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Abstract. Large parts of Central Europe have experienced exhumation in Late Cretaceous to Paleogene time. Previous studies 

mainly focused on thrusted basement uplifts to unravel magnitude, processes and timing of exhumation. This study provides, 10 

for the first time, a comprehensive thermochronological dataset from mostly Permo-Triassic strata exposed adjacent to and 

between the basement uplifts in central Germany, comprising an area of at least some 250-300 km across. Results of apatite 

fission track and (U-Th)/He analyses on >100 new samples reveal that (i) km-scale exhumation affected the entire region, (ii) 

thrusting of basement blocks like the Harz Mountains and the Thuringian Forest focused in the Late Cretaceous (about 90-70 

Ma) while superimposed domal uplift of central Germany is slightly younger (about 75-55 Ma), and (iii) large parts of the 15 

domal uplift experienced removal of 3 to 4 km of Mesozoic strata. Using spatial extent, magnitude and timing as constraints 

suggests that thrusting and crustal thickening alone can account for no more than half of the domal uplift. Most likely, dynamic 

topography caused by upwelling asthenosphere has contributed significantly to the observed pattern of exhumation in central 

Germany. 

1 Introduction  20 

Widespread intraplate compressional stresses affected Central Europe in Cretaceous to Paleogene time and generated 

numerous basement uplifts and inverted sedimentary basins (e.g. Ziegler et al., 1995; Kley and Voigt, 2008). The basement 

uplifts cover a large area of at least 1300 km west to east and 600 km north to south extension. It stretches from the Ardennes 

in Belgium (western Rhenish Massif) to south-eastern Poland (Holy Cross Mountains) and includes prominent fault-bounded 

blocks composed of crystalline basement rocks and pre-Permian metasedimentary rocks such as the Bohemian Massif, the 25 

Vosges and Black Forest, and the Harz Mountains (Fig. 1A). The major phase of exhumation and uplift is mostly assigned to 

the Late Cretaceous (Kley and Voigt, 2008). However, earlier onset of exhumation and uplift and/or its continuation into the 

Paleogene are proposed for certain areas and structures (e.g. Barbarand et al., 2018; Sobczyk et al., 2020). 
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Figure 1: (A) Pre-Tertiary geological sketch map of Central Europe (modified after Ziegler 1990). Black rectangle indicates 
position of the detailed geological map in Figure 3, straight line indicates the trace of the section shown in Figure 1B. AR – 
Ardennes, FH – Flechtingen High, H – Harz Mountains, K – Karkonosze, NEGB – Northeast German Basin, LSB – Lower Saxony 
Basin, MB – Münsterland Basin, OW – Odenwald, S – Sudetes, TB – Thuringian Basin, TF – Thuringian Forest, URG – Upper 
Rhine Graben. (B) Simplified geological section across the central part of the study area, highlighting the major, fault-bordered 
basement highs. For detailed section see Fig. 4. (C) Compilation of apatite fission track ages obtained on structural highs exposing 
Paleozoic rocks in Central Europe: (a) Ibbenbüren High, Senglaub et al. (2005); (b) Flechtingen High, Fischer et al. (2012); (c) 
Harz Mountains, von Eynatten et al. (2019); (d) Halle volcanic complex, Jacobs and Breitkreuz (2003); (e) Northern Rhenish 
Massif, Karg et al. (2005); (f) Ardennes/Venn,  Glasmacher et al. (1998), Xu et al. (2009) and references therein, Barbarand et al. 
(2018); (g) Thuringian Forest, Thomson and Zeh (2000); (h) Erzgebirge, Ventura and Lisker (2003), Lange et al. (2008), Wolff et 
al. (2015); (i) Lusatian Block, Lange et al. (2008), Ventura et al. (2009); (j) NE Bohemian Massif, Danisík et al. (2010), (2012), 
Migoń and Danišík (2012), Sobczyk et al. (2015), (2020); (k) Holy Cross Mountains, Botor et al. (2018); (l) E Bohemian Massif, 
Botor et al. (2017); (m) S Bohemian Massif, Hejl et al. (2003); (n) Barrandian, central Bohemian Massif, Glasmacher et al. (2002); 
(o) Bavarian Forest, Vamvaka et al. (2014); (p) W Bohemian Massif, Hejl et al. (1997); (q) Odenwald, Wagner (1968); (r) Black 
Forest/Vosges, Timar-Geng et al. (2006), Link (2009), Dresmann et al. (2010), Meyer et al. (2010). 
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Inverted sedimentary basins (i.e., basins that have been exhumed along former extensional faults, cf. Cooper et al., 1989) occur 

partly between and within these blocks, and are common further north in the Central European Basin system (cf. Littke et al., 

2008), which includes large parts of Poland, Northern Germany, The Netherlands, Denmark and the North Sea. The timing of 

basin inversion has been mostly assigned to Late Cretaceous to Paleogene time (e.g. Kockel, 2003; Krzywiec, 2006). Some 

authors have attributed all documented Mesozoic and Cenozoic uplift events in central Europe to increased tangential stress 35 

and inversion, regardless of their magnitude and extent (e.g. Ziegler et al., 1995; Sissingh, 2006). Others pointed out marked 

differences in the expression of these events and suggested that alternative mechanisms may be involved (Nielsen et al., 2005; 

Deckers and van der Voet, 2018; Kley, 2018). 

This paper aims at a comprehensive understanding of the Late Mesozoic to Early Cenozoic exhumation in Central Europe 

from a thermochronological point of view. We (i) review the existing thermochronological data on cooling and exhumation in 40 

Central Europe, (ii) present new thermochronological data from the main study area in the central part of Central Europe, (iii) 

integrate apatite fission track (AFT) and (U-Th)/He (AHe) data through thermal modelling that allows for estimating the 

thickness of eroded sequences, and (iv) discuss various models to explain the temporal and spatial pattern of exhumation and 

uplift in Central Europe. 

2 Geological Setting  45 

Central Europe has been an intraplate region since the Variscan orogeny that terminated about 300 Ma ago (e.g. Ziegler 1987, 

Oncken, 1997). Its post-orogenic history began with the evolution and demise of the “Rotliegend” wide rift in Permian time 

(Lorenz and Nicholls, 1976). From the latest Permian through the Mesozoic a continuous cover of sediments was deposited 

over large parts of Central Europe. These sediments belong to the intracontinental Southern Permian Basin in the north (Littke 

et al., 2008; Doornenbal and Stevenson, 2010) and to the proximal Tethys shelf in the south. Both basins were connected via 50 

an intervening platform and at times formed a contiguous region of marine deposition, e.g. in Middle Triassic (Muschelkalk) 
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and Early Jurassic time (Ziegler, 1990). The long-lasting slow subsidence in this system of basins was mostly of thermal origin 

(Cacace and Scheck-Wenderoth, 2016). Nevertheless, distributed and intermittent extension of generally low magnitude 

affected varying areas from the latest Permian to the Early Cretaceous (Geluk, 1999; Mohr et al., 2005; Warsitzka et al., 2019). 

Despite the evidence for some large extensional faults (Best, 1996; Baldschuhn and Kockel, 1999; de Jager, 2003), normal 55 

fault offsets typically do not exceed a few hundred meters and there is no associated volcanism. Periods of intensified extension 

are recognized in Late Triassic (Keuper) time and, for our area, particularly in the Late Jurassic to Early Cretaceous when the 

Lower Saxony Basin formed (Ziegler, 1990; Stollhofen et al., 2008). Extension was centered on a belt stretching from the 

southern North Sea over the Netherlands and northern Germany to Poland. The southern border of this belt is sometimes abrupt 

and sometimes gradual, involving normal faults at considerable distance from the main preserved depocenters (Kley et al., 60 

2008; Danišík et al., 2012). Very subtle Mesozoic extension structures occur on the Helvetic shelf in the southwest (Wetzel et 

al., 2003; Malz et al., 2015). 

The tectonic regime changed fundamentally from extension to contraction in Late Cretaceous time (Ziegler, 1987). Syntectonic 

basins formed along the margins of inverting sub-basins and uplifting basement blocks (Voigt, 1963; Krzywiec, 2002; Voigt 

et al., 2004; von Eynatten et al., 2008). The area of contraction closely coincides with the previous extension tectonics, even 65 

though not all major thrust faults are reactivated normal faults (Voigt et al., 2009). South of the main inversion axis extending 

from the North Sea Basins to the Polish Trough, contraction attenuates abruptly or gradually. For instance, shortening 

structures of small magnitude are widespread in the German uplands. Mesozoic structures in the Southern Permian Basin and 

the northern Alpine Molasse basin are sealed by an extensive cover of locally latest Cretaceous but mostly Cenozoic sediments 

(Bachmann et al., 1987; Baldschuhn et al., 2001; Krzywiec and Stachowska, 2016; Voigt et al., this issue).  70 

In Germany, uplift and erosion in Mesozoic and/or Cenozoic time are evidenced by large areas where the Variscan basement 

and Permian to Triassic strata are exposed today. The Rhenish and Bohemian massifs are commonly interpreted as long-lived 

highs that never had a substantial cover of Permo-Mesozoic sediments (Ziegler, 1990), although this model has been recently 

challenged for parts of the Rhenish Massif (Augustsson et al., 2018). Between these massifs, Triassic strata were continuous 

from northern to southern Germany (Fig. 1A). For Jurassic and Cretaceous time much of the sedimentary record, if any, has 75 

been lost due to erosion in the central part of Germany (Fig. 1B). Remnants of Cenozoic strata show that denudation to the 

level of Triassic strata was completed by Paleogene or Neogene time, varying by region (Bundesanstalt für Geowissenschaften 

und Rohstoffe 1993).  

Several processes have been proposed to have driven Late Cretaceous to Paleogene exhumation in Central and Western Europe. 

There is a consensus that Late Cretaceous inversion (often termed the “Subhercynian” event) was caused by far-field tectonic 80 

stresses related by different authors either to Alpine collision (e.g. Ziegler, 1987; Stackebrandt and Franzke, 1989; Ziegler et 

al., 1995; Krzywiec, 2006) or the onset of Africa-Iberia-Europe convergence (Kley and Voigt, 2008). In contrast, the Paleogene 

(‘Laramide’ and ‘Pyrenean’) uplift events have received very different interpretations. Many authors attributed them to 

continued, if weaker, shortening and inversion (Ziegler, 1990; De Jager, 2003; Sissingh, 2006; Holford et al., 2009b) or long-

wavelength folding (Deckers and van der Voet, 2018). Nielsen et al. (2005) argued instead that the Laramide event reflects 85 



5 
 

stress relaxation. This concept is consistent with numerical modelling suggesting that plate coupling across the Iberia-Europe 

boundary rapidly decreased with increasing incorporation of mechanically weak continental crust (Dielforder et al., 2019), but 

does not correctly predict the pattern of Laramide uplift and subsidence in some basins (Deckers and van der Voet, 2018). 

Paleogene regional exhumation of the Irish Sea has been explained as isostatic response to magmatic underplating (Brodie and 

White, 1994; Ware and Turner, 2002). Kley (2018), based on its very large areal extent, advocated dynamic topography and 90 

lithospheric thinning (see also Meier et al., 2016) as the causes of Laramide uplift. In this paper we focus on the timing, 

magnitude and possible mechanisms of Late Cretaceous and Paleogene exhumation in Germany. Because of the coincidences 

in time with widespread exhumation events all over Central Europe, these will be reviewed in the next section. 

3 Review of thermochronological data  

The available thermochronological data on Mesozoic to Tertiary exhumation in Central Europe are widespread and focus on 95 

individual regions exposing Paleozoic basement rocks. Only near-surface samples (except for few drillcores with sampling 

depth <500m) are considered for this compilation to ensure comparability. The most comprehensive data set is available for 

apatite fission track data, which are summarized in Figure 1C with respect to individual regions and the respective range of 

AFT ages. Many regions show predominance of Cretaceous AFT ages, however, others show a much broader range including 

Jurassic and Permo-Triassic ages and/or noticeable contribution of Tertiary ages.  100 

The Ardennes, forming large part of the western Rhenish Massif in the Rhenohercynian zone of the Central European Variscan 

orogeny (location f in Fig. 1C), are predominantly composed of very low-grade Devonian to Carboniferous metasedimentary 

rocks, with some Early Paleozoic low to medium grade inliers. Low-T thermochronology comprise mostly AFT data along 

with some zircon fission track (ZFT) data. The latter indicate ages between 422 and 218 Ma, while AFT ages range from 

Permian to Early Cretaceous (290 to 130 Ma; Glasmacher et al., 1998; Xu et al., 2009 and references therein; Barbarand et al., 105 

2018). Although the age range is rather consistent across the various studies, their interpretations based on thermal modelling 

and various geological evidence are quite different. Xu et al. (2009) propose slow exhumation and cooling for most of the 

Mesozoic followed by accelerated cooling since Mid-Eocene time. Glasmacher et al. (1998) suggest a major phase of cooling 

in the Mid-Cretaceous (120 to 80 Ma) along with approx. 2000 m of exhumation. In contrast, Barbarand et al. (2018) use 

paleoweathering geochronology based on Mn-oxide phases to constrain the thermochronological modelling. They suggest Late 110 

Jurassic to Early Cretaceous uplift and erosion of the Ardennes Massif, which subsequently stays close to the surface until 

present. For the northeastern Rhenish Massif, on the right side of the River Rhine, Karg et al. (2005) reported AFT ages ranging 

from 291 to 136 Ma (location e in Fig. 1C). The data indicate cooling in the late stages and/or after the Variscan orogeny. 

Triassic to Jurassic sedimentation is interpreted below 1000 m in thickness and the samples remained in the apatite PAZ during 

most of the Mesozoic. Final uplift and denudation did not start before Late Cretaceous, with slightly accelerated cooling in the 115 

Tertiary (Karg et al., 2005). Similar data have already been reported by Büker (1996) for the same area (AFT 286–159 Ma). 
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No thermochronological data have been published so far from the eastern margin of the Rhenish Massif, however, some new 

data will be presented in this study. 

East to northeast of the Rhenish Massif, several thrusted basement blocks expose Paleozoic crystalline and/or metasedimentary 

rocks at the surface. These are the Ibbenbüren High, the Flechtingen High, the Harz Mountains and the Thuringian Forest (a, 120 

b, c and g in Fig. 1C, respectively). They are all characterized by long apatite fission tracks and narrow track length 

distributions, and despite the wide area and a pretty high number of samples (n = 41) the AFT age range is impressively tight, 

i.e. fully restricted to Campanian time (83-72 Ma; Thomson and Zeh, 2000; Senglaub et al., 2005; Fischer et al., 2012; von 

Eynatten et al., 2019). For the Harz Mountains, the observation of rapid Late Cretaceous exhumation is further supported by 

zircon (U-Th)/He (ZHe) and AHe thermochronology (von Eynatten et al., 2019) as well as independent evidence from facies 125 

distribution and provenance information from well-dated syntectonic sediments in the foreland (Voigt et al., 2006; von 

Eynatten et al., 2008). ZFT data from the four basement blocks range from the latest Carboniferous (306 Ma) to latest Triassic 

(202 Ma). While the oldest ages may directly reflect cooling after the Variscan orogeny, most ages are  Permo-Triassic and 

interpreted as mixed ages, reflecting partial reset due to widespread Permo-Mesozoic burial heating (Fischer et al., 2012; von 

Eynatten et al., 2019). Slightly east of the Harz Mountains, the Halle volcanic complex (location d in Fig. 1C) consists of 130 

Permo-Carboniferous felsic volcanic rocks yielding thermochronological data rather similar to the Harz Mountains, although 

AFT ages are slightly older (ZFT 231-194 Ma and AFT 108-74 Ma; Jacobs and Breitkreuz, 2003). 

The Bohemian Massif represents the largest inlier of basement rocks exposed in Central Europe (Linnemann et al., 2008). It 

is mainly composed of Late Neoproterozoic to Early Paleozoic (Cadomian) and Late Paleozoic (Variscan) granitoids and a 

large variety of metamorphic rocks comprising Late Neoproterozoic to Carboniferous protoliths and metamorphic grades from 135 

very-low grade to high-grade including ultrahigh-pressure metamorphism (Kroner et al., 2008; Schönig et al., 2020). 

Morphologically, the Bohemian Massif comprises several mountain ranges. Their low temperature evolution has been 

investigated by numerous studies (as reviewed below) in order to unravel the post-Variscan exhumation and uplift history of 

the Bohemian Massif. Results indicate a complex spatial pattern caused by various partly superimposed processes including 

Mesozoic burial, Late Cretaceous exhumation due to far field compression and/or reheating and exhumation related to the 140 

European Cenozoic Rift System and associated volcanism (e.g. Danišík et al., 2012). 

The northern margin of the Bohemian Massif can be roughly separated, from west to east, into the Erzgebirge, the Lusatian 

Block and the Sudetes including the Karkonosze Mountains. The central Erzgebirge is characterized by medium to high grade 

metamorphic rocks including relics of ultrahigh-pressure metamorphism, surrounded by lower-grade metasedimentary rocks 

and intruded by late Variscan granitoids. AFT data reveal a large age spread from 210 to 45 Ma with predominantly (19 out 145 

of 24) Late Jurassic and Cretaceous ages (location h in Fig. 1C and Fig. 2A; Lange et al., 2008). Similar ages are reported from 

a borehole in the western Erzgebirge (Ventura and Lisker, 2003). The diverse spatial pattern of thermochronological data is 

supported by ZHe and AHe data and indicates dissection into individual structural blocks, variable Mesozoic burial and 

hydrothermal activity, significant Late Cretaceous exhumation and only minor Cenozoic overprint (Wolff et al., 2015). The 

Lusatian block (location i in Fig. 1C), which is separated from the Erzgebirge by the Elbe fault zone, is characterized by mostly 150 
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Late Cretaceous AFT ages, as reported by two different studies. The first is based on 28 predominantly granodiorite samples 

covering the entire area, which yield an AFT age range of 102 to 50 Ma (Fig. 2A; Lange et al., 2008). The second is based on 

10 samples from three boreholes (sample depth <500 m) from the northern and southern boundaries of the block, which yield 

a tighter Late Cretaceous AFT age range from 94 to 72 Ma (Ventura et al., 2009). Roughly similar data are reported from 

various studies of the Sudetes, forming the structurally complex NE margin of the Bohemian Massif (location j in Fig. 1C). 155 

The Variscan granite intrusion of the Karkonosze Mountains experienced punctuated Late Cretaceous fast cooling and 

exhumation as evidenced by ZHe (98 Ma), AFT (90-82 Ma) and AHe (87-79 Ma) thermochronology (Danišík et al., 2010). 

Metamorphic rocks to the north of the intrusion show a somewhat broader Cretaceous age range (121-63 Ma; Martínek et al., 

2006; 2008, cit. in Migoń and Danišík, 2012). From the easternmost part of the intrusion and adjacent metamorphic rocks 

Early Cretaceous ZHe ages (131-100 Ma) and Cretaceous to Paleogene AFT ages (106-51 Ma) are reported (Sobczyk et al., 160 

2015). In the SE Sudetes, crystalline rocks of the Rychlebské hory Mountain region reveal Late Cretaceous to Paleocene 

exhumation history evidenced by ZHe (79 and 89 Ma) and AHe (90-69 Ma) data along with slightly younger AFT ages (81-

39 Ma), the youngest of them were most likely influenced by Cenozoic volcanism (Danišík et al., 2012). However, nearby 

samples from small crystalline massifs reveal similar Late Cretaceous to Eocene AFT ages (84-45 Ma), which are interpreted 

to reflect Late Cretaceous onset of cooling with a climax in the Paleocene to Middle Eocene (Sobczyk et al., 2020). The 165 

cumulative distribution of all AFT ages from the NE margin of the Bohemian Massif shows distinct age groups in the Late 

Cretaceous, around the K-T boundary and in the Paleocene to Eocene (Fig. 2A). 

At the eastern margin of the Bohemian Massif, the Moravo-Silesian zone exposes Lower Carboniferous synorogenic clastic 

sedimentary rocks (Moravo-Silesian Culm Basin, location l in Fig. 1C), which experienced post-Variscan anchimetamorphic 

overprint. ZHe ages range from 303 to 163 Ma, while AFT ages range from Late Jurassic (152 Ma) to Eocene (44 Ma) with 170 

the majority of ages belonging to the Late Cretaceous (Fig. 2B; Botor et al., 2017). In the southernmost part of the Bohemian 

Massif (Waldviertel) AFT ages from granitoids and gneisses show a broad range from 233 to 92 Ma (location m in Fig. 1C; 

Hejl et al., 2003). Despite some spatial variation and generally older ages towards the northeast, thermal modelling suggests 

general Jurassic to Early Cretaceous cooling, followed by some reburial in the Late Cretaceous. Cenozoic bulk denudation is 

estimated in the order of 1-3 km (Hejl et al., 2003). At the southwestern margin of the Bohemian Massif, the crystalline rocks 175 

of the Bavarian Forest (location o in Fig. 1C) yield AFT ages that are almost entirely Cretaceous (148-83 Ma) with most of 

them falling into the Late Cretaceous (Fig. 2C; Vamvaka et al., 2014). Thermal modelling of these data suggests enhanced 

heat flow in the Middle Jurassic to Early Cretaceous, likely caused by lithospheric extension, followed by Late Cretaceous to 

Paleogene cooling (Vamvaka et al., 2014). At the western margin of the Bohemian Massif (Oberpfalz; location p in Fig. 1C), 

Permo-Triassic ZFT ages (283-215 Ma) are thought to indicate post-Variscan unroofing and denudation (Hejl et al., 1997). 180 

This observation is complemented by a series of AFT data that reveal a relatively tight age cluster (110-54 Ma) implying 

accelerated denudation in Late Cretaceous to Paleogene time (Fig. 2C).  
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Figure 2: Cumulative frequency distributions of apatite fission track data from various regions across Central Europe. 
Characters in brackets refer to locations in Figure 1; for references see caption to Fig. 1. Stippled purple line in B is from NE 
Bohemian Massif like in A, for reference. Green area indicates the time interval of the Late Cretaceous. 

 

In contrast to the numerous studies from the margins of the Bohemian Massif reporting Cretaceous AFT median ages (Fig. 185 

2A-C), data from the Tepla-Barrandian and adjacent areas in the center of the Bohemian Massif are relatively scarce and 

indicate remarkably older AFT ages (324-161 Ma, location n in Fig. 1). They are interpreted to indicate late Variscan cooling, 

reburial during the post-Variscan Molasse stage and relatively slow Mesozoic cooling (Glasmacher et al., 2002; Suchý et al., 

2019). 

Northeast of the Bohemian Massif, the Holy Cross Mountains in SE Poland (location k in Fig. 1C) exposes Paleozoic 190 

sedimentary rocks that experienced deformation during the Variscan orogeny, followed by significant burial during prolonged 

Permo-Mesozoic subsidence within the Mid-Polish Trough of the Polish Basin and exhumation in the Late Cretaceous to 

Paleocene (e.g. Krzywiec et al., 2009). The available thermochronological data reveal mostly Late Paleozoic ZHe ages (417-

283 Ma) that are generally younger than the sedimentation ages, along with few scattered Mesozoic AFT ages (202-88 Ma) 
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and Late Cretaceous to Paleogene AHe ages (91-43 Ma). Thermal modelling indicates late to post-Variscan (Carboniferous to 195 

Permian) cooling from at most  deep diagenetic temperatures that were reached during the Variscan orogeny. Mesozoic burial 

and Late Cretaceous fast cooling and exhumation is most pronounced in the eastern part of the Holy Cross Mountains (Botor 

et al., 2018). 

The Upper Rhine Graben (URG) forms part of the Cenozoic European Rift system and exposes crystalline basement domains 

at its exhumed flanks. The most prominent ones are located adjacent to the southern URG, i.e. the Vosges at the western and 200 

the Black Forest at the eastern flank (location r in Fig. 1C). Thermochronological data show broad age ranges, reflecting the 

complex superposition of variable Mesozoic hydrothermal activity (that reached the zircon partial annealing zone most likely 

in Jurassic time), Late Cretaceous cooling and exhumation, and Cenozoic re-heating related to rifting in the URG followed by 

final exhumation (Timar Geng et al., 2006; Link, 2009; Dresmann et al., 2010; Walter et al., 2018). ZFT ages range from Late 

Carboniferous to Early Cretaceous (312-109 Ma; the youngest ages are related to a fault zone at the southern margin of the 205 

Black Forest, Dresmann et al., 2010), while AFT ages range from Cretaceous to Miocene (103-15 Ma) with distinct age 

components in the Late Cretaceous and Paleogene (Fig. 2D). AHe data yield only Cenozoic ages ranging from Paleocene to 

Early Miocene (61-20 Ma; Link, 2009). Adjacent to the northern URG, the Odenwald region (location q in Fig. 1C) exposes 

Variscan granitoids from the Mid-German Crystalline Rise, which yield a relatively tight Cretaceous AFT age range (105-70 

Ma, Fig. 2D; Wagner, 1968). Late Cretaceous AFT ages (~80-70 Ma) of the Odenwald as well as the opposed western flank 210 

of the URG (Palatinate Forest) are confirmed by Link (2009). The almost entire restriction to Late Cretaceous AFT ages point 

to an essentially similar thermal evolution as described before for the Thuringian Forest and the Harz Mountains further 

northeast (Fig. 1). 

In summary, thermochronological data from most of the basement uplifts in Central Europe provide evidence for a phase of 

Late Cretaceous cooling and exhumation. This is most obvious and accentuated for an approximately 300 x 250 km region in 215 

central Germany, encompassing the Harz Mountains and the Thuringian Forest, as well as the Flechtingen and Ibbenbüren 

Highs in the north and the Odenwald in the south (i.e. the main study area as outlined in section 4). Further south, at the flanks 

of the URG, this event seems also important but is partly masked by Cenozoic rifting and magmatic-hydrothermal activity. 

Towards east, the margins of the Bohemian Massif provide multiple evidence for Late Cretaceous cooling and exhumation, 

with variable expansion into the Paleogene, especially at its western and eastern margins. Even for the most distant areas in 220 

the west (Ardennes) and east (Holy Cross Mts.), Late Cretaceous to Paleogene cooling is considered a relevant part of the post-

Variscan evolution. 

4 Study area in central Germany and sample coverage  

The main study area approximately coincides with the northern half of the German uplands region (‘Mittelgebirge’, Fig. 3). It 

is underlain by a mostly sedimentary substrate of variable lithology and structural complexity. Its northern part borders on the 225 

inverted Lower Saxony Basin (LSB) in the west and the Northeast German Basin (NEGB) in the east (Fig. 1). The southern 
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border of the LSB is thrust onto the Cretaceous Münsterland Basin along the Osning Fault, a regional reactivated normal fault. 

The Münsterland Basin overlies the margin of the Rhenish Massif. The NEGB is bounded to the south by the Gardelegen 

reverse fault which creates a major basement step (Fig. 4). Two additional prominent basement uplifts related to major 

Cretaceous thrust faults follow towards the south (Harz Mountains and Thuringian Forest), separated by wide synclinal areas 230 

dominated by Triassic strata. The Gardelegen Fault and northern Harz thrust fault are associated with syn-inversion Cretaceous 

growth strata in the Northeast German Basin and the Subhercynian Basin, respectively. The Thuringian Forest passes into the 

Thuringian Schiefergebirge and the Bohemian Massif towards the southeast. All three are bordered by the Franconian Line, a 

regional southwest-directed reverse fault. The Osning Fault and Franconian Line approximately mark the southwestern limit 

of strong Mesozoic deformation. They are connected by an array of smaller fault zones (e.g. the Hessian grabens), most of 235 

which are extensional structures displaying signs of inversion (e.g., Lotze, 1948; Kley et al., 2008). Similar fault zones south 

of the Franconian Line are the southernmost expression of Late Cretaceous inversion on the transect of Fig. 4 (Kämmlein et 

al., 2020). The Odenwald and Spessart in the west are uplifts of the Variscan basement not associated with major Cretaceous 

thrust faults (Fig. 3). The gently warped Franconian platform underlies the cuesta landscape of southern Germany 

(‘Süddeutsches Schichtstufenland’) and dips under the Cenozoic of the northern Alpine Molasse foreland basin in the south. 240 
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Figure 3: Geological map of the study area (simplified after Geowissenschaftliche Karte der Bundesrepublik Deutschland 1: 2 
000 000, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover (2004); * affected by variable degree of metamorphic 
overprint). Abbreviations are used for geological-structural units mentioned in the text and correspond to the stratigraphical 
columns in Fig. 5a: LSB – Lower Saxony Basin, HFB – Harz Foreland Basin, HM – Harz Mountains, LB – Leipzig Basin, TB – 
Thuringian Basin, TF – Thuringian Forest, WFW – Werra-Fulda-Weser region, E-RM – Eastern Rhenish Massif, FP – 
Franconian Platform, W-BM – Western Bohemian Massif. Locations of further geographical-geological units mentioned in the 
text are labelled with numbers: 1 – Thuringian Schiefergebirge, 2 – Odenwald, 3 – Spessart, 4 – Vogelsberg, 5 – Rhön, 6 – 
Kyffhäuser High, 7 – Münsterland Basin. Black line indicates the trace of the section shown in Figure 4. 
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Figure 4: Regional cross-section from the Danube to the Elbe 
(location in Figure 3). Strong inversion-related deformation 
from the Thuringian Forest towards the north contrasts with 
long-wavelength undulations of the area to the south. Faults 
are shown schematically but with correct general dip. Area 
north of the Harz Mountains is simplified from Jähne (in Kley 
et al., 2008, p. 105) and Malz et al. (2020). 
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Ten major geological-structural units are defined in the study area considering the major fault patterns as well as contrasts in 

the thickness, facies, and preservation of the Mesozoic-Cenozoic sequences (Fig. 5). Only the Lower Saxony Basin and the 245 

Harz Foreland Basin show a more-or-less complete record of Mesozoic sedimentation. In the central part of the study area, 

drained by the Werra, Fulda and Weser rivers (WFW), as well as the Thuringian Basin and the Franconian Platform, Triassic 

sedimentary rocks are exposed at the surface while Jurassic and Cretaceous strata are rarely preserved (Fig. 3). The latter 

applies also for the Leipzig Basin, but there a largely continuous Tertiary cover is preserved. The deepest denudation has 

obviously affected the crystalline basement highs, namely the Harz Mountains, Thuringian Forest, Rhenish Massif and 250 

Bohemian Massif, where Variscan metamorphic and intrusive rocks and some Permian deposits are exposed at the surface and 

no stratigraphic evidences are available on the thickness of the former Mesozoic and Cenozoic cover. 
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Figure 5: (A) Compilation of stratigraphical data for various geological-structural units of the study area as mentioned in the text 
and indicated in Figure 3. The approximate thicknesses of the strata are given in km. C & V: Carboniferous (meta)sedimentary 
or Variscan metamorphic or igneous basement rocks. Black dots represent the stratigraphic levels of the samples used for 
thermochronology. (B) Transect along the cross section in Figure 4, showing primary variations in thickness and different 
preservation. The units shown in (A) are projected onto the transect if appropriate. Zechstein to Triassic strata exhibit a relatively 
monotonous southward thickness decrease and onlap onto Variscan basement of the southern basin margin. Eroded thicknesses 
of Jurassic and Cretaceous strata from the central segment are primarily constrained by thermochronological data. Thickness 
data from Boigk and Schöneich (1974), Hoth et al. (1993), contour maps in Freudenberger and Schwerd (1996) and Franke (2020). 
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4.1 Samples 

More than 300 samples have been collected and the results are based on the analysis of more than hundred samples suitable 255 

for thermochronology, covering an area of about 300 km in E-W extension and 220 km in N-S extension (see Supplements S1 

and S2). Because the basement uplifts are largely well characterized in terms of thermochronology (section 3), the sampling 

strategy focuses on areas in between these uplifts such as the Thuringian Basin, the Weser hills (Weserbergland) and the 

Hessian Grabens as well as areas marginal to the Rhenish Massif and the western Bohemian Massif. Moreover, a couple of 

samples have been taken from the Thuringian Forest and the Franconian platform to trace the thermal history of the Triassic 260 

strata towards south. 

Samples comprise mostly siliciclastic rocks from the Early Triassic (Buntsandstein, n=63), Late Paleozoic (Devonian to 

Permian, n=33), Late Triassic (Keuper, n=8) and Early Jurassic (n=1). Further samples include Variscan granite (n=2 including 

one granite pebble from Permian clastics), Devonian diabase (n=2) and Permian rhyolite (n=1). The distribution of the samples 

with respect to stratigraphical levels of the different geological-structural units in the study area is outlined in Figure 5A. 265 

Almost all samples are surface samples except for four drillcore samples, taken from depths shallower than 500 m. All of the 

110 samples listed were used for apatite fission track analysis, while 37 of them were also suited for apatite (U-Th)/He 

thermochronology. 

5 New thermochronological data  

5.1 Methods 270 

For apatite fission track analysis the external detector method was used (Gleadow, 1981). Highly enriched apatite concentrates 

were embedded in epoxy resin, diamond polished in five steps and etched by 5.5 N HNO3 solution for 20 sec at 21°C (Donelick 

et al., 1999). The apatite grain mounts with the etched spontaneous tracks were covered with freshly cleaved muscovite sheets 

as external track detectors and irradiated with thermal neutrons in the research reactor of the TU Munich in Garching. Corning 

glass dosimeter (CN5) was used to monitor the neutron fluence. After irradiation the tracks in the external detectors were 275 

revealed by etching in 40% HF for 40 min at 21°C. Spontaneous and induced fission tracks were counted under 1000x 

magnification using a Zeiss Axioskop microscope equipped with computer-controlled stage system (Dumitru, 1993). Only 

apatite crystals with well polished surface parallel to the crystallographic c axis were considered. In most cases 20 to 25 grains 

were measured per sample. Additionally the Dpar values were measured in each dated apatite crystal and the lengths of 

horizontal confined tracks were determined in most of the samples. AFT ages were calculated using the zeta age calibration 280 

method (Hurford and Green, 1983) with the standards listed in Hurford (1998). Data processing and plotting were performed 

with the TRACKKEY software (Dunkl, 2002) while errors were calculated using the classical procedure described in Green 

(1981). 
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For apatite (U-Th)/He analysis the crystals were wrapped in platinum capsules and heated in the full-metal extraction line by 

an infra-red laser for 2 minutes in high vacuum. The extracted gas was purified using a SAES Ti-Zr getter kept at 450 °C. The 285 

chemically inert noble gases and a minor amount of other rest gases were then expanded into a Hiden triple-filter quadrupol 

mass spectrometer equipped with a positive ion counting detector. Beyond the detection of helium the partial pressures of 

some rest gases were continuously monitored (H2, CH4, H2O, N2, Ar and CO2). He blanks were estimated using the same 

procedure on empty Pt tubes and the crystals were checked for degassing of He by sequential reheating and He measurement. 

The amount of He extracted in the second runs are usually below 1%. Following degassing, samples were retrieved from the 290 

gas extraction line, spiked with calibrated 230Th and 233U solutions. The apatite crystals were dissolved in a 4% HNO3 + 0.05% 

HF acid mixture in Savillex teflon vials. Each sample batch was prepared with a series of procedural blanks and spiked normals 

to check the purity and calibration of the reagents and spikes. Spiked solutions were analyzed by a Thermo iCAP-Q ICP-MS. 

The ejection correction factors (Ft) were determined for the single crystals by a modified algorithm of Farley et al. (1996) 

using an in-house spreadsheet.  295 

Single-crystal aliquots were dated, usually three aliquots per sample. The crystals were inspected for inclusions under 250x 

magnification and cross-polarized light. Inclusion- and fissure-free, intact, mostly euhedral apatite crystals were selected from 

igneous samples. The siliciclastic samples, however, contain mostly well-rounded apatite grains with dull or rugged surfaces. 

The interiors of such grains were controlled in alcohol immersion, but due to the limited optical resolution they may contain 

tiny inclusions, that were overlooked and may have led to minor contributions of excess helium. The shape parameters for the 300 

Ft-correction were determined and archived by multiple digital microphotographs. The morphology of the euhedral crystals 

was approximated by the combination of prismatic and pyramidal faces, while in case of rounded grains it was approximated 

by oblate and prolate ellipsoids.  

5.2 Results of apatite fission track analysis 

The AFT apparent ages range from 208 to 53 Ma with the majority of ages (~60%) falling into the Late Cretaceous (Fig. 6 and 305 

Supplement S3). Paleocene to earliest Eocene ages contribute with ~21% and Early Cretaceous ages with ~17% to the entire 

distribution while older ages are very rare. Track length measurements reveal mean values between 11.5 and 14.1 µm and 

standard deviations between 0.9 and 2.7 µm (Supplement S4). Relations between track length data and apparent ages display 

boomerang-like shapes (Green, 1986), i.e. the youngest and the oldest ages tend to have slightly longer tracks and narrow track 

length distributions (Fig. 6). Dpar values range from 1.70 to 3.47 µm with a mean of 2.46 µm, pointing to overall relatively 310 

high thermal retentivity of fission tracks in the lattice of the dated apatite crystals (Donelick et al., 2005). 

For evaluation, the new apatite fission track data are assigned to five regions according to the spatial clustering of the samples, 

data coherence, and their belonging to the geological-structural units and stratigraphic levels as introduced in Figs. 3 and 4. 

These are (i) the core of the study area formed by the Buntsandstein uplands in Northern Hesse and southern Lower Saxony, 

drained by the Weser, Fulda and Werra rivers (WFW), (ii) Triassic of the center of the Thuringian Basin (TB), (iii) the transition 315 

from the eastern Thuringian Basin into the Thuringian Schiefergebirge (i.e. western margin of the Bohemian Massif; W-BM), 
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(iv) Late Paleozoic to Early Triassic of the eastern margin of the Rhenish Massif (E-RM) and (v) the Franconian Platform (FP) 

south of the Thuringian Forest (Fig. 7). The elevated basement highs of the Harz Mountains (HM) and the Thuringian Forest 

(TF) yield also very coherent age data. For the evaluation of these two units a few new data are combined with published data 

by von Eynatten et al. (2019) and Thomson and Zeh (2000), respectively. Note that not all samples are included in these seven 320 

regions. 

The core region of the study area, WFW, exhibits Late Cretaceous to earliest Eocene ages (90–53 Ma). It shows a relatively 

large contribution of early Tertiary ages (17 out of 26) compared to the overall age distribution and includes the youngest ages 

of the entire study area (Fig. 7A). Remarkably, WFW includes a small basement uplift (mostly Devonian greywackes, “Werra-

Grauwackensattel”) which yields similar Paleocene AFT age than the adjacent Buntsandstein (57 vs. 62 Ma, respectively, see 325 

Fig. 7A and Supplements S1-S3). South of the Thuringian Forest and on the Franconian platform AFT data reveal a narrow 

Late Cretaceous to Paleocene AFT age range (74–57 Ma), rather similar to WFW. In the Thuringian Basin AFT apparent ages 

range from 123 to 57 Ma. Late Cretaceous ages are predominant in the central part of the basin (TB, except for one Paleocene 

age); however, towards its eastern margin several Early Cretaceous ages are observed (123–104 Ma). This trend towards older 

ages extends into the Thuringian Schiefergebirge with Early Cretaceous to Late Jurassic ages (151–131 Ma). Because this 330 

trend does not allow clear separation the eastern Thuringian Basin and the Schiefergebirge have been grouped together (W-

BM; Fig. 7A). A similar situation, although flipped in the orientation of the age trend, is observed at the eastern margin of the 

Rhenish Massif (E-RM). Late Paleozoic rocks within the massif reveal, besides Late Cretaceous ages, several Late Jurassic to 

Early Cretaceous ages (101–151 Ma) and a single Late Triassic age at the westernmost location. East of the Rhenish Massif, 

Early Triassic sandstones reveal exclusively Late Cretaceous ages (90–67 Ma; Fig. 7A). The Permo-Triassic samples clustering 335 

to the southeast of the Harz Mountains and around the fault-bounded Kyffhäuser High range between 106 and 61 Ma. Due to 

structural complexity they were not treated as a coherent group here. The oldest age (106) Ma occur at the western edge of the 

Kyffhäuser High and suggests transition to the Early Cretaceous ages observed along the western and southern rim of the Harz 

(von Eynatten et al., 2019). 

 340 
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Figure 6: Cumulative frequency distributions of apatite fission track (AFT) and apatite (U-Th)/He (AHe) ages from the study 
area. Bold numbers indicate the medians of the two data sets. Green area indicates the time interval of Late Cretaceous. The inset 
highlights that long mean track lengths (MTL) are mostly associated with AFT ages younger than ~80 Ma.  
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Figure 7: Spatial presentation of the new 
apatite fission track (A) and (U-Th)/He 
ages (B). The map is a simplified version 
of Figure 3; grey color represents 
Permian Rotliegend and older 
formations (i.e. pre-Zechstein). Colored 
envelopes in (A) highlight the regions 
defined in the text and Figure 3, where 
most of the samples are clustering. Small 
white circles in and around the Harz 
Mountains indicate localities of low-T 
thermochronology data by von Eynatten 
et al. (2019). The bigger white circle in the 
Thuringian Forest indicates the locality 
of the AFT samples from the Ruhla 
Crystalline Complex, Thomson and Zeh 
(2000).  
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The comparison of the cumulative distributions of the individual regions reveals almost identical pairwise patterns for the 

following regions: (i) WFW and FP, (ii) E-RM and TB + W-BM, and (iii) the thrusted basement blocks represented by the 

Harz and the Thuringian Forest (Fig. 8A). The age contrast between (i) and (iii) is about 10-15 Ma, rather constant over most 345 

of the age distribution. Given the high number of samples this age contrast is highly significant (Fig. 8B). At the margins of 

the study area (E-RM and W-BM), the apparent ages are mostly older, including high proportions of Turonian and older ages 

(>90 Ma) which tend to have shorter track length (Fig. 6). However, their youngest Late Cretaceous age components, derived 

from the Lower Triassic bordering the Rhenish Massif and the central Thuringian Basin (TB) are similar to the youngest ages 

of the thrusted basement blocks (Fig. 8A).  350 

 

 
Fig. 8: (A) Cumulative distribution of apatite fission track ages assorted for the individual regions outlined in Figure7. Note that 
the central Thuringian Basin data (TB) are plotted together with its eastern transition in to the Bohemian Massif (W-BM) in a 
single cumulative curve, but with different color. The Harz Mountain data are taken from von Eynatten et al. (2019) and the 
Thuringian Forest data set is composed of our new results and data published by Thomson and Zeh (2000). (B) Histograms and 
kernel density estimates (KDE, Vermeesch, 2012) to emphasize the highly significant contrast of Werra-Fulda-Weser (WFW) and 
Franconian Platform (FP) data versus Harz Mountains (HM) and Thuringian Forest (TF) data, which differ by 15 to 20 Myr. 
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5.3 Results of apatite (U-Th)/He analysis 

The calculated unweighted average sample ages (referred to as AHe age) range from 90 to 44 Ma with the majority of ages 

(~62%) falling into the Late Cretaceous (Fig. 6 and Supplement S5). The rest are Paleocene ages and a single Mid-Eocene 355 

age. Standard deviations of the AHe ages vary from 1 to 12 Myr. The median of all AHe ages (67.5 Ma) is younger than the 

median of all AFT ages (74.7 Ma; Fig. 6). The AHe cumulative age distribution overlaps with the AFT distribution for the 

youngest ages.  

The spatial distribution of the AHe ages is rather uniform without significant contrast between the individual regions 

considered (Fig. 7B). For the core region of the study area (WFW), AHe ages range from 82 to 57 Ma, well in line with the 360 

overall range. In fact, the mean age of WFW is almost undistinguishable from the mean of all AHe ages (66.8 vs. 68.6 Ma, 

respectively). The two oldest AHe ages (87 and 90 Ma) occur in the eastern Thuringian Basin. However, a trend of increasing 

ages towards the Thuringian Schiefergebirge (W-BM) is not observed, in contrast to the AFT data. Similarly, no trend is visible 

at the eastern margin of the Rhenish Massif (E-RM). The single Eocene AHe age of 44 Ma is obtained from Late Triassic 

sandstone of the Franconian platform (FP) with an AFT age of 63 Ma. 365 

6 Thermal modelling 

6.1 Temperature-time paths based on low-T thermochronological data 

Details of the low-T thermal history of the different regions are elucidated using the HeFTy modelling program (Ketcham, 

2005), operating with the multikinetic fission track annealing model of Ketcham et al. (2007), using Dpar as a kinetic 

parameter. For the diffusion kinetics of helium in apatite the constraints of Farley (2000) were used. For the modelling the 370 

following constraints were considered: (i) current annual mean temperature for the surface samples and the relevant borehole 

temperature for the drill cores, (ii) onset of the cooling history at the late stages of the Variscan orogeny at ~300 Ma, (iii) 

surface temperature of approx. 20°C at ca. 290-250 Ma for the Permian and 250-230 Ma for the Triassic sediments, and (iv) 

surface temperature of approx. 20°C for the onset of the Paleogene burial (ca. 45 to 35 Ma). The latter constraint is crucial for 

the modelling of the study area. The Paleogene sediments are widespread and seal the erosional surface of the Permo-Triassic 375 

strata especially in the west (E-RM) and east (Leipzig basin, see Fig. 5A). At least the eastern part of the Thuringian basin 

corresponds to a planation surface as demonstrated by scattered remnants of thin fluvial sediments of supposedly Oligocene 

age (‘Hochflächensedimente’, Seidel, 2003, p. 415). Thus, although these areas are currently uncovered their surface can be 

considered as the prolongation of the Triassic/Paleogene unconformity. We allowed unsupervised run for the modelling 

algorithm in the time range between the Permo-Triassic and Eocene surface temperature constraints. 380 
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Figure 9: Time-temperature (tT) plots showing the envelopes of the good results of the modelling series performed on selected 
samples from the different regions. The modelling has been performed by HeFTy software (Ketcham, 2005) using the AFT data. 
Only tT-paths classified as good fits by the program are considered. The dark grey sections represent the well constrained 
intervals of the cooling histories, while the light grey fields indicate the time-temperature regime where the modelling results 
carry insignificant information, as these ranges are older than the oldest fission tracks in the samples. Grey boxes indicate the 
time–temperature constraints when the dated samples experienced surface temperature conditions. The graphs in the upper right 
emphasize the contrast in the post-climax cooling paths between the exhumed basement blocks (A, B) and the Permo-Triassic of 
the WFW core region (D, E). 
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The modeled temperature-time (tT) paths are rather uniform within the individual regions outlined above; Fig. 9 shows a 

selection covering all regions including a northern and a southern example for the core region WFW (Fig. 9D and E, 385 

respectively). A prominent feature of the tT-paths obtained in many samples is a characteristic inflexion at around 90 to 70 

Ma indicating onset of cooling. It appears in all Triassic samples from the WFW, FP and TB regions, but also in the basement 

samples of TF. If we zoom into the post-90 Ma cooling paths a striking difference can be recognized for the samples from 

WFW and Franconian Platform when compared to the samples from the Thuringian Forest and the Harz Mountains  (see 

pairwise comparison of the tT-paths in Fig. 9, A vs. D and B vs. E). The former show a quasi linear cooling path between the 390 

inflexion point and the age of the onlapping Paleogene sediments, while the basement highs (TF and HM) show a more 

hyperbolic cooling trend (i.e. initial quick cooling followed by slower cooling). This observation explains, besides the slightly 

younger inflexion points, the significantly younger apparent ages of the WFW and FP samples.  

At the boundaries of the study area, the eastern flank of the Rhenish Massif (E-RM) and the western flank of the Bohemian 

Massif (W-BM), the time-temperature paths (Fig. 9G and H) are clearly different compared to both the central part and the 395 

internal basement highs: the thermal climax is older, mostly Jurassic in age, and the Late Cretaceous inflexion is not appearing 

except for those samples having approx. 80 Ma or younger AFT apparent ages (Fig. 7A). The samples selected for illustration 

in Fig. 9 (G and H) represent the >90 Ma AFT ages, which are dominant in the Late Paleozoic rocks detected at the margins 

of both massifs (W-BM and E-RM, 131 Ma and 141 Ma, respectively).  

6.2 Reconstruction of the missing sequence 400 

The very characteristic thermal paths described above and the lithology and thickness conditions of the post-Triassic sequences 

in the well-preserved basins (Fig. 5) form the base for the reconstruction of the missing sequences from the deeply eroded 

regions, where only Variscan basement rocks and Permo-Triassic formations are exposed at the surface. The modelling was 

performed by a combination of PetroMod (Schlumberger) and HeFTy (Ketcham, 2005) software.  

In the first step, the stratigraphic information from the preserved surrounding basins is crucial for the modelling. The Triassic 405 

sequences have relatively constant thickness (Figs. 4 and 5) and were thus considered as invariable for the modelling. In 

contrast, the Jurassic and Cretaceous strata are highly variable in thickness and thus the magnitude of late Mesozoic burial was 

considered variable for the modelling (e.g. Hoth et al., 1993). Sensitivity analyses reveal that the influence of relative 

proportions of the Jurassic and Cretaceous thicknesses is negligible, because their variation impacts the prograde thermal path 

only, while the thermal reset of the AFT age is mostly sensitive to the temperature at the deepest burial stage, i.e. around the 410 

onset of basin inversion. For constraining the lithological parameters, we used limestone for the Middle Triassic, siltstone for 

the Upper Triassic, shale and siltstone for the Jurassic and marl for the Cretaceous sequences. The outcome of this step is a 

thermal path generated for the specific stratigraphic level, which was dated by the AFT method using the assumed burial 

history and heat flow. 
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Figure 10: Modelled relations between heat flow and the thickness of the missing sequence. The plots were generated by running 
56 combinations of assumed heat flow and cover sequence thicknesses, using PetroMod (Schlumberger) and HeFTy (Ketcham, 
2005) software. The isolines represent the Goodness of Fit (GoF) calculated according to the apatite fission track ages measured 
on the Lower Triassic Bunter sandstone samples V-27 from the Thuringian Forest (A) and V-144 from the WFW region (B). High 
GoF value (max = 1) indicates good match between the measured and calculated values. The burial and exhumation trends applied 
for the burial modelling follow the observed characteristics obtained by the thermal modelling of the Thuringian Forest and 
WFW samples. In case (A) the inflexion of the thermal history was set to 90 Ma followed by rapid and then decreasing cooling, 
while in case (B) the inflexion is set to 75 Ma and the cooling rate is kept constant until Eocene (see text and top right panels in 
Fig. 9). The light vertical band represents a most likely heat flow of 60 to 68 mW/m2. The corresponding burial amounts to 3.5 to 
4 km, actually undistinguishable for the two modeled scenarios. 

 415 
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In a second step, this thermal path was used to calculate an apatite fission track age. The calculated age is then compared to 

the measured age and according to the difference a misfit plot is constructed using the goodness of fit (GoF; see Fig. 10), which 

expresses the probability of failing the null hypothesis that the model and data are different (Ketcham, 2005). A detailed 

description of the two-step modelling procedure is given in Arató et al. (2018). Figure 10 shows the relation of the missing 420 

burial and the heat flow calculated for a sample from the Thuringian Forest and the WFW region. The negative correlation 

between the heat flow and the (paleo-)burial is obvious; the undulation and lenses in the plots are artefacts related to the 

calculated nodes within the plotting areas. Considering heat flow values of 60-68 mW/m2 (see discussion below) the removed 

thicknesses are in the order of 3.5 to 4 km, very similar for both the TF and WFW regions. Note that assuming much higher 

heat flow values of 80-85 mW/m2 still requires removal of 2.5 to 3 km of overburden (Fig. 10).  425 

7 Discussion 

In the following we first outline the principal constraints imposed by both the new and the published thermochronological data 

regarding magnitudes and timing of Mesozoic to Cenozoic burial, exhumation and denudation. We then discuss the validity 

of the range of assumed heat flow values in the light of Late Cretaceous to Paleogene volcanism. Eventually, we evaluate 

potential driving mechanisms for the inferred uplift and exhumation based on their magnitudes and rates. Although the 430 

discussion is focused on the main study area in central Germany, any model has to consider that the entire region which 

experienced Late Cretaceous to Paleogene exhumation and erosion is considerably larger, as summarized in section 3. 

7.1 Constraints from thermochronology and thermal modelling 

Thermochronological data and modelling results in concert with sedimentological and/or stratigraphic data related to thrusted 

basement blocks in Central Europe suggest exhumation and erosion of several kilometers of Late Paleozoic to Mesozoic 435 

overburden in Late Cretaceous to Paleocene time (see section 3 and Fig. 2). For the basements blocks within or adjacent to the 

main study area in central Germany the removed overburden amounts to at least 6 km in case of the Harz Mountains (von 

Eynatten et al., 2019) and about 3 - 4 km in case of the Thuringian Forest. For the latter similar values are obtained for the 

crystalline core (Ruhla Crystalline Complex, Thomson and Zeh, 2000) and Early Triassic sandstones from the rim (Fig. 10A). 

Most of this removal has occurred in Late Cretaceous time. Similar timing and magnitude have also been reported for the 440 

Flechtingen High to the north of the Harz Mountains (Fischer et al., 2012; Figs. 1 and 4).  

The new thermochronological data presented for the Triassic sedimentary rocks exposed between and around the thrusted 

basement blocks (Fig. 7) call for extensive exhumation and substantial erosion, similar in magnitude to many thrusted basement 

blocks (i.e. 3-4 km assuming typical geothermal gradients and heat flow for continental crust; see Figs. 10 and section 7.2). 

This regional exhumation feature holds at least for the main study area, covering about 200 x 300 km in central Germany, 445 

referred to here as domal uplift (Fig. 11). In contrast to the basement blocks, the areas in between, reflecting the domal uplift, 
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are associated with significantly younger AFT ages, mostly ranging from 75 to 55 Ma (compared to 85-70 Ma for the basement 

blocks, Fig. 8B). This contrast is also recorded by a later onset of cooling and exhumation in the tT-paths (Fig. 9, at ~75 Ma 

instead of ~90 Ma). Overall long tracks, narrow track length distributions, and mostly tight ranges of apparent ages suggest 

that uplift and erosion occurred over a relatively short time interval of several Myr to few tens of Myr, translating into 450 

exhumation rates of about 0.1 to 0.5 mm/yr. The 75-55 Ma age range for regional exhumation in Germany is similar to an 

Early Cenozoic (65-55 Ma) exhumation event affecting most of the British Isles (Holford et al., 2009a and references cited 

therein). Whether or not these spatially separated events reflect a common underlying process remains to be established. 

Towards the margins of the study area, at the transition to the Rhenish Massif in the west and Bohemian Massif in the east, 

exhumation is less pronounced and extends over a longer time span (Late Jurassic to Cretaceous). Although a general trend of 455 

increasing AFT ages towards the exposed Paleozoic basement rocks is visible (Fig. 7A), the age patterns are rather 

heterogeneous for these two regions, most likely because the margins of the large basement massifs are structurally complex 

and the thickness and facies of the Mesozoic sedimentary coverage was variable at relatively small spatial scales. The 

magnitudes of Late Cretaceous to Paleocene exhumation and erosion are remarkably reduced, most likely due to a combination 

of overall less Mesozoic burial, the lack of pronounced thrusting comparable to, e.g., the Harz Mountains, and waning uplift 460 

towards the margins of the dome. Interestingly, the tT-paths for these regions (Fig. 9G and H) are rather flat at 100 to 75 Ma 

implying relatively stable thermal conditions, which preclude both strong cooling due to exhumation and a  regional thermal 

pulse in Late Cretaceous time. The slight increase in temperature at around 75 to 55 Ma appears similar to the southern rim of 

the Harz Mountains (Fig. 9I), where it has been interpreted as temporal burial due to storage of detritus delivered from the 

exhuming Harz Mountains (von Eynatten et al., 2019).  465 

7.2 Volcanism and heat flow 

Mostly Tertiary alkaline basic volcanic rocks such as basanites, nephelinites and alkali olivine basalts, along with minor 

occurrences of more differentiated rocks such as phonolites and trachytes characterize the Central European Volcanic Province 

(Wilson and Downes, 1991; Wedepohl et al., 1994). It includes major occurrences of volcanic rocks like the Eifel, Westerwald, 

Vogelsberg, and Rhön in central Germany (Fig. 3) and the Eger rift in the Czech Republic. Published ages vary from Middle 470 

Eocene to Quaternary, however, most occurrences are Oligocene–Miocene in age (e.g. Becker, 1993; Wedepohl et al., 1994). 

The Miocene Vogelsberg volcano in northern Hesse, dated between 18 and 14 Ma (Bogaard and Wörner, 2003), forms the 

center of the Central European Volcanic Province with respect to both location and volume. The geochemical and isotopic 

characteristics of the volcanic rocks mainly suggest derivation from an upwelling asthenospheric mantle source, although some 

part of the melts indicate a cooler origin in the lithosphere affected by asthenospheric melts (‘veined lithospheric mantle’; 475 

Boogaard and Wörner, 2003; Jung et al., 2005). The more differentiated rocks of the Central European Volcanic 

Provincesuggest variable crustal contamination (e.g. Wörner et al., 1985; Kolb et al., 2012; Jung et al., 2013). 
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Figure 11: The two superposed uplift and exhumation 
processes illustrated on the cross-section of Fig. 4. 
Thrust-related uplift confined to three discrete basement 
blocks is followed, possibly with some temporal overlap, 
by domal uplift persisting into the Paleogene. Uplift and 
exhumation magnitudes are not to scale. 
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Although the Central European Volcanic Province is mainly a Late Eocene to Miocene feature, there is widespread evidence 480 

for Late Cretaceous to Paleocene volcanic activity in the entire area. This includes zircon U-Pb ages of 70 to 67 Ma from 

trachytes and syenites from the Vogelsberg area and further occurrences to the north and south of the Odenwald (Schmitt et 

al., 2007; Martha et al., 2014). Similar ages (68 and 69 Ma) are reported from Ar/Ar dating of amphibole from camptonite 

dikes cutting the Paleozoic-Mesozoic basement of the Vogelsberg volcano (Bogaard and Wörner, 2003). Further south, along 

the margins of the Upper Rhine Graben, Ar/Ar dating of basic alkaline volcanic intrusions and dikes revealed Paleocene to 485 

Early Eocene ages between 61 and 47 Ma (see compilation in Walter et al., 2018). Siebel et al. (2009) reported radiometric 

data from zircon crystals derived from alkaline basalts of the Eger Rift. Whereas the (U-Th)/He cooling ages of these zircons 

reflect the well-known Late Oligocene eruption of the lavas, their U-Pb data suggest crystallization ages ranging from 83 to 

51 Ma. The data reflect multiple or protracted zircon growth events or reset at different times long before eruption and call for 

survival of the in zircons in a locally enriched chemical environment affected by asthenospheric upwelling processes or zircon 490 

growth in a metasomatically enriched subcontinental lithospheric mantle (Siebel et al., 2009). 

The contrast between the inferred eroded thicknesses from thermochronological data of the Thuringian Forest and the 

significantly lower thicknesses derived from stratigraphic data of the adjacent basins led already Thomson and Zeh (2000) to 

speculate about (i) hitherto unreported thicknesses of Jurassic to Lower Cretaceous strata (which in required thickness are only 

available in the Lower Saxony Basin and small confined basins like the Harz Foreland Basin, Fig. 5), and/or (ii) increased 495 

geothermal gradients. The latter, however, would have to be as high as ~55-60°C/km to fully account for the temperatures 

attained under a thin overburden. Assuming common thermal conductivity values for upper crustal rocks of 2-3 W/mK (e.g. 

Mielke et al., 2017), the corresponding heat flow would be about 110 to 180 mW/m2, even higher than the extreme values 

recorded in the Pannonian Basin or most of the Basin-and-Range Province at present (Lenkey et al., 2002; Sass et al., 1994). 

Northeast of the study area, in the Northeast German Basin, present heat flow values range about 70 to 90 mW/m2 (Norden et 500 

al., 2008). Towards the study area, these values appear to decrease to thermal gradients around 30°C/km (Agemar et al., 2012, 

their figures 8 and 11). However, data coverage regarding present subsurface temperature distribution is rather poor for the 

central German uplands region. Thermometric and thermochronological studies from the Rhenish Massif call for a ‘normal’ 

and stable geothermal gradient since late Paleozoic times (Glasmacher et al., 1998; Karg et al., 2005). Further north, in the 

strongly inverted central and southern part of the LSB, Senglaub et al., (2005) assumed a slightly elevated gradient of about 505 

40°C/km during the time of maximum burial (i.e. Jurassic to Early Cretaceous).  

To summarize, there is clear evidence that Central Europe was affected by alkaline intraplate volcanic activity in latest 

Cretaceous to Early Eocene time. The volumes are negligible with respect to a regional heating event throughout the crust 

implying that our thermochronological data are not directly influenced by volcanic heat production. Moreover, there is no 

other clear evidence for large-scale and long-term increased or reduced heat flow in central Europe. Therefore it seems justified 510 

to assume a typical gradient of ~30°C/km and heat flow of ~65 mW/m2 for the modelling. However, the widespread occurrence 

of volcanic activity, although thermally insignificant, point to synchronous and large-scale processes in the asthenospheric 
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mantle and/or across the asthenospheric-lithospheric mantle boundary that likely affected geodynamics and uplift in Central 

Europe at that time. 

7.3 Potential mechanisms for uplift, exhumation and denudation 515 

The observables to be explained by a model for exhumation away from the thrusted basement uplifts are domal uplift of an 

area at least some 250-300 km across, with concomitant denudation of 3-4 km. Uplift and erosion occurred over a relatively 

short time interval of several Myr to few tens of Myr, corresponding to exhumation rates of 0.5 to 0.1 mm/yr. Afterwards, the 

crust subsided slightly as indicated by the remnants of Cenozoic marine strata, but remained significantly uplifted above its 

previous elevation and has not accommodated a new, thick sedimentary cover to the Present. With respect to timing, this event 520 

occurred approx. 10 to 20 Myrs after thrusting of the basement blocks (Figs. 8 and 9). 

In general, mechanisms capable of inducing long-wavelength uplift of the continental crust can be grouped into two categories: 

(1) Isostatic. Here, the elevation change is caused by variations in the density and/or thickness of lithospheric materials or the 

asthenosphere. The crust can be thickened via tectonic shortening or addition of melt (Brodie and White, 1994; Ware and 

Tuner, 2002). Isostatic mechanisms involving the mantle comprise thinning of the lithospheric mantle by heating (thermal 525 

erosion) and translation of the lithosphere over more buoyant asthenosphere (Carminati et al., 2009). (2) Dynamic. Uplift in 

this case is due to viscous stress from upwelling mantle or results from buckling of the crust or entire lithosphere under 

tangential tectonic stress.  

In the following paragraphs, we derive first-order estimates of key parameters for each mechanism listed, e.g. the required 

magnitude of crustal shortening or lithospheric thinning, We do not exclude any mechanism beforehand, but the estimated 530 

parameters suggest some are highly unlikely. For most mechanisms it is relatively straightforward to estimate whether they 

could have created uplift of sufficient magnitude and rapidity. We conservatively consider 4 km of uplifted crust that are fully 

eroded (no topography). In the case of wholesale lithospheric uplift, the base of the lithosphere is raised by h = 4 km, creating 

room for 4 km of asthenosphere at the bottom of the column while an equal amount of crust is eroded from the top (Fig. 12A). 

The pressure increase equals the load of the added asthenosphere minus the load of the eroded crust following Eq. (1): 535 

      (1) 

where  and  are the densities of the asthenosphere and continental crust and g is gravity acceleration. The pressure 

increase  must be compensated by an equal but upward directed force per area which can be created by addition of less 

dense material (for instance, rock of basaltic composition instead of mantle rock) or removal of denser material (for instance, 

mantle lithosphere replaced by asthenosphere). As  is the product of a density difference and thickness (and constant gravity 540 

acceleration), the required thickness change for any material added or lost can be calculated using Eq. (2): 

    or, eliminating g and rearranging, 

        (2) 
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where x and  are the thickness and density of the material added or removed. The results are listed in Table 1 and briefly 

discussed in the following. For the sake of simplicity, we have chosen single density values rather than ranges. The results do 545 

not change fundamentally if densities are varied within reasonable limits. 

 

 

 

 
Figure 12: Scenarios for domal uplift inducing 4 km of 
erosion as discussed in the text. All indicated density values 
are in g/cm3. Sketches are not to scale. (A) Generic case of 
lithospheric uplift. 4 km of crust are eroded and 4 km of 
asthenosphere added; thickness of lithospheric mantle is 
unchanged. (B) Crust thickened by folding and thrusting 
restored to original thickness by erosion. Tectonic 
thickening of lithospheric mantle depends on its original 
thickness and was not considered in our estimate. (C) 
Underplating by mafic melt. The mafic lens lifts up the 
Moho but does not replace continental crust. Thickness of 
lithospheric mantle unchanged. (D) Thinning of mantle 
lithosphere by thermal erosion. (E) Dynamic topography 
caused by mantle upwelling. After erosion, the 
configuration is similar to (A), with asthenosphere replacing 
continental crust. In nature, (C), (D) and (E) are not 
mutually independent. See Table 1 for derivation of 
numerical values. 
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Table 1: Estimates of parameters for mechanisms 
       of uplift and exhumation discussed in the text. 
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7.3.1 Tectonic thickening of the crust 

Thrusting and folding would have to thicken the crust by 4 km before erosion restores it to its original thickness (Fig. 12B). 

Increasing the crustal thickness in the core region from its present (and, by inference, also pre-inversion) value of 30 km to 34 

km requires shortening by 12%. This is a conservative estimate because we assume no topography is left at the end of erosion 550 

and do not consider the subsidence caused by tectonically thickened lithospheric mantle. The total shortening accommodated 

by folding and thrusting in Germany during Late Cretaceous inversion has been estimated at 13.5 to 15 km (Jähne et al., 2009), 

corresponding to an average percent shortening across the 250 km-wide uplift of around 6 %. Crustal shortening could thus 

make a significant contribution to exhumation but not explain its full amplitude, even if the shortening accommodated by 

individual inversion structures may be underestimated (Eisenstadt and Withjack, 1995; Holford et al., 2009b, cf. Bolz and 555 

Kley, this volume). The need for an additional uplift mechanism is also evidenced by the observation that structural lows such 

as the Thuringian Basin (syncline) did not subside but were strongly exhumed (Fig. 4). As regards the uplift rate, tectonic 

shortening thickens the crust at the shortening rate divided by the aspect ratio of the deforming cross-section area, in our case 

about 10 (300 km length/30 km thickness). 1 mm/yr of shortening would give 0.1 mm/yr of thickening and it would take 40 

Myr to thicken the crust by 4 km. Notice, however, that this shortening rate derives from the estimated magnitude of less than 560 

20 km shortening and does not provide an independent constraint on the capability of crustal thickening to drive exhumation. 

7.3.2 Magmatic underplating 

Isostatic uplift due to underplating by basaltic melts has been proposed for parts of the British Isles (e.g. Brodie and White, 

1994; there associated with the Iceland plume). The ca. 9 km thick column of basalt required to drive 4 km of upper crustal 

erosion (Fig. 12C, Table 1) is similar to the thickness of layered mafic lower crust observed in many parts of Central Europe. 565 

However, this lower crust is commonly interpreted to reflect crustal re-equilibration in Permian time (e.g. Lüschen et al., 1990) 

and it seems unlikely that the crust before Cretaceous uplift was only 25 km thick (calculated as the pre-erosion thickness of 

34 km minus 9 km of basalt). The attainable uplift rate depends on the rate of magma production. Underplating the entire area 

of Cretaceous uplift (ca. 70.000 km2) by several km of basaltic melt would require a magma volume typical of Large Igneous 

Provinces (LIP; e.g. Stein et al., 2018, their Fig. 8). As the production of basaltic melts can be very fast and continental flood 570 

basalts are typically erupted over only a few million years (Self et al., 2014), the emplacement rate is not limiting. However, 

the sparse Late Cretaceous to Paleocene volcanism makes Central Europe a highly unlikely location for a LIP of that age, 

ruling out magmatic underplating as a driver of Late Cretaceous to Paleogene regional uplift. 

7.3.3 Thinning of the lithospheric mantle 

The lithospheric mantle must thin by several tens of kilometers to induce 4 km of erosion due to the small density contrast of 575 

lithosphere and asthenosphere (Fig. 12D, Table 1). Thickness variations of the lithospheric mantle over time have been invoked 

to explain Mesozoic subsidence and Cenozoic uplift in Central Europe (Meier et al., 2016), but the magnitude of these changes 



33 
 

is difficult to constrain independently. Our approach of equating lithospheric thinning with replacement of constant-density 

lithosphere by constant-density asthenosphere is highly simplistic. The densities of the asthenosphere and subcontinental 

lithospheric mantle vary considerably with depth and geothermal gradient, and our chosen density contrast of 0.05 g/cm3 may 580 

be on the high side as an average value (Djomani et al., 2001). Duesterhoeft et al. (2012) modelled the density changes due to 

temperature, pressure and metamorphic reactions in a lithosphere that undergoes protracted heating from a plume impinging 

on its base at 1800°C. Metamorphic density changes were responsible for 350 m out of 1400 m total uplift after 130 Myr. The 

effect would be smaller in our case where mantle temperature is presumably lower and less time available for heating. Thinning 

of the lithospheric mantle by upwelling asthenosphere strongly depends on the size of the uplifted area and thus the distance 585 

over which the asthenosphere spreads laterally. Semi-analytical models (Davies, 1994) suggest that an initially 120 km thick 

continental lithosphere can be thinned to less than 60 km within 25 Ma above a narrow plume of 70 km diameter, creating 1.5 

km of non-eroded uplift, but thinning and uplift are much less efficient for an area 300 km across. However, Davies (1994) 

also pointed out that thinning of the lithosphere by a thermal plume is preceded by faster dynamic uplift as the plume reaches 

the base of the lithosphere (see also Friedrich et al. (2018) for predicted geological effects of mantle plumes). Extremely fast 590 

removal of the continental lithosphere over only a few hundred thousand years by an impinging thermochemical plume that 

contains a large amount of recycled oceanic crust was modeled by Sobolev et al. (2011) but creates only about 200 m of non-

eroded uplift. 

7.3.4 Relative motion of lithosphere and asthenosphere 

Westward absolute motion of the European plate over asthenosphere of lower density created at the Mid Atlantic Ridge was 595 

proposed as a cause of Cenozoic uplift (Carminati et al., 2009). In Late Cretaceous time the MOR of the North Atlantic did 

not exist yet, and central Europe cannot have moved over depleted asthenosphere formed there. However, absolute motion 

could have moved central Europe over long-lived dynamic topography (see next paragraph). 

7.3.5 Dynamic topography 

Isostatic calculations can also be used to estimate uplift and exhumation due to mantle flow. Observational data suggest that 600 

upwelling mantle is able to sustain about 1 km of dynamic topography t (Braun et al., 2013), or 1 km of asthenosphere added 

to the base of the lithospheric column. If the topography is eroded while the mantle flow is maintained, the eliminated crustal 

load allows for additional uplift of mantle. Eventually, the load of the mantle replacing eroded crust equals that of the mantle 

column before erosion following Eq. 3 (Fig. 12A, 12E): 

      (3) 605 

where e is eroded crustal thickness, t is dynamic topography and ρc, ρast are the densities of crust and asthenosphere. 

Mantle upwelling capable of sustaining 1 km of dynamic topography could thus drive some 6 km of erosion (Table 1). 
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The rates at which dynamic topography grows and decays depend on the mechanism assumed: Topography can result from (i) 

a lithospheric plate moving across a stable upwelling area or swell related to long-term mantle convection (Braun et al. 2013) 

or (ii) a plume-like perturbation rising beneath the lithosphere. In the first case, the uplift rate depends on absolute plate velocity 610 

and the geometry of the swell. In the second case it depends on properties of the plume. The absolute motion of Eurasia 

underwent major changes between 120 and 60 Ma, from a fast northwest to a slower west-directed motion, at velocities 

decreasing from about 40 to 10 mm/yr for central Europe (Seton et al., 2012). At these velocities it would take 7.5 to 30 Myr 

to move a 300 km wide area onto a swell. 

7.3.6 Lithospheric folding 615 

The potential contribution of lithospheric folding to domal uplift is more difficult to assess because its amplitude strongly 

depends on lithosphere age and rheology as well as the magnitude and rate of shortening. Numerical modelling results indicate 

that folding-induced erosion can attain magnitudes way beyond the 4 km discussed here with sufficient shortening and time. 

On the other hand, a generic model approximately matching our case of a 300 Ma old lithosphere (thermotectonic age, cf.  

Cloetingh et al., 1999) develops non-eroded topography of only 200 m amplitude at 6% of shortening (a 1500 km wide model 620 

area shortened by 90 km; Cloetingh and Burov, 2011, their Fig. 10), despite a shortening rate of 15 mm/yr, more than ten to a 

hundred times higher than Germany during Late Cretaceous time. At low shortening rates lithospheric folds take time to grow 

(e.g. 5-10 Myr for 1 km amplitude at 4 mm/yr for Iberia, Cloetingh et al., 2002). A stronger argument against lithospheric 

folding driving uplift in our case can be drawn from the large-scale structure. The area that underwent regional doming 

coincides with a wide syncline today (Fig. 11). Before the uplift event this syncline must have been deeper. This decrease in 625 

fold amplitude accompanying uplift cannot be the result of maintained or increased horizontal stress. It could be due to a 

decrease in stress if we assume that the syncline was formed or tightened by lithospheric folding (cf. Nielsen et al., 2005). 

However, since stress relaxation cannot exhume the syncline more than it was originally deepened by horizontal stress, this 

assumption restricts the time available for deposition of the missing overburden to the short interval of the inversion phase (90 

to 75 Ma). 630 

8 Conclusions 

- A compilation of several hundred published and about 150 new thermochronological analyses (AFT and AHe) indicates 

generalized, km-scale exhumation over substantial parts of Central Europe in Late Cretaceous to Paleocene time. 

- The magnitude of exhumation attains >6 km over basement uplifts such as the Harz Mts. and 3-4-km for the other regions in 

central Germany. 635 

- The spatial pattern of exhumation exhibits two types of exhumation: (i) thrust-bordered basement uplifts and (ii) 

superimposed regional-scale domal uplift. While thrust-related exhumation is spatially well defined, the extent of the doming 

area is as yet poorly defined. 
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- In detail, thrust-related uplift predates regional doming (90-70 Ma vs. 75-55 Ma) with some temporal overlap. 

- Thrusting and crustal thickening associated with inversion tectonics can contribute at best half of the doming signal. An 640 

additional process or processes are required to explain the widespread exhumation. 

- Thinning of the mantle lithosphere and dynamic topography, both caused by upwelling asthenosphere, are able to produce 

uplift of the required magnitude, wavelength and rate. The exhumed region does coincide with a raised lithosphere-

asthenosphere boundary at present. 

- Alkaline volcanism potentially associated with mantle-induced uplift is dated at about 70 to 50 Ma, roughly similar to domal 645 

uplift, but its scarcity and negligible volume is puzzling. 

- The apparent southern border of the Southern Permian Basin is due to exhumation. Its original depositional realm extended 

much further to the south in Jurassic to Early Cretaceous time. 

Additional data are needed to constrain the spatial extent of domal uplift and exhumation and to decide whether it is an isolated 

occurrence or linked to other regions of Paleogene uplift such as the British Isles or the western and northeastern margins of 650 

the Bohemian Massif. The temporal contrast between the well-known Late Cretaceous thrusting in Central Europe and the 

newly discovered, younger, long wavelength domal uplift should also be investigated, verified or falsified, for other regions 

in Central Europe. 

 

 655 
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