

1 **Kinematics of subduction in the Ibero-Armorican arc constrained by 3D**
2 **microstructural analysis of garnet and pseudomorphed lawsonite porphyroblasts**
3 **from Ile de Groix (Variscan belt)**

4

5

6 Domingo G.A.M. Aerden^{a,b}

7 Alejandro Ruiz-Fuentes^a

8 Mohammad Sayab^d

9 Aidan Forde^c

10

11 ^aDepartamento de Geodinámica, Universidad de Granada, Spain

12 ^bInstituto Andaluz de Ciencias de la Tierra, CSIC/Universidad de Granada, Spain

13 ^cSaorgus Energy Ltd, Kerry, Ireland

14 ^dGeological Survey of Finland, Espoo, Finland

15

16 **Abstract**

17

18 The small island of Groix in southern Brittany, France, is well known for exceptionally well
19 preserved outcrops of Variscan blueschists, eclogites and garnetiferous micaschists that mark
20 a Late-Devonian suture between Gondwana and Armorica. The kinematics of polyphase
21 deformation in these rocks is reconstructed based on 3D microstructural analysis of inclusion
22 trails within garnet and pseudomorphed lawsonite porphyroblasts using differently oriented
23 thin sections and X-ray tomography. Three sets of inclusion trails striking NE-SW, NNW-
24 SSE and WNW-ESE are recognized and interpreted to witness a succession of different
25 crustal shortening directions orthogonal to these strikes. The curvature sense of sigmoidal-
26 and spiral-shaped inclusion trails of the youngest set is shown to be consistent with north-
27 west- and northward subduction of Gondwana under Armorica, provided that these
28 microstructures developed by overgrowth of actively forming crenulations without much
29 porphyroblast rotation. Strongly non-cylindrical folds locally found on the island are
30 reinterpreted as fold-interference structures instead of having formed by progressive shearing
31 and fold-axes reorientation. Six samples of a lower-grade footwall unit of the Groix ophiolitic
32 nappe (Pouldu schists) were also studied. Inclusion trails in these rocks strike E-W, similar to
33 the youngest set recognized on Groix island. They record Carboniferous N-S shortening
34 during continental collision. These new microstructural data from southern Brittany bear a

35 strong resemblance to earlier measured inclusion-trail orientations in the north-western Iberia
 36 Massif. A best fit between both regions suggest about 20° clockwise rotation of Iberia during
 37 the Cretaceous opening of the Gulf of Biscay.

38

39 **Key words:** porphyroblast inclusion trails, FIA, Variscan subduction, Ibero-Armorican arc, Ile
 40 de Groix, Iberia rotation.

41

42 1. Introduction

43

44 Structural analysis in metamorphic terrains is traditionally based on a combination of
 45 geological mapping, study of structures in outcrops and microstructures in thin sections that
 46 are commonly cut parallel to the stretching lineation aimed at determining a shear sense. Not
 47 rarely does this approach produce ambiguous or even paradoxical results (e.g. Zhang &
 48 Fossen, 2020), apart from not allowing access to the kinematics of strongly overprinted early-
 49 formed fabrics. A major breakthrough in this state of affairs was claimed by Bell et al., (1985,
 50 1986) and Bell & Johnson (1989) after recognizing the polyphase origin of inclusion-trail
 51 patterns that were previously assumed to have formed by progressive shearing and
 52 porphyroblast rotation (e.g. Zwart, 1960; Spry, 1963; Rosenfeld, 1970). Sigmoidal and spiral-
 53 shaped inclusion trails were reinterpreted as representing multiple crenulations that became
 54 sequentially fixed within non-rotating porphyroblasts with episodic growth histories. The lack
 55 of porphyroblast rotation would have resulted from the general micro-partitioning of
 56 deformation between cleavage planes (accommodating shear-strain components) and
 57 microlithon domains, and the preferential nucleation of porphyroblasts within the latter (Bell
 58 et al., 1985; Aerden, 1995; Fay et al., 2008). Axes of inclusion-trail curvature in this view are
 59 not controlled by shearing directions but by the intersection of 2 or more foliations causing
 60 crenulation and folding, and consequently referred to as 'Foliation-Intersection/Inflexion
 61 Axes' abbreviated as 'FIA' (Bell et al., 1992; Bell et al., 1995; Stallard et al., 2003). Another
 62 major difference with the classic model, is that the curvature sense (clockwise /
 63 anticlockwise) of inclusion-trails being determined by the (S- or Z) asymmetry of overgrown
 64 crenulations indicates an opposite shear sense as would have been originally deduced (see Fig.
 65 1a, b).

66 The above conceptual changes regarding the significance of porphyroblast inclusion
 67 trails prompted extensive collection of orientation data for these microstructures in various
 68 metamorphic belts, which revealed their regional-scale consistency and close relationship to

large-scale tectonic processes (e.g. Bell et al., 1998; Bell & Welch, 2002; Sayab, 2005; Ali, 2010; Shah et al., 2011; Aerden, 1994, 1998, 2004, 2013; Kim & Ree, 2013; Abu-Sharib & Bell, 2011; Abu-Sharib & Sanislav, 2013; Aerden & Sayab, 2017). The methodological novelty of this research resides in the integration of quantitative microstructural data derived from precisely oriented thin sections of different samples in an external (geographical) reference frame. For this purpose, thin-sections are systematically cut in fixed orientations relative to geographic coordinates, independent of the (variable) orientations of the macroscopic lineation and foliation in each sample. Vertical and/or horizontal thin section orientations are usually chosen as these represent small-scale true cross-sections and maps that can be directly compared with their larger-scale equivalents.

Aerden (2004) pioneered this approach in NW-Iberia where he distinguished 4 sets of inclusion-trails, each with a specific and regionally consistent trend. The E-W trend of the oldest set was interpreted to record N-S directed compression and subduction with unknown polarity. This was followed by several changes in the direction of crustal shortening that produced the 3 younger inclusion-trail sets. The youngest two sets, trending NE-SW and WNW-ESE respectively, were shown to correlate with regional-scale fold-interference patterns developed throughout the Iberian Massif and this was key to the discovery of the partially blind Central Iberian Arc (Aerden, 2004; Martínez Catalán et al., 2009).

In this paper we report a similar microstructural study in the Armorican Massif focusing on high-pressure metabasites of Ile de Groix, but also paying attention to a lower-grade footwall unit known as the Pouldu schists. The island of Groix (ca. 15 km²) is a national reserve famous for exceptionally well preserved coastal outcrops of Variscan blueschists, eclogites and interlayered garnetiferous micaschists (Audren et al., 1993). These are generally accepted to represent the remains of the floor of a narrow ocean that, in the late Silurian and lower Devonian, separated Gondwana in the south from the Armorica microplate to the north. Closure of this ocean by subduction of the margin of Gondwana produced high-pressure metamorphism dated 370-360 Ma on Ile de Groix (Bosse et al., 2005). In NW-Iberia, a similar ophiolitic unit is recognized and correlated with the one exposed on Groix island (Arenas et al., 1995; Diaz-García et al., 1999; Ballèvre et al., 2009, 2015).

The polarity and kinematics of ophiolite emplacement have remained poorly constrained by (micro)structural data. Indeed, not much appears to have changed since Quinquis et al. (1978) wrote: *"the bulk sense of shear on Groix has not yet been determined unequivocally, but may perhaps be deduced from systematic analyses of fold asymmetry and of microstructures in and around syntectonic garnets. The significance of glaucophane*

103 *orientation in the basic rocks of Groix also needs to be studied: the orientation is extremely*
 104 *variable and may not be simply related to a shear direction."* Precisely along these lines of
 105 suggested further research, we have performed detailed 3D microstructural analyses of 10
 106 garnetiferous blueschist samples of the Ile de Groix ophiolitic nappe, 4 samples of albite-
 107 porphyroblast bearing greenschists (Pouldu schists) of a footwall unit cropping out along the
 108 mainland coast, plus 2 kyanite-staurolite schists collected further inland from the North-
 109 Armorican Zone (Fig. 2). Integrated with structural field data from previous workers, the new
 110 microstructural data indicate a polyphase deformation history masked by a seemingly simple
 111 L-S fabric. Implications for the formation mechanism of sheath folds (Ile de Groix is one of
 112 the main type locations) are discussed, and for variations in the direction of Variscan
 113 subduction with time. A possible correlation is proposed between inclusion-trail trends in
 114 NW-Iberia and in the Armorican Massif, which if correct, implies 20° anticlockwise rotation
 115 of Iberia during opening of the Gulf of Biscay.

116

117 2. Geological setting and previous work

118

119 The Variscan (or Hercynian) orogeny took place in the Devonian and Carboniferous
 120 as a consequence of Gondwana-Laurussia convergence with the Armorica and Avalonia
 121 microcontinents occupying intermediate positions (e.g. Matte, 2001). The resulting closure of
 122 oceanic domains created multiple ophiolitic sutures, whose precise location, timing and
 123 correlation continues to be a major research topic (e.g. Azor et al., 2008; Faure, 2008;
 124 Ballèvre et al., 2009; Arenas et al., 2016). The high-pressure rocks of Ile de Groix are part of
 125 a partially submerged ophiolitic klippen of a thrust nappe that separates Armorican crustal
 126 units in the hangingwall (outcropping in the Central- and North-Armorican Domains) from
 127 Gondwana derived units in the footwall cropping out extensively in the South Armorican
 128 Domain and NW Iberia (Fig. 2). Mineral and stretching lineations have an average N-S trend
 129 in the east and south-east of the island, changing gradually to NW-SE further north and west.
 130 Bosse et al. (2002) proposed a thrust contact between garnetiferous eclogites, blueschists and
 131 micaschists outcropping in the eastern part of the island (Fig. 3a), overlying lower-grade
 132 (albite-epidote facies) unit outcropping in the west containing scarce garnet porphyroblasts
 133 (Triboulet, 1974; Schulz, 2001). Peak metamorphic conditions are estimated at 475°C/18-
 134 20kbar in the upper unit and 450°C/12-15kbar in the lower unit (Bosse et al. 2002; Ballèvre et
 135 al., 2003).

136 The general tectono-metamorphic zonation of the Armorican Massif has led most
 137 workers to accept a north-dipping subduction zone associated with south verging thrusting
 138 (e.g. Matte, 2001; Faure et al., 2008; Ballèvre et al., 2009; Ballèvre 2015; Philippon et al.,
 139 2009; Fig. 2b). However, structural data have not allowed to independently confirm this and,
 140 in fact, have yielded conflicting results. Lagarde (1980) concluded NW directed thrusting
 141 from shear criteria in the Champtoceaux Complex (Fig. 2a) suggesting south-east directed
 142 subduction. A similar kinematic was deduced on Ile de Groix from rotated snowball garnets
 143 and quartz c-axes fabrics by Quinquis (1980), Quinquis & Choukroune (1981) and Cannat
 144 (1985). To reconcile this with north-dipping subduction, Quinquis & Choukroune (1981)
 145 proposed that this shear sense corresponds to back-thrusting and ophiolite obduction, but little
 146 independent evidence has been presented to support this model.

147 Quinquis (1980) noticed that shear bands (C and C' planes) on Ile de Groix indicate
 148 opposite shear senses that could not be clearly linked to different metamorphic conditions and
 149 were therefore interpreted as conjugate sets. Shelley and Bossière (1999) endorsed this and
 150 showed that quartz fabrics studied in 57 samples also record about equal amounts of opposite
 151 shear-senses. From this they concluded that the main foliation and lineation of Ile de Groix
 152 formed by coaxial vertical shortening in a period of crustal extension and exhumation. In
 153 contrast, Philippon et al. (2009) recently argued a consecutive origin of a first set of top-to-
 154 the-SW shear bands related to prograde metamorphism, followed by a second top-to-the-north
 155 set during retrogression. However, they did not resolve the conflict this poses with respect to
 156 top-to-the-north shearing indicated by 'rotated' garnets, which clearly formed during prograde
 157 metamorphism (Bosse et al., 2002; Ballèvre et al., 2003).

158

159 **3. Microstructural analysis using vertical and horizontal thin sections**

160

161 A total of 138 oriented thin sections were studied of 33 oriented samples: 20 from Ile
 162 de Groix, 9 from the Pouldu schists and an equivalent unit in the Baye d'Audièrre (Tréogat
 163 formation), and 4 from the Central Armorican Zone (Fig. 2). Their precise location can be
 164 consulted in the electronic supplement provided with this paper. Initially, a single horizontal
 165 thin section was cut of each to evaluate the interest of the rock for further study and to
 166 measure the strike of inclusion trails (relative to geographic coordinates). The latter only
 167 proved possible in about half of the samples, as the other half contain garnets or plagioclase
 168 porphyroblasts that are too altered or have poorly developed inclusion trails. Seven Ile de
 169 Groix samples containing the most promising inclusion trails were studied further in 6 vertical

170 thin sections striking N0, N30, N60, N90, N120 and N150 aimed at constraining the
 171 orientation of inclusion-trail curvature axes (i.e. 'FIA'; see Introduction) and record their
 172 curvature sense.

173

174 *3.1. Strike of inclusion trails in Ile de Groix blueschist samples*

175

176 Inclusion-trail strikes were measured in garnet porphyroblasts of 10 samples from 3
 177 areas of Ile de Groix, all pertaining to the high-grade eastern domain of the island or 'upper
 178 unit' of Bosse et al. (2002; Fig. 3a). The data are plotted in moving-average rose diagrams
 179 (Fig. 3b) made with the computer program 'MARD' of Munro & Blenkinsop (2012). As
 180 pointed out by these authors, moving-average rose diagrams reveal the distribution of modal
 181 maxima more accurately than their conventional binned equivalents.

182 Stretching lineations in the high-grade domain are associated with a gently dipping or
 183 subhorizontal composite foliation. Therefore, if porphyroblasts rotated in the direction of the
 184 lineation during growth, then they can be expected to have developed inclusion trails broadly
 185 striking orthogonal to that lineation (Fig. 1a). Our measurements, however, show exactly the
 186 opposite: a main NNE-SSW maximum subparallel to stretching lineations and fold axes (Fig.
 187 1c). This agrees better with a 'non-rotational' origin of inclusion trails via overgrowth of
 188 successive crenulations, and this is supported further by truncational relationships commonly
 189 seen between inclusion trails in porphyroblast cores versus rims (Fig. 4a and b). Automatic
 190 orientation analysis of the inclusion-trail patterns pictured in these Figures using the image
 191 analysis software package *Fiji* (Schindelin et al., 2012), reveals their bimodal preferred
 192 orientations reminiscent of the subvertical and subhorizontal preferred orientations of
 193 inclusion-trails previously reported in other metamorphic regions (e.g. Bell et al., 1992;
 194 Hayward, 1992; Aerden, 1994, 1998, 2004; Mares, 1998; Stallard & Hickey, 2001; Bell &
 195 Sapkota, 2012; Sayab, 2005; Shah et al., 2009; Aerden and Ruiz Fuentes, 2020). These
 196 authors all interpreted this to reflect alternations between orogenic shortening and
 197 gravitational collapse, but a somewhat different explanation will be proposed in section 4.4
 198 based on additional 3D data obtained by X-ray tomography.

199

200 *3.2. Inclusion-trail curvature sense and genetic implications*

201

202 Quinquis & Choukroune (1981) reported that out of a total of 29 thin sections studied
 203 (presumably all cut parallel to the stretching lineation), 26 contained sigmoidal or spiral-

shaped inclusion trails indicating top-to-the north shearing. Since these authors assumed the 'rotational' inclusion-trail model, it follows that the trails predominantly curve anticlockwise when viewed in westward direction. In effect, we found the same predominance in our samples after counting the number of clockwise vs. anticlockwise trails in all vertical thin sections striking N-0, N30, N120 and N150, that is, in all thin sections making a small angles with the regional stretching lineation. This resulted in 99 anticlockwise and 27 clockwise inclusion trails viewing westward — a ratio of about 4:1. The classic 'rotational' interpretation of inclusion trails predicts top-to-the-north shearing from this asymmetry, which is paradoxical with respect to the widely accepted northward subduction and southward thrusting in the Armorican Massif. The 'non-rotational' model resolves this paradox as it predicts an opposite shear sense from the same inclusion-trail asymmetry, consistent with top-to-the south thrusting (Bell & Johnson, 1989; their Figs. 16 and 17).

216

217 *3.3. Average FIA trends in 5 Ile de Groix samples*

218

219 Hayward (1990) devised a method for determining the average orientation of
 220 porphyroblast FIAs in a sample. The method exploits the fact that sigmoidal or spiral-shaped
 221 inclusion trails, just like asymmetric folds, either exhibit an S- or Z-asymmetry in cross-
 222 section (thin-section) depending on the orientation of the section relative to the FIA. First, a
 223 radial set of vertical thin sections is cut from the sample with regular angular spacing around
 224 the compass. From these, the average FIA trend can be constrained to the strike interval
 225 where the inclusion-trail asymmetry observed in the different thin sections switches (e.g.
 226 Abu-Sharib & Sanislav, 2013 - their Fig. 2). Once the average FIA trend is known, the
 227 average FIA plunge can be constrained from by cutting a new radial set of thin-sections, this
 228 time about a horizontal axes oriented orthogonal to the FIA trend. The method was refined by
 229 Bell et al. (1995) to potentially allow the distinction of multiple FIA sets in a sample with
 230 different timing.

231 We successfully applied the method to 5 samples whose average FIAs are represented
 232 in Fig. 3b as pie-cake symbols. FIAs were constrained to within 30°, but 10° for sample G7
 233 thanks to cutting 2 extra thin sections. The plunge direction could also be determined from the
 234 asymmetry of inclusion trails as seen in horizontal thin sections, but we did not determine
 235 plunge angles because of the large amount of extra thin sections needed. No results were
 236 obtained for samples G18, G19 and G20 as these contain relatively few porphyroblasts whose
 237 inclusion trails show inconsistent asymmetries in most of their thin sections. X-ray

238 tomography data for G20 presented in section 4.6. suggest that this inconsistency is due to a
 239 mixture of 2 different FIA sets in these samples that could not be resolved using thin sections.
 240 Samples G3, G13 and G15 mostly contain garnets with straight inclusion trails and too few
 241 asymmetric ones to confidently apply the technique.

242

243 *3.4. Mainland samples (Pouldu schists, Tréogat formation, Central Armorican Domain)*

244

245 The 'Pouldu schists' are a volcano-sedimentary unit metamorphosed in greenschist- to
 246 amphibolite-facies conditions (380-650°C/5.5-6.5kbar; Triboulet, 1992). They crop out in a
 247 ca. 50 km long band along the southern coast of Brittany and contain abundant albite
 248 porphyroblasts (Fig. 2). The macroscopic cleavage in the field strikes E-W to NE-SW and
 249 generally dips steeply north or south. Horizontal thin sections of 7 oriented samples of the
 250 unit show a N060 striking foliation cut by widely spaced E-W striking dextral shear bands,
 251 likely related to the south Armorican shear zone system. In sample PO5, the N060 striking
 252 main foliation has the appearance of a narrowly spaced crenulation cleavage overprinting an
 253 older more E-W striking foliation.

254 The strike of inclusion-trails in albite porphyroblasts were measured in 3 greenschist
 255 samples of the Pouldu schists (PO2, PO3, PO5) and in a fourth sample (AU1) of similar rocks
 256 cropping out in the Baye d'Audierne (Tréogat Formation; Luck et al., 2002). Inclusion trails
 257 consistently strike E-W to ESE-WNW in PO2, PO3, and PO5, but have a larger spread in
 258 AU1 (Fig. 3b). N-S striking vertical thin sections of PO2 and PO3 show that the main
 259 foliation ('S2' in Fig. 5a) crenulates an older 'S1' included in syn-D2 porphyroblasts (Fig. 5b).
 260 Some later porphyroblast growth, probably linked to the development of weak subhorizontal
 261 crenulations ('S3' in Fig. 5), created younger inclusion trails of 'S2' (Fig. 5b). Nearby granites
 262 dated 330-320Ma are deformed by 'S2' (Béchennec et al., 2012) and imply that this cleavage
 263 post-dates the Late-Devonian to early Carboniferous metamorphism and associated polyphase
 264 deformation of Ile de Groix (365-345Ma; Bosse et al., 2005).

265 Two staurolite-kyanite schists from the Central Armorican Domain collected about
 266 5km NNE of Quimper were studied in horizontal thin sections only. Their inclusion trails
 267 strike broadly N060 (Fig. 3d) and might correlate with the equally N060 striking 'S2' in our
 268 Pouldu Schist samples. The age of metamorphism in these rocks is broadly constrained to the
 269 period 350-320Ma (Schulz et al., 1998).

270

271 **4. X-ray tomography of 5 Ile de Groix samples**

272

273 *4.1. Data acquisition and processing method*

274

275 X-ray computed tomography (XCT) scans were acquired at the University of Granada
 276 with an Xradia 510 (Vesta Zeiss) microtomographer at resolutions of 13-15 μm , using 140kV
 277 voltage and 2500-3200 projections. Four thin-section blocks, each measuring 10-15 cm^3 , were
 278 scanned of samples G3, G11, G12, and G14 plus a more irregular piece of G20 of similar
 279 volume. Geographic orientation arrows made of metal wire were stuck on the samples to aid
 280 reorientation of the generated Tiff image-stacks such that geographic north is parallel with the
 281 Y-axes, and true vertical with the Z-axes. Image stacks were processed with the Fiji software
 282 package (Schindelin et al., 2012). After reorientation, the spatial orientation of all straight
 283 inclusion-trails or inclusion-trail segments visible in the image stacks were determined by
 284 measuring their strike and pitch angles on XY-, YZ- and XZ-slices and fitting those angles to
 285 great circles on a stereonet. Furthermore, the curvature axes of individual sigmoidal or spiral-
 286 shapes inclusion-trails (FIA) were measured in analogous manner as the thin-section-based
 287 technique of Hayward (1990; see section 3.3), and as previously done by Huddlestone-
 288 Holmes & Ketcham (2010), Aerden & Ruiz-Fuentes (2020) and Sayab et al., (2021). First,
 289 the FIA trend is constrained by interactively rotating a vertical slice through the porphyroblast
 290 and recording where the inclusion-trail curvature sense switches. Then, a horizontal slice is
 291 interactively rotated about a horizontal axes oriented normal to the previously determined FIA
 292 trend to constrain the FIA plunge.

293 The image stacks also allowed us to study the preferred orientation of garnet
 294 porphyroblasts as well as relatively large opaque minerals present in all 5 samples. The BoneJ
 295 plugin of *Fiji* (Doube et al., 2010) was used for this purpose. This tool enables automatic
 296 calculation of best-fit ellipsoids for a large number of 'objects' in a binary (black & white)
 297 image stack. To apply this, X-ray scans were first segmented by thresholding, only leaving
 298 voxels with grey-scale values within the range corresponding to garnet crystals or opaque
 299 minerals, and then binarizing the stack (i.e. setting all grey values to black). Subsequently, a
 300 size-filter was applied to remove small particles and in some cases the 'dilate' tool to re-join
 301 'objects' belonging to the same garnet crystal that became separated during thresholding due
 302 to the presence of fractures and related alteration. In all samples except G20, well developed
 303 preferred orientations of opaque minerals were detected, but not of garnets. In G20, an
 304 opposite situation was found: well preferred orientation of garnets only. In the following
 305 subsections microstructural results are described for each sample and presented in stereoplots

306 made with the program 'Stereonet' of R. Allmendinger. The original files of these stereoplots
 307 are provided in the electronic supplement.

308

309 *4.2. Sample G11*

310

311 G11 is a blueschist from 'Amer' in the SE of the island (Fig. 3a). It contains garnet
 312 porphyroblasts as well as rectangular pseudomorphs probably after lawsonite composed of a
 313 mixture of white mica, chlorite, albite and epidote (Cogné et al., 1966; Felix & Fransolet,
 314 1972; Ballèvre et al., 2003). Lawsonite relics have never been found, though, and some
 315 authors have argued that the replaced mineral could have been plagioclase (Shelley &
 316 Bossière, 1999). Lawsonite, is a high-pressure mineral and should have grown partially
 317 synchronous with garnet on a prograde path, whereas plagioclase is more likely to have
 318 formed during retrogression. Thus, the relative timing of the pseudomorphed mineral relative
 319 to garnet growth and inclusion trails is highly relevant to this question.

320 Inclusion trails in garnet porphyroblasts of G11 vary from simple to sigmoidal to
 321 spiral-shaped, but never curve more than about 90° from the centre to the rim (Figs. 6a, b, c, g
 322 and 6). The tomographic images further revealed the presence of relatively large elongate
 323 crystals with high X-ray attenuation (higher than garnet), which in thin section were identified
 324 as magnetite, partially or completely replaced by brown-reddish goethite (Fig. 6d, h). Some of
 325 the opaques attain porphyroblastic sizes and contain scarce silicate inclusions. Best-fit
 326 ellipsoids calculated for these crystals with *BoneJ* (see section 4.1.) have long-axes (X) well
 327 aligned with the macroscopic mineral/stretching/intersection lineation, and short axes normal
 328 to the foliation (Fig. 7).

329 Sigmoidal- or spiral-shaped inclusion trails were measured both in the centre and in
 330 the rims, where they become sharply deflected or truncated by younger inclusion trails. The
 331 porphyroblast-rim measurements tightly define a steeply SW dipping plane, whereas
 332 foliations within porphyroblast cores have more variable orientations between steeply NE-
 333 dipping to shallowly W-dipping. The intersection lines of core- and rim inclusion-trail planes
 334 agree well with 10 FIAs measured directly with the asymmetry-switch technique described in
 335 the previous section. Simple (straight) inclusion trails have variable orientations that broadly
 336 coincide with the foliations measured in porphyroblast cores and rims associated with
 337 sigmoidal and spiral-shaped trails.

338 The above data allow confident interpretation of the bimodal inclusion-trail strike
 339 pattern exhibited by the rose diagram for G11 in Fig. 3b as corresponding to 2 age sets of

340 inclusion trails: an older set striking NNW-SSW and a younger one striking WNW-ESE. Note
 341 that the 10 individual porphyroblast FIAs determined from the X-ray scan agree well with the
 342 average FIA initially determined from the radial set of thin sections (Fig. 3b).

343 Some of the lawsonite pseudomorphs in G11 also have visible inclusion trails in the
 344 X-ray scan (Fig. 6e, f, and h), although less finely defined as in garnets. They are straight to
 345 weakly sigmoidal, oblique to the matrix foliation, but subparallel to inclusion trails in garnet-
 346 rims. The latter suggests that the pseudomorphed mineral grew synchronous with late-stage
 347 garnet and this supports that the pseudomorphed mineral was lawsonite and grew towards the
 348 end of the prograde path as concluded by Ballèvre et al. (2003). Interestingly, the curvature
 349 sense of inclusion trails in the pseudomorphs is mostly opposite to that in garnets when
 350 viewed in N-S vertical sections. Assuming a 'non-rotational' origin of the trails, this implies a
 351 change from top-to-the-south shearing to top-to-the-north shearing that is further discussed in
 352 section 6.3.

353

354 *4.3. Sample G12*

355

356 G12 is a similar blueschist as G11 from the same outcrop, but only one possible
 357 lawsonite pseudomorphs could be identified in the X-ray scan which does not show an
 358 internal fabric. The tomography of this sample reveals an early NNW-SSE striking foliation
 359 preserved within garnet porphyroblasts, overprinted by a steeply S-dipping foliation included
 360 in some garnet rims (Fig. 7). The garnet-rim foliation is in turn deflected or truncated by a
 361 subhorizontal crenulation cleavage in the matrix that is responsible for the flat-lying
 362 macroscopic cleavage. The same opaque minerals as found in G11 are present in the matrix,
 363 but now also as relatively large inclusions inside garnets, often occupying a central position
 364 suggesting that the garnets nucleated on those grains. Best-fit ellipsoids for the matrix
 365 opaques demonstrate their strong elongation in NW-SE direction parallel to the macroscopic
 366 lineation, and parallel to the strike of inclusion trails in garnet.

367 The above data allow to correlate the different peaks in the strike rose diagrams for
 368 G11 and G12 in Fig. 3b as (i) an early NE-SW striking foliation preserved in the cores of
 369 spiral-shaped inclusion trails, (ii) a younger NNW-SSE striking foliation included in the cores
 370 of sigmoidal inclusion trails with variable dip angles, and (iii) a still younger ESE-WNW
 371 foliation preserved in garnet rims and in lawsonite pseudomorphs.

372

373 *4.4. Sample G14*

374

375 G14 is another blueschist from Amer containing numerous relatively small (1-2 mm)
 376 garnets with straight, sigmoidal or spiral-shaped inclusion-trails. The spiral patterns exhibit
 377 significantly greater curvature (up to 180°; Fig. 4b) as in G11 and G12. Unfortunately, only a
 378 few garnets had visible inclusion trails in the tomography because of their very fine grain size
 379 and profuse fracturing of garnets. A few inclusion-trail planes could be measured plus 5 FIAs
 380 plunging steeply in different directions (Fig. 8a).

381 Opaque crystals are elongated in N-S to NE-SW direction parallel to the modal
 382 maximum defined by 62 inclusion-trail strikes measured in 2 horizontal thin sections (Fig. 3b).
 383 A cm-scale fold outlined by an epidote-rich layer was found, whose axial plane also strikes
 384 NW-SE (Fig. 8a), hence suggesting a genetic relationship with the inclusion trails. Vertical
 385 sections oriented at a high angle to the fold axes (Fig. 8c) show refolding with subhorizontal
 386 axial planes related to the subhorizontal crenulation cleavage observed in thin sections of
 387 sample G7 (Fig. 4a). In plan view, the fold is transected by N-S striking cleavage zones and
 388 quartz lenses (Fig. 8d).

389 Based on their orientations, the 5 measured inclusion-trail planes can be correlated
 390 with the 3 sets already distinguished in G11 and G12. That is: (i) an early NE-SW set
 391 responsible for the strike maximum of 62 inclusion-trails measured in 2 horizontal thin
 392 sections of G14 (Fig. 3b), (ii) a NNW-SSE striking set, and (iii) a late WNW-ESE set. The
 393 lack of subhorizontal internal foliations in G14 or in any other of the samples studied with X-
 394 ray tomography implies that the roughly bimodal distribution of pitch angles of inclusion-
 395 trails in G7 and G14 (Fig. 4c) does not reflect a succession of subvertical and subhorizontal
 396 foliations associated with compression-collapse cycles as shown in other metamorphic
 397 regions (Aerden & Ruiz Fuentes, 2020 and references cited therein), but rather two sets of
 398 moderately to steeply dipping foliations with different strikes.

399

400 4.5. Sample G3 and G7

401

402 G3 was collected close to Fort Nosterven on the east-coast of the island, about 1 km
 403 south of G7. Garnets in this glaucophane-epidote schist have well developed straight and
 404 sigmoidal inclusion trails, whose strikes were measured in horizontal thin sections. The
 405 average N020 FIA trend in G7 was determined from 8 vertical thin sections with different
 406 strikes. G3 was studied further with X-ray tomography, but its inclusion trails are poorly
 407 visible in the scan. The few that could be measured all dip steeply NW with N020 strike,

408 parallel to the average FIA in sample G7 and a set of gently SSW plunging folds measured by
 409 C. Audren near G7 at Pelage du Trech (1974, unpublished data; Fig. 9b). A single
 410 porphyroblast FIA was also measured, defined by sigmoidal inclusion trails that curve into a
 411 subvertical N120 striking position in the porphyroblast rim. It is most likely related to one of
 412 Audren's fold axes which has an anomalous N120 trend. Thus, this fold axes is probably
 413 younger as the main group of SSW trending fold axes. All the above described data are
 414 consistent with the orientations and relative timing of 3 main sets of inclusion trails and
 415 related macroscopic structures in Ile de Groix, coded pink, blue and orange in our Figures.

416

417 *4.6. Sample G20*

418

419 G20 was collected near Port Lay on the central-north coast of Groix (Fig. 3a). The
 420 macroscopic cleavage dips 50° NE here and is associated with a subhorizontal mineral
 421 lineation parallel to small-scale tight to isoclinal fold axes. Six garnet FIAs defined by
 422 sigmoidal inclusion trails were measured using X-ray tomography plus a larger number of
 423 straight inclusion trail planes. Five FIAs plunge moderately NE and are caused by the
 424 intersection of an older set of NE-SW striking subvertical inclusion trails with a younger set
 425 of steeply NE- or SW-dipping ones. Again, this allows both sets to be correlated with
 426 similarly striking inclusion trails in the other samples (Fig. 3b). The macroscopic cleavage is
 427 conspicuously parallel to a subset of the younger (NNW-SSE striking) inclusion-trails
 428 suggesting a genetic relationship. The sixth FIA that was determined plunges shallowly SSE
 429 and probably formed after the others by overgrowth of the younger inclusion trail set (blue
 430 great circles in Fig. 9c).

431 Abundant opaque minerals in the sample conspicuously cluster around garnet crystals
 432 but ellipsoid best-fitting did not reveal significant preferred orientations. Axial ratios of the
 433 opaques are also much lower as in the earlier described samples (2.0 versus 4.0). Best-fit-
 434 ellipsoids for garnet porphyroblasts, however, revealed their preferred elongation parallel to
 435 the lineation and fold axes and an average axial ratio of 2.1 (Fig. 9c). Aerden & Ruiz-Fuentes
 436 (2020) recently showed that garnets commonly grow elongate either parallel or perpendicular
 437 to their FIAs due to preferential nucleation in actively forming microlithon domains and
 438 growth controlled by the pre-existing cleavage within these domains. The 6 FIAs measured in
 439 G20 are all approximately normal to the maximum elongation axes (X_{Gt}) of their host
 440 garnets (Fig. 9c).

441

442 **5. Tectonic interpretation**

443

444 *5.1. Changes in subduction direction*

445

446 Evidence has been presented for 3 regionally developed sets of inclusion-trails with
 447 consistent orientations that successively developed in blueschist-eclogite facies rocks of Ile de
 448 Groix. All 3 sets probably formed on a single prograde metamorphic path reaching 18–20
 449 kbar, 450 °C according to detailed petrological work (Bosse et al. 2002; Ballèvre, 2003).
 450 Schulz et al, (2001), however, proposed a superposition of 2 (Variscan) metamorphic cycles
 451 based on complex chemical zoning in amphiboles, whose relationship with the different
 452 generations of inclusion trails distinguished herein merit further research.

453 The 3 sets of inclusion trails have moderate to subvertical orientations and can be
 454 linked to three periods of crustal shortening perpendicular to their NE-SW, NNW-SSE and
 455 WNW-ESE strikes. The earlier mentioned predominance of anti-clockwise inclusion trails
 456 observed in thin vertical thin sections that strike parallel to or at a low angle with the regional
 457 mineral lineation is likely determined by the oldest (NE-striking) and youngest (E-W striking)
 458 inclusion-trail sets as these intersect the thin section planes at a high angle. The intermediate-
 459 age inclusion trail set strikes subparallel to the regional mineral lineation and hence can be
 460 expected to produce inconsistent curvature senses in the same thin sections (cf. Hayward,
 461 1990). This may be why about 25% of all counted porphyroblasts exhibit an opposite
 462 curvature sense (i.e. clockwise).

463 Consequently, we interpret the oldest NE-SW striking inclusion trails to witness a NW
 464 directed subduction. The polarity of an intermediate subduction stage, corresponding to NNE-
 465 SSW striking inclusion trails, remains undetermined by our data, but was probably towards
 466 the WSW according to other geological evidence (e.g. Martinez Catalán et al., 1997). The
 467 asymmetry of the youngest WNW-ESE striking trails correspond to the latest stages of
 468 subduction in northward direction, followed by exhumation. Inclusion trails in the Pouldu
 469 schists have a similar orientation as the youngest set of Ile de Groix (see section 3.4.). They
 470 record continued N-S compression in the Carboniferous that still generated a late set of post-
 471 metamorphic chevron-type folds with E-W trending axes on Ile de Groix (see section 6.1.).

472

473 *5.2. A gravitational spreading high-grade thrust nappe?*

474

475 The average dip of all 103 inclusion-trail planes measured with X-ray tomography in 5
 476 samples from Ile de Groix is 57° ($\sigma=21^\circ$). The average plunge of all 33 measured FIAs is 43°
 477 ($\sigma=15^\circ$). These relatively steep dips and plunges imply a limited role, if any, of intermittent
 478 gravitational collapse stages during prograde metamorphism. This is because compression-
 479 collapse cycles should generate subhorizontal FIAs formed by the intersection of alternating
 480 subvertical and subhorizontal foliations. This situation has been shown in the Appalachians,
 481 the European Alps (Bell & Bruce, 2006; their Fig. 18) and Variscan NW-Iberia (Aerden,
 482 2004; his Fig. 4b). The inclusion trails of Ile de Groix, however, formed in the context of a
 483 Late-Devonian subduction, before continental collision could have sufficiently thickened the
 484 crust to start-off gravitational collapse phases.

485 A notable difference between eastern and western Ile de Groix, apart from the higher-
 486 metamorphic grade of the former, is the attitude of the main foliation. This is particularly
 487 clear from structural data of Cogné et al. (1966) compiled and re-plotted in Fig. 10a. Whereas
 488 in eastern Groix, the main foliation dips gently east to south, in the west it dips moderately to
 489 steeply NE or SW. This difference was previously attributed to large-amplitude folding of a
 490 single main foliation with NW-SE axial planes (see Bosse et al, 2002 - their Fig. 12). We
 491 alternatively propose that the flat lying foliation in the high-grade eastern domain is more
 492 weakly developed in the lower-grade western domain, where consequently, older foliations
 493 and folds are more widely preserved as shown conceptually in Fig. 10b. This model is
 494 consistent with the extrusion and gravitational spreading of a thrust nappe over a lower-grade
 495 footwall (Fig. 10b) as famously modelled by Bucher (1956) and Merle (1989) and as
 496 proposed earlier for thrust nappes in the Montagne Noire (Aerden, 1998; Aerden &
 497 Malavieille, 1999). The model accounts for vertical shortening components associated with
 498 the flat lying main foliation of the high-grade domain indicated by strain shadows, shear
 499 bands and quartz fabrics all showing inconsistent shear senses (Shelley & Bossière, 1999),
 500 and by steeply dipping foliations preserved within porphyroblasts documented here.

501 Detailed field observations of Cogné et al. (1966) and Boudier & Nicolas (1976) at
 502 Vallon du Lavoir (central south coast; Fig. 3a) corroborate an important role of vertical
 503 shortening also in the lower-grade western domain. Both works describe a decametre-scale
 504 upright anticline at this location overprinted by a horizontal crenulation cleavage and related
 505 m-scale refolding (Fig. 10c and d). This geometry is directly comparable with the cm-scale
 506 vertically flattened fold found in sample G14 (Fig. 8c).

507 Samples G18, G19 and G20 come the same outcrop near Port Lay (Fig. 3a) where the
 508 main cleavage dips steeply (50°) NE, despite still belonging to the high-grade domain and

509 located close to the inferred basal thrust. The first explanation that comes to mind is that the
 510 foliation was originally flat lying but was later steepened by folding. However, the following
 511 observations suggest otherwise. Firstly, the foliation is parallel to and partially continuous
 512 with a set of NNW-SSE striking inclusion-trails in G20 (Fig. 9c - blue great circles). In
 513 contrast, the flat lying transposition cleavage at Amer (samples G11, G12 and G14) formed
 514 after a younger set of WNW-ESE striking inclusion trails (Fig. 7 - orange great circles). Thus,
 515 the main foliations at both locations do not appear to be the same generation. Secondly, the
 516 main foliation in G20 is sharply deflected towards the horizontal at matrix-garnet boundaries
 517 suggesting the sample was affected by vertical shortening although only weakly. This leads us
 518 to interpret the studied outcrop at Port Lay as forming part of a low-strain lens (Fig 10b).

519

520 **6. Discussion**

521

522 *6.1. Inclusion trail sets vs. folding sequences in the field*

523

524 Cogné et al (1966) distinguished 3 deformation phases. Their first phase corresponds
 525 to tight to isoclinal folds (called 'fundamental folds') with NW-SE to N-S trends. The second
 526 phase caused refolding of the 'fundamental' folds associated with a SW dipping crenulation
 527 cleavage striking N130-140 as shown in their field sketch (Fig. 10d). A third set of E-W
 528 trending chevron-type folds were considered post-metamorphic. The authors describe variable
 529 relationships between a mineral lineation defined by glaucophane and epidote and fold axes
 530 as being commonly parallel to each other and apparently coeval, but locally oblique indicating
 531 a younger age of the folding, and still elsewhere associated with 2nd-phase folds. In the latter
 532 case, 2 sets of oblique glaucophane lineations were reported (their Fig. 12, p 70).

533 Boudier and Nicolas (1976) distinguished 4 deformation phases (D1-D4), the youngest
 534 of which corresponds to the third-phase post-metamorphic structures of Cogné et al. (1966).
 535 D1 refers to the mineral-lineation (L_1), D2 and D3 to NNW-SSE trending folds that partially
 536 reoriented L_1 . Orientation data of these authors show a good match with the strike directions
 537 of our successive inclusion trail sets (Figs. 11b, c). However, our new microstructural indicate
 538 an opposite relative timing of N165- versus N120-trending fabrics as concluded by Boudier
 539 and Nicolas (1976), but in agreement with Cogné et al. (1966) and Quinquis & Choukroune's
 540 (1981). Further evidence for younger N120-structures was found in a sketch by made in 1974
 541 by C. Audren (unpublished as far as we know) kept at the 'Maison de la Reserve Naturelle Le

542 Bail' on Ile de Groix. The sketch, redrafted in Fig. 11a, depicts folding of a N160 trending
 543 lineation around the hinge of a N120 fold.

544

545 *6.2. Formation mechanism of sheath folds*

546

547 Based on a detailed study of quartz fabrics in 57 samples, Shelley and Bossière (1999)
 548 concluded that most folds of Ile de Groix island nucleated with their axes immediately
 549 parallel to the maximum stretching direction (X), instead of first parallel to the Y-axes and
 550 then rotating towards X during progressive shearing (cf. Cobbold & Quinquis, 1980;
 551 Quinquis and Choukroune, 1981). However, they still interpreted a single kinematic frame
 552 with a component of shortening parallel to the intermediate strain axes (Y). The polyphase
 553 character of the main (composite) foliation and lineation demonstrated herein places the
 554 significance of fold-axes parallel stretching and the origin of sheath folds in a different light.
 555 Fold axes could have nucleated with their axes parallel to X due to vertical shortening of
 556 vertical foliations and upright folds whose axes were already subparallel to X (Fig. 12).
 557 Likewise, non-cylindrical folds and condom folds may have formed by vertical flattening of
 558 precursor folds with subvertical axial planes but steeply plunging or subvertical axes (Fig. 12).
 559 Thus, depending on the geometry of the precursor folds, new folds nucleated either with
 560 straight axes parallel to X, or with strongly curved axes oblique to X. This model agrees well
 561 with Audren & Triboulet's (1993) analysis of a sheath from Groix that concluded that the fold
 562 started to form towards the end of the prograde path but developed further during the
 563 retrogression.

564

565 *6.3. Inclusion trail data vs. shear-bands*

566

567 Predominantly clockwise curvature of inclusion-trails in lawsonite pseudomorphs
 568 studied in sample G11, versus anticlockwise in garnets suggests a change from top-to-the-
 569 south to top-to-the-north shearing, provided that the inclusion-trails formed by overgrowth of
 570 crenulations (the non-rotation model). Interestingly, Philippon et al. (2009) deduced a similar
 571 switch in regional tectonic transport from 2 sets of shear bands studied along the south coast
 572 of the island. They claimed that high-grade rocks conserving well-shaped lawsonite
 573 pseudomorphs in the south-east of the island only contain top-to-the-south shear bands,
 574 whereas rocks lacking such pseudomorphs also contain top-to-the north criteria or exclusively
 575 so. Based on this, it was concluded that prograde metamorphism was associated with top-to-

576 the south shearing, and that this was followed by top-to-the-north shearing, retrogression and
 577 partial destruction of pseudomorphs. However, our lawsonite-bearing sample G11 cast doubts
 578 on this model as it exhibits mainly top-to-the north shear-sense criteria (Fig. 13) despite
 579 coming from a location where, according to Fig. 6 of Philippon et al. (2009), top-to-the south
 580 criteria should be found. Moreover, the authors excluded from their statistical analysis shear
 581 bands occurring close to or within inverted limbs of tight to isoclinal folds perhaps because
 582 they assumed that the folding might have overturned the shear bands. In the absence of less
 583 ambiguous evidence for different metamorphic conditions of both shear-band sets we
 584 consider a synchronous origin of opposite shear-band sets in bulk coaxial deformation
 585 accompanied by retrogression more likely following Shelley & Bossière (1999). The local
 586 predominance of one set may simply reflect the partitioning of bulk coaxial deformation in
 587 zones with opposite shear-senses.

588

589 *6.4. Comparison with inclusion-trail data from NW-Iberia*

590

591 Figure 14 compares the inclusion-trail- and field data presented here from southern
 592 Brittany with that of Aerden (2004) for the 'Basal Unit' of the allochthonous complexes of
 593 NW-Iberia. This unit is composed of orthogneisses and high-pressure micaschists
 594 retrogressed to greenschist facies and represents the subducted margin of Gondwana (Arenas
 595 et al, 1995; Martínez-Catalán, 1996). Thus, it occupies a similar structural position as the
 596 Pouldu Schists below an ophiolitic unit. Three sets of inclusion trails striking E-W, NE-SW
 597 and NNW-SSE were distinguished in this unit preserved within plagioclase and garnet
 598 porphyroblasts. The oldest of these has an E-W trend and can be linked to a high-pressure
 599 event dated 370-360Ma (Santos Zalduogui, et al. 1995; Abati et al., 2010; Li & Massonne,
 600 2017), hence synchronous with prograde metamorphism in Ile de Groix (Bosse et al., 2005).
 601 The 2 younger internal foliations sets formed at lower pressures and their age is only loosely
 602 constrained to pre-320 Ma. The paleogeographic reconstruction of Fig. 14a fits the northern
 603 continental margin of Iberia to the conjugate margin of south Brittany involving 20°
 604 clockwise back-rotation of Iberia. This produces a remarkably good match of inclusion-trail
 605 orientations in both regions (Fig. 14b), yet raises a relative timing problem. Aerden (2004)
 606 interpreted that NNW-SSE striking inclusion trails in the Basal Unit (marked blue in Fig. 14)
 607 post-date E-W ones (yellow), opposite to what has been concluded in this paper for Ile de
 608 Groix. Since Aerden's (2004) relative timing was based on only one sample (sample 1. - Fig.
 609 14a), we believe there is scope for further testing this chronology via study of new samples

610 with the now available 3-D techniques. The timing of NE-SW striking inclusion trails in NW
 611 Iberia (marked red in Fig. 14a) is based on more abundant microstructural and field criteria,
 612 ruling out a correlation with the also NW-SE striking but much older inclusion-trail set in Ile
 613 de Groix. A correlation is possible, though, with the internal foliations of the 2 samples from
 614 the Central Armorican Domain, and the crenulation cleavages observed in some of the Pouldu
 615 schist samples (Fig. 3c and d).

616 We checked the curvature sense of 'rotational' inclusion trails in 7 of Aerden's (2004)
 617 samples associated with the subduction related E-W to NW-SE trending FIAs (marked yellow
 618 in Fig. 14a). In samples 3, 4, 10, 14 and 20, inclusion trails curve anticlockwise viewing west;
 619 in samples 2 and 19 they curve clockwise. The larger number of anticlockwise trails is the
 620 same as observed in Ile de Groix, although we realize that this coincidence needs to be further
 621 tested.

622

623 7. Conclusion

624

625 (1) Garnet and pseudomorphed lawsonite porphyroblasts in blueschist-eclogite facies
 626 rocks of Ile de Groix preserve a succession of 3 sets of steeply dipping inclusion-trails
 627 striking NW-SE, NNW-SSE and WNW-ESE. They can be interpreted to record 3 episodes of
 628 differently oriented compression orthogonal to their strikes during subduction of oceanic crust
 629 and prograde metamorphism dated 365-355Ma (Bosse et al. 2005).

630 (2) The consistency of inclusion-trail orientations across Groix island implies limited
 631 porphyroblast rotation, and hence an origin of sigmoid- and spiral inclusion trails by
 632 overgrowth of successive crenulation cleavages (e.g. Bell et al., 1986; Aerden, 1995; Stallard
 633 & Hickey, 2001) rather than progressive shearing and porphyroblast rotation. This re-
 634 interpretation reconciles a previous conflict between the dominant curvature sense of
 635 inclusion trails on Ile de Groix with north- or north-westward directed subduction of
 636 Gondwana under Armorica, as is indicated by the general tectono-metamorphic zonation of
 637 the Ibero-Armorican Arc.

638 (3) Porphyroblast growth was followed by the development of a subhorizontal
 639 crenulation cleavage accompanying retrogression and exhumation (Shelley & Bossière, 1999)
 640 and dated 355-345Ma (Bosse et al., 2005). This foliation fully transposed earlier steeply
 641 dipping fabrics preserved within porphyroblasts and produced inconsistent (opposite) shear-
 642 sense criteria, such as asymmetric strain shadows, shear bands and quartz c-axes fabrics.
 643 Together with cm- to decametre-scale fold-interference patterns this indicates vertical sub-

644 coaxial shortening, which we tentatively relate to gravitational spreading of a thrust nappe
 645 during continuous plate-convergence.

646 (4) Fold axes parallel stretching and variable fold geometries ranging from cylindrical
 647 to sheath-like did not result from progressive shearing parallel to a single foliation (cf.
 648 Cobbold & Quinquis, 1980) but from vertical shortening and horizontal shearing of pre-
 649 existing folds with subvertical axial-planes.

650 (5) Inclusion-trails studied in 4 greenschist samples from the Pouldu schists (part of
 651 the footwall of the Ile-de-Groix ophiolitic nappe) strike WNW-ESE, subparallel to the
 652 youngest set of inclusion-trails on Groix island. They record continued N-S compression in
 653 the Carboniferous possibly synchronous with gravitational spreading in the hangingwall, but
 654 in any case also afterwards when a late set of E-W trending chevron-style folds developed on
 655 Groix island.

656 (6) The 3 sets of inclusion trails documented in southern Brittany can be tentatively
 657 correlated with 3 similar sets in NW-Iberia (Aerden, 2004) with similar strikes, after the
 658 northern margin of Iberia is placed back against the conjugate margin of southern Brittany.
 659 This match suggests about 20° anticlockwise rotation of Iberia during opening of the Gulf of
 660 Biscay, somewhat less as commonly deduced from paleomagnetism (e.g. Gong et al., 2009).

661

662 **Acknowledgements**

663

664 The first author wishes to thank José Ramón Martínez Catalán for his guidance and
 665 friendship during a postdoc in Salamanca (1996-1999). We thank Michel Ballèvre for helping
 666 obtain permission from the Préfecture du Morbihan to collect samples on Ile de Groix and for
 667 suggesting we include the Pouldu schists in our study. Ile de Groix national-park guide
 668 Catherine Robert (and her dog) provided DA with helpful information and pleasant company
 669 during field work. We thank Fátima Linares-Ordoñez for X-ray scanning our samples, and
 670 Bernhardt Schulz for clarifying various aspects about the petrology of the study area. The
 671 authors are very grateful to 2 anonymous reviewers who provided constructive comments,
 672 and the handling editors of Solid Earth. The research was made possible by a travel grant
 673 from the Junta de Andalucía to DA in 2006, Spanish-government project CGL2016-80687-R
 674 AEI/FEDER, project RNM148 of the Andalusia Autonomous government.

675

676

677

678 **References**

679

680 Abu Sharib, A.S.A.A., Bell T.H. (2011) Radical changes in bulk shortening directions during
681 orogenesis: Significance for progressive development of regional folds and thrusts.
682 *Precambrian Research* 188, 1–20.

683 Abu Sharib, A.S.A.A., and Sanislav, I.V. (2013) Polymetamorphism accompanied switching
684 in horizontal shortening during Isan Orogeny: example from the Eastern Fold Belt, Mount
685 Isa Inlier, Australia. *Tectonophysics*, 587. pp. 146-167.

686 Aerden, D. G. A. M. (1994). Kinematics of orogenic collapse in the Variscan Pyrenees
687 deduced from microstructures in porphyroblastic rocks from the Lys-Caillaouas massif.
688 *Tectonophysics*, 238(1–4). [https://doi.org/10.1016/0040-1951\(94\)90053-1](https://doi.org/10.1016/0040-1951(94)90053-1)

689 Aerden, D.G.A.M. (1995) Porphyroblast non-rotation during crustal extension in the Variscan
690 Pyrenees. *Journal of Structural Geology* 17, 709-726.

691 Aerden, D.G.A.M. (1998) Tectonic evolution of the Montagne Noire and a possible orogenic
692 model for syn-collisional exhumation of deep rocks, Hercynian belt, France. *Tectonics* 17,
693 62-79.

694 Aerden, D.G.A.M. (2004) Correlating deformations in the Iberian Massif (Variscan belt)
695 using porphyroblasts; implications for the development of the Ibero-Armorican Arc.
696 *Journal of Structural Geology* 26, 177-196.

697 Aerden, D.G.A.M., Bell, T.H., Puga, E., Sayab, M., Lozano, J.A., Díaz de Federico, A.
698 (2013) Multi-stage mountain building vs. Relative plate motions in the Betic Cordillera
699 deduced from integrated microstructural and petrological analysis of porphyroblast
700 inclusion trails. *Tectonophysics* 587, 188-206.

701 Aerden, D.G.A.M., Malavieille, J. (1999) Origin of a large-scale fold nappe in the Montagne
702 Noire, Variscan belt, France. *Journal of Structural Geology* 21, 1321-1333

703 Aerden, D. G. A. M., & Sayab, M. (2017). Probing the prodigious strain fringes from Lourdes.
704 *Journal of Structural Geology*, 105. <https://doi.org/10.1016/j.jsg.2017.11.001>

705 Aerden, D.G.A.M., Ruiz-Fuentes, A. (2020) X-ray computed microtomography of spiral
706 garnets: A new test of how they form. *Journal of Structural Geology* 136.
707 <https://doi.org/10.1016/j.jsg.2020.104054>

708 Ali, A. (2010). The tectono-metamorphic evolution of the Balcooma Metamorphic Group,
709 north-eastern Australia: a multidisciplinary approach. *Journal of Metamorphic Geology*,
710 28(4), 397–422. <https://doi.org/10.1111/j.1525-1314.2010.00871.x>

711 Arenas, R., Rubio Pascual, F., Díaz García, F., Martínez Catalán, J.R. (1995) High-pressure
 712 micro-inclusions and development of an inverted metamorphic gradient in the Santiago
 713 Schists (Ordenes Complex, NW Iberian Massif, Spain): evidence of subduction and
 714 syncollisional decompression. *Journal of Metamorphic Geology* 13, 141–164.

715 Arenas, R., Sanchez Martinez, S., Diez Fernandez, R., Gerdes, A., Abati, J., Fernandez-
 716 Suarez, J., Andonaegui, P., Cuadra, P.G., Carmona, A.L., Albert, R., Fuenlabrada, J.M.,
 717 Rubio Pascual, F.J. (2016) Allochthonous terrains involved in the Variscan suture of NW
 718 Iberia: A review of their origin and tectonothermal evolution *Earth-Science Reviews* 161,
 719 140-178.

720 Audren C., Triboulet C. (1993). Les chemins pression-température enregistrés au cours de la
 721 formation de plis non-cylindriques dans les schistes bleus de l'Ile de Groix (Bretagne
 722 méridionale, France). *Comptes Rendus de l'Académie des Sciences de Paris, (II)* 317, 259-
 723 265.

724 Audren, C., Triboulet, C., Chauris, L., Lefort, J. P., Vigneresse, J. L., Audrain, J.,
 725 Thiéblemont, D., Goyallon, J., Jégouzo, P., Guennoc, P., Augris, C. & Carn, A. (1993).
 726 Notice explicative de la feuille Ile de Groix à 1/25 000 (carte géologique). Orléans: BRGM.

727 Azor, A., Rubatto, D., Simancas, J.F., González Lodeiro, F., Martínez Poyatos, D.,
 728 MartínParra, L.M., Matas, J., (2008) Rheic Ocean ophiolitic remnants in southern Iberia
 729 questioned by SHRIMP U–Pb zircon ages on the Beja-Acebúches amphibolites. *Tectonics*
 730 27, TC5006.

731 Ballevre, M; Pitra, P; Bohn, M., (2003) Lawsonite growth in the epidote blueschists from the
 732 Ile de Groix (Armorican Massif, France): a potential geobarometer. *Journal of*
 733 *Metamorphic Geology* 21, 723-735.

734 Ballèvre, M., Bosse V., Ducassou, C., Pitra. P., (2009) Palaeozoic history of the Armorican
 735 Massif: Models for the tectonic evolution of the suture zones. *C. R. Geoscience* 341 (2009)
 736 174–201.

737 Ballevre, M., Bosse, V., Dabard, M.P., Ducassou, C., Fourcade, S. et al., (2015) Histoire
 738 Géologique du massif Armoricain : Actualité de la recherche. *Bulletin de la Société*
 739 *Géologique et Minéralogique de Bretagne, Société géologique et minéralogique de*
 740 *Bretagne*, (2013, (D), 10-11, pp.5-96. <insu-00873116>

741 Béchennec, F., Hallégouët, B., Thiéblemont, D., Thinon, I. (2012). Notice explicative, *Carte*
 742 *géol. France* (1/50 000), feuille Lorient (383). Orléans : BRGM, 206 p.

743 Bell, T.H., (1985) Deformation partitioning and porphyroblast rotation in metamorphic rocks:
 744 A radical reinterpretation. *Journal of Metamorphic Geology* 3, 109-118.

745 Bell T.H., Bruce M.D. (2006). The internal inclusion trail geometries preserved within a first
 746 phase of porphyroblast growth. *Journal of Structural Geology* 28, 236-252.

747 Bell, T.H., Fay, C. (2016) Holistic microstructural techniques reveal synchronous and
 748 alternating andalusite and staurolite growth during three tectonic events resulted from
 749 shifting partitioning of growth vs deformation. *Lithos* 262, 699–712.

750 Bell, T.H., Forde, A., Wang, J., (1995) A new indicator of movement direction during
 751 orogenesis - measurement technique and application to the Alps. *Terra Nova* 7, 500-508.

752 Bell, T.H., Hickey, K.A., Upton, G.J.G., (1998) Distinguishing and correlating multiple
 753 phases of metamorphism accross a multiply deformed region using the axes of spiral,
 754 staircase, and sigmoidally curved inclusion trails in garnet. *Journal of Metamorphic
 755 Geology* 16, 767-794.

756 Bell, T.H., Johnson, S.E., 1989. Porphyroblast inclusion trails: the key to orogenesis. *Journal
 757 of Metamorphic Geology* 7, 279-310.

758 Bell, T.H., Johnson, S.E., Davis, B., Forde, A., Hayward, N., Wilkins, C., (1992)
 759 Porphyroblast inclusion-trail orientation data: eppure non son girate! *Journal of
 760 Metamorphic Geology* 10, 295-307.

761 Bell, T. H., Rubenach, M. J. & Flemming, P. D., (1986) Porphyroblast nucleation, growth and
 762 dissolution in regional metamorphic rocks as a function of deformation partitioning during
 763 foliation development. *Journal of Metamorphic Geology*, 4, 37–67.

764 Bell, T.H., Sapkota, J., (2012) Episodic gravitational collapse and migration of the mountain
 765 chain during orogenic roll-on in the Himalayas. *Journal of Metamorphic Geology* 30, 651-
 766 666.

767 Bell, T.H., Welch, P.W., 2002. Prolonged Acadian Orogenesis: revelations from foliation
 768 intersection axis (FIA) controlled monazite dating of foliations in porphyroblasts and
 769 matrix. *American Journal of Science*, 302, 549–581.

770 Bosse V., Ballèvre M., Vidal O., (2002) Ductile thrusting recorded by the garnet isograd from
 771 blueschist-facies metapelites of the Île de Groix, Armorican Massif, France. *Journal of
 772 Petrology* 43, 485-510.

773 Bosse, V., Féraud, G., Ballèvre, M., Peucat, J.J., Corsini, M., (2005) Rb–Sr and 40Ar/39Ar
 774 ages in blueschists from the Ile de Groix (Armorican Massif, France): Implications for
 775 closure mechanisms in isotopic systems. *Chemical Geology* 220 (2005) 21– 45.

776 Boudier, F., Nicolas, A. (1976) Interprétation nouvelle des relations entre tectonique et
 777 métamorphisme dans l'île de Groix (Bretagne). *Bull. Soc. Géol. France*, S7-XVIII (1),
 778 135–144.

779 Bucher, .H., 1956. Role of gravity in orogenesis. *Bull. Geol. Soc. Am.* 67, 1295-1318.

780 Cannat, M., (1985) Quartz microstructures and fabrics in the island of Groix (Brittany,
781 France). *Journal of Structural Geology* 7, 555–562.

782 Cobbold, P.R., Quinquis, H., (1980) Development of sheath folds in shear regimes. *Journal of*
783 *Structural Geology* 2, 119-126.

784 Cogné J., Daniel, J., Ruhland, M., (1966) L'Île de Groix. Etude structurale d'une série
785 métamorphique à glaucophane en Bretagne méridionale. In: *Bulletin du Service de la carte*
786 *géologique d'Alsace et de Lorraine*, 19-1, pp. 41-96. doi :
787 <https://doi.org/10.3406/sgeol.1966.1298>

788 Díaz García, F., Arenas, R., Martínez Catalán, J.R., González del Tánago, J., and Dunning,
789 G.R., (1999) Tectonic evolution of the Careón ophiolite (northwest Spain): A remnant of
790 the oceanic lithosphere in the Variscan Belt. *Journal of Geology*, v. 107, p. 587–605.

791 Doube M, Kłosowski MM, Arganda-Carreras I, Cordelières F, Dougherty RP, Jackson J,
792 Schmid B, Hutchinson JR, Shefelbine SJ. (2010) BoneJ: free and extensible bone image
793 analysis in ImageJ. *Bone* 47:1076-9. doi: 10.1016/j.bone.2010.08.023

794 Engels, J.P. (1972). The catazonal polymetamorphic rocks of Cabo Ortegal(NW Spain), a
795 structural and petrofabric study. *Leidse Geologische Mededelingen* 48, 83–133

796 Faure, M., Bé Mézème, E., Cocherie, A., Rossi, P., Chemenda, A., Boutelier, D., (2008)
797 Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif
798 Central and Massif Armorican, *Tectonics*, 27, TC2005, doi:10.1029/2007TC002115.

799 Fay, C., Bell, T.H., Hobbs, B.E., 2008. Porphyroblast rotation versus nonrotation: Conflict
800 resolution! *Geology* 36, 307-310.

801 Felix, C., Fransolet, A.M., (1972) Pseudomorphes à epidote s.l., paragonite, muscovite s.l.,
802 chlorite, albite. de porphyroblastes de lawsonite (?) dans les glaucophanites de l'Île de
803 groix (bretagne – France). *Annales de la Société Géologique de Belgique* 95, 323–334.

804 Gong, Z., Langereis, C.G., Mullender, T.A.T. , (2008) The rotation of Iberia during the
805 Aptian and the opening of the Bay of Biscay. *Earth and Planetary Science Letters* 273, 80–
806 93.

807 Hayward, N., (1990) Determination of early fold axis orientations in multiply deformed rocks
808 using porphyroblast inclusion trails. *Tectonophysics* 179, 353-369.

809 Hayward, N., (1992) Microstructural analysis of the classical spiral garnet porphyroblasts of
810 south-east Vermont: evidence for non-rotation. *Journal of Metamorphic Geology* 10, 567–
811 587.

812 Huddlestone-Holmes, C.R., Ketcham, R.A., (2010) An X-ray computed tomography study of
 813 inclusion trail orientations in multiple porphyroblasts from a single sample.
 814 *Tectonophysics* 480, 305–320.

815 Kim, H. S., & Ree, J.-H. (2013). Permo-Triassic changes in bulk crustal shortening direction
 816 during deformation and metamorphism of the Taebaeksan Basin, South Korea using
 817 foliation intersection/inflection axes: Implications for tectonic movement at the eastern
 818 margin of Eurasia during the Songrim (Indosinian) orogeny. *Tectonophysics*, 587(SI),
 819 133–145. <https://doi.org/10.1016/j.tecto.2012.08.033>

820 Lagarde, J.L. (1980). La déformation des roches dans les domaines à schistosité
 821 subhorizontale. Applications à la nappe du Canigou-Roc de France (Pyrénées orientales) et
 822 au complexe crystallophylien de Champtoceaux (Massif armoricain). Unpublished PhD
 823 thesis, Université de Rennes, 170 p.

824 Li, B., Massonne, H.J., (2017) Contrasting metamorphic evolution of metapelites from the
 825 Malpica-Tuy unit and the underlying so-called paraautochthon at the coast of NW Spain.
 826 *Lithos* 286–287, 92–108. <http://dx.doi.org/10.1016/j.lithos.2017.06.003>

827 Mares, V.M., (1998) Structural development of the Soldiers Cap Group in the Eastern Fold
 828 Belt of the Mt Isa Inlier: a successive of horizontal and vertical deformation events and
 829 large-scale shearing. *Aust. J. Earth Sci.* 45, 373–387.

830 Martínez Catalaín, J.R., Arenas, R., Díaz García, F., Rubio Pascual, F.J., Abati, J., Marquinez,
 831 J., (1996) Variscan exhumation of a subducted Palaeozoic continental margin: the basal
 832 units of the Ordenes Complex, Galicia, NW Spain. *Tectonics* 15, 106–121.

833 Martínez Catalán J.R., Arenas, R., Díaz García, F., Abati, J. 1997. Variscan accretionary
 834 complex of northwest Iberia: Terrane correlation and succession of tectonothermal events.
 835 *Geology* 25, p. 1103–1106.

836 Martínez Catalán J.R. (2011). Are the oroclines of the Variscan belt related to late Variscan
 837 strike-slip tectonics? *Terra Nova* 23, 241–247. doi: 10.1111/j.1365-3121.2011.01005.x

838 Matte, P., (2001) The Variscan collage and orogeny (480-290 Ma) and the tectonic definition
 839 of the Armorica microplate: a review. *Terra Nova* 13, 122-128.

840 Merle, O., The building of the central Swiss Alps: An experimental approach. *Tectonophysics*,
 841 165, 41-56, 1989.

842 Munro, M. A., & Blenkinsop, T. G. (2012). MARD - A moving average rose diagram
 843 application for the geosciences. *Computers & Geosciences*, 49, 112–120.
 844 <https://doi.org/10.1016/j.cageo.2012.07.012>

845 Philippon M., Brun J.-P. et Gueydan F., (2009) Kinematic records of subduction and
 846 exhumation in the Île de Groix blueschists (Hercynian belt ; Western France). *Journal of*
 847 *Structural Geology* 31, 1308-1321.

848 Quinquis, H., Audren, C., Brun, J. P. & Cobbold, P. R. (1978) Intense shear in Ile de Groix
 849 blueschists and compatibility with subduction or obduction. *Nature, Lond.* 273, 43-45.

850 Quinquis, H., (1980) Schistes bleus et déformation progressive: l'exemple de l'Île de Groix
 851 (Massif Armorican). *Université de Rennes* 1.

852 Quinquis, H., Choukroune, P., (1981) The Ile de Groix blueschists in the Hercynian chain -
 853 kinematical implications. *Bulletin de la societe geologique de France* 2, 409-418.

854 Rosenfeld, J.L., (1970) Rotated garnets in metamorphic rocks. *Geological Society of America*
 855 *Special Paper* 129, 102pp.

856 Sayab, M., (2005) Microstructural evidence for N-S shortening in the Mount Isa Inlier (NW
 857 Queensland, Australia): the preservation of early W-E-trending foliations in
 858 porphyroblasts revealed by independent 3D measurement techniques. *Journal of Structural*
 859 *Geology* 27, 1445-1468.

860 Sayab, M., Aerden, D., Kuva, J., Hassan, W.U., 2021. Tectonic evolution of the Karakoram
 861 metamorphic complex (NW Himalayas) reflected in the 3D structures of spiral garnets:
 862 Insights from X-ray computed micro-tomography. *Geoscience Frontiers* 3. DOI:
 863 <https://doi.org/10.1016/j.gsf.2020.11.010>

864 Shah, S.Z. Sayab, M., Aerden, D.G.A.M, Asif-Kahn, M. (2011) Foliation intersection axes
 865 preserved in garnet porphyroblasts from the Swat area, NW Himalaya: A record of
 866 successive crustal shortening directions between the Indian plate and Kohistan-Ladakh
 867 Island Arc. *Tectonophysics* 509, 14-32.

868 Shelley, D., Bossière, G., (1999) Ile de groix: retrogression and structural developments in
 869 an extensional régime. *Journal of Structural Geology* 21, 1441–1455.

870 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
 871 S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V.,
 872 Eliceiri, K., Tomancak, P., Cardona, A., (2012) Fiji: an open-source platform for
 873 biological-image analysis. *Nature Methods* 9, 676-682.

874 Schulz, B., Audren, C., Triboulet, C. (1998) Regional vs contact metamorphism of garnet
 875 metapelites in the vicinity of Late Variscan granites (Central Armorican Domain, Brittany,
 876 France). *Geologische Rundschau* 87, 78-93.

877 Schulz, B., Triboulet., C., Audren., C; Pfeifer., H.R., Gilg, A., (2001) Two-stage prograde and
 878 retrograde Variscan metamorphism of glaucophane-eclogites, blueschists and greenschists
 879 from Ile de Groix (Brittany, France) *International Journal of Earth Sciences*, 90, 871-889.

880 Spry, A., 1633) The origin and significance of snowball structure in garnet. *Journal of*
 881 *Petrology* 4, 211-222.

882 Stallard, A., Hickey, K., 2001. Shear zone vs folding origin for spiral inclusion trails in the
 883 Canton Schist. *Journal of Structural Geology* 23, 1845-1864.

884 Stallard, A.R., Hickey, K.A., Upton, G.J., (2003) Measurement and correlation of
 885 microstructures: the case of foliation intersection axes. *Journal of Metamorphic Geology*
 886 21, 241–252.

887 Triboulet, C., (1974) Les glaucophanites et roches associées de l'île de Groix (Morbihan,
 888 France): étude minéralogique et pétrogénétique. *Contributions to Mineralogy and*
 889 *Petrology*, 45, 65–90.

890 Triboulet, C. (1992) Subglaucophanic greenschists from Le-Pouldu, a transitional area
 891 between blueschists and amphibolites from a paleozoic single metamorphic belt in south
 892 Brittany, France. *Comptes Rendus de l'Academie des Sciences serie II*: 315, 697-703

893 Van Zuuren, A., 1969. Structural petrology of an area near Santiago de Compostella (NW
 894 Spain). *Leidse Geologische Mededelingen* 45, 1–71.

895 Zhang Q., Fossen, H., 2020. The dilemma of asymmetric porphyroblast systems and sense of
 896 shear. *Journal of Structural Geology* 130. <https://doi.org/10.1016/j.jsg.2019.103893>

897 Zwart, H., (1962) On the determination of polymorphic mineral associations and its
 898 application to the Bosost area (central Pyrenees). *Geologisches Rundschau*, 52, 38-65.

899

900

901 FIGURE CAPTION

902

903 Fig. 1. (a) Traditional rotational interpretation of sigmoidal and spiral-shaped inclusion trails
 904 and the range (purple) of inclusion-trail strikes predicted by this model in rocks from Ile de
 905 Groix. (b) 'Non-rotational' interpretation of inclusion trails formed by overgrowth of
 906 successive crenulation cleavages and the predicted range of inclusion-trail strikes for Ile de
 907 Groix. (c) Actually measured inclusion-trail strikes in 10 samples from Ile de Groix. Note that
 908 they better match the predictions of the non-rotation model.

909

910 Fig. 2. (a) Simplified geological maps of southern Brittany and NW-Iberia showing the
 911 location of ophiolite outcrops and samples studied herein and by Aerden (2004) in NW Iberia.
 912 (b) Schematic N-S cross-section through after Ballèvre et al. (2015) showing the structural
 913 relationships between tectonic units in the Variscan orogen.

914

915 Fig. 3. (a) Stretching lineation pattern in Ile de Groix and sample locations. (b) Moving-
 916 average rose diagrams for inclusion-trail strikes. Pie-cake symbols in circles give the average
 917 trend and plunge direction of FIAs in samples as determined from radial sets of thin sections.
 918 Small spirals inside these pie cakes indicate the curvature sense of inclusion-trails as seen
 919 when viewing down FIA plunge (anticlockwise in G14, G12, G11; clockwise in G19 and G7).
 920 Pink, blue, yellow and red trend lines code for 4 different inclusion trail sets distinguished in
 921 this paper from older to younger. (c) Inclusion-trail strikes in Pouldu-schists samples and
 922 Tréogat formation (AU1). Arrows represent fold axes measured in outcrop. (d) Data from 2
 923 staurolite-kyanite schists of the Central Armorican Domain.

924

925 Fig. 4. (a, b) Line drawings of inclusion trails and associated truncations (yellow lines) in
 926 differently striking vertical thin sections of G7 and G14. Half arrows indicate the strike of
 927 each section and way up. (c) Binned rose diagram plotting the angles of all dashes
 928 representing inclusion-trails in (a) and (b) as measured with the 'Analyse Particle' tool of Fiji.
 929 The broadly bimodal distribution reflects the presence of 2 or more sets of inclusion-trail
 930 planes, consistent with overgrowth of successive crenulation cleavages rather than with
 931 continuous rotation of syntectonic porphyroblasts.

932

933 Fig. 5. (a) Microstructural line drawings traced on photographs of thin sections of greenschist
 934 samples PO2 and PO3 containing albite porphyroblasts. Three foliations can be recognized.
 935 S2 corresponds to the macroscopic cleavage and crenulates an older S1. S3 corresponds to
 936 weak subhorizontal crenulations. (b) Interpretation of porphyroblast growth history. Most
 937 albite porphyroblasts form early during D2 when they overgrow S1. Further grow early
 938 during D3 produces additional inclusion trails of S2.

939

940 Fig. 6. Photographs of G11. (a and b) Garnet porphyroblast (parallel and crossed polars) with
 941 sigmoidal trails in a N-S striking vertical section. Barb of N-arrow points upward. Note top-
 942 to-the south shear sense suggested by asymmetric strain shadows consistent with a non-
 943 rotational interpretation of the inclusion trails. (c) Garnet with spiral-shaped inclusion trails

944 with a truncation surface between the porphyroblast core and rim. (d) Opaque mineral with
 945 elongate shape replaced by goethite. (e and f). Lawsonite pseudomorphs (parallel and crossed
 946 polars) showing weakly sigmoidal inclusion trails oriented oblique to the matrix foliation. (g)
 947 Tomographic image of spiral inclusion trails garnet in G12. (h) Tomographic image of an
 948 elongate lawsonite pseudomorph, a garnet porphyroblast (Gt) and an opaque mineral.

949

950 Fig. 7. Stereoplots (equal angle, lower hemisphere; made with the program 'Stereonet') for
 951 internal foliations and FIAs preserved within garnet crystals and lawsonite pseudomorphs in
 952 samples G11 and G12, as well as long- and short axes of best-fit ellipsoids calculated for
 953 opaques minerals present in the matrix of both samples (contoured using a blue ramp). See
 954 legend and main text for detailed description of this data. The stereoplot data can be colour
 955 matched to representative oriented maps (note North arrow) of inclusion trails shown at the
 956 bottom of the Figure, traced on high-resolution photographs of horizontal thin sections. A
 957 lawsonite pseudomorph (Laws.) is also drawn.

958

959 Fig. 8. Tomographic images and microstructural data for sample G14. (a) Stereoplot for
 960 internal foliation planes, FIAs (grey boxes), long- and short axes of opaque minerals, and
 961 axial plane of cm-scale fold. (b and c) Map- and cross-section views of a fold outlined by an
 962 epidote-rich layer. Its axial trace trends NNE-SSW and is transected by N-S trending cleavage
 963 zones also visible in (d). Tomographic cross-section showing refolding with subhorizontal
 964 axial planes of the fold in (b) implying a component of vertical flattening.

965

966 Fig. 9. (a) 3D microstructural data for sample G3. See legend and section 4.5. for detailed
 967 description of this data. (b) Field data collected by Claude Audren near sample G7 at Plage du
 968 Trech and the average FIA trend (pink pie-cake) we determined for this sample from radial
 969 thin sections. The FIA trend is parallel to fold axes measurements. Note that this conflicts
 970 with progressive shearing, fold-limb rotation and porphyroblast rotation. Stretching lineations
 971 vary significantly reflecting polyphase deformation. (c) Microstructural data for G20. See
 972 legend and text of section 4.5 for detailed description.

973

974 Fig. 10. (a) Main foliation- and lineation- data from Cogné et al. (1966) re-plotted in equal-
 975 area, lower hemisphere stereoplots for higher-grade eastern Groix and lower-grade western
 976 Groix. The high-grade domain has a gently E to S dipping foliation. The lower-grade area has
 977 moderately to steeply SW- and NE dipping foliations. The original plot files are included in

978 the electronic supplement. (b) Proposed interpretation of the structural relationship between
 979 both domains separated by a thrust cutting pre-existing folds. (c) Re-drafted field sketch of
 980 Boudier & Nicolas (1976; their Fig. 2) of an outcrop at Vallon du Lavoir showing upright
 981 folds overprinted by a subhorizontal crenulation cleavage and associated refolding. (d) Re-
 982 drafted field sketch of Cogné et al. (1966; their Fig. 5) at Vallon du Lavoir, which we
 983 interpret as a tight anticline overprinted by a horizontal cleavage, in turn overprinted by a SW
 984 dipping crenulation cleavage. The dashed line has been added .

985

986 Fig. 11. (a) Accurately re-drawn sketch by Claude Audren (1974; unpublished as far as we
 987 know) of isoclinal folds at Vallon de Kérigant and corresponding structural data. Refolding of
 988 a N165 trending lineation around the nose of a N120 trending fold is indicated. (b) Lineations
 989 (L1) measured at nearby location Vallon du Lavoir by Boudier & Nicolas (1976) showing a
 990 N120 trend maximum of L1 (yellow trend lines) oblique to B2 fold axes (blue trend lines). (c)
 991 Structural data from the same authors collected across the island. Note the bimodal pattern of
 992 L1 reflecting the strikes of the 3 sets of inclusion trails distinguished in Figs. 3, 6, 8 and 9.

993

994 Fig. 12. Conceptual models showing how vertical shortening and horizontal stretching can
 995 have produce highly variable fold geometries depending on the original orientations of pre-
 996 existing folds. Note how strongly curved fold axes can form without need of extremely large
 997 shears trains. Adding a (horizontal) shearing component in the direction of X and/or Y can be
 998 expected to have further modified the fold-interference patterns.

999

1000 Fig. 13. Asymmetric strain shadows and shear bands indicating mainly top-to-the north but
 1001 some top-to-the south shearing as well in a N-S striking vertical section of G11. These criteria
 1002 are associated with a horizontal transposition cleavage that post-dates garnet porphyroblasts.
 1003 Note anticlockwise curvature sense of inclusion trails. The FIAs of these garnets plunge 45°
 1004 west (see Fig. 7) highly oblique to the (horizontal) matrix foliation.

1005

1006 Fig. 14. (a) Inclusion trails-strikes measures for the present study and those of Aerden (2004)
 1007 for 18 samples of the 'Basal Unit' of the allochthonous complexes of NW-Iberia. The
 1008 microstructures are correlated as 4 sets marked pink, blue, yellow and red from the older to
 1009 younger. Field data from Boudier and Nicolas (1976), Engels (1972) and van Zuuren (1969)
 1010 correlated with the inclusion trails also show a good match. (b) Rose diagrams plotting all
 1011 blue and yellow inclusion-trail trend lines in (a) for different amounts of Iberia back-rotation.

1012 The best-fit is obtained for 20° back-rotation, which coincides with the current angle between
1013 the North-Iberian and south-Brittany conjugate margins.

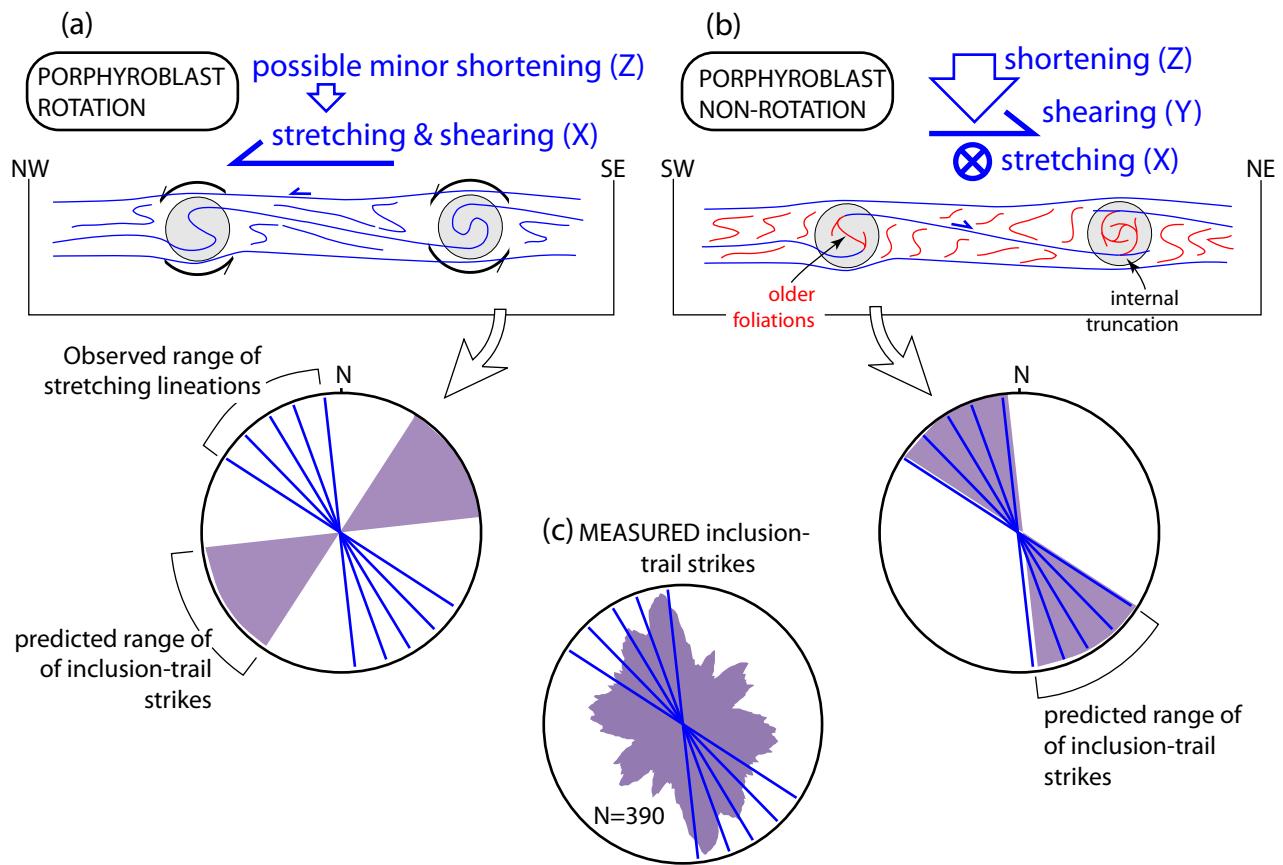
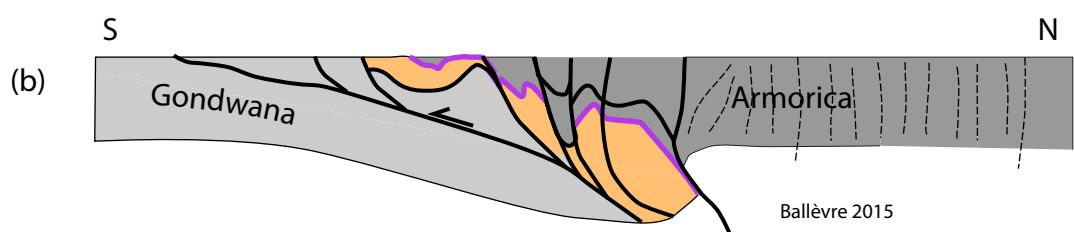
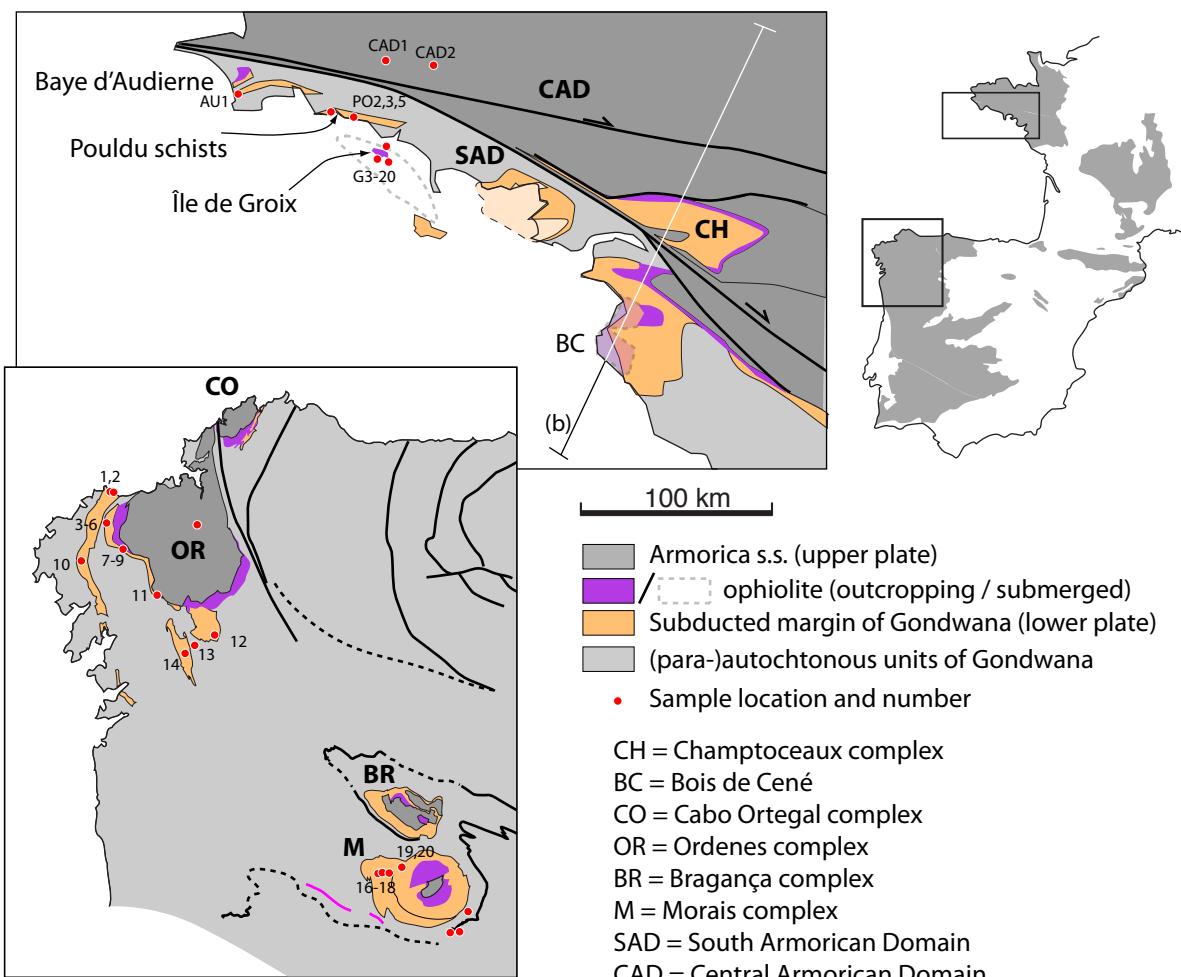
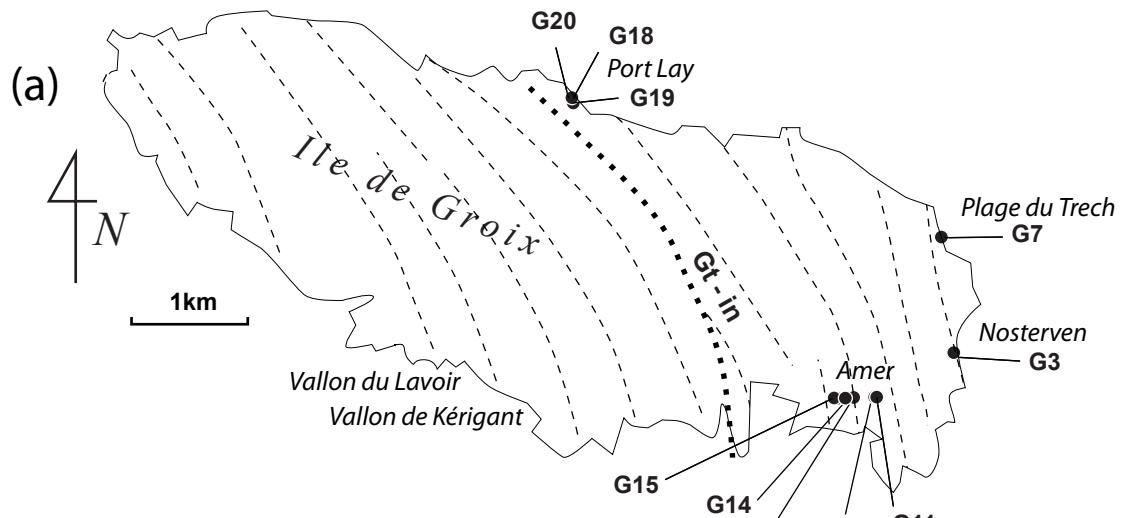
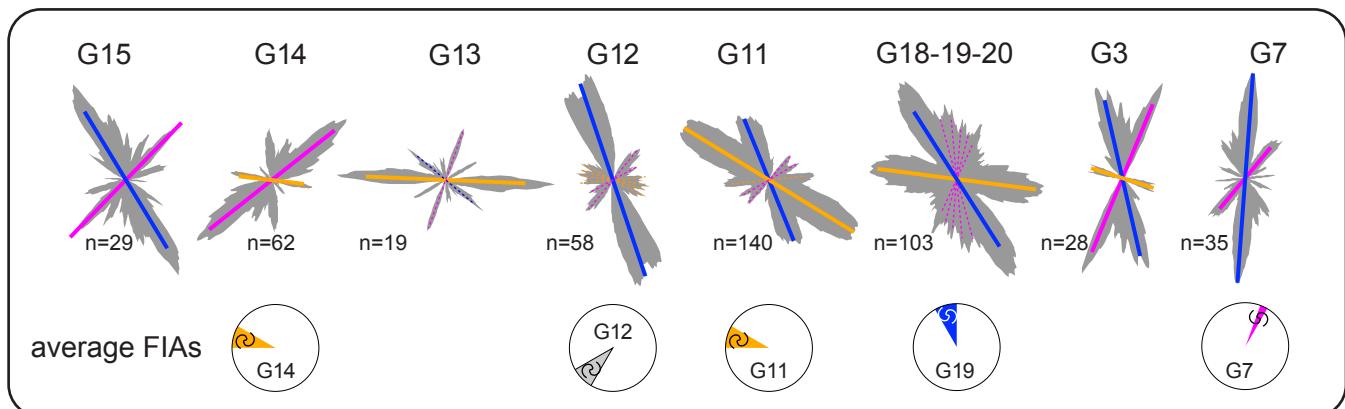
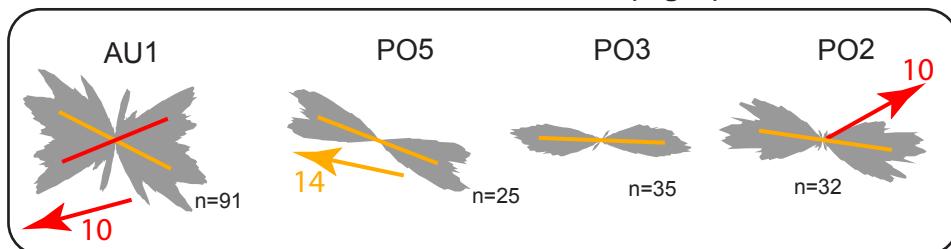


FIG. 1

(a)


FIG. 2

(b) INCLUSION-TRAIL STRIKES AND AVERAGE FIAS - ILE DE GROIX

(c) POULDU AND TRÉOGAT SCHISTS (Fig. 1)

CENTRAL ARMORICAN DOMAIN (Fig. 1)

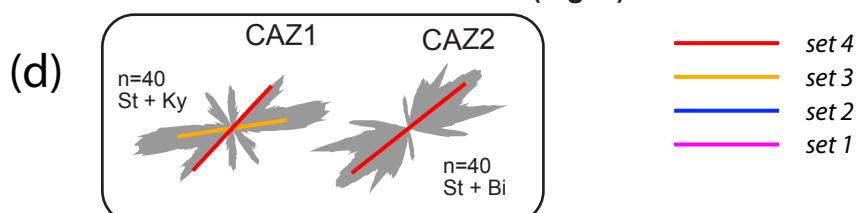
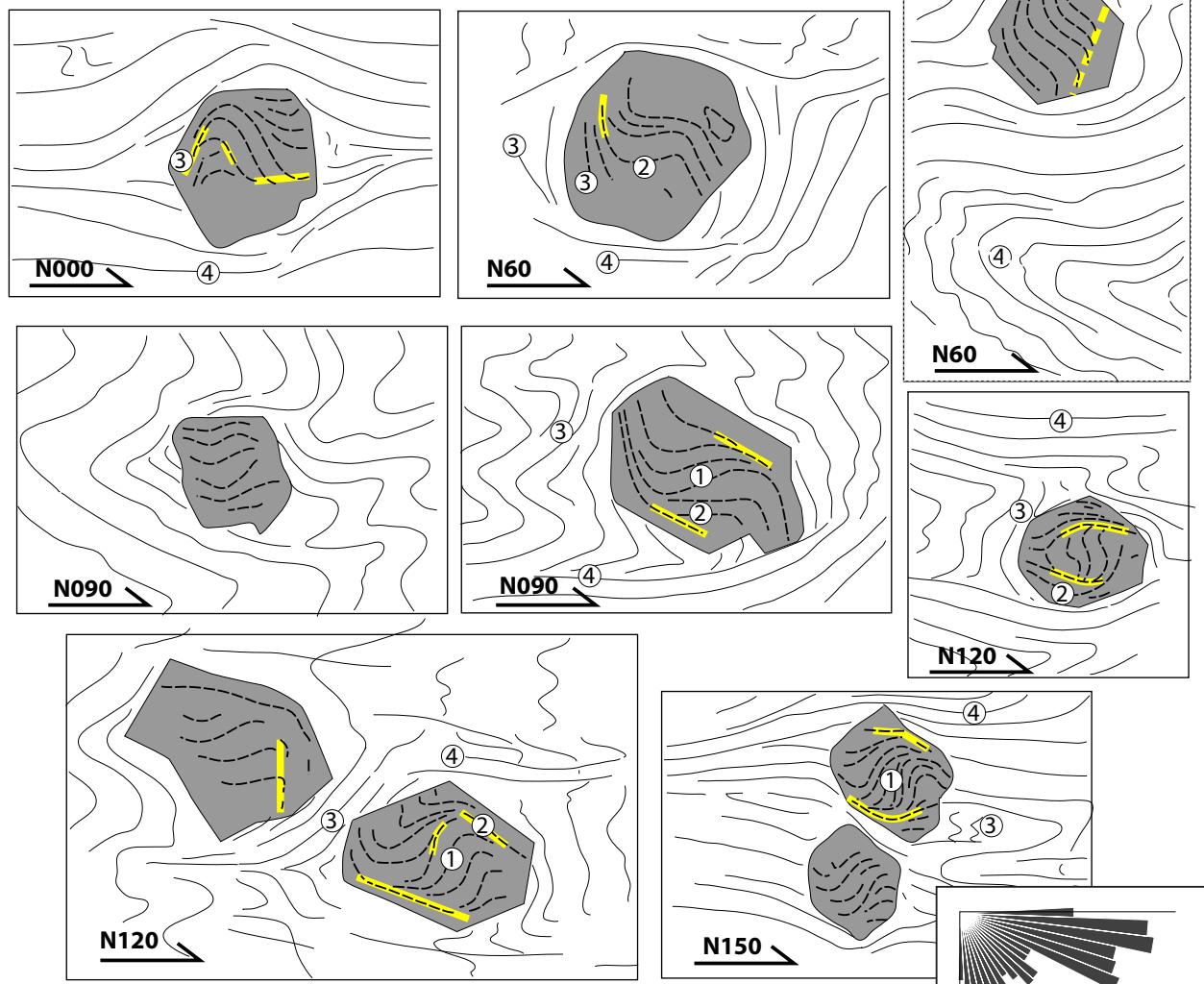



FIG. 3

(a) Sample G-7

(b) Sample G-14

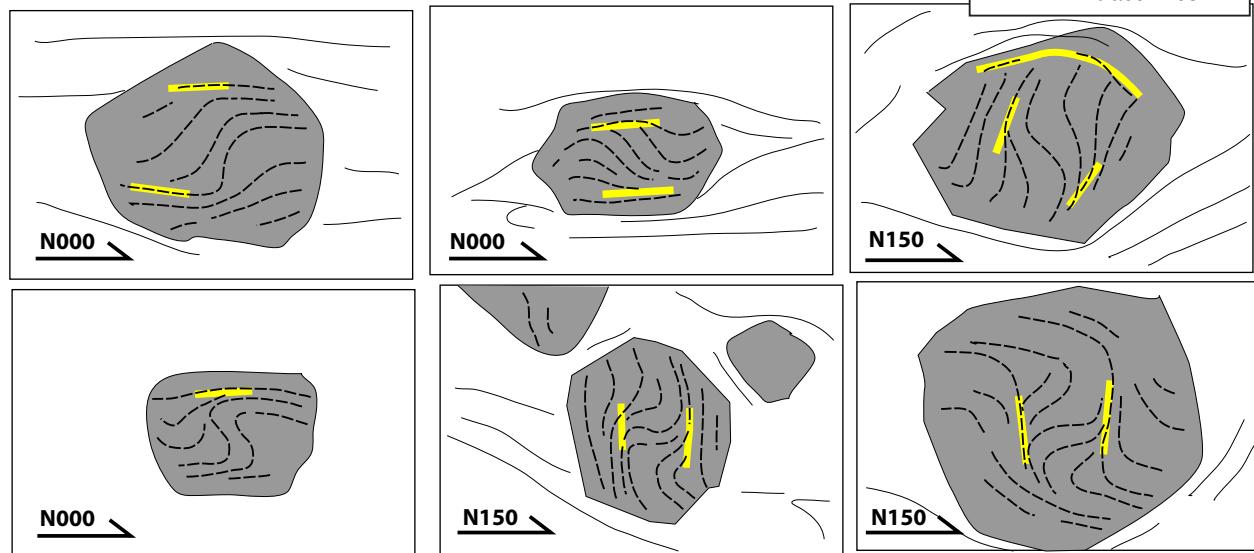


FIG. 4

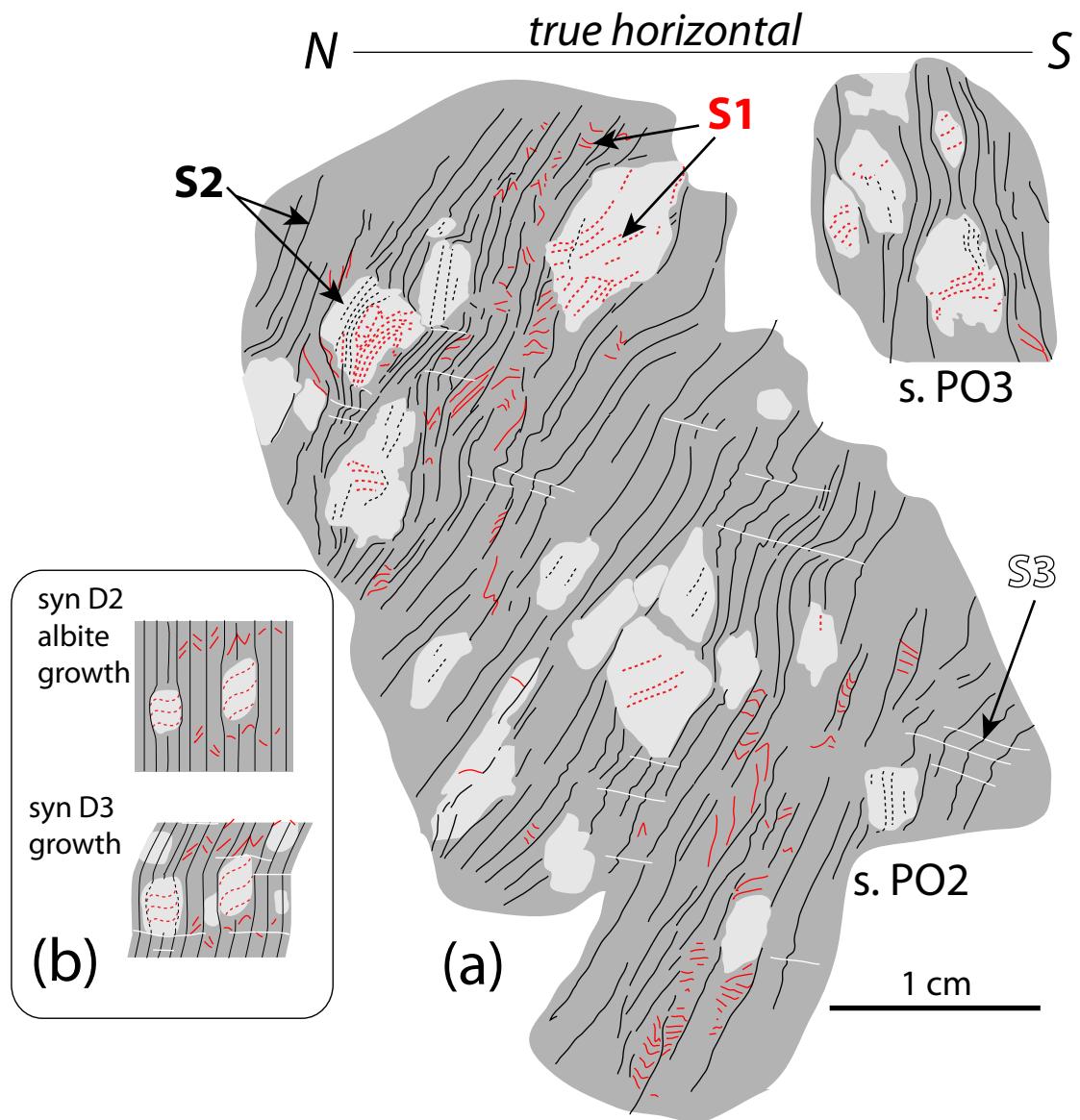


Fig. 5

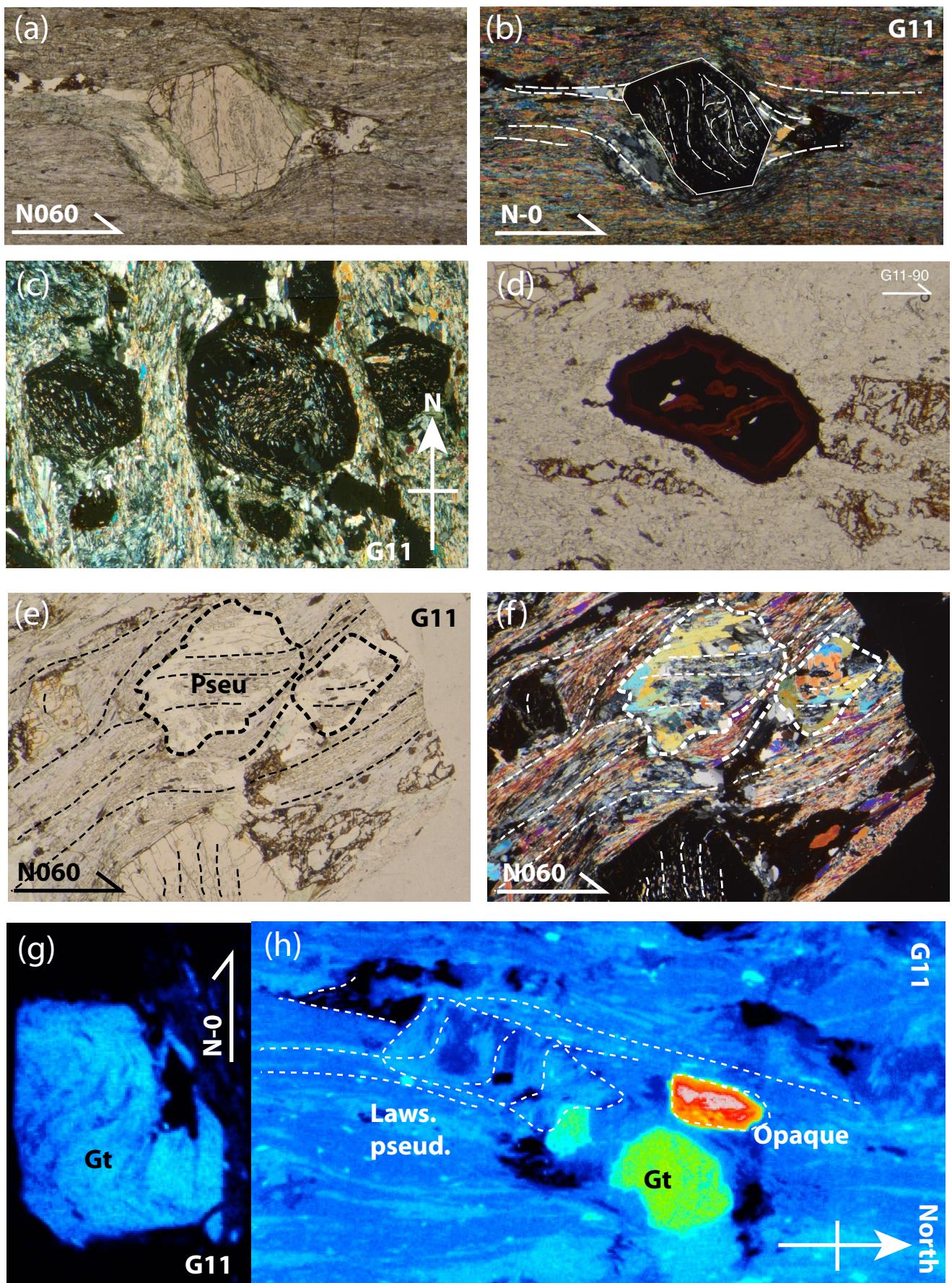


FIG. 6

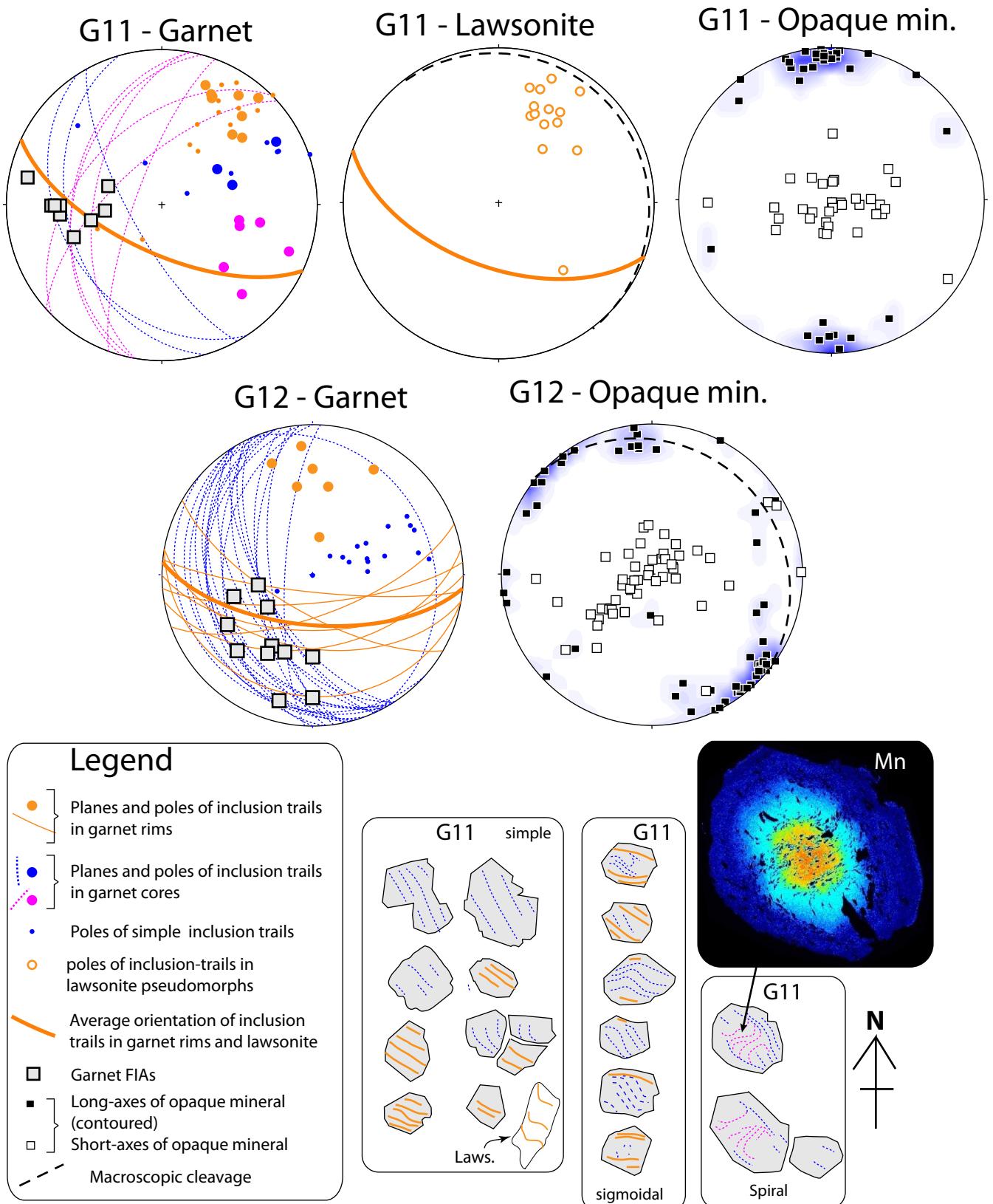


FIG. 7

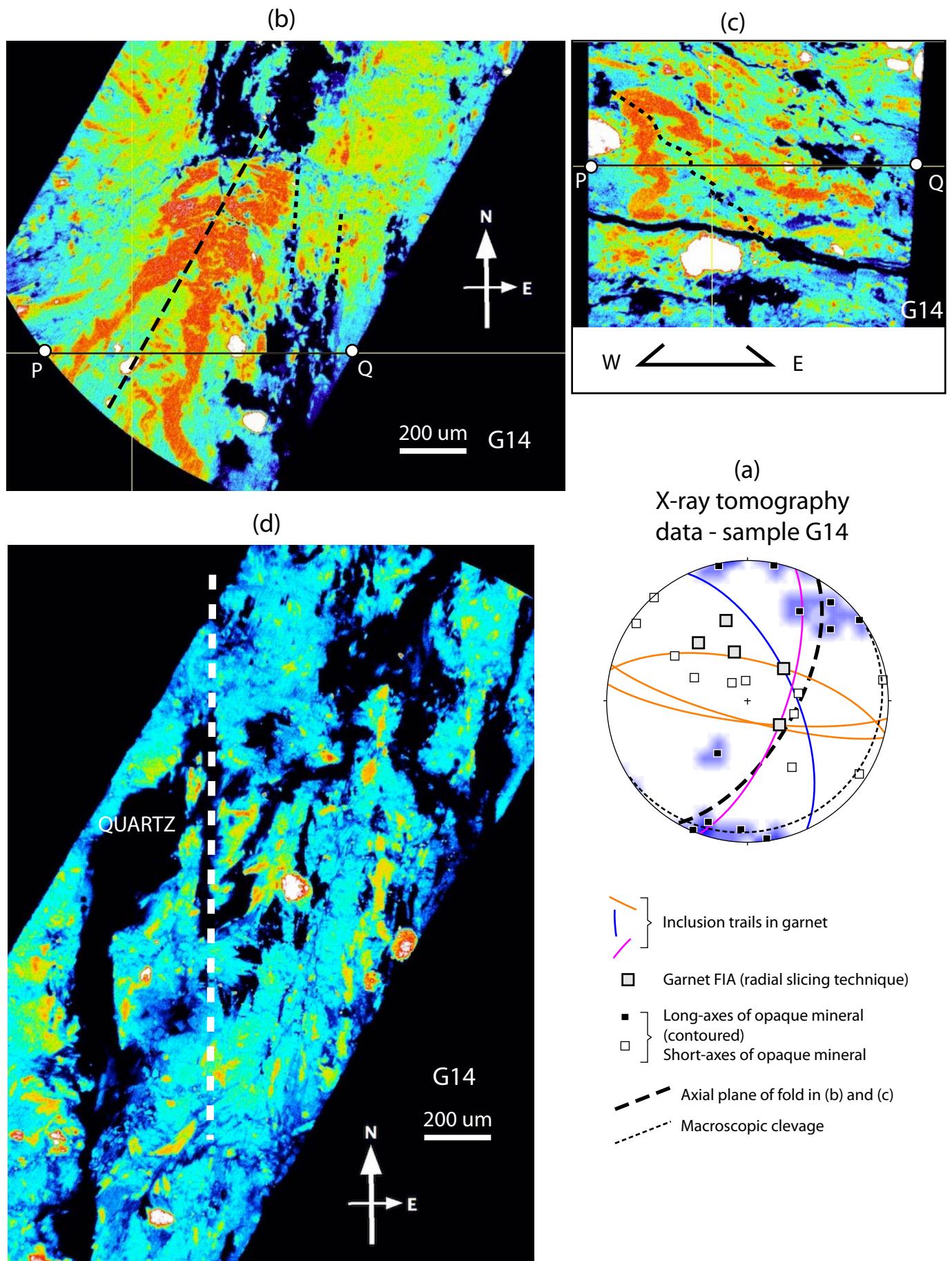
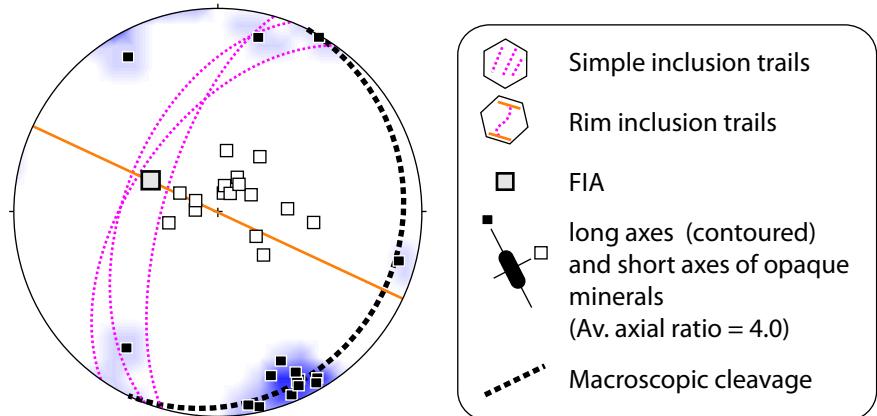
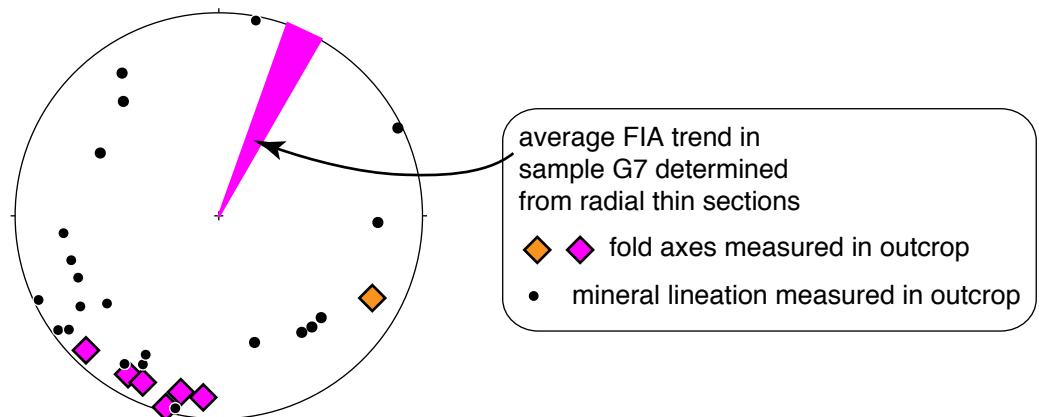




FIG. 8

(a) Sample G3

(b) Field data from Plage du Trec (C. Audren 1974)

(c) Sample G20

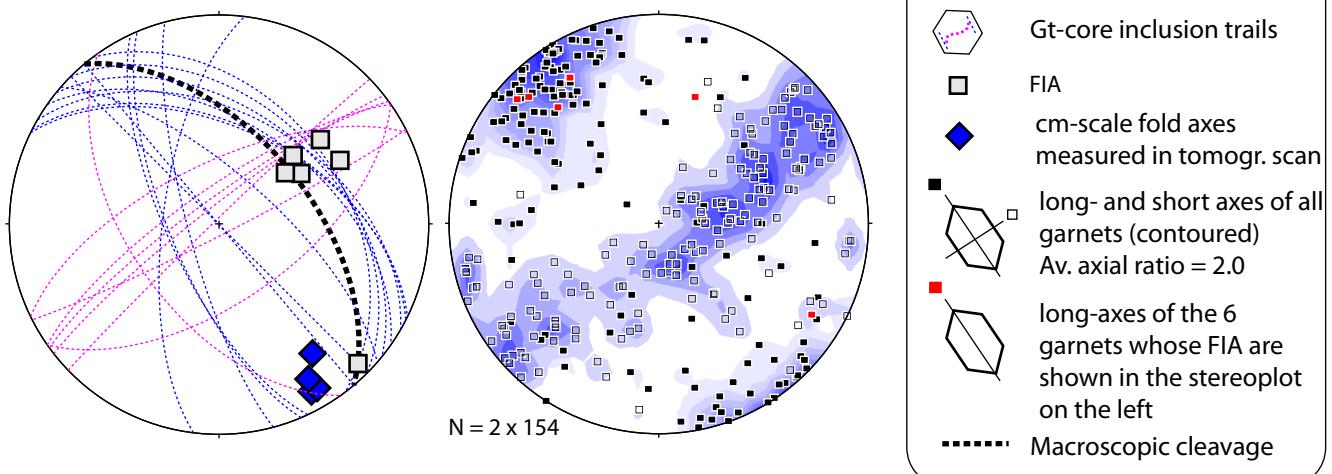


FIG. 9

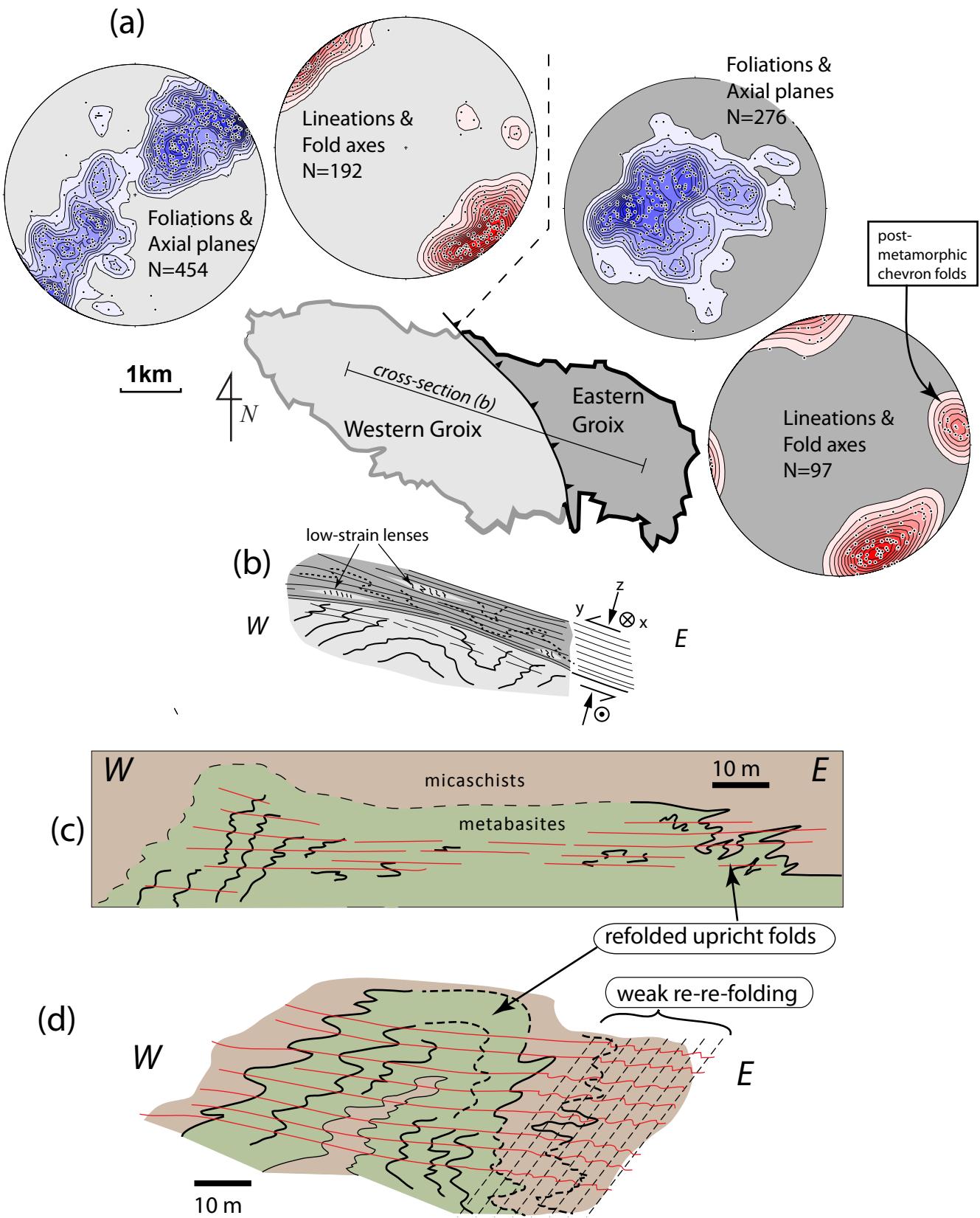


Fig. 10

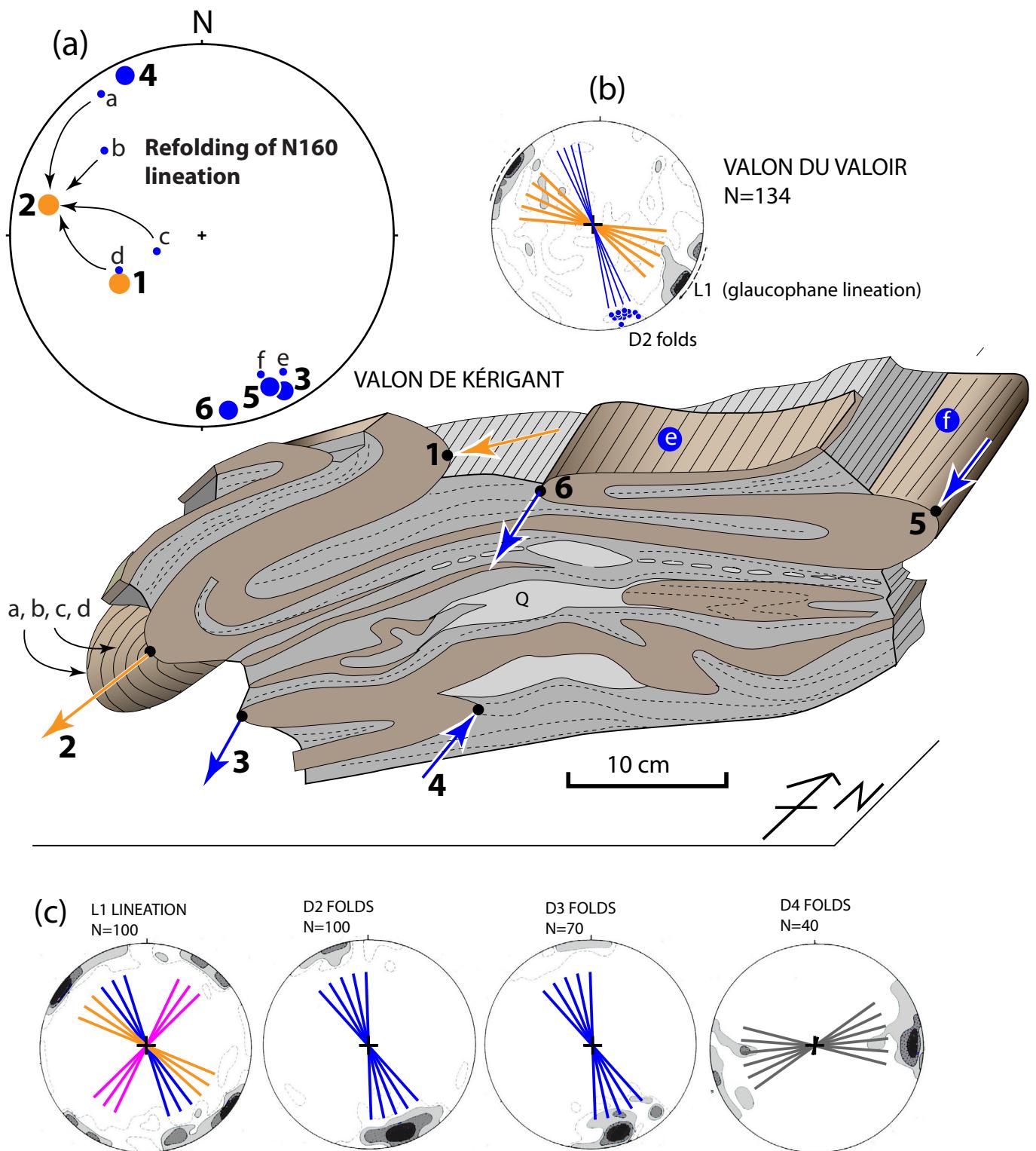


FIG. 11

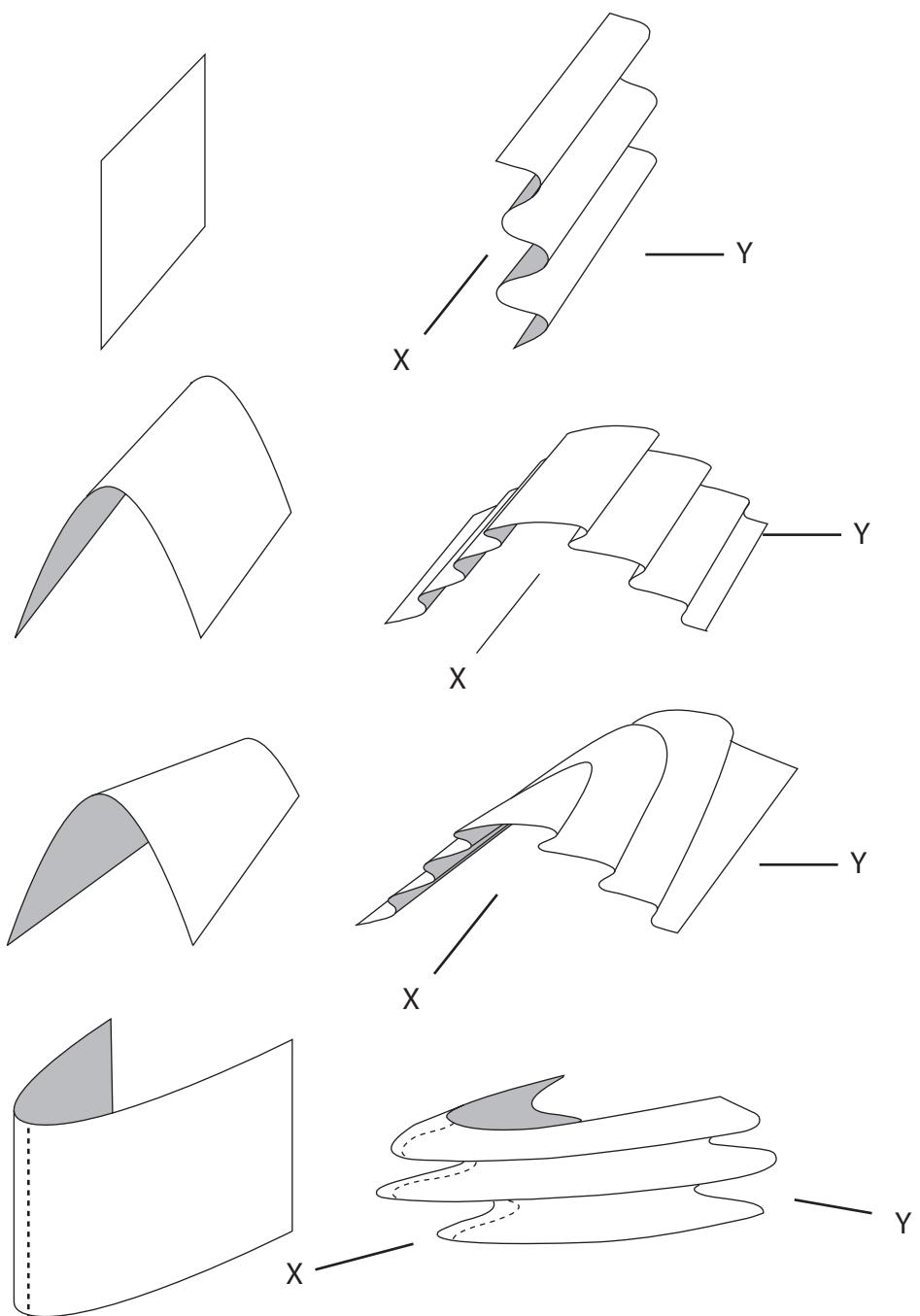


FIG. 12

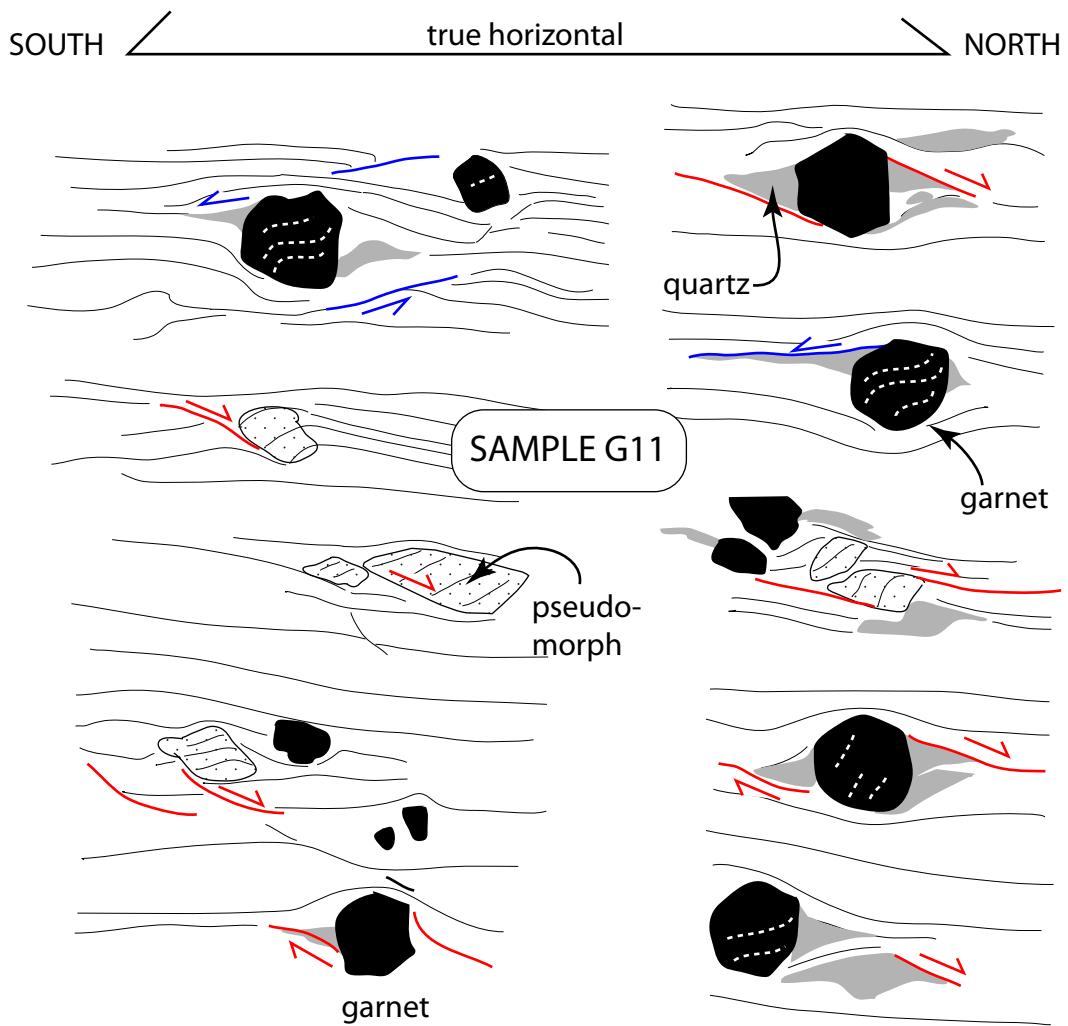


Fig. 13

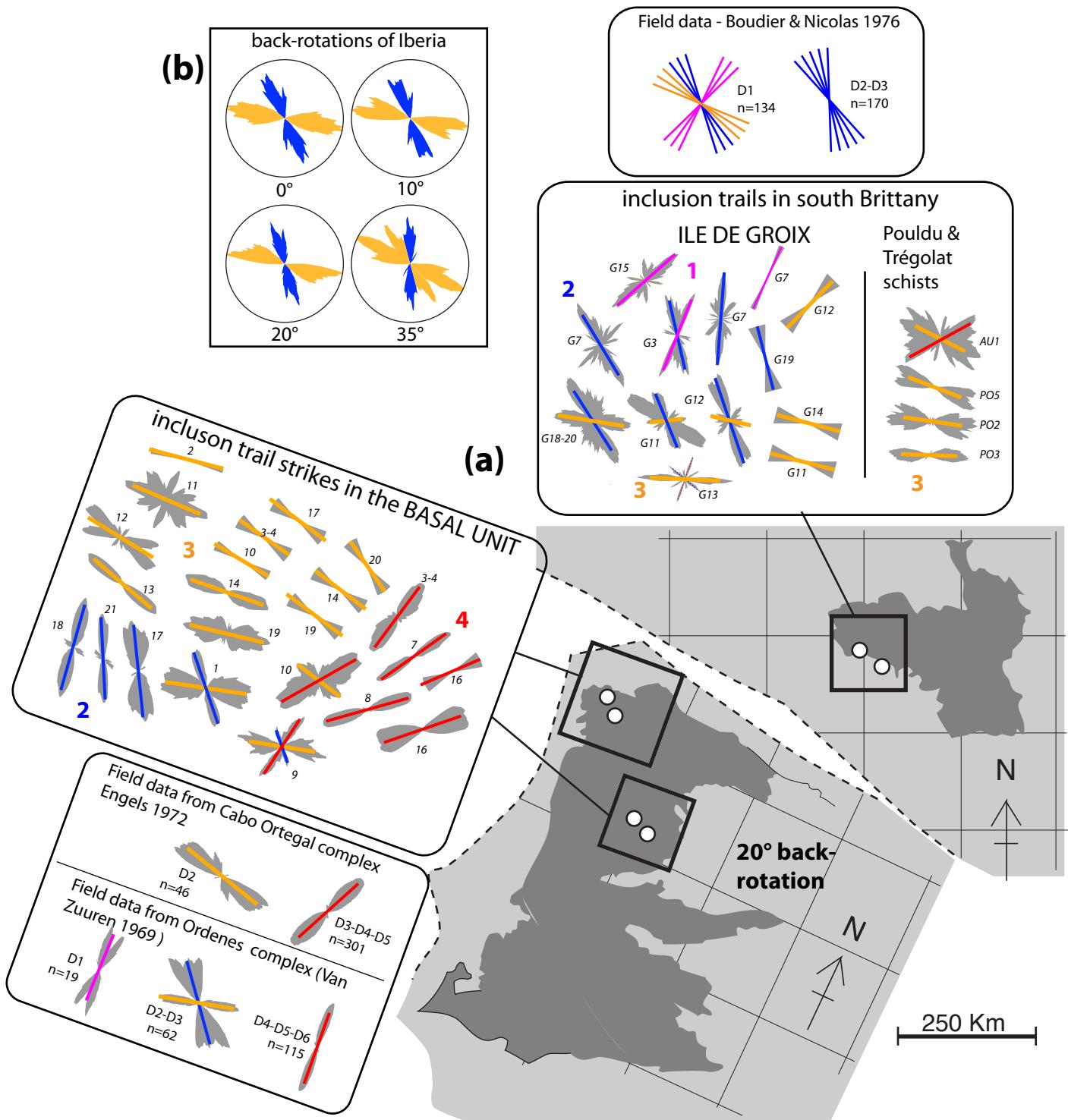


Fig. 14