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Abstract. The Late Cretaceous, intraplate shortening event in Central Western Europe is associated with a number of ma-

rine basins of relatively high amplitude and short wavelength (2-3 km depth and 20-100 km width). In particular, the Harz

Mountains, a basement uplift on a single, relatively steeply dipping, basement thrust, have filled the adjacent Subhercynian

Cretaceous Basin with their erosive product, proving that the two were related and synchronous. The problem of generating

subsidence of this general style and geometry in an intraplate setting is dealt with here, by using an elastic flexural model con-5

ditioned to take account of basement thrusts as weak zones in the lithosphere. Using a relatively simple configuration of this

kind, we reproduce many of the basic features of the Subhercynian Cretaceous Basin and related basement thrusts. As a result,

we suggest that overall, these basins share many characteristics with larger scale, foreland basins associated with collisional

orogens on plate boundaries.

1 Introduction10

The Subhercynian Cretaceous Basin (SCB) is a narrow (∼ 20 km) but relatively deep (∼ 2500 m at its depocentre) mostly

shallow marine trough with a WNW-ESE oriented subsidence axis, extending ∼ 90 km along the northern edge of the Harz

Mountains in Central Germany (von Eynatten et al., 2008; Voigt et al., 2008). It is bounded on its southern margin by the

Harz Northern Boundary Fault (HNBF) and partly to the north by a series of three anticlines (Huy, Fallstein, Hakel), and also

contains a number of syn-depositional structures (Figs. 1,2). The HNBF is a WNW-ESE trending, basement thrust that offsets15

Hercynian basement and its Mesozoic cover along a ∼ 100 km long zone. A further basement uplift, the Flechtingen high,

occurs some 70 km north of the HNBF (Figs. 1,2,3).

The main phase of Harz uplift had been considered a well-constrained Late Cretaceous (Santonian - Campanian) event,

based on biostratigraphy of their eroded product captured by the basin infill (Voigt et al., 2006; von Eynatten et al., 2008). A

more recent, multi-method thermochronological analysis (von Eynatten et al., 2019) using zircon and apatite fission track as20

well as (U-Th)/He methods yields a slightly broader age spectrum for Harz exhumation (90 Ma - 60 Ma), with the earliest age

corresponding to initial uplift with little erosion, a main pulse of thrusting and basin filling between 86-82Ma, followed by a

further erosion of up to 4km of material, stretching into the early Cenozoic.

The Harz uplift forms a part of a much wider, Late Cretaceous deformation event extending across Central Western Europe

from the North Sea in the west to the Mid Polish Swell in the east (Kley and Voigt, 2008; Krzywiec, 2002; Voigt, 1962;25
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Voigt et al., 2008; Scheck et al., 2002). Late Cretaceous depocentres are associated with various basement thrusts forming

parts of this system (Fig. 1), such as the Osning fault (Voigt et al., 2008), a south-directed basement thrust overriding the

Munsterland basin, the Lausitz anticline which overthrusts both the Saxony-Bohemian Cretaceous Basin and the Northern

Sudetic Cretaceous Basin (Voigt, 2009) as well as the basins adjacent to the Mid Polish Swell (Krzywiec, 2002).

An often overlooked aspect of these basins is the mechanism by which they are able to subside and accumulate large thick-5

nesses of marine sediments in intraplate, compressional settings. In particular, the SCB has a depocentre directly adjacent to the

Harz Northern Boundary Fault (HNBF), and despite being syn-tectonically folded, the Late Cretaceous infill is clearly asym-

metrically distributed, with its maximum sedimentary thickness along the HNBF, wedging out to the north over a minimum of

25 km distance (Fig. 2). In this way, the basin geometry resembles a foreland basin, which are the unique example of marine

basins in compressional settings on earth. One of the first people to recognise the distinct character of these Late Cretaceous10

basins (Voigt, 1962) also used the term "Vortiefe" (foredeep), although this does not refer to the much later concept of foreland

basins, and Voigt (1962) discussion of subsidence mechanisms is limited to an analogy with much larger, pre-plate tectonic

"geosynclines".

Although more recently, a number of different mechanisms (Voigt et al., 2008; von Eynatten et al., 2008) have been associ-

ated with SCB formation and to a lesser degree, subsidence, an explicit analysis of the mechanics of elastic flexural bending15

has not been presented.

2 Foreland Basin character of the SCB

Much recent work on the SCB has focused on the geometry and unconformities of the Late Cretaceous basin fill. These

have been explained by progressive development of syn-sedimentary, partly detached cover folding above an incipient, Harz

basement thrust (Voigt et al., 2004, 2006; von Eynatten et al., 2008). The SCB is underlain by a Mesozoic cover of Triassic,20

Jurassic and some Early Cretaceous material, which in turn overlie Zechstein evaporites (Fig. 3). The latter forms a detachment

to the underlying Hercynian basement. This cover was also present across the Harz Mountains, prior to uplift, but has since been

removed by erosion, estimated at as much as ∼6km (von Eynatten et al., 2019). The Mesozoic cover beneath the SCB forms

a passive structural marker, recording the net effect of Late Cretaceous deformation above the regional, Zechstein detachment,

and shows a strongly asymmetric, synclinal geometry, with a near vertical, sometimes overturned, southern limb along the25

HNBF (see also appendix), and a very gently dipping, northern limb, locally disturbed by the previously mentioned internal

basin structures. As a result of this deformation, Late Cretaceous deposits of the SCB are sometimes strongly affected by

syn-sedimentary deformation. The regional, base Zechstein unconformity, marked by the contact to Hercynian Basement, or

sporadic Permian Rotliegend basins within it, in turn forms a passive marker of post-Hercynian deformation which excludes

the Late Cretaceous detachment folding of the Mesozoic cover (Fig. 3a).30

Large, classical foreland basins are often associated with a progressive syn-sedimentary deformation synchronous with

subsidence, usually consisting of increased tilting of older units, and often a lateral migration of the basin margin, and hence

prograding onlap away from an orogen as large thrust systems evolve and grow (Allen et al., 1986; Homewood et al., 1986;
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Burkhard and Sommaruga, 1998; DeCelles and Giles, 1996). In the case of the SCB however, due to its smaller scale, and

the relatively stationary nature of the thrust load, we might expect such effects to be weaker. Recognising any characteristic

sedimentary geometries is further complicated by the combination of erosion and syn-sedimentary internal deformation of the

basin fill due to detachment folding of the Mesozoic cover above Zechstein evaporites. It is however interesting that Turonian

and Lower Coniacian marly limestones and micrites, thicken somewhat towards the southern margin of the SCB, perhaps5

indicating a slightly earlier, probably submarine, initiation of subsidence and thrusting than is generally assumed based on

the first arrival of eroded material from the uplifting Harz Mountains (von Eynatten et al., 2008). A broader insight into

the distribution of subsidence can be deduced from the isopachs of Late Cretaceous sediments, which show a pronounced

depocentre up to 2500 m deep, directly adjacent to the central portion of the HNBF in the area of Wernigerode (Fig. 2), part of

the ∼ 40 km long main SCB.10

Systematic change in sediment type throughout a basin’s history is an often cited characteristic of foreland basins. It has been

argued that early sedimentation as orogenic wedge development begins adjacent to the basin is characterised by relatively deep

water sediments, often turbiditic in character, with little or no clastic input due to the underdeveloped initial thrust wedge and

lack of significant erosional product (Allen et al., 1986). Such basins are sometimes referred to as "underfilled" (Sinclair, 1997),

as for example the earliest stages of the Western Alpine foreland in Switzerland in the form of the Helvetic flysch, and Lower15

Marine Molasse (Burkhard and Sommaruga, 1998; Homewood et al., 1986). Later, as the orogenic load develops, sedimentation

becomes increasingly clastic dominated and fills with eroded product of the orogenic wedge. Eventually, sedimentation may

move from marine to lacustrine as the basin becomes overfilled, and sedimentary bypassing may begin. In the SCB, a relatively

deep water to shallow water transition during basin development could be argued for if the Turonian (deeper water, pelagic

limestones, no clastic input) and Coniacian (marly limestones, with some clastics) (Voigt et al., 2004) are considered to be20

related to the earlier stages of basin subsidence and flexure in an underfilled state, succeeded by Santonian age and later,

shallow water facies, generally interpreted as tidal plain and estuarine deposits (Voigt et al., 2008), and associated with the

main phase of erosion of the Harz mountains.

In summary, the SCB may have some of the sedimentary characteristics of larger, orogenic foreland basins, but they are

probably not as pronounced due to the much smaller scale of the system and its relative structural simplicity (single, basement25

thrust).

3 Flexure of plates, flexural amplitudes, wavelengths and loads

Gunn (1943a, b) developed the first models for elastic bending of the lithosphere as part of wider studies of gravity anomalies

(Watts, 2001). Quite remarkably in the pre-plate tectonic era, Gunn created end member models of elastic bending of "plates"

both continuous and broken with both point and distributed loads (Fig. 4 a and b). For instance Gunn (1943a) modelled the30

Hawaiian island chain as a distributed load sitting upon an unbroken portion of the Pacific plate. Gunn (1947) also modelled

flexure of oceanic lithosphere in subduction zones, using an end-loaded plate with a "free" end, again without realising the

plate tectonic implications of his work (Fig. 4 c). Later, as the idea of lithospheric plates developed, studies of flexural bending
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continued, (Walcott, 1970a, b, c) with the aim of better determining the magnitude and temporal evolution of elastic paramters

of the lithosphere like flexural rigidity and elastic thickness.

In collisional belts and orogens such as the Alps, the elastic bending causing foreland basin development on their margins,

due to the vertical loading of the underthrust continental lithosphere by an overriding stack of nappes or thrust sheets (Allen

et al., 1986) has been often studied by using some kind of edge-loaded plate with the load set to correspond to the force exerted5

by the weight of the orogenic wedge (Fig. 4 c). This type of model makes intuitive sense in these cases, since there are two

plates interacting and the edge of the underthrust plate is depressed and bent into an elastic curve which is thought to be the

main mechanism of foreland basin subsidence (Burkhard and Sommaruga, 1998; Homewood et al., 1986).

These elastic flexural end member models also neatly illustrate the problem posed by an intraplate thrust and associated

basin. In the case of the Harz and the SCB for instance, the Harz basement uplift both represents the load generating subsidence10

for, and at the same time is part of the same plate as, the SCB (Fig. 4 d and e). Effectively, this means the plate is loading itself.

The fundamentally different response of edge-loaded (or broken) plate models compared to intraplate-loaded, continuous plate

models is also important in this context. Elastic flexural models assume that the lithosphere has a finite elastic thickness (ho)

which supports loads applied locally over a wider area by transferring the resistance to the load into more widespread elastic

bending of the plate. In this context, an unbroken plate loaded in its middle by a relatively small load would usually be15

characterised by a broad, long wavelength, and shallow, low amplitude flexural response, forming two similarly proportioned

sedimentary basins either side of the load due to flexure. By contrast, an edge-loaded plate supports the load in a cantilever

type of configuration, loaded at one end, and clamped at the other, thus maximising the moment of the load and lithospheric

bending (cf Gunn (1943b)).

The geometry of the SCB is notable for its short wavelength ∼ 25-40 km, and high amplitude ∼2500 m (compare to the20

Swiss Molasse Basin, with an "original" ∼ 120 km and ∼ 5-7 km (Burkhard and Sommaruga, 1998; Homewood et al., 1986)).

In this respect, the subsidence profile of the SCB is skewed towards the end load or broken plate situation. The question then

naturally arises, can we imagine an end loaded, intraplate basement uplift to be a natural analogue for the HNBF and SCB?

4 Broken lithosphere and the structural evolution of the HNBF and SCB

At the present day, as shown by the DEKORP deep seismic profile (Group, 1999) as well as global and local GPS and seismic25

data (Sella et al., 2002; Tesauro et al., 2006), the Central Western European lithosphere, in the region of the Late Cretaceous

intraplate shortening structures, is an integral, stable part of the European portion of the Eurasian plate. Viewed from today’s

perspective, there is no reason to assume anything other than a continuous, elastic, lithospheric underpinning for the region,

including that of the Harz and SCB (Pérez-Gussinyé and Watts, 2005).

In the Late Cretaceous however, the situation was quite different with active, basement thrusting affecting a portion of the30

crust and lithosphere. In general, the geometry and magnitude of shortening on the HNBF are difficult to constrain due to a

variety of factors, mostly related to erosional loss of hanging wall cut-off marker beds, and hence direct geometric constraints

on any fault offset. To try to mitigate this and gain some insight into the structural evolution of the HNBF and SCB, we
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have produced a composite, forward kinematic, and retro-deformed, balanced section across the HNBF and SCB (Fig. 5).

We use a forward kinematic model for the HNBF itself and its hanging wall (Fig. 5) using a fault-parallel flow deformation

algorithm (Erslev, 1986). Total displacement of the hanging wall was adjusted iteratively to best match exhumation estimates

from thermochronology (von Eynatten et al., 2019, 2021). For the steep, southern limb of the SCB , we employ a trishear

model, varying the opening angle over time to best match the southern limb geometry. The gently dipping, northern portion of5

the SCB and the Fallstein salt-pillow were derived from stepwise restoration of sections E-F from Voigt et al. (2008) using a

flexural slip algorithm. The details of the restoration procedure are given in the appendix.

Our cross section (Fig. 5) thus consists of a composite image of the three separate components we have modelled. We present

the section in three evolutionary time steps. In an initial, Cenomanian to early Santonian step (95-86Ma), approximately 2.4km

of displacement on the HNBF produce gentle folding of the Mesozoic cover north of the HNBF, which behaves effectively10

as a blind thrust in this period. A second increment of 2.4km displacement is modelled in the middle to late Santonian (86-

83.5Ma) at which point the HNBF reaches the surface, and begins to offset the Mesozoic strata forming the southern limb of

the SCB. Finally, from the Campanian to Maastrichtian (83.5 Ma - 70 Ma), a further 7km increment of thrust displacement

occurs. Our final geometry shows a depth to detachment for the HNBF of 24km, very similar to the 23 km result of Tanner and

Krawczyk (2017) who used a simple shear algorithm. The major difference from our result is the total fault displacement of15

12km (compared to 3km for Tanner and Krawczyk (2017)). This is due to our section being made consistent with exhumation

documented by thermochronology (von Eynatten et al., 2019). Another poorly constrained parameter affecting detachment

depth estimates is the length of the backlimb. The Harz experienced regional domal uplift after thrusting (von Eynatten et al.,

2021) which we have accounted for in our cross section (Fig. 5c). As a result, at the present day, its backlimb is elevated above

the regional elevation of the foreland (Fig. 3, regional cross-section). In our model, we placed the southern end of the backlimb20

at the transition from the very gentle dip of the Thuringian syncline to the slightly steeper one of the southern Harz. A longer

backlimb would give an even deeper detachment.

Our structural model suggests continuous thrust movements on a discrete HNBF for at least 25 Ma, most of which overlapped

with the flexural subsidence documented by the SCB. It is likely that fault movement was associated with seismicity, causing

rupture and discrete slip. Movement of hanging wall material over the basement thrust ramp lead to pervasive deformation and25

weakening of the hanging wall, producing a non-cohesive topographic load. We therefore suggest that in the Late Cretaceous

intraplate shortening on the HNBF resulted in a broken plate, which led to a situation resembling that shown in figure 4d.

Hence, the deformed hanging wall material of the HNBF formed an end load on the on the edge of the SCB, and caused its

flexural subsidence (Fig.6).

Fig. 3 shows a number of Late Cretaceous basement faults besides the HNBF, to the north of the SCB. These are, from south30

to north, a possible blind basement thrust below the Huy anticline, the Allertal Fault or lineament (AF), the Haldensleben Fault

(HF) and the Gardelegen Fault (GF). Of these, the HF and GF are associated with basement thrusting, and hence have the

potential for the intraplate self-loading of adjacent lithosphere we have already discussed for the HNBF/SCB (Fig. 6). These

structures are considered to transect most of the upper crust even if their precise geometry at depth, and total displacement is

uncertain (Group, 1999; Scheck et al., 2002; Kossow and Krawczyk, 2002). Hence we assume that like the HNBF, they form35
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elastic breaks in the lithosphere. North of the GF, the North German Basin (NGB) is a region of reduced crustal thickness as

well as persistent subsidence throughout the Mesozoic, which continued into the Cenozoic (Malz et al., 2020). Hence, the NGB

and its crust is generally considered to have been mechanically distinct from that of the region south of the GF throughout this

period.

The base Zechstein unconformity, which as we have already noted, can be regarded as a passive marker of post-Hercynian5

deformation, but excluding the disturbance of Late Cretaceous detachment folding of the Mesozoic cover, effectively records

the net effect of Late Cretaceous subsidence associated with this set of basement structures. Fig. 3 shows that the base Zechstein

unconformity makes a number of ramps with abrupt kinks and changes of angle corresponding closely to the positions of each

of the basement faults. The HF and GF both offset this basal unconformity.

In general, the kinked geometry described by the basal unconformity in the region from the HNBF to the NGB resembles a10

series of tilted and sometimes abruptly bent, rigid blocks. A similar situation was already described by McQueen and Beaumont

(1989) for the Late Cretceous-Paleogene Laramide orogeny of the western United States. Their model sought to explain basin

formation and basement uplift by tilting of crustal blocks or segments due to differential horizontal, compressive forces acting

across segment bounding, dipping, thrust faults.

We propose a similar scheme to model Late Cretaceous subsidence of the SCB and the region north of it. However, we15

draw some conceptual distinctions to the McQueen and Beaumont (1989). Firstly, we use a modified numerical solution of

the elastic flexure equation to allow for large and abrupt discontinuities in elastic thickness within a plate (Hindle and Besson,

2021) to simulate the effect of Late Cretaceous basement thrusts on the elastic strength of the lithosphere. Breaks in the plate

are simulated in the flexure model by sharp reductions of the elastic thickness to very low values («100 m) over short distances

(< 1 km). A succession of these breaks effectively splits the elastic lithosphere into independent (basement-fault-bounded),20

elastic segments. We then simulate basement thrust induced loading of the end of any segment by placing a load to one

side only of the elastic break. In this way, we consider the hanging wall material of the thrust to be mechanically weak, and

decoupled elastically from adjacent crust, and to act as a vertical load on the footwall of the structure (Fig. 4d and Fig. 6). Our

model thus calculates the isostatic and flexural response of elastic, crustal blocks or segments to thrust-emplaced loads. Our

model thus focuses on calculating the basin subsidence due to imposed thrust loads, which we take to be the consequence of25

horizontal shortening (of quite large magnitude in the case of the HNBF) rather than explaining both subsidence and uplift as

a consequence of rigid block rotation. Our model uses a specific finite difference formulation referred to as a "half-station"

method (Cyrus and Fulton, 1968) and applied to the 4th order differential equation for elastic flexure of the lithosphere with a

spatially varying elastic thickness h(x) and hence coefficient of flexural rigidity, D(x). The numerical method is described in

the appendix.30

5 Flexure models of the broken Central European lithosphere

A flexure model corresponding to the situation at the end of Late Cretaceous thrusting in the region extending from the Harz

and the HNBF, northwards to the North German Basin (Fig. 3 and cartoons in Fig. 6) is shown in figure 7. We apply simple
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loads with a constant overburden (3-5km), corresponding to the basement thrusts (HNBF, HF, GF). We add elastic breaks to

the lithosphere representing the HNBF, the Huy basement fault at the edge of the SCB, the AF, the HF and the GF bordering

the NGB. Flexural subsidence of approximately the correct magnitude and width at the position of the SCB (∼ 3 km deep

and ∼ 15km wide) is generated. The flexural profile closely matches the base Zechstein geometry shown on figure 7 between

the HNBF and the GF, and reproduces the series of kinks and relatively constant dipping segements. Our model also shows5

flexural subsidence on the edge of the NGB. Figure 3 shows a synclinally folded, Late Cretaceous sequence in the footwall

of the GF, with more Late Cretaceous deposits further north. Clearly, since the Late Cretaceous, the NGB has been affected

by differential, Cenozoic subsidence, which is again reflected in the geometry of the base Zechstein unconformity and hence,

the present day geometry of the NGB is not able to be matched by an elastic model that only accounts for Late Cretaceous

flexure. However, our model suggests that the load of either the GF or perhaps the HF and GF combined, could have generated10

an initial flexural subsidence on the NGB’s margin. In general, the empirical success of the elastic model is surprising given

its relative simplicity. We suggest therefore, that much of the Late Cretaceous subsidence in the SCB and the basins north of it

is probably due to a combination of a lithosphere discretely weakened by active basement faulting, and a "tilted-rigid-block"

response to thrust loading of short segments of crust.

A second model is shown in figure 8. Here, we remove the Huy basement fault to see what effect its western termination15

may have on basin width. The SCB becomes noticeably wider in the area around Braunschweig, from 15 km along the Huy

anticline, to 30-40 km east of its eastern termination near Braunschweig (Fig. 2). In this case, our model also produces the

expected widening of the basin, suggesting that the Huy basement weak zone may indeed be critical in controlling the SCB’s

3 dimensional geometry. This is an important observation for this problem since it clearly shows the likely effects of the

3 dimensional interactions of weak zones with loads. A more complete model of this situation could be created with a 220

dimensional, "thin elastic sheet" model based on the same numerical scheme as the current "thin elastic beam model".

It is interesting to consider the meaning of the parameters we vary in these models. A load can be applied anywhere along

the plate and although it is given in terms of a load density and thickness, is actually a force acting at a point. In flexure models

these forces are often implicitly understood to be due to things like the sedimentary infill of a basin created by flexure of

the plate, or additional material placed on part of a plate by overthrusting and stacking of the crust or wholesale overriding25

of one plate by another. However, we can also imagine loads to be due to the elastic stress across fault planes, resolved into

the vertical direction (Gunn, 1943b). Hence, any force, regardless of its origin, can be expressed as an equivalent crustal or

sedimentary load which can even be negative in the case of erosional removal of material. The absolute values of the loads

applied in our models are thus not necessarily indicative of a simple, vertical loading condition. For the Harz and SCB, we

consider the magnitude of the thrust emplaced load to be controlled by shortening and erosion rates. Uplift due to shortening30

builds hanging wall relief and increases loading. However, it is countered by erosion (Fig. 6). Some of the erosive product from

the Harz ends up in the SCB and also forms part of the flexure inducing load in our model. Our structural restoration (Fig. 5)

implies a basement thrust which does not advance forelandward, and a steady state equilibrium being reached betweeen uplift

and erosion at which point, the topography of the Harz and hence, the instantaneous load would be constant. In our flexure

models we apply a fixed load, the top and width of which could be seen as equivalent to the flexurally supported topography35
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of the Harz uplif at the end of the Late Cretaceous. Our models use a 20 km wide load, in reasonable agreement with hanging

wall dimensions in the section in Fig. 5c and also the present day Harz Mountains. The average topography produced (for an

arbitrarily constant load thickness of 4000 m) is ∼ 1000 m, which is somewhat greater than the present day. In general, our

estimated Late Cretaceous, Harz load remains within reasonable bounds, and perhaps implies that the vertically imposed load

of hanging wall material was far more significant than any loading due to horizontal stresses interacting with the basement5

thrust. The FH and GF loads are more speculative, especially given the fact that the NGB has undergone substantial Cenozoic

subsidence which masks the signal of at least the GF related, flexural subsidence. However, our model suggests that some

portion of the Late Cretaceous subsidence in the NGB could be due to flexural subsidence due to elastically broken lithosphere

in a manner analagous to the SCB.

The effective elastic thickness is generally understood as a parameter dependent on lithospheric structure and rheology which10

characterises the elastic response of the lithosphere to loading (Burov and Diament, 1995). It is usually indirectly determined

by a combination of flexure modelling and gravity data (Walcott, 1970a; Pérez-Gussinyé and Watts, 2005; Stewart and Watts,

1997). Our flexure model defines a value of effective elastic thickness at each node along a plate. One consistent result of our

models is the requirement for a value of near zero elastic thickness, at the positions of basement faults, to generate appropriate

flexural subsidence. This effectively corresponds to splitting the lithosphere in the model into discrete, fault bounded segments,15

with loading applied as previously described. Thus, we find our model naturally replicates the idea of "tilted rigid blocks"

(McQueen and Beaumont, 1989). However, it is important to emphasise that in our opinion, the "uplift" component in the

case of the Harz, and the wider Late Cretaceous deformation system is explained by hanging wall deformation and relief as a

consequence of crustal shortening (see Fig. 5) and not rigid block rotation as was implied by McQueen and Beaumont (1989).

In our view, the hanging wall material of the basement overthrusts is mechanically weak, and non-cohesive, as a consequence20

of pervasive deformation during thrust emplacement. Hence, we apply the hanging wall load in the models to one side only

of the elastic break, representing the vertical force on the end of a lithospheric segment due to hanging wall material that is

mechanically detached from the rest of the lithosphere. The tilted block portions of the system thus correspond to the basement

undelying the various Late Cretaceous basins, which is not part of the deformed hanging walls of the thrusts (Fig. 6d)

6 Implications of the model25

The major insight of our models is the role flexural subsidence plays in a plate interior, when the lithosphere is weakened or

broken due to basement faulting. In the case of the Late Cretaceous deformation system north of the Harz, our model shows the

likelihood that as well as the SCB, the NGB has also undergone some flexural subsidence on its margins. Thus, in the foreland

of the Harz Mountains, a system of marginal basins, with, in the case of the SCB at least, sedimentary characteristics similar

to classical foreland basins has developed.30

As was already noted by McQueen and Beaumont (1989), the length of fault bounded segements is critical in determining

their flexural response. In the case of the Harz foreland, segments are very short (15-20 km), at which point they respond as

effectively rigid blocks to loading. This rigid block geometry with sharp kinks seems to be recorded by the base Zechstein
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unconformity, which acts as a passive marker for flexural subsidence in the system, and is unaffected by contemporaneous

shortening and folding of the Mesozoic cover.

The flexural model (Fig. 7) matches the base Zechstein geometry remarkably closely by placing discrete breaks in the

lithosphere at the position of basement faults, with narrow zones of near zero elastic thickness. Hence, whatever the meaning

of the elastic thickness parameter in these cases, the empirical result appears broadly correct. One aspect of basement faulting5

that may help explain the associated near-zero value of elastic thickness is seismic activity. The present day, Central European

lithosphere apparently shows no evidence of segmentation, although whether this would be easily detectable by the usual

spectral methods is perhaps debatable (Pérez-Gussinyé and Watts, 2005). However, there is also almost no seismic activity

across Central Western Europe today, and certainly no major active basement thrusts. Seismicity is a highly discrete process,

with strain accumulated over hundreds or even thousands of years released in a few seconds. Slip during earthquakes is also10

associated with a breakdown of friction across a fault plane, which, if it reaches deep into the crust and down to the brittle-

ductile transition, would also be equivalent to a momentary drop of elastic strength to zero. This may be sufficient for a flexural

load accumulated over a seismic cycle to re-equilibrate with the momentarily low friction and elastic strength of the lithosphere.

Hence, extremely short period reductions of elastic strength may be the dominant factor controlling flexural subsidence in these

circumstances.15

Our elastic model may also be applicable to other regions of intraplate shortening. Intraplate basins have been recognised

or suspected in many places on earth (Rodgers, 1987). Presently active systems include parts of the Andean Cordillera (Kley

et al., 1999), and many parts of Central Asia linked to the ongoing India-Eurasia convergence (Cobbold et al., 1996). Fossil

systems include the wider, Late Cretaceous Central European basin system (Voigt, 1962; Voigt et al., 2008; Krzywiec, 2006)

and the Laramide orogeny of the western United States (Hagen et al., 1985; Jordan, 1981).20

We suggest calling the SCB an intraplate foreland basin, since this conveys the compressional setting of the subsidence, and

the basin’s likely sedimentary evolution, and also the fact that it will contain large amounts of the eroded product of adjacent

basement uplifts and their sedimentary cover, if any is present.

7 Conclusions

The Subhercynian Cretaceous Basin is part of a wider system of intraplate, compressional basins across Western Central Europe25

whose subsidence and geometry can be well explained by a combination of elastic flexure and rigid tilting of lithosphere that

has been tectonically segmented by basement thrusting. A relatively simple modification of the elastic flexure equations gives

a reasonable, first order model of this process. These basins are likely to be relatively narrow, and deep relative to load size,

although their dimensions will be strongly influenced by the frequency of individual basement thrusts, and hence the length of

plate segments.30

Code and data availability. Both code and data for model runs are freely available from the author.

9



Appendix A: A broken plate formulation for intraplate loading

The general problem of variable thickness elastic lithosphere in elastic flexure equations has been discussed in several papers

(Van Wees and Cloetingh, 1994; Manríquez et al., 2013; Garcia et al., 2014). It is not generally amenable to analytical solution,

which has been the preference of most flexure studies. Our approach starts with a general formulation of the problem as follows

5

(Du′′)′′+Pu′′+ ku= q(u) (A1)

u(x) is the deflection of the plate at any position x, along its length. D (the flexural rigidity) varies in space and is implicitly

a function of x. The value of D is given by Eh3/(12 ∗ (1− ν2)), where E is the elastic modulus of the lithosphere, h is the

effective elastic thickness of the lithosphere and is actually the parameter in D that varies in space, and ν is Poisson’s ratio.

P is a constant representing a plate wide, horizontal stress. k = ρmantle ∗ g and represents a restoring force due to displaced10

mantle, and q(u) is the load term, which consists of fixed, imposed loads generating subsidence qload ∗ ρload ∗ g and also infill

loads of the resulting basins q(u)infill ∗ ρinfill ∗ g. For instance, as shown in Fig. A1, a load due to an orogenic wedge on

the edge of a plate would constitute the "fixed" load qo in our model, and is given directly at each node. The subsidence this

load causes generates basins, which are then "filled" by q(u)infill, with material of density corresponding usually to water

or sediments. This formulation of the load term and the restoring force results in a non-linear equation where the infill and15

resulting elastic equilibrium has to be calculated iteratively. The model results in this paper show this process by plotting the

initial calculated subsidence due to static loads as a black line, with the final, iteratively derived subsidence, including the infill

plotted as a red curve. Static loads are shown in grey, whilst infill is shown with vertical red lines. The most common, analytical

formulation of the flexure equation actually combines the restoring force due to displaced mantle with the infill as a load as

part of the constant k, thus making the equation apparently linear. In fact, the equation should only be treated as linear under20

certain special conditions, although this is rarely stated (cf. Gunn (1943a)).

We apply a finite difference operator for the second derivative, directly to the term in brackets, which is itself, discretised as

a second derivative finite difference scheme, something referred to as the half station method (Cyrus and Fulton, 1968).

Hence, if

f ′′ ≈ d2f = (fi+1 − 2fi + fi−1)/∆x2 (A2)25

where ∆x is the grid spacing, and i is the node number, then

(Du′′)′′ ≈ d2(Dd2u) (A3)

We discretise the whole term in brackets first, on a grid i= 1, ...,N

d2(Dd2u) = ((Dd2u)i+1 − 2(Dd2u)i + (Dd2u)i−1)/∆x2 (A4)

then, substituting the terms in brackets and advancing the indices30

d2(Dd2u) = ((Di+1(ui+2 − 2ui+1 +ui))− 2(Di(ui+1 − 2ui +ui−1)) + (Di−1(ui − 2ui−1 +ui−2))/∆x4 (A5)

10



collecting terms, we obtain

d2(Dd2u) = (Di+1ui+2 − 2(Di+1 +Di)ui+1 + (Di+1 + 4Di +Di−1)ui − 2(Di−1 +Di)ui−1 +Di−1ui−2)/∆x4 (A6)

discretising the remaining parts of the equation then gives

(Di+1ui+2 − 2(Di+1 +Di −∆x2Pi/2)ui+1 (A7)

+ (Di+1 + 4Di +Di−1 + ∆x4ki −∆x2Pi)ui (A8)5

− 2(Di−1 +Di −∆x2Pi/2)ui−1 +Di−1ui−2)/∆x4 = (qo)i + q(ui) (A9)

where the two load terms, (qo)i and q(ui) represent the static, fixed load and the iteratively calculated infill load respectively.

If we gather all coefficients into a matrix A and form a matrix equation, the resulting system is of the form

Au= q(u) (A10)

a non-linear series of equations in u. We reformulate this as a recursive matrix fixed point problem of the form10

A−1q(u)(r) = u(r+1) (A11)

where r is the iteration step, and solve.

An alternative finite difference scheme can be derived by instead applying the product rule of differentiation to the problem

before discretisation. For instance, Buiter (2000) shows

Du′′′′+ 2D′u′′′+D′′u′′+Pu′′+ ku= q(u) (A12)15

Crucially however, this form of the equation assumes a smoothly varying elastic thickness function. Hence, for our problem,

with abrupt variations in elastic thickness, it is not applicable. It can easily be verified that a finite difference scheme derived

from this form of the equation will give an identical set of equations to the half-station method if D is constant everywhere.

Appendix B: An estimate of Harz shortening, and fault geometry from kinematic modelling

Our three-step, geometric model of the Harz basement uplift was created with PETEX’s MOVE software. Three parts of the20

cross-section were modelled separately: (1) The general listric geometry of the fault was found by trial-and-error fitting of the

Harz backlimb with a near-surface fault dip of 50°. and using a fault-parallel flow algorithm. (2) The steep southern limb of the

footwall syncline in the Subhercynian Basin was created using the Trishear algorithm. The fit shown in Fig. 5 was obtained with

a trishear triangle having its apex fixed to the footwall (propagation-to-slip ratio 0) about 5 km below the top basement surface

and an initial opening angle of 30° that decreased to 25° and 20° in the two following steps. In each step the trishear triangle was25

11



rotated along with the fault which became steeper due to footwall subsidence. The trishear parameters of the steep limb were

chosen to obtain matching geological contacts across the synclinal axial plane. In the first modelling step, a trishear solution fits

both footwall and hanging-wall (Fig. 5a). In the second and particularly the third step, however, the hanging-wall displacement

required to satisfy the exhumation history of the Harz von Eynatten et al. (2019, 2008) exceeds the displacement recorded

by footwall folding (Figs. 5b and 5c). (3) The gently dipping northern flank of the Subhercynian Basin and the Fallstein salt5

pillow were created by stepwise restoration of cross-section “E-F” in Voigt et al. (2008), using the flexural slip algorithm. The

redistribution and loss of Zechstein salt due to flow and subsurface dissolution had to be implemented manually; the spatial and

temporal details of these processes are not well constrained. Running the stepwise restoration of the Subhercynian Basin infill

in reverse constrains the evolving footwall geometry with an increasing southward dip. We constructed a hypothetical deep

structure beneath the Harz by letting the detachment level follow the foreland basement dip before returning to its elevation10

beneath the backlimb. Overall, our modelled Harz NBF becomes steeper and, at shallow levels, more discrete over time.

Author contributions. D. Hindle created the model code, wrote the main text and provided figures. Ideas on elastic flexure are from D.

Hindle. J. Kley created regional geological compilations and figures, provided data on deep structure of the lithosphere and carried out new

structural modelling to estimate Harz shortening and fault geometry. Kley wrote the second part of the appendix.
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subduction zones after Gunn (1947) d) Intraplate deformation-associated flexural basin from this paper with an assumed elastically weakened
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occurs on the HNBF, but overthrusting also occurs on both the HF and GF. c) erosion of the Harz as removed all Mesozoic cover, and probably
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elastic weakening, and only act downwards on the footwall part of the adjacent, lithospheric segment.
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Figure 7. Flexure model of broken Central European lithosphere during Late Cretaceous compression. a) Flexural subsidence of an originally

horizontal marker within the lithosphere. Black dashed line is the initial subsidence due to static, thrust load (grey shade), green solid line

is the final subsidence including iteratively calculated basin fill (red shading). Light blue, dashed line shows base Zechstein unconformity

for comparison. Model includes a Harz, Flechtingen and Gardelegen (Calvörde) "load", and breaks in the lithosphere b) Bending (blue

dashed) and elastic thickness (red dashed) curves for the model. Elastic breaks at the HNBF, Huy, AF, HF and GF basement faults are

shown. Abbreviations: HNBF - Harz Northern Boundary Fault; AF - Allertal Fault; HF - Haldensleben Fault; GF - Gardelegen Fault; SCB -

Subhercynian Cretaceous Basin
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Figure 8. Flexure model, same as Fig. 6, but not including the Huy weak zone, to simulate the situation in the western part of the basin. Basin

width of the model including the Huy weak zone is shown for comparison (dark green, dashed line). Abbreviations: HNBF - Harz Northern

Boundary Fault; AF - Allertal Fault; HF - Haldensleben Fault; GF - Gardelegen Fault; SCB - Subhercynian Cretaceous Basin
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0

distributed load - may or may not
be covered by additional sediment
qi * ρ(fixed load) * g

q(u)i * ρ(infill) * g

Mantle buoyancy force 
k u * ρ mantle * g (+ve when u<0)

Mantle buoyancy force
k u * ρ mantle * g
(-ve when u > 0)

Figure A1. Sketch showing the different components of the total load q(u) and the restoring force due to mantle displacement in the model.
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Table A1. Standard parameters used in numerical models

Parameter Symbol Value Units

Elastic thickness E 6.5e10 Pa

Poisson’s ratio ν 0.25

Plate-wide stress P 0 Nm−1

Static load density ρload 2700 kgm−3

Infill load density ρinfill 2500 kgm−3

Mantle density ρmantle 3300 kgm−3

Grid spacing ∆x 100 m

Nodes N 20001
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