 2 1.773 2.043 1.980 1.507 1.3055 0.851
PP: 51.7% 69.9% 82.5% 78.5% 71.1% 95.8% 52.9%
PL HP: 71.2% 86.6% 82.5% 78.5% 88.1% 98.9% 74.6%
o 1.202 1.240 1.252 1.231 1.248 1.516 1.489
Xmin 1e% le% 2e% 1e% 1e% 0.0002 1.5555¢%
uc: 0 0 0 0 0 0 0
= 5 Ic: 15 15 22.5 20 27.5 0 15
§ g PL PP: 93.2% 97.4% 97.3% 95.2 97.6% 95.8% 96.4%
E é_ HP: 98.1% 97.4% 97.3% 98.8 97.6% 98.9% 96.4%
o o 1.414 1.454 1.4343 1.3964 1.8177 1.516 1.8781
Xmin 0.0002 0.0001 0.0002 0.0001 0.0003 0.0002 4.66e%
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Fig. S3: Raw images used for 2D analysis: (a) Bathymetric data from
Point and Stroma Island and (b) outcrop pavement photograph.
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