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Dear Editor,

Thank you for your helpful comments on our manuscript entitled “Characteristics of
earthquake ruptures and dynamic off-fault deformation on propagating faults” [Paper
se-2020-16]. We are grateful for the constructive and thoughtful comments made by
the reviewers. We have addressed their questions, which are quoted below in blue.
Text in red indicates text added to the new version of the manuscript. We also provide
a PDF version of the revised manuscript in which we highlighted the changes in red
(deleted) and blue (added). All line numbers in the letter below refer to the tracked-
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changes document. We hope that our revised manuscript has clarified the questions
raised by the reviewers and made the paper stronger.

Best regards, Simon Preuss (on behalf of all co-authors)

—————————————————————————————-

Reviewer 2 - Boris Kaus 1.1) Yield stress criteria You correctly write that at yield F=0,
and you employ a standard Drucker-Prager yield function (eq. 9). Yet, your expression
for the yield function (eq. 8) is incorrect, which can be best illustrated graphically:

The plot shows the yield function (black) together with the Mohr-Circle (green circle,
which has radius ðİIJŔII). At yielding (F=0), the Mohr-Circle exactly touches the yield
stress function. This condition is not ðİIJŔII = ðİIJŐyield (your eq. 4), as this gives
the red circle (which predicts a stress that is somewhat larger than the yield stress).
Instead, we can use trigonometry to compute the condition for F=0. If we define the
effective angle of friction ðİIJČ as: tan ðİIJČ = ðİIJĞl (1 − ðİIJĘ),Âă we can define the
yield condition (F=0) as: ðİIJŔII = ðİŚČsin(ðİIJČ) + ðİŘű cos(ðİIJČ)

Since this is correctly described in the textbook of one of the co-authors of this
manuscript, I suspect that it is incorporated correctly in the software. I also don’t know
how big an effect it will make on the results, even if this would not be the case (to be
tested). Yet, in any case, it would be good if you can correct your description.

We thank the reviewer for this important comment and a clarifying discussion, which
together helped improving the paper. We clarified the yielding function description and
changed notations to avoid confusion. We use a modified Drucker-Prager yielding con-
dition with constant compressive strength and variable friction coefficient. We changed
the method description in line 141: The onset of plastic deformation is defined by the
yield criterion:

F = τ II − σc − µeff(RSF) Peff,

where Peff = P − Pfluid = P (1 − λ) with the pore fluid pressure factor λ = P /Pfluid
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, σc is the constant compressive strength that marks the residual strength at P = 0
and µeff(RSF) is a variable effective friction parameter that we define based on our
continuum RSF formulation. We use a modified Drucker-Prager plastic yield function
(Drucker and Prager, 1952) in the form: σyield = C(RSF) + µ(RSF) Peff,Âă where

µ(RSF) = tan(sin−1(µeff(RSF))) is the local friction coefficient that is widely used and
obtained from laboratory experiments and

C(RSF) = σc/cos(sin−1(µeff(RSF))) is the local cohesion.Âă

The local effective friction parameter µeff(RSF) evolves according to the invariant re-
formulation of rate- and state-dependent friction for a continuum, introduced by Her-
rendörfer et al. (2018). This formalism was applied to freely and spontaneously grow-
ing seismic and aseismic faults by Preuss et al. (2019), by interpreting how plastic
deformation starts to localize and forms a shear band that approximates a fault zone
of finite width that can host earthquakes. Localized bulk deformation and fault slip are
related by defining the plastic slip rate Vp as

Vp = 2ε ÌĞâĂšII(p)W,Âă

where W denotes the width of the fault zone in the continuous host rock. We formulate
µeff(RSF) as:

µeff(RSF) = a arcsinh (Vp/2V0 exp((µ0+C/P+b ln(θ V0/L))/a)),

where a and b are laboratory-based, empirical RSF parameters that quantify a direct
effect and an evolution effect of friction, respectively, L is the RSF characteristic slip
distance, µ0 is a reference friction coefficient at a reference slip velocity V0 (Lapusta
and Barbot, 2012), and C is the cohesion as part of the state variable θ (Marone et al.,
1992) that evolves according to the aging law:

dθ/dt =1−Vpθ/L.

Additionally, we updated Figure 4 according to the recomputed relative fault angles
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based on equation 9.

1.2) Elastic material parameters Your choice of having the same values for bulk and
shear moduli (table 1; both 50 GPa) results in a Poisson ratio of 0.125. That might
be appropriate for already damaged rocks, but perhaps not so much for intact rocks.
How sensitive are your results to the particular choice of Poisson ratio? We thank the
reviewer for this question. A Poisson’s ratio of 0.125 is on the lower end of values for
rocks, but still common for a wide range of rocks as for example shown in Poisson’s
ratio values for rocks (H. Gercek, 2007). Furthermore, we tested a range of shear
moduli resulting in varying Poisson’s ratios and found only a marginal impact on the
model results. In particular, the main messages of our manuscript are not influenced
by changes in the Poisson’s ratio. We illustrate this by comparing the snapshots of sim-
ulations with Poisson’s ratio of 0.125 and 0.25. We focus on the dynamically generated
off-fault yielding at approximately the same deformation stage just before the rupture
hits the end of the predefined fault. Both snapshots are attached. The differences com-
prise: âŮŔ First earthquake nucleates 75 years later for ν = 0.25. âŮŔ The maximum
slip velocity is ∼ 0.08 m/s higher for ν = 0.25. âŮŔ The off-fault splay localization is
more irregular with a higher degree of localization and a slightly higher off-fault reach
for ν = 0.25.

Fig.1 Fig.2

In light of our answer above we add to line 703 of the manuscript: Our choice of
parameters results in a Poisson ratio of 0.125. Such a relatively low Poisson’s ratio
is on the lower end of values for rocks, but still common for a wide range of rock types
as for example shown in Gercek (2007). To illustrate the impact of different Poisson’s
ratios we have tested a range of different shear moduli resulting in varying Poisson’s
ratios. These tests have shown that the main messages of our manuscript are not
influenced by changes in the Poisson’s ratio.

2) Minor remarks: âŮŔ Table 1: I suppose that the host rock cohesion is 6 MPa, and
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not 6e6 MPa? This is correct. We changed that. âŮŔ Fig. 3: you show an overview
of several different models. Yet, are the snapshots chosen to have approximately
the same plastic strain, deformation stage orâĂĺtime? Would be good to mention it.
Thanks for this comment. We added the following to the figure caption: The snapshots
in [a] are chosen to have approximately the same deformation stage with regard to
fault length ’R*1’. Model RW constitutes an exception as RW1 remains very short (1.8
km, see main text). âŮŔ Figure 4. It would be good to explain at the beginning of the
figure caption thatâĂĺthis figure concerns the RT model. We agree and added a short
note. âŮŔ Your movies are extremely large (some over 1 Gb!); it is certainly possible
to create smaller movie-sizes from a set of pictures, and I believe that this is important
for readers that do not have a high bandwidth connection. We agree. All movies are
now approx. 5 times smaller with a maximum size of 122 Mb. These smaller videos
can be uploaded upon resubmission.

Please also note the supplement to this comment:
https://se.copernicus.org/preprints/se-2020-16/se-2020-16-AC2-supplement.pdf
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