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Abstract. Raman elastic thermobarometry has recently been applied in many petrological studies to recover the pressure-

temperature (P-T) conditions of mineral inclusion entrapment. Existing modelling methods in petrology either adopt an 

assumption of a spherical, isotropic inclusion embedded in an isotropic, infinite host, or use numerical techniques such as 10 

finite element method to simulate the residual stress and strain state preserved in the non-spherical anisotropic inclusion. 

Here, we use the Eshelby solution to develop an analytical framework for calculating the residual stress and strain state of an 

elastically anisotropic, ellipsoidal inclusion in an infinite, isotropic host. The analytical solution is applicable to any class of 

inclusion symmetry and an arbitrary inclusion aspect ratio. Explicit expressions are derived for some symmetry classes 

including e.g. tetragonal, hexagonal and trigonal. 15 

The effect of changing the aspect ratio on residual stress is investigated including quartz, zircon, rutile, apatite and diamond 

inclusions in garnet host. Quartz is demonstrated to be the least affected, while rutile is the most affected. For prolate quartz 

inclusion (c-axis longer than a-axis), the effect of varying the aspect ratio on Raman shift is demonstrated to be insignificant. 

When c/a=5, only ca. 0.3 cm-1 wavenumber variation is induced as compared to the spherical inclusion shape. For oblate 

quartz inclusions, the effect is more significant, when c/a=0.5 ca. 0.8 cm-1 wavenumber variation for the 464 cm-1 band is 20 

induced compared to the reference spherical inclusion case. We also show that it is possible to fit an effective ellipsoid to 

obtain a proxy for the averaged residual stress/strain within faceted inclusion. The difference between the volumetrically 

averaged stress of a faceted inclusion and the analytically calculated stress from the best-fitted effective ellipsoid is 

calculated to obtain the root mean square deviation (RMSD) for quartz, zircon, rutile, apatite and diamond inclusions in 

garnet host. Based on the results of 500 randomly generated (a wide range of aspect ratio and random crystallographic 25 

orientation) faceted inclusion, we show that the volumetrically averaged stress serves as an excellent stress measure and the 

associated RMSD is less than 2%, except for diamond with a systematically higher RMSD (ca. 8%). This expands the 

applicability of the analytical solution for any arbitrary inclusion shape in practical Raman measurements. 
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1. Introduction 30 

Raman elastic thermobarometry has been extensively used to recover the pressure and temperature (P-T) conditions of 

mineral inclusion entrapment, e.g. the mostly studied quartz-in-garnet inclusion-host pair (Ashley et al., 2014; Bayet et al., 

2018; Enami et al., 2007; Gonzalez et al., 2019; Kouketsu et al., 2014; Taguchi et al., 2016, 2019; Zhong et al., 2019). 

Recently, quartz-in-garnet elastic barometry has been calibrated with experiments by synthesizing almandine garnets and 

quartz inclusions at high P-T conditions and comparing the entrapment pressure recovered based on residual pressure 35 

measured in quartz with the pressure applied in experiments (Bonazzi et al., 2019; Thomas and Spear, 2018). In practice, 

most mineral inclusions, e.g. quartz, zircon and rutile, are elastically anisotropic, and the associated effect needs to be 

addressed for better constraining the entrapment P-T conditions. Existing mechanical models for elastic thermobarometry 

typically assume the case of a spherical isotropic inclusion entrapped in an infinite isotropic host (e.g. Angel et al., 2017b; 

Gillet et al., 1984; Guiraud and Powell, 2006; Rosenfeld and Chase, 1961; Zhang, 1998). In recent studies, finite element 40 

(FE) simulations were applied to study anisotropic inclusions entrapped in cubic hosts such as garnet (Alvaro et al., 2020; 

Mazzucchelli et al., 2019). In this approach, the residual strain preserved within a mineral inclusion is related to the 

stress/strain state of the system upon entrapment via a relaxation tensor (R) that needs to be pre-calculated using the FE 

method or other numerical techniques (Mazzucchelli et al., 2019).  

For an ellipsoidal, elastically anisotropic inclusion entrapped in an infinite isotropic host, an exact closed-form analytical 45 

solution is available for a long time (Eshelby, 1957; Mura, 1987). This solution has been widely applied to the earth science 

for many problems, such as viscous creep around inclusions (Freeman, 1987; Jiang, 2016); flanking structures (Exner and 

Dabrowski, 2010); elastic stress of inclusions at various scales (Meng and Pollard, 2014); microcracking and faulting (Healy 

et al., 2006), magma chamber induced deformations (Bonaccorso and Davis, 1999) etc. The advantage of such form is that 

no numerical software or programming is required and the solution can be obtained rapidly and precisely, with no numerical 50 

approximation error. The rapid calculation also permits in-depth, systematic stress and strain analysis of inclusion-host 

system or potentially Monte-Carlo simulation for uncertainty propagation. The procedure of calculating the residual stress in 

an ellipsoidal anisotropic inclusion embedded in an elastic, isotropic host is based on the equivalent eigenstrain method and 

the classical Eshelby solution (Eshelby, 1957; Mura, 1987). Recently, the Eshelby’s solution has been applied to exhumed 

mineral inclusion entrapped in a host and the result is compared to the finite element method (Morganti et al., 2020). Mineral 55 

inclusions were measured for their crystallographic orientation and shape via X-ray diffraction and tomography (Morganti et 

al., 2020), but the significance of the aspect ratio, shape and crystallographic orientation have not been studied in a 

systematic way. More importantly, the Eshelby’s solution only applies to perfectly ellipsoidal inclusions but natural mineral 

inclusions are faceted. Therefore, the uncertainty and limitation of using the Eshelby’s solution to natural faceted inclusions 

remain to be investigated. In this study, we attempt to explore in-depth the Eshelby’s solution to inclusion-host problem. A 60 

general analytical form is first presented in this paper (previous submission record available in Acknowledgements) 

following the Eshelby’s equivalent eigenstrain method (Mura, 1987, chapter 4) to calculate residual stress and strain of an 
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anisotropic inclusion in an isotropic host. For inclusions belonging to certain crystallographic symmetry, such as tetragonal, 

hexagonal and trigonal, simplified explicit expressions describing residual stress and strain are derived. The analytical 

formulas are cross validated against the numerical results obtained using a self-developed finite element code. Convergence 65 

tests are successfully performed to show the correspondence of the numerical (FE) and analytical solution. In-depth analysis 

of the effects due to: 1) inclusion elastic anisotropy, 2) inclusion aspect ratio, 3) relative orientation between the inclusion 

crystallographic and geometrical principal axis, are performed to show how they affect the application of elastic 

thermobarometry. The MATLAB code has also been made available together with the submission. 

One major problem of using the Eshelby’s solution to mineral inclusion is that natural inclusions are faceted in shape, which 70 

leads to a heterogeneous residual stress field (e.g. Chiu, 1978; Mazzucchelli et al., 2018). To resolve this issue, we use our 

self-developed 3D finite element code to simulate the residual stress distribution within faceted inclusions of varying shapes. 

Fitting an arbitrary 3D shape with effective ellipsoid is a common practice in image analysis and microstructural research 

(e.g. Ghosh and Dimiduk, 2011). We explore the possibility of using an effective ellipsoid to approximate the shape of a 

faceted inclusion. The residual stress obtained from the analytical solution based on the best-fitted effective ellipsoid is used 75 

as a proxy to represent the volumetrically averaged stress within the faceted inclusion. By inspecting the numerical (FE) and 

analytical solutions, we have found that for most mineral inclusions, e.g. quartz, zircon, apatite and rutile, the volumetrically 

averaged stress represents very well the stress state of arbitrarily faceted inclusions. This may potentially provide useful 

guides to the future applications of elastic thermobarometry for any natural faceted mineral inclusions.  

2. Method 80 

2.1 Anisotropic inclusion embedded in isotropic host 

We consider an anisotropic, ellipsoidal solid inclusion entrapped in an isotropic, infinite host at high P-T conditions. For a 

fully entrapped spherical inclusion, the assumption of an infinite host is justified when the distance between the inclusion 

and host grain outer boundaries, such as the thin-section surface, is more than 3 times the inclusion radius (Mazzucchelli et 

al., 2018; Zhong et al., 2018). The principal axes of the inclusion are aligned along the Cartesian coordinates x, y and z, and 85 

their lengths are arbitrary. Upon entrapment at depth, it is considered that the inclusion and host are subject to the same 

stress field. The entrapment stress may be either hydrostatic or non-hydrostatic but it is treated to be homogeneous during the 

inclusion growth within the host grain or the overgrowth of the inclusion by the host grain. At this stage, the lattice strains of 

the inclusion and host are denoted by εi
incl and εi

host, which are measured with respect to the reference room conditions. The 

Voigt notation is applied here (Voigt, 1910). The entrapment lattice strains εi
incl  and εi

host  incorporate both pressure 90 

(compressibility) and temperature (thermal expansivity) effects. They can be obtained by relating the lattice parameters 

measured at high P-T conditions to their reference values under room P-T condition. For inclusions of cubic, tetragonal and 

orthorhombic symmetry classes, the three crystallographic axes a, b and c are mutually perpendicular to each other, so that 

the lattice strain εi
incl can be readily expressed as: 



4 

 

 εxx
incl =

𝑎

𝑎0
− 1  

εyy
incl =

𝑏

𝑏0
− 1  

εzz
incl =

𝑐

𝑐0
− 1  

 

(1) 

where e.g. 𝑎0  is the reference lattice parameter measured at room conditions and 𝑎 is the lattice parameter measured at 95 

entrapment conditions. Note that for hexagonal and trigonal minerals (e.g. quartz), if the symmetry of lattice parameters is 

maintained at entrapment conditions (e.g. for quartz we keep a=b, 𝛼 = 𝛽 = 90o, 𝛾 = 120o), Eq. 1 still holds. For lower 

symmetry systems with non-orthogonal crystallographic axes (triclinic and monoclinic systems), it’s not possible to align all 

the crystallographic axes parallel to the Cartesian coordinates and the angles of 𝛼, 𝛽 and 𝛾 may also change at entrapment 

condition compared to reference room condition. Therefore, transformation is needed to convert strains from the 100 

crystallographic axes in a unit cell to the Cartesian coordinate system for modelling the mechanical interaction between the 

inclusion and host. This can be done by using existing software such as PASCal (Cliffe and Goodwin, 2012), Win_Strain 

(http://www.rossangel.com/home.htm), and STRAIN (Ohashi and Burnham, 1973). A self-written MATLAB code is 

provided also in the Appendix following the Ohashi’s method (Ohashi and Burnham, 1973) to calculate the lattice strain 

based on the changes of lattice parameters. The results are the same with all existing software. For the case of an isotropic 105 

host under hydrostatic entrapment stress, the initial (entrapment) strain is expected to be isotropic and the principal strain 

components are simply one third of the volumetric strain, which can be directly obtained from the PVT relationship. 

To simulate the exhumation of the inclusion-host system to room P-T conditions, we first unload the system by applying the 

strain opposite to the initial host strain state, i.e. −εi
host (Fig. 1B), a procedure which leads to a stress- and strain-free host at 

room conditions. This is an intermediate step that ignores elastic interaction between the inclusion and host, and the 110 

inclusion will possess a virtual strain εi
incl − εi

host, as the internal inclusion-host boundary experiences the unloading strain 

−εi
host. At this moment, the stress state of the inclusion can be readily expressed using the linear-elastic constitutive law 

as: 𝐶ij
incl(εj

incl − εj
host), where 𝐶ij

incl is the elastic stiffness tensor of the inclusion at room T. Einstein summation is used. It is 

straightforward to note that mechanical equilibrium is not satisfied at this intermediate step because, in general, there is a 

stress jump between the stressed inclusion and the stress-free host. Using the proposed approach, solving the original 115 

mechanical problem is reduced to superposing the homogeneous unloading strain field −εi
host with a non-uniform solution 

for an initially stressed and strained inclusion embedded in a stress and strain free host at room T. The latter one is 

practically an eigenstrain problem (Eshelby, 1957). The thermal effects on the elastic stiffness tensor 𝐶ij
incl have no influence 

on the superposed deformation field driven by the eigenstrain load due to the mismatch between the lattice strains of the 

inclusion and the host. The stress and strain of the inclusion that serve as driving force for elastic interaction are as follows: 120 

http://www.rossangel.com/home.htm
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 εi
∗ = εi

incl − εi
host  

𝜎i
∗ = 𝐶ij

incl(εj
incl − εj

host)  

(2) 

where εi
∗ are referred to as inclusion eigenstrains and 𝜎i

∗ are eigenstresses (Mura, 1987). The eigenstresses correspond to the 

stress that a soft inclusion would experience if it was perfectly confined by a stiff host, i.e. the host was not allowed to 

deform elastically. The eigenstrain and eigenstress are the functions of the lattice strain of inclusion and host at entrapment 

conditions (taking room conditions as reference state) and the stiffness tensor of the inclusion at room P-T condition.  

Because mechanical equilibrium is not satisfied for the stressed inclusion embedded in a stress-free host, elastic deformation 125 

will occur (stage shown in Fig. 1b to Fig. 1c). The amount of elastic deformation that affects the inclusion with a pre-strain 

εi
incl − εi

host in a stress-free host to mechanical equilibrium is denoted as εi. The strain εi is shown in Fig. 1b to 1c, and the 

pre-strained state with strain εi
incl − εi

host is taken as the reference state for this elastic deformation field. By adding the strain 

εi to the inclusion, we obtain the final residual stress and strain state as follows: 

 εi
res = εi

incl − εi
host + εi  

𝜎i
res = 𝐶ij

incl(εj
incl − εj

host + εi)  

(3) 

where εi
res and 𝜎i

res are the final residual strains and stresses of the inclusion, which are the true physical stress and strain the 130 

inclusion experiences. This final stage is shown in Fig. 1c. Finding the strain εi will solve the anisotropic inclusion problem. 

This will be sought in the next section using the equivalent eigenstrain method and Eshelby’s solution. 

2.2 Solving the problem with Eshelby’s solution 

The Eshelby’s solution treats a homogeneous, ellipsoidal, isotropic inclusion embedded in an infinite isotropic host (Eshelby, 

1957). Following Eshelby (1957), we replace the inclusion-host system by an isotropic homogeneous space with elastic 135 

tensor 𝐶ij
host and load the ellipsoidal inclusion region with an equivalent eigenstrain 𝑒i

∗ (to differentiate from the previously 

introduced eigenstrain term εi
∗ due to lattice strain mismatch). Without elastic interaction, the inclusion would experience a 

stress −𝐶ij
host𝑒j

∗ under perfect confinement (e.g. a positive eigenstrain (expansion) leads to compressive stress, which is 

negative). After elastic interaction, the inclusion strain and stress under mechanical equilibrium due to a constant eigenstrain 

(eigenstress) load applied to an ellipsoidal region of otherwise homogeneous elastic space, can be expressed as follows 140 

(Eshelby, 1957; Mura, 1987): 

 𝜀i
res = Sij𝑒j

∗  

𝜎i
res = 𝐶ij

host(Sjk𝑒k
∗ − 𝑒j

∗)  

(4) 
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where Sij  is the Eshelby’s tensor, which gives the one-to-one mapping between the equivalent eigenstrain ( 𝑒j
∗ ) and a 

homogeneous residual strain (𝜀i
res) within the inclusion region. The Eshelby’s solution is manifested in this tensor, which is 

only a function of the inclusion shape and the Poisson ratio (𝜈) of the isotropic host. For a spherical inclusion, Sij  is 

symmetric and can be significantly simplified as follows: 145 

 S11 = S22 = S33 =
7−5𝜈

15(1−𝜈)
  

S12 = S23 = S13 =
5𝜈−1

15(1−𝜈)
  

S44 = S55 = S66 =
4−5𝜈

15(1−𝜈)
  

 

(5) 

All the other components are zero. For general ellipsoidal inclusions, the Sij tensor is given in the Appendix and a MATLAB 

script for calculating the Sij tensor is provided in the supplementary materials (see Appendix for more details for using the 

script). 

Following the equivalent eigenstrain method (Mura, 1987, chapter 4), one may appropriately choose the equivalent 

eigenstrain 𝑒j
∗  to let Sij𝑒j

∗  in Eq. 4 equals the strain εi  in Eq. 3 that drives the pre-strained anisotropic inclusion into 150 

mechanical equilibrium with stress-free isotropic host, i.e. we have: 

 εi = Sij𝑒j
∗  (6) 

By doing so, the stresses in the original anisotropic heterogeneity and the equivalent isotropic inclusion will be equal. This is 

because the host is stressed (and strained) by the same amount following Eq. 6, which leads to the same inclusion stress 

because the traction is matched between inclusion and host. By replacing the strain εi = Sij𝑒j
∗ into 𝜎i

res in Eq. 3 and equating 

the stresses 𝜎i
res in Eq. 3 with Eq. 4, we obtain the following relation: 155 

 𝜎i
res = 𝐶ij

incl(εj
incl − εj

host + Sjk𝑒k
∗) = 𝐶ij

host(Sjk𝑒k
∗ − 𝑒j

∗)  (7) 

The equivalent eigenstrain 𝑒k
∗ can be solved from this equation. By substituting the obtained 𝑒k

∗ back into Eq. 7, we may 

concisely express the final result for the residual strain and stress of the anisotropic inclusion embedded in isotropic infinite 

host:  

 

 

εi
res = (Iij − Mij)εj

∗  

𝜎i
res = 𝐶ik

incl(Ikj − Mkj)εj
∗  

(8) 

where Iij is the identity matrix. The dimensionless matrix Mkj can be expressed as follows: 
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Mij = [𝐶ik

incl − 𝐶il
host(Ilk − 𝑆lk

−1)]
−1

𝐶kj
incl  

(9) 

The dimensionless matrix Mij depends on the elastic stiffness properties of the inclusion and the host as well as the aspect 160 

ratio of the inclusion manifested by the Eshelby’s tensor. The components of this matrix are close to zero for a stiff host or a 

soft inclusion (no elastic relaxation so that 𝜎i
res → 𝐶ij

inclεj
∗) and it approaches the identity matrix for an infinitely soft host (in 

this case, 𝜎i
res → 0). An extreme case is represented by gas/liquid inclusion whose 𝐶ij

incl  is low compared to the host 

stiffness, thus this dimensionless matrix Mij approaches zero and the isochoric assumption for the gas/liquid inclusion is 

justified. The Mij matrix can be readily calculated by using the published elastic stiffness tensor at room P-T conditions (e.g. 165 

Bass, 1995). A MATLAB script is given in the supplementary data to perform this task (details of using the code can be 

found in Appendix) 

2.3 Back-calculating eigenstrain terms based on residual inclusion strain 

The wavenumber shifts of Raman peaks are induced by lattice strain. By measuring wavenumber shift of the inclusion in a 

thin-section, it is possible to recover the residual strain preserved within the inclusion (Angel et al., 2019; Murri et al., 2018). 170 

This can be done by using the Grüneisen tensor. Therefore, εi
res can be obtained with e.g. least-square fitting method (Murri 

et al., 2018) and the residual stress can be readily expressed as 𝜎i
res = 𝐶ij

inclεj
res. 

By inverting the right-hand matrix in Eq. 8, the eigenstrain terms can be expressed as a function of residual strain εi
res: 

 εi
∗ = {I − (Ijl − Sjl

−1)−1𝐶ij
host−1

𝐶lk
incl} εk

res  (10) 

For tetragonal or hexagonal minerals, e.g. zircon, rutile and apatite, the stiffness tensor comprises six independent 

components: 𝐶11
incl, 𝐶12

incl, 𝐶13
incl, 𝐶33

incl, 𝐶44
incl, 𝐶66

incl. For trigonal symmetry such as in the case of 𝛼-quartz, another independent 175 

component 𝐶14
incl = −𝐶24

incl is also present. For all these mineral inclusions, and for axially symmetric residual strains, εi
∗ can 

be significantly simplified as follows (εx
∗ = εy

∗ ≠ ε𝑧
∗): 

 εx
∗ = εx

res +
5(1−𝜈)

2(7−5𝜈)
[(𝐶1̅1

incl + 𝐶1̅2
incl)εx

res + 𝐶1̅3
inclε𝑧

res] −
3−5𝜈

4(7−5𝜈)
(2𝐶1̅3

inclεx
res + 𝐶3̅3

inclε𝑧
res)  

εz
∗ = εz

res −
3−5𝜈

2(7−5𝜈)
[(𝐶1̅1

incl + 𝐶1̅2
incl)εx

res + 𝐶1̅3
inclε𝑧

res] +
13−15𝜈

4(7−5𝜈)
(2𝐶1̅3

inclεx
res + 𝐶3̅3

inclε𝑧
res)  

(11) 

where 𝐶i̅j
incl = 𝐶ij

incl/𝐺 is the dimensionless inclusion stiffness tensor scaled by the host shear modulus. Interestingly, for 

trigonal 𝛼-quartz inclusions (𝐶14
incl ≠ 0), the stiffness tensor component 𝐶14

incl is not present in the expression given by Eq. 11. 

In fact, the terms in the brackets are simply the residual stress components: 180 
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 εx
∗ = εx

res +
5(1−𝜈)

2𝐺(7−5𝜈)
𝜎x

res −
3−5𝜈

4𝐺(7−5𝜈)
𝜎z

res  

εz
∗ = εz

res −
3−5𝜈

2𝐺(7−5𝜈)
𝜎x

res +
13−15𝜈

4𝐺(7−5𝜈)
𝜎z

res  

(12) 

By substituting the stiffness tensor components and the measured residual strains, the eigenstrains can be directly calculated. 

The equation above thus allows estimation of the entrapment (hydrostatic or non-hydrostatic) stress (or strain) conditions by 

known the residual stress and strain conditions of the inclusion. 

3. Cross validation against finite element solution 

We have validated our implementation of the proposed analytical framework against independent finite element (FE) 185 

solutions. A self-written 3D FE code is used to validate the presented analytical solution (Dabrowski et al., 2008; Zhong et 

al., 2018). For validation purposes, we used spheroidal quartz inclusions in an almandine garnet host. Adaptive tetrahedral 

computational meshes, with the highest resolution within and around the inclusion, are generated with Tetgen software (Si, 

2015). The anisotropic elastic properties of quartz inclusion at room T are based on Heyliger et al. (2003). The host garnet 

elasticity is first treated as isotropic based on Jiang et al. (2004). The model length is set as 10 times (denoted as *10 below) 190 

the inclusion’s diameter (for spheroidal inclusion case, the model domain is a box where the side lengths are proportional to 

the corresponding axes lengths of the inclusion). For the model validation, we adjust the eigenstrain term to generate 

precisely 1 GPa compressive residual stress for spherical inclusion in infinite garnet host. This is done by letting 𝜎xx
res =

𝜎yy
res = 𝜎zz

res = −1 GPa  hydrostatically and substituting 𝜎i
res  into Eq. 8 to back-calculate the eigenstrain εj

∗ . Then, the 

spheroidal inclusion is loaded by the calculated eigenstrain εj
∗ in the FE code, and the residual stress is compared to results 195 

obtained by the presented analytical solution. The choice of eigenstrains (either loading the inclusion to 1 GPa pressure or 

any other residual stress value) is not influential for the validation purposes, as long as both the analytical and FE methods 

take the same eigenstrains. This and other successful, more general tests with arbitrary aspect ratio and eigenstrains, have 

been performed but are not reported here. 

In Fig. 2a, the numerically and analytically obtained residual stresses are plotted together as a function of the aspect ratio of 200 

the tested spheroidal inclusions. In Fig. 2b, the difference is plotted as a function of element count and boundary distance 

(*5, *10 and *20). It is clearly shown that the two sets of solutions converge with increasing the number of mesh elements 

and the computational box size. The success of this convergence test validates the correctness of our presented analytical 

model (also FE code) for an anisotropic ellipsoidal inclusion entrapped in an isotropic space.  

In addition, we have also tested the effect of applying cubic elastic stiffness tensor of almandine from Jiang et al. (2004) and 205 

compared the residual stress with the results obtained for an elastically isotropic garnet (blue dots in Fig. 2a). The difference 

in residual stresses obtained with FE method using anisotropic garnet host and the analytical solution (implicitly assuming 

isotropic host) is less than 0.001 GPa. This suggests that it is not necessary in practice to consider the anisotropy of garnet 
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host. This has been also reported in e.g. Mazzucchelli et al. (2019). It was suggested that the elastic anisotropy of cubic 

garnet has no significant impact on the result of elastic barometry. Thus, effective isotropic elastic properties of garnets may 210 

be used to model the inclusion-host elastic interaction. 

4. Model applications 

4.1 Effect of inclusion aspect ratio on residual stresses 

In Eq. 8, the aspect ratio of the inclusion only affects the Eshelby tensor. Here, we choose some common inclusions in 

metamorphic garnets, including quartz, apatite, zircon and rutile as examples to test the effect of inclusion aspect ratio on 215 

residual stresses. The data sources of elastic stiffness tensors of the studied minerals are listed in the caption of Fig. 3. Here, 

we first focus on spheroidal inclusions, and let the crystallographic c-axis coincide with the geometrical z-axis of the 

inclusion. The inclusion aspect ratio is controlled by varying the lengths of the principal z- and x-(y)-axes, and it is denoted 

by c/a ratio for simplicity in the following text (note it is not the ratio of the lattice parameters c and a). 

To isolate the effect of the inclusion aspect ratio, the eigenstrains for various inclusion minerals are all set to create 1 GPa 220 

compressive hydrostatic residual stress for the reference spherical inclusion embedded in an isotropic, infinite garnet host, 

which is the same approach as in the previous “cross-validation” section. Therefore, the stress variations shown in Fig. 3 

only represent the mechanical effect purely due to varying the geometrical aspect ratio c/a, and they allow direct comparison 

among different common mineral inclusions in metamorphic garnets.  

Among all the tested minerals, the residual stress in quartz inclusions is the least sensitive to variations in aspect ratio. For 225 

prolate quartz inclusion (c/a>1), the change of 𝜎x
res due to shape variation is within 0.1 GPa and the change of 𝜎z

res is within 

0.2 GPa. The effects of varying the aspect ratio of prolate zircon and apatite inclusions are similar, with variation of 𝜎x
res 

from the reference spherical case reaching up to ca. 0.12 GPa and 𝜎𝑧
res up to ca. 0.2 GPa.  

The residual stress in rutile is the most sensitive to aspect ratio ariations. With increasing c/a ratio from 1, 𝜎x
res in prolate 

rutile inclusions increases up to ca. 0.2 GPa and 𝜎𝑧
res decreases by ca. 0.6 GPa. This is relevant for practical measurement as 230 

rutile often forms needle-shaped crystals.  

The pressure (negative mean stress) is significantly less sensitive to inclusion aspect ratio variations. For prolate inclusions 

of quartz, zircon and apatite, the residual pressure differs from the reference level (spherical inclusion shape) by only ca. 

0.01 GPa when the aspect ratio c/a is stretched up to 4. For oblate inclusion (c/a<1), the pressure variation is typically below 

0.1 GPa.  235 

The residual stress in mineral inclusions can be easily converted into residual strain, which can be directly translated into 

Raman shifts (Angel et al., 2019; Murri et al., 2018). The effects of varying the aspect ratio of a quartz inclusion on Raman 

wavenumber shifts (see Fig. 4) are determined using the calculated residual strain components and the Grüneisen tensor 

(Murri et al., 2018). The same model settings are applied, with 1 GPa compressive hydrostatic residual stress characterizing 
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the case of a spherical quartz inclusion. It is shown that for prolate inclusions, aspect ratio only introduces minor effects on 240 

the Raman shifts. For example, varying the c/a ratio between 1 and 5 induces a wavenumber variation of less than 0.3 cm-1 

for the 464 cm-1 Raman peak. This is in most cases insignificant from the viewpoint of practical Raman measurements. The 

b/a ratio variations are also shown to be insignificant for the spectral shifts, with changes less than 0.2 cm-1 for the 464 cm-1 

peak. For oblate inclusion, the impact of inclusion shape is shown to be more significant. For the 464 cm-1 peak, the change 

of wavenumber shift can reach 0.8 cm-1 for strongly oblate inclusion (c/a=0.25), and it is ca. 0.3-0.4 cm-1 for less oblate 245 

inclusion (c/a=0.5).  

Our results show good consistency with the Raman data reported in Kouketsu et al. (2014), where quartz inclusions with 

different aspect ratio were measured and no significant variation on spectral shift was found.  

4.2 Effect of inclusion crystallographic orientation with respect to long-axis 

In nature, the crystallographic axes of an inclusion are not necessarily aligned parallel to its geometrical axes. In this section, 250 

the effect of varying the crystallographic orientation with respect to the geometrical axes on the resulting Raman 

wavenumber shift is systematically studied using the proposed analytical model. Here, we reorient the crystallographic c-

axis of a spheroidal quartz inclusion from its long axis (Fig. 5) between 0 (crystallographic c-axis parallel to the geometrical 

long axis) and 90 degrees (c-axis perpendicular to the long axis). The same eigenstrain is applied for quartz as from previous 

section. The elastic stiffness tensor of quartz is from Heyliger et al., (2003) and of isotropic almandine garnet is from Milani 255 

et al., (2015). The predicted Raman spectral shifts are calculated based on the Grüneisen tensor calibrated by Murri et al. 

(2018).  

The results are shown in Fig. 5. For an aspect ratio of 2, the 464 cm-1 band varies ca. ±0.2 cm-1 when the orientation of the 

crystallographic c-axis is varied between the long and the short geometrical axis. The effect of crystallographic orientation 

(c-axis) on the Raman shifts increases towards higher aspect ratio. For an aspect ratio of 5, the 464 cm-1 band varies ca. ±0.4 260 

cm-1. Similarly, for 206 and 128 cm-1 bands, the maximal wavenumber variations compared to the reference case of a 

spherical inclusion are ca. 0.8 and 0.3 cm-1, respectively. The results suggest that the crystallographic orientation of a quartz 

inclusion with respect to its geometrical axes has no significant impact on the predicted Raman spectral shift, as long as the 

geometrical aspect ratio is not higher than 2-3.  

4.3 Effect of faceted inclusion shape 265 

The analytical solution presented in this study is derived for an ellipsoidal anisotropic inclusion. However, the shape of a 

natural mineral inclusion may exhibit corners, edges and facets, which results in stress concentration effects and may have an 

impact on the overall level of the residual stress. 

Here, we explore the possibility of using an effective ellipsoid to fit the shape of a faceted inclusion. We use the equivalent 

aspect ratio to calculate the residual stress/strain based on the presented analytical solution for ellipsoidal inclusions. Fitting 270 
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an arbitrary, irregular shape using an ellipsoid in 3D (or an ellipse in 2D) is a common practice in image analysis (Chaudhuri 

and Samanta, 1991; Li et al., 1999). A pixelated 3D image is used to calculate the second-order moment of the object shape 

to minimize the mismatch between the 3D irregular inclusion shape and the effective ellipsoid. The method allows for 

obtaining the lengths and orientations of the major, minor and intermediate axes of the effective ellipsoid (method described 

in Appendix and a MATLAB code is provided in supplementary data to perform this task).  275 

Similar to previous sections, we use the eigenstrain components that can load the reference spherical inclusion of any given 

mineral embedded in isotropic almandine garnet host into 1 GPa compressive residual stress. The tested inclusion shapes 

include: cylinder, tetrahedron, cuboid, octahedron, hexagonal prism, and icosahedron. To vary the aspect ratio, the inclusion 

shape is stretched in the z-axis direction, which is parallel to the crystallographic c-axis as shown in Fig. 6.  

We study five inclusion minerals: quartz (elastic tensor from Heyliger et al., 2003), zircon (Bass, 1995), rutile (Wachtman et 280 

al., 1962), fluorapatite (Sha et al., 1994), and diamond (Bass, 1995). Almandine garnet is taken as the host grain (Milani et 

al., 2015). For each FE mesh, the size of the computational box is set more than 10 times the inclusion size and adaptive 

mesh is generated with highest mesh resolution within and close to the inclusion. 10-node tetrahedron elements with 

quadratic (second-order) shape (interpolation) functions for the displacement field are used. In total, there are ca. 2 million 

elements per model (numerical error less than 0.0003 based on benchmark results in Fig. 2).  285 

The results of numerical simulations are shown in Fig. 6. The effective aspect ratio for all different inclusion shapes together 

with the residual stress components are given in supplementary data. The residual stress in non-ellipsoidal inclusions based 

on FE model is heterogeneous and we monitor the stress state: 1) at the centroid (shorten as CT) point (red dots in Fig. 6), 2) 

as the volumetric average (VA) within the entire inclusion (orange dots)  

The root mean square deviation (RMSD) is calculated by comparing the residual stress from the finite element solutions 290 

based on various stress evaluation scheme (CT/VA) and analytical model using the best-fitted effective aspect ratio (Table 

1). It is clearly shown that the VA stresses of quartz, zircon, rutile and apatite inclusion are remarkably similar to the 

analytical results, with RMSD generally lower than 0.02-0.03 GPa (ca. 2%). From CT to VA, a significant improvement on 

RMSD of a factor of 2 to 3 is obtained.  

The only exception among the studied minerals is diamond, where the RMSD is higher than in the case of other inclusions, 295 

which are elastically softer. This is consistent with the high “geometrical correction factor” reported for diamond in 

Mazzucchelli et al. (2018). However, as an improvement from Mazzucchelli et al. (2018), where the geometrical correction 

factor must be applied for all inclusion phases to correct the residual stress due to shape effects, we have found that the stress 

variation due to varying inclusion shape for minerals such as quartz, zircon, apatite and rutile can be satisfactorily 

approximated by using the proposed approach of the equivalent ellipsoidal inclusion, with RMSD generally lower than 3-4% 300 

for most of the studied inclusion shapes. To achieve this improved and satisfactory level of prediction: 1) we have used best-

fit ellipsoids to better approximate inclusion shapes, instead of a crude measure of the length/width ratio of e.g. cuboidal or 
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cylindrical inclusion; 2) we have considered not only the centroid point of the inclusion (which indeed yields a larger 

RMSD), but also the volumetric average (VA) for the residual stress state sampled during stress measurements, which 

interestingly provides a significantly better approximation for the residual stress/strain state of the tested mineral inclusions. 305 

This is practical and useful in Raman measurement because it is possible to perform either 1) multiple-point averaging 

during Raman analysis within the entire inclusion, or 2) defocus the laser beam to take into account a larger volume for the 

inclusion strain heterogeneity. For tiny inclusions (size of ca. 1~3 μm) and for a typical in-plane laser beam diameter of ca. 

1~2 μm, the stress/strain averaging is, in fact, implicitly performed during measurements,. Based on FE analysis, it is clearly 

shown that the volumetrically averaged stress within the inclusion, rather than centroid point measurements, may provide a 310 

closer match compared to the stress predicted based on the presented analytical solution developed for the best-fitted 

ellipsoid. This effect becomes statistically more significant when the faceted inclusion shape and crystallographic orientation 

are independent as demonstrated in the next section. 

4.4 Irregularly faceted shapes and random crystallographic orientation 

In nature, the shape of mineral inclusions is not necessarily highly symmetric as treated in the previous section and the 315 

crystallographic orientation can be generally random with respect to the principal geometric axes of the inclusion. Here, a 

MATLAB script is used to generate completely random 3D inclusion shapes by prescribing random vertices (non-coplanar 5 

to 24 vertices) and connecting them to form a closed 3D shape. Delaunay triangulation is used to form 3D volumes enclosed 

by the triangular faces. “Tetgen” software is again used to generate unstructured tetrahedron computational meshes fitted to 

the inclusion surface. The effective aspect ratio (geometrical longest to shortest axis of the best-fitted effective ellipsoid) is 320 

controlled to be within 6. In total, we have generated ca. 500 random 3D inclusion shapes and performed finite element 

simulation for the previously studied set of anisotropic inclusion minerals (quartz, zircon, rutile, apatite and diamond) to 

calculate the elastic stress field. The generated random shapes are plotted in supplementary data (see the .gif animation to 

illustrate 100 selected examples of 3D inclusion shapes). We further allow the crystallographic c-axis to be pointing along 

the orientation randomly chosen parallel to either the longest, intermediate or shortest geometrical axis (best-fitted using the 325 

method of Chaudhuri and Samanta, 1991). The FE results are compared to the analytical results based on the effective 

ellipsoidal inclusion with the same crystallographic orientation. This Monte-Carlo type FE simulation allows us to 

investigate how much stress deviation can be generated for irregularly faceted inclusion shapes with random crystallographic 

orientation, and how accurate the analytical approach based on the best fitted ellipsoid is to describe the residual stress state 

in an irregularly shaped inclusion, depending on the stress sampling scheme (CT/VA). The results are plotted in Fig. 7 (raw 330 

data of FE simulations can be found in supplementary data).  

For centroid point (CT), quartz inclusions have the lowest RMSD of ca. 0.03 GPa for all the three normal stress components 

and diamond inclusions have the highest RMSD of ca. 0.11 GPa. In general, CT stress shows a systematically higher RMSD 

than VA stresses. When the stress is volumetrically averaged within the inclusion (VA), the RMSD dramatically drops to a 

nearly perfect match between the FE results for irregularly faceted inclusion and the analytical prediction based on the best 335 
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fitted ellipsoid. The RMSD of volumetrically averaged residual stresses (VA) of quartz, zircon, rutile and apatite are all 

lower than ca. 0.02 GPa (2%) and it shows no obvious dependence on the effective aspect ratio even for the extremely 

elongated or flattened inclusions (see the near-perfect alignment of the orange dots and 1-to-1 ratio line in the middle and 

bottom panel of Fig. 7).  

Thus the volumetric average of the residual stress within the inclusion provides a sufficiently reliable match between the 340 

exact results for irregularly shaped inclusions and the approximate predictions based on the analytical solution. This shows 

that it is possible to approximate the stress/strain state of the inclusion using an effective ellipsoid shape for the tested 

inclusions including quartz, zircon, rutile and apatite. Only diamond has a notably higher level of RMSD, exhibiting a 

systematic discrepancy between the exact numerical and approximate analytical results. This indicates that using the 

proposed equivalent analytical model for diamond inclusion may lead to a potential overestimation of the residual stress by 345 

ca. 0.07 GPa (7%). However, this RMSD may still be acceptable as a crude estimate or may serve as an upper limit for 

elastic thermobarometry. 

5. Non-linear elasticity at room T 

The presented model builds on a linear elastic constitutive law at room temperature, i.e. 𝜎i
res = 𝐶ij

incl𝜀j
res. This assumption is 

appropriate when the residual stresses/strains of the inclusion are low, thus the application of a constant anisotropic stiffness 350 

tensor 𝐶ij
incl determined at room P-T conditions introduces no significant errors. For highly stressed mineral inclusions, e.g. 

inclusions in diamond host from mantle xenoliths where the residual inclusion pressure may reach several GPa, this 

approximation may lead to non-negligible deviations. To eliminate such error, the stiffness tensor 𝐶ij
incl needs to be treated as 

a function of either non-hydrostatic stresses or anisotropic strains, i.e. 𝐶ij
incl(𝜎i

res) or 𝐶ij
incl(𝜀i

res). In experimental studies, 

𝐶ij
incl is often described as a function of hydrostatic pressure, e.g. Bass (1995). It is beyond the scope of this paper to develop 355 

a method of fitting 𝐶ij
incl  with respect to the individual stress tensor components. If the stiffness tensor 𝐶ij

incl  can be 

parameterized by 𝜎i
res or simply as a function of pressure as a first-order approximation, the residual stresses/strains are 

readily calculated by iterating Eq. 8, while updating the 𝐶ij
incl tensor using the calculated inclusion stress or strain during the 

iteration loop. Thus, the developed analytical method based on the Eshelby’s solution can be extended to the case of a non-

linear inclusion phase as long as 𝐶ij
incl can be parametrized in terms of stress or strain components, or their invariants. 360 

6. Concluding remarks and petrological implications 

In this study, we use the classical Eshelby solution combined with the equivalent eigenstrain method to calculate the residual 

strain and stress in an anisotropic, ellipsoidal mineral inclusion embedded in an elastically isotropic host. The residual 

stresses can be expressed by a linear operator (Eq. 8) acting on the eigenstrain. The linear operator depends on the 

anisotropic elastic stiffness tensor of the inclusion evaluated at room P-T conditions, the shape of the inclusion, and the shear 365 
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modulus and Poisson ratio of the host. The studied mechanical problem is loaded by an eigenstrain term, which is given by 

the difference between the lattice strains of the inclusion and host at the P–T conditions of entrapment. 

The effect of inclusion aspect ratio on the inclusion residual stress and strain has been investigated quantitatively. The 

residual stress in quartz inclusions exhibits the least sensitivity to aspect ratio changes and rutile shows the most pronounced 

variation. The popularly used quartz-in-garnet system is studied in more details. For prolate quartz inclusions, the residual 370 

stress variations caused by varying inclusion shape are shown to be insignificant when the crystallographic c-axis is 

subparallel to the geometrical long axis. The Raman wavenumber variation is less than 0.4 cm-1 for the 464 cm-1 peak even 

for highly elongated inclusions with an aspect ratio of 5. For oblate quartz inclusions with an aspect ratio of ca. 0.5, the 

additional wavenumber shift may reach ca. 0.8 cm-1. Therefore, it is useful in practice, although potentially technically 

difficult, to have an estimate of the crystallographic c-axis orientation when studying highly stretched or flattened quartz 375 

inclusions. As long as the c-axis is sub-parallel to the geometrical long-axis, the additional wavenumber shifts due to the 

inclusion aspect ratio is minor.  

Our proposed analytical procedures to model residual inclusion stress and strain state do not require pre-FE simulation to 

obtain the 6-by-6 "relaxation tensor" as proposed by Mazzucchelli et al. (2019). For application purposes, as long as the 

lattice strains of inclusion (εi
incl ) and host (εi

host ) at high P-T conditions are available, it is possible to calculate the 380 

eigenstrain term by subtracting them following Eq. 2. Given the driving eigenstrain, the residual strain and stress preserved 

within an anisotropic, ellipsoidal inclusion in isotropic host can be easily calculated using Eq. 8. The proposed procedure can 

be inversely applied to retrieve the residual strain/stress of any natural mineral inclusions embedded in elastically isotropic 

hosts, such as garnets. 

The presented model is only exact for perfectly ellipsoidal inclusions. In nature, inclusions often possess different shapes 385 

with facets and edges. Finite element simulations on various faceted inclusion shapes showed that the residual stress is 

modified to a different degree as compared to the simple ellipsoidal inclusion case, depending on the relative elastic 

properties between the inclusion and the host grain. However, the proposed approach of using the analytical result for the 

best-fitted effective ellipsoids yields remarkably good approximation for all the tested inclusion shapes. including highly 

irregular. The RMSD comparing the FE numerical solution for faceted inclusion and the analytical solution based on 390 

effective best-fitted ellipsoid is typically less than 2% for quartz, zircon, apatite and rutile inclusions. The only exception are 

the elastically stiff diamond inclusions, where the RMSD reaches 7%. This finding expands the applicability of the analytical 

framework to arbitrarily shaped inclusions, whose elastic stiffness is not signifficantly higher than host (such as quartz, 

rutile, zircon and apatite). One important petrological implication is that it is possible to take the volumetrically averaged 

stress/strain within the inclusion and use it as a proxy to represent the residual stress/strain state of the inclusion. Then the 395 

proposed analytical framework may be used to recover the entrapment condition by back-calculating the eigenstrain using 

the volumetrically averaged residual stress/strain and the effective ellipsoid aspect ratio of the inclusion (Eq. 8). In fact, 



15 

 

averaging the stress/strain within a certain volume is implicitly done in practical Raman measurement, for example for tiny 

μm size inclusion with laser beam size typically exceeding 1 μm.  
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Figures and Tables 

Table 1. Root mean square deviation (RMSD) of finite element solution of symmetrically shaped non-ellipsoidal inclusion 

in Fig. 6 compared to the analytical solution of equivalent spheroidal inclusions. Isotropic almandine garnet is used as host. 

For each inclusion mineral and inclusion shape, the aspect ratio varies from 0.2~5. Effective aspect ratio is calculated for 

each shape and used for the analytical solution to obtain the residual stress state. The inclusion is loaded by eigenstrain that 525 

creates 1 GPa hydrostatic residual pressure for spherical inclusion in infinite host. Thus, any stress variation can only be 

caused by shape change. The calculated stress data for each individual FE run is given in supplementary data. Stress is 

obtained for 1) the centroid point (CT), and 2) volumetric average (VA) of the entire inclusion (see Fig. 6 for illustration). 

The RMSD is calculated by comparing the FE results and analytical results based on the best-fitted effective ellipsoid. The 

unit of RMSD is in GPa. Elasticity of inclusion mineral given in the caption of Fig. 6. 530 

Shape Cylinder Tetrahedron Cuboid Hexagonal 

prism 

Octahedron Icosahedron 

Location CT VA CT VA CT VA CT VA CT VA CT VA 

Quartz 0.041 0.021 0.034 0.044 0.042 0.026 0.038 0.021 0.055 0.022 0.011 0.005 

Zircon 0.045 0.023 0.042 0.048 0.112 0.028 0.047 0.024 0.084 0.017 0.028 0.006 

Rutile 0.063 0.039 0.049 0.029 0.158 0.039 0.065 0.039 0.127 0.026 0.034 0.003 

Apatite 0.047 0.029 0.052 0.057 0.049 0.035 0.045 0.029 0.062 0.024 0.014 0.007 

Diamond 0.136 0.071 0.191 0.255 0.171 0.095 0.136 0.081 0.079 0.125 0.022 0.027 
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Fig. 1. Schematic diagram showing how to obtain the residual stress/strain of anisotropic inclusion in isotropic host. (a) 535 

Inclusion-host at entrapment conditions. The stress is homogeneous as σtrap but strains are different as εi
incl and εi

host. (b) 

First, relax the inclusion and host by −εi
host to room P-T conditions. Without elastic interaction, the inclusion has strain 

εi
incl − εi

host and stress 𝐶ij
incl(εj

incl − εj
host ) so the system is not in mechanical equilibrium. (c) Elastic interaction occurs to 

reach equilibrium by adding strain εi  to the inclusion (host also deforms). The residual inclusion stress is 𝐶ij
incl(εj

incl −

εj
host +  εj). (d) Equivalent scenario where the inclusion and host are initially stress free at room P-T and they both have 540 

isotropic elasticity of 𝐶ij
host . (e) Equivalent eigenstrains 𝑒i

∗  are loaded to the inclusion. Without elastic interaction, the 

inclusion has stress −𝐶ij
host𝑒j

∗. Eshelby’s method is applied to obtain the final strain state in isotropic inclusion as Sij𝑒j
∗ and 

stress as 𝐶ij
host(Sjk𝑒k

∗ − 𝑒j
∗), where Sij is the Eshelby’s tensor (Eshelby, 1957). Equivalent eigenstrain method states that by 

properly choosing 𝑒i
∗, the relation εi = Sij𝑒j

∗ can be satisfied (Mura, 1987, chapter 4). The stress of isotropic inclusion (f) as 

𝐶ij
host(Sjk𝑒k

∗ −  𝑒j
∗) equals the stress of the anisotropic inclusion (c) as 𝐶ij

incl(εj
incl − εj

host + Sjk𝑒k
∗) (see Eq. 7). By solving for 545 

𝑒j
∗, we obtain the residual stress and strain of anisotropic inclusion in isotropic host in Eq. 8.   
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Fig. 2. Cross validation results between finite element method and the presented analytical method. (a) Direct comparison of 550 

residual stress components calculated with FE method and analytical method as a function of the aspect ratio of a spheroidal 

inclusion. (b) The normalized unsigned difference of the stress between FE method and analytical method as a function of 

mesh element number and model domain size. Spherical inclusion is used and boundary distance is set to *5, *10 and *20 

the inclusion diameter.  

  555 
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Fig. 3. Effect of geometrical aspect ratio of spheroidal inclusion along c and a-axes on residual stress (c/a). (a-b) Stresses 

σxx
res and σzz

res as a function of the geometrical c/a ratio for quartz, zircon, apatite and rutile inclusions. To isolate the effects 

of aspect ratio, the eigenstrain are set to produce σxx
res = σzz

res = −1 GPa for the reference spherical inclusion. Any deviation 

from -1 GPa is due to shape changes. (c) Pressure as a function of the c/a ratio. Here, the crystallographic c-axes is aligned 560 

parallel to the long axis for prolate inclusions and short axis for oblate inclusions. The quartz elastic stiffness tensor is from 

Heyliger et al., (2003); zircon and diamond from Bass, (1995); rutile from Wachtman et al. (1962); apatite from Sha et al. 

(1994). Isotropic stiffness tensor of almandine host is from Milani et al. (2015). 
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 565 

Fig. 4. The effect of geometrical aspect ratio of ellipsoidal quartz inclusion for c/a-axes and b/a-axes on Raman wavenumber 

shift entrapped in garnet host. The contours show the variation of wavenumber shift compared to perfectly spherical quartz 

inclusion (c/a=1, b/a=1). The initial residual inclusion pressure is assumed to be hydrostatic 1 GPa for the reference 

spherical inclusion. The wavenumber shift variation are due to changing the geometrical aspect ratios of c/a and b/a axes. 

The Raman shifts are calculated using the residual strain and the Grüneisen tensor in Murri et al. (2018). For c/a>1, the 570 

inclusion is prolate and for c/a<1, the inclusion is oblate. The stiffness tensor of quartz at room P-T is from Heyliger et al., 

(2003) and almandine garnet from Milani et al. (2015). 
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Fig. 5. The effect of varying the crystallographic orientation (c-axis) with respect to the geometrical long axis of a prolate 575 

spheroidal quartz inclusion. The contours show the variation of wavenumber shift compared to perfectly spherical quartz 

inclusion c/a=1 (in this case the crystallographic orientation does not matter). The horizontal axis represents the aspect ratio 

of the spheroidal inclusion, and the vertical axis shows the angle between the crystallographic c-axis and the geometrical 

long axis. In the plot, c-axis is allowed to shift from parallel to the geometrical long axis to parallel to geometrical short axis 

of the spheroidal inclusion. The driving eigenstrain is set to produce a hydrostatic residual pressure of 1GPa in the reference 580 

spherical inclusion. 
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Fig. 6. Finite element stress of various inclusion shapes (symbols) compared to the stress of effective spheroidal inclusion 585 

based on analytical method (black curves). The effective aspect ratio of inclusion shape is calculated based on the fitting 

method of Chaudhuri and Samanta, (1991) and Li et al. (1999) (see Appendix). The inclusion is loaded with eigenstrain that 

generates 1 GPa compressive hydrostatic residual stress for spherical shape. The variation of stress is only caused by the 

shape change. The c-axis coincides with the streching direction. The red dots correspond to the stress at the inclusion’s 

centroid (CT), the orange dots correspond to the volumetric average (VA) of the entire inclusion. The anisotropic elastic 590 

stiffness tensor are listed in the caption of Fig. 3. The root mean square deviation (RMSD) for each inclusion shape and 

inclusion mineral phase is given in Table 1. The raw FE stress data can be found in supplementary excel file. 
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Fig. 7. Randomly generated 500 inclusion shapes (top panel for examples) calculated with finite element method (vertical 595 

axis) and analytical method (horizontal axis). All three normal stress components are plotted together in each diagram. The 

crystallographic c-axis’s orientation is randomly chosen along one of the geometrical principal axes. The red and orange dots 

show the comparison of FE (numerical) results and analytical results for the normal stress components. Each dot represents a 

normal stress component calculated for one randomly generated inclusion shape. The red dots show the stress evaluated at 

the centroid point (CT), the orange dots show the volumetrically averaged (VA) stress within the inclusion. The raw data can 600 

be found in supplementary excel file and the generated 3D random shape can be viewed in the .gif file.  
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Appendix 

Calculate lattice strain at entrapment conditions 

When the inclusion and host crystalized at entrapment conditions, they are considered to be stressed and strained by taking 

room P-T condition as the reference state. Therefore, it is possible to calculate their strain state using lattice parameters a, b 605 

and c relative to the reference state 𝑎0, 𝑏0 𝑐0. For cubic, tetragonal and orthorhombic symmetry systems (or hexagonal and 

trigonal minerals with symmetry being imposed), the lattice strains can be easily expressed following Eq. 1. For triclinic and 

monoclinic symmetry systems, the basis vectors of unit cell are not all parallel to the Cartesian coordinates x, y and z. To 

obtain the lattice strain, we need to transform the coordinate from a, b and c into x, y and z. We follow the method from 

Ohashi and Burnham (1973) to calculate the strain components based on the lattice parameters. Here, a short description on 610 

the involved equations is given and detailed can be found the appendix of Ohashi and Burnham (1973). This transformation 

considers the crystallographic c-axis parallel to the Cartesian z-axis and crystallographic a*-axis parallel to the Cartesian x-

axis. 

The matrix 𝑄0  that relates the basis vectors of undeformed crystallographic 𝑎0 , 𝑏0  and 𝑐0 -axes at reference room P-T 

conditions to Cartesian coordinates is as follows: 615 

 

𝑄0 = [

𝑎0𝑝0

sin (𝛼0)

𝑎0(cos(𝛾0)−cos(𝛼0) cos(𝛽0))

sin (𝛼0)
𝑎0cos (𝛽0)

0 𝑏0sin (𝛼0) 𝑏0cos (𝛼0)
0 0 𝑐0

]  

𝑝0 = [1 − cos2(𝛼0) − cos2(𝛽0) − cos2(𝛾0) + 2 cos(𝛼0) cos(𝛽0) cos(𝛾0)]1/2  

 

(A1) 

To obtain the similar transformation matrix relating the deformed crystallographic axes at entrapment conditions to Cartesian 

coordinates can be easily done by replacing 𝑎0, 𝑏0 𝑐0, 𝛼0, 𝛽0, 𝛾0 measured at reference P-T state to 𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾 that are 

measured at entrapment condition from Eq. A1. This transformation matrix is denoted as 𝑄1 . We then calculate the 

displacement gradient tensor 𝐸: 

 𝐸 = 𝑄0
−1𝑄1 − I  (A2) 

where I is the identity matrix. Without considering the antisymmetric rotation tensor, the infinitesimal Lagrangian strain 620 

tensor can be expressed as follows: 

 𝜀 = (𝐸′ + 𝐸)/2  (A3) 

A MATLAB code is provided to perform this calculation (Calculate_Strain.m). The input values are the reference lattice 

parameters measured at room P-T conditions and the deformed lattice parameters at the entrapment conditions. The outputs 

are both the infinitesimal and finite Lagrangian strain tensor reported in MATLAB commend window. The results are 
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numerically the same compared to the available computer programs such as “STRAIN” program that can be found at 625 

website: https://www.cryst.ehu.es/cryst/strain.html, or “Win_Strain” program at the website: 

http://www.rossangel.com/text_strain.htm.  

 

Calculate Eshelby’s tensor 

The components of Eshelby’s tensor Sij are expressed as functions of the inclusion’s principal axes length and the Poisson 630 

ratio of the isotropic host 𝜈 (Mura, 1987). A MATLAB script is provided to calculate the Eshelby’s tensor (see more details 

in the following sections for supplementary data). 

 S11 =
3𝑎1

2

8𝜋(1−𝜈)
𝐼11 +

1−2𝜈

8𝜋(1−𝜈)
𝐼1  

S22 =
3𝑎2

2

8𝜋(1−𝜈)
𝐼22 +

1−2𝜈

8𝜋(1−𝜈)
𝐼2  

S33 =
3𝑎3

2

8𝜋(1−𝜈)
𝐼11 +

1−2𝜈

8𝜋(1−𝜈)
𝐼3  

S12 =
𝑎2

2

8𝜋(1−𝜈)
𝐼12 −

1−2𝜈

8𝜋(1−𝜈)
𝐼1  

S21 =
𝑎1

2

8𝜋(1−𝜈)
𝐼12 −

1−2𝜈

8𝜋(1−𝜈)
𝐼2  

S13 =
𝑎3

2

8𝜋(1−𝜈)
𝐼13 −

1−2𝜈

8𝜋(1−𝜈)
𝐼1  

S31 =
𝑎1

2

8𝜋(1−𝜈)
𝐼13 −

1−2𝜈

8𝜋(1−𝜈)
𝐼3  

S23 =
𝑎2

2

8𝜋(1−𝜈)
𝐼23 −

1−2𝜈

8𝜋(1−𝜈)
𝐼2  

S32 =
𝑎3

2

8𝜋(1−𝜈)
𝐼23 −

1−2𝜈

8𝜋(1−𝜈)
𝐼3  

S44 =
𝑎2

2−𝑎3
2

16𝜋(1−𝜈)
𝐼23 +

1−2𝜈

16𝜋(1−𝜈)
(𝐼2 + 𝐼3)  

S55 =
𝑎1

2−𝑎3
2

16𝜋(1−𝜈)
𝐼13 +

1−2𝜈

16𝜋(1−𝜈)
(𝐼1 + 𝐼3)  

S66 =
𝑎1

2−𝑎2
2

16𝜋(1−𝜈)
𝐼12 +

1−2𝜈

16𝜋(1−𝜈)
(𝐼1 + 𝐼2)  

 

 

 

 

 

(A4) 

https://www.cryst.ehu.es/cryst/strain.html
http://www.rossangel.com/text_strain.htm
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where 𝑎1, 𝑎2 and 𝑎3 are the lengths of three principal axes of the inclusions and they follow the order of 𝑎1 > 𝑎2 > 𝑎3. In 

case this order needs to be changes, a simple 90 degree rotation can be executed on Sij. The provided code in supplementary 

data automatically perform such rotation to adjust the axes into correct order. The required tensors 𝐼𝑖  and 𝐼𝑖𝑗  are evaluated as 635 

follows: 

 𝐼1 =
4𝜋𝑎1𝑎2𝑎3

(𝑎1
2−𝑎2

2)(𝑎1
2−𝑎3

2)1/2 [𝐹(𝜃, 𝑘) − 𝐸(𝜃, 𝑘)]  

𝐼3 =
4𝜋𝑎1𝑎2𝑎3

(𝑎2
2−𝑎3

2)(𝑎1
2−𝑎3

2)1/2 [
𝑎2(𝑎1

2−𝑎3
2)1/2

𝑎1𝑎3
− 𝐸(𝜃, 𝑘)]  

𝐼2 = 4𝜋 − 𝐼1 − 𝐼3  

𝐼12 =
𝐼2−𝐼1

𝑎1
2−𝑎2

2  

𝐼13 =
𝐼3−𝐼1

𝑎1
2−𝑎3

2  

𝐼23 =
𝐼3−𝐼2

𝑎2
2−𝑎3

2  

𝐼11 =
1

3
(

4𝜋

𝑎1
2 − 𝐼12 − 𝐼13)  

𝐼22 =
1

3
(

4𝜋

𝑎2
2 − 𝐼12 − 𝐼23)  

𝐼33 =
1

3
(

4𝜋

𝑎3
2 − 𝐼13 − 𝐼23)  

 

 

 

 

(A5) 

where the functions 𝐹(𝜃, 𝑘) and 𝐸(𝜃, 𝑘) denote the incomplete elliptic integrals of the first and second kind: 

 𝐹(𝜃, 𝑘) = ∫
𝑑𝑤

√1−𝑘2𝑠𝑖𝑛 2(𝑤)

𝜃

0
  

𝐸(𝜃, 𝑘) = ∫ √1 − 𝑘2𝑠𝑖𝑛 2(𝑤)𝑑𝑤
𝜃

0
  

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 (√1 −
𝑎3

2

𝑎1
2)  

𝑘 = √(𝑎1
2 − 𝑎2

2)/(𝑎1
2 − 𝑎3

2)  

 

 

(A6) 

The integrals 𝐹(𝜃, 𝑘)  and 𝐸(𝜃, 𝑘)  are evaluated using the method of the arithmetic-geometric mean (Abramowitz and 

Stegenm, 1964, chapter 17). Once 𝐹(𝜃, 𝑘) and 𝐸(𝜃, 𝑘) are obtained, 𝐼 can be computed and substituted into the Eshelby’s 

tensor.  640 
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Fit arbitrary inclusion shape with effective ellipsoid 

The method (details see Chaudhuri and Samanta, 1991; Li et al., 1999) requires a 3D data/image of the inclusion consist of 

regular cubic voxels, which has volume Δ in each voxel and coordinate x, y, z at the center of each voxel. The inclusion is 

denoted as domain R. Its second-order moment matrix is calculated as follows: 645 

 𝐼𝑥 = ∭ (𝑦2 + 𝑧2)𝑑𝑥𝑑𝑦𝑑𝑧
𝑅

≈ ∑ (𝑦𝑖
2 + 𝑧𝑖

2𝑛
𝑖=1 )Δ  

𝐼𝑦 = ∭ (𝑥2 + 𝑧2)𝑑𝑥𝑑𝑦𝑑𝑧
𝑅

≈ ∑ (𝑥𝑖
2 + 𝑧𝑖

2𝑛
𝑖=1 )Δ  

𝐼𝑧 = ∭ (𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦𝑑𝑧
𝑅

≈ ∑ (𝑥𝑖
2 + 𝑦𝑖

2𝑛
𝑖=1 )Δ  

𝐼𝑥𝑦 = ∭ (−𝑥𝑦)𝑑𝑥𝑑𝑦𝑑𝑧
𝑅

≈ ∑ (−𝑥𝑖𝑦𝑖
𝑛
𝑖=1 )Δ  

𝐼𝑦𝑧 = ∭ (−𝑦𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
𝑅

≈ ∑ (−𝑦𝑖𝑧𝑖
𝑛
𝑖=1 )Δ  

𝐼𝑥𝑧 = ∭ (−𝑥𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
𝑅

≈ ∑ (−𝑥𝑖𝑧𝑖
𝑛
𝑖=1 )Δ  

 

 

 

(A7) 

where 𝑥𝑖 is the x coordinate of the i th voxel that makes the inclusion, n is the total number of the voxels that makes the 

inclusion domain R. A symmetric 3-by-3 matrix is constructed with the above six components and its eigenvalues are 

denoted as 𝐼1, 𝐼2 and 𝐼3. The length of major, intermediate and minor axes can be calculated straightforwardly as follows, 

respectively: 

 
𝑎 = √

5

2𝐼0
(𝐼2 + 𝐼3 − 𝐼1)  

𝑏 = √
5

2𝐼0
(𝐼1 + 𝐼3 − 𝐼2)  

𝑐 = √
5

2𝐼0
(𝐼1 + 𝐼2 − 𝐼3)  

 

(A8) 

where 𝐼0 is the volume of the shape R, which can be straightforwardly calculated as 𝐼0 = 𝑛Δ. The principal axes of the 650 

ellipsoid are the three eigenvectors of the 3-by-3 second moment matrix 𝐼𝑖𝑗 . We provide the MATLAB source code 

(Fit_Ellipsoid.m) that performs the fit to any arbitrary shape. The input is a 3D pixelated matrix (D) where 0 is for host and 1 

is for inclusion. The matrix D describes the shape of an arbitrary inclusion shape. The output is the best-fitted effective 

ellipsoid’s axes lengths and orientations. As an example, the fit is performed for an ellipsoid and the result returns the 

originally prescribed axes lengths.  655 
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Summary of supplementary files 

The supplementary files include codes for calculating: 1) the Eshelby’s tensor Sij and the dimensionless matrix Mij (in Eq. 

8), which are used to calculate the residual stress or strain (Calculate_Eshelby.m); 2) the best-fitted effective ellipsoid’s axes 

lengths and orientations (Fit_Ellipsoid.m). 3) the strain tensor based on lattice parameters at reference room P-T conditions 660 

and entrapment conditions for any symmetry systems. Details of the codes are given here for users to apply them. The raw 

data from FE simulation are also provided for reproduction of the figures. 

1) Code: Calculate_Eshelby.m 

The inputs are listed below (italic with underline denotes MATLAB variables): 

C_incl: the inclusion’s anisotropic elastic stiffness tensor at room P-T. 665 

G_host: the isotropic host’s shear modulus at room P-T. 

K_host: the isotropic host’s bulk modulus at room P-T. 

v_host: the isotropic host’s Poisson ratio calculated from G_host and K_host. 

a, b, c: geometrical principal axes lengths of ellipsoidal inclusion. They are parallel to x, y and z coordinate axes. Note they 

are not the lattice parameters. 670 

The outputs are as follows: 

S: the Eshelby’s tensor Sij 

M: dimensionless Mij matrix that can be plugged into Eq. 8. 

2) Code: Fit_Ellipsoid.m 

The inputs are as follows: 675 

D: 3D pixelated matrix (3D image) describing the shape of the inclusion. The value 1 is given for pixels within the inclusion 

and 0 is given for pixels outside the inclusion. 

dx, dy, dz: spatial increment of the 3D image, i.e. the size of each 3D cuboidal pixel. 

An example is given for ellipsoid fitting. The variables a, b, c are the axes’ lengths of the ellipsoid. After running the code, 

we obtain the best-fitted axes’ lengths which are the same as the input.  680 

The outputs of the code are as follows: 

1) Axes’ lengths of the best fitted inclusion. 

2) Directional angle of the longest, intermediate and shortest principal axes.  
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3) Code: Calculate_Strain.m 

This code calculates the lattice strain at entrapment condition using lattice parameters at both reference room conditions and 685 

entrapment conditions. The inputs are the lattice parameters at room conditions 𝑎0 , 𝑏0  𝑐0  and 𝛼0 , 𝛽0 , 𝛾0 , and lattice 

parameters at entrapment conditions 𝑎, 𝑏 , 𝑐  and 𝛼 , 𝛽 , 𝛾 . The output are the strain in Cartesian coordinate system. The 

Cartesian x-axis is parallel to crystallographic a*-axis and z-axis parallel to c-axis by convention. The reported strain tensors 

include infinitesimal and finite Lagrangian strain, which are close to each other for small strain problems and the difference 

is well below the detection limit of any analytical techniques. 690 

4) Excel raw data for FE model 

The file “FE_regular.xlsx” and “FE_random.xlsx” are the calculated raw data for section 4.3 and section 4.4. The data can 

be used to reproduce Fig. 6, Fig. 7 and Table 1. 

5) Animation of random inclusion shape (for section 4.4 “random faceted shape”) 

The 3D random inclusion shapes are visualized as cartoon in “Random_3D_Shape.gif” file. It can be viewed by dragging 695 

into any IE browser. Details of generating the random inclusion shape with random crystallographic orientation is given in 

the main text. 


