
 

16th June 2020  
 
Dear Editor, 
 
Thank you for your helpful comments on our manuscript entitled “Characteristics of 
earthquake ruptures and dynamic off-fault deformation on propagating faults” [Paper se-
2020-16]. We are grateful for the constructive and thoughtful comments made by the 
reviewers. We have addressed their questions, which are quoted below in blue. Text in red 
indicates text added to the new version of the manuscript. We also provide a PDF version of 
the revised manuscript in which we highlighted the changes in red (deleted) and blue (added). 
All line numbers in the letter below refer to the tracked-changes document. We hope that our 
revised manuscript has clarified the questions raised by the reviewers and made the paper 
stronger.  
 
Best regards, 
Simon Preuss (on behalf of all co-authors) 
 
 
---------------------------------------------------------------------------------------- 
 
Reviewer 2 - Boris Kaus 

1.1) Yield stress criteria 
You correctly write that at yield F=0, and you employ a standard Drucker-Prager yield 
function (eq. 9). Yet, your expression for the yield function (eq. 8) is incorrect, which can be 
best illustrated graphically: 

 

The plot shows the yield function (black) together with the Mohr-Circle (green circle, which 
has radius 𝜏II). At yielding (F=0), the Mohr-Circle exactly touches the yield stress function. 
This condition is not 𝜏II = 𝜎yield (your eq. 4), as this gives the red circle (which predicts a 
stress that is somewhat larger than the yield stress). Instead, we can use trigonometry to 
compute the condition for F=0. If we define the effective angle of friction 𝜃 as: 
tan 𝜃 = 𝜇l (1 − 𝜆),  
we can define the yield condition (F=0) as: 𝜏II = 𝑃sin(𝜃) + 𝐶 cos(𝜃) 

 



 

Since this is correctly described in the textbook of one of the co-authors of this manuscript, I 
suspect that it is incorporated correctly in the software. I also don’t know how big an effect it 
will make on the results, even if this would not be the case (to be tested). Yet, in any case, it 
would be good if you can correct your description. 
 
We thank the reviewer for this important comment and a clarifying discussion, which 
together helped improving the paper.  
We clarified the yielding function description and changed notations to avoid confusion. We 
use a modified Drucker-Prager yielding condition with constant compressive strength and 
variable friction coefficient.  
We changed the method description in line 141: 
The onset of plastic deformation is defined by the yield criterion: 
 
F = τII − σc − µeff(RSF) Peff, 
 
where Peff = P − Pfluid = P (1 − λ) with the pore fluid pressure factor λ = P /Pfluid , σc is the 
constant compressive strength that marks the residual strength at P = 0 and µeff(RSF) is a 
variable effective friction parameter that we define based on our continuum RSF formulation. 
We use a modified Drucker-Prager plastic yield function (Drucker and Prager, 1952) in the 
form: 
σyield = C(RSF) + µ(RSF) Peff,  
where 
 
µ(RSF) = tan(sin−1(µeff(RSF))) is the local friction coefficient that is widely used and 
obtained from laboratory experiments 
and 
 
C(RSF) = σc/cos(sin−1(µeff(RSF))) is the local cohesion.  
 
The local effective friction parameter µeff(RSF) evolves according to the invariant 
reformulation of rate- and state-dependent friction for a continuum, introduced by 
Herrendörfer et al. (2018). This formalism was applied to freely and spontaneously growing 
seismic and aseismic faults by Preuss et al. (2019), by interpreting how plastic deformation 
starts to localize and forms a shear band that approximates a fault zone of finite width that 
can host earthquakes. Localized bulk deformation and fault slip are related by defining the 
plastic slip rate Vp as 
 
Vp = 2ε ̇′II(p)W,  
 
where W denotes the width of the fault zone in the continuous host rock. We formulate 
µeff(RSF) as: 
 
µeff(RSF) = a arcsinh (Vp/2V0 exp((µ0+C/P+b ln(θ V0/L))/a)), 
 
where a and b are laboratory-based, empirical RSF parameters that quantify a direct effect 
and an evolution effect of friction, respectively, L is the RSF characteristic slip distance, µ0 is 
a reference friction coefficient at a reference slip velocity V0 (Lapusta and Barbot, 2012), and 



 

C is the cohesion as part of the state variable θ (Marone et al., 1992) that evolves according to 
the aging law: 
 
dθ/dt =1−Vpθ/L. 
 
 
Additionally, we updated Figure 4 according to the recomputed relative fault angles based on 
equation 9. 
 
 
 
1.2) Elastic material parameters 
Your choice of having the same values for bulk and shear moduli (table 1; both 50 GPa) 
results in a Poisson ratio of 0.125. That might be appropriate for already damaged rocks, but 
perhaps not so much for intact rocks. How sensitive are your results to the particular choice 
of Poisson ratio? 
We thank the reviewer for this question. A Poisson’s ratio of 0.125 is on the lower end of 
values for rocks, but still common for a wide range of rocks as for example shown in 
Poisson’s ratio values for rocks (H. Gercek, 2007). Furthermore, we tested a range of shear 
moduli resulting in varying Poisson’s ratios and found only a marginal impact on the model 
results. In particular, the main messages of our manuscript are not influenced by changes in 
the Poisson’s ratio. We illustrate this by comparing the snapshots of simulations with 
Poisson’s ratio of 0.125 and 0.25. We focus on the dynamically generated off-fault yielding 
at approximately the same deformation stage just before the rupture hits the end of the 
predefined fault. Both snapshots are attached. The differences comprise: 

● First earthquake nucleates 75 years later for ν = 0.25. 
● The maximum slip velocity is ~ 0.08 m/s higher for ν = 0.25. 
● The off-fault splay localization is more irregular with a higher degree of localization 

and a slightly higher off-fault reach for ν = 0.25. 



 

 

 

In light of our answer above we add to line 703 of the manuscript: 
Our choice of parameters results in a Poisson ratio of 0.125. Such a relatively low Poisson’s 
ratio is on the lower end of values for rocks, but still common for a wide range of rock types 
as for example shown in Gercek (2007). To illustrate the impact of different Poisson’s ratios 
we have tested a range of different shear moduli resulting in varying Poisson’s ratios. These 
tests have shown that the main messages of our manuscript are not influenced by changes in 
the Poisson’s ratio. 

 

2) Minor remarks: 

● Table 1: I suppose that the host rock cohesion is 6 MPa, and not 6e6 MPa? 
This is correct. We changed that. 



 

● Fig. 3: you show an overview of several different models. Yet, are the snapshots 
chosen to have approximately the same plastic strain, deformation stage or 
time? Would be good to mention it. 
Thanks for this comment. We added the following to the figure caption:  
The snapshots in [a] are chosen to have approximately the same deformation stage  
with regard to fault length ’R*1’. Model RW constitutes an exception as RW1 
remains very short (1.8 km, see main text).  

● Figure 4. It would be good to explain at the beginning of the figure caption that 
this figure concerns the RT model. 
We agree and added a short note. 

● Your movies are extremely large (some over 1 Gb!); it is certainly possible to create 
smaller movie-sizes from a set of pictures, and I believe that this is important for 
readers that do not have a high bandwidth connection.  
We agree. All movies are now approx. 5 times smaller with a maximum size of 122 
Mb. These smaller videos can be uploaded upon resubmission.  


