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Abstract. The mechanisms that govern the vertical growth of seep carbonates were deciphered by studying the sedimentary

architecture of a 15 m-thick, 8 m-wide column of limestone encased in deep-water marl in the Middle Callovian interval of the

Terres Noires Formation in the SE France Basin. The limestone body, also called “pseudobioherm” records intense bioturbation,

with predominant traces of the Thalassinoides/Spongeliomorpha suite, excavated by decapod crustaceans. Bioturbation was

organized in four tiers. The uppermost tier 1 corresponds to shallow homogenization of rather soft sediment, tier 2 to pervasive5

burrows dominated by large Thalassinoides later passively filled by pellets. Both homogenized micrite and burrow-filling

pellets are depleted in 13C in the range -5 to -10‰. Tier 3 is characterized by small Thalassinoides having walls locally bored

by Trypanites representing tier 4. The diagenetic cements filling the tier-3 Thalassinoides are arranged in two phases. The first

cement generation constitutes a continuous rim coating the burrow wall having consistent δ13C values near -8‰ to -12‰,

indicative of bicarbonate originating from the anaerobic oxidation of methane. In contrast, the second cement generation is10

dominated by saddle-dolomite precipitated at temperatures >80°C, at a time when the pseudobioherm was deeply buried.

The fact that the tubes remained open until deep burial means that vertical fluid communication was possible over the whole

vertical extent of the pseudobioherm up to the seafloor during its active development. Therefore, vertical growth was fostered

by this open burrow network, providing a high density of localized conduits through the zone of carbonate precipitation, in

particular across the sulfate-methane transition zone. Burrows prevented self-sealing from blocking upward methane migration15

and laterally deflecting fluid flow. One key aspect is the geometric complexity of the burrows with numerous subhorizontal

segments that could trap sediment shed from above and hence, prevent their passive fill.
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1 Introduction

Seep carbonates are produced by the anaerobic oxidation of methane (AOM) or other heavier hydrocarbons coupled with20

seawater sulfate reduction (Boetius et al., 2000; Orcutt et al., 2010; Zwicker et al., 2018). Anaerobic hydrocarbon oxidation

generates bicarbonate that may precipitate with seawater cations into carbonates like aragonite, calcite, or dolomite. The other

product of this process is (hydrogen) sulfide that combines with available iron to precipitate iron sulfides while the excess

remains in solution and is potentially re-oxidized at the seafloor (Jourabchi et al., 2005; Blouet et al., 2021a). In settings with

upward advection of hydrocarbons, the depth of the reaction front, the so-called sulfate-methane transition zone (SMTZ),25

typically lies a few centimeters below the seafloor (Regnier et al., 2011), where a strong redox gradient favors the settlement of

chemosymbiotic macrofauna (Kiel, 2010). Seep carbonates typically appear as concretionary bodies exhibiting a wide diversity

in shape and size ranging from isolated nodules a few centimeters in diameter (e.g. Haas et al., 2010) to massive mound-shaped

structures tens of meters in diameter (e.g. Kauffman et al., 1996). They are commonly associated with other fluid expulsion

features such as pockmarks (Ho et al., 2018a, b). Oceanographic observations demonstrated that hydrocarbon seepage at the30

seafloor is a ubiquitous phenomenon in the world’s oceans (Judd and Hovland, 2007), and seep carbonates preserve this elusive

phenomenon in the rock record. As such, seep carbonates mark the outlet of hydrocarbon migration pathways underneath,

such as permeable layers, faults, fluid chimneys, hydraulic fractures, etc., and they have been used to reconstruct fluid-flow

mechanisms in the shallow sub-seafloor sediment (Hovland, 1982; Hovland et al., 1985, 1994; Gay et al., 2003; Mazzini et

al., 2003; Agirrezabala et al., 2013; Ho et al., 2016; Blouet et al., 2021b). Seep carbonate systems are commonly observed35

on seismic data as vertical or sub-vertical stacks of lenticular anomalies, which document that seep sites can be long-lived

features (Kauffman et al., 1996; Hovland and Judd, 1988; Plaza-Faverola et al., 2011). In particular, the morphology and

vertical variation of amplitude anomalies are useful to reconstruct qualitatively the history of fluid leakage intensity (Ho et al.,

2012).

One key process leading to lateral development of seep carbonates is “self-sealing” as conceptualized by Hovland (2002);40

concretions growing at seep sites block vertical migration along the initial venting domain and promote its lateral shift, which

leads to precipitation of laterally extensive slabs of methane-derived carbonate. Self-sealing has been interpreted from oceano-

graphic data in the Black Sea (Naudts et al., 2008) and in outcrop by Agirrezabala et al. (2013). Gay et al. (2020) interpret

a similar phenomenon at the scale of individual carbonate lenses in the Oxfordian pseudobioherms of Beauvoisin. On the

pore-scale, vertical gas migration is blocked by precipitation of seep carbonates, leading to a downward growth of concre-45

tionary crusts in the order of 1–10 cm-scale (Bayon et al., 2009; Greinert et al., 2002; Peckmann et al., 2002). In contrast to

the downward growth pattern, Liebetrau et al. (2014) have documented continuous upward growth of seep carbonates over >3

m. Lateral gas deflection due to clogging of the vertical pore network has also been reported from continental slope settings

with stable gas hydrates as their growth can block fluid migration pathways causing upslope shift of the gas leakage zone

(Casenave et al., 2017). Hydrocarbon leakage indicators appear in a number of basins as stacks of small, 20–200 m-diameter50

subcircular or elongate seismic amplitude patches described as “pipes” (Bunz et al., 2003; Berndt et al., 2005; Petersen et al.,

2010; Loseth et al., 2011) or “chimneys” (Heggland, 1998; Ligtenberg, 2003; Loseth et al., 2009; Hustoft et al., 2010; Ho et al.,
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2016). Such stacks of seismic amplitude patches can exceed 1 km in thickness (Loseth et al., 2011). They highlight situations

where self-sealing is restricted to patches being 20–200 m in diameter whereas vertical growth predominates on a large scale

(Plaza-Faverola et al., 2011). Seep carbonate bodies at all scales thus reflect a balancing between lateral and vertical growth55

(Hovland and Judd, 1988). Self-sealing has been invoked as the dominant process causing lateral growth, but what governs

vertical growth of a seep carbonate body? It is the purpose of the present study (1) to describe a well-exposed 15-m-thick,

8-m-diameter columnar carbonate body (initially described as a “pseudobioherm”) and its sedimentary/diagenetic architecture,

(2) to decipher the cm-to-m-scale processes fostering the vertical growth/aggradation of the pseudobioherm, and (3) to emplace

this small-scale architecture in the frame of the permeability field in and around the pseudobioherm.60

2 Geological Setting

The studied mid-Callovian pseudobioherm is located near the village of Aurel, about 50 km to the ESE of Valence city in SE

France. During the Callovian, the area was part of the SE France Basin, a ca. 150 km-wide embayment along the northern

margin of the Alpine segment of the opening Tethys Ocean (Fig.1A–B).

2.1 Geodynamic context65

The SE France Basin resulted from the Triassic rifting of the nascent Alpine Tethys (Lemoine et al., 2000; Masini et al., 2013).

Triassic transgressive deposits above the peneplaned magmatic and metamorphic Variscan basement and Permo-Carboniferous

basins entrenched therein consist of shallow-water siliciclastics and evaporites. The evaporites acted as decollement level

during the structuring of the basin. Deepening of the depositional environment during the Lower Jurassic coupled with large

lateral thickness variations implies synsedimentary tilted block tectonics linked to the paroxysmal phase of rifting (Lemoine70

et al., 1986). More uniform Bathonian to the Tithonian deposits exceeding several kilometers in thickness are attributed to

the onset of ocean spreading and associated thermal subsidence of the continental margin (Fig.1B–C). During Triassic and

Jurassic times, the SE France basin was elongated along a NE-SW axis inherited from Variscan structures, whereas during the

Cretaceous the basin narrowed and acquired an E-W elongation due to the centripetal progradation of carbonate platforms. E-W

folding of the basin, initiated during the Aptian-Albian within a N-S compressional regime induced by the Pyrenean-Provencal75

orogeny, led to emersion during the Santonian. From the Oligocene onward, the Alpine orogeny overprinted previous structures

by E-W compression.

2.2 Structural and stratigraphic setting

A 50 km long, E-W oriented seismic section, crossing through the studied outcrop at Aurel, allowed the description of the

local structural setting from the edge to the center of the basin (Fig. 1A; Roure et al., 1992, Wannesson and Bessereau,80

1999. About 10 km east of Aurel, these authors interpreted an offset in the basement reflection as evidence for two major

westward-dipping normal faults rooted in the Paleozoic substratum. Early Jurassic tilted blocks are visible in the western part

of the section, whereas they have been reactivated as reverse structures during compressive phases in the eastern part. The
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outcrop of Aurel is located in the middle of a large-scale domal structure formerly known as the ‘Aurel anticlinorium’ (Artru,

1972). An exploration borehole drilled to a depth of 2800 m less than 1 km away from the outcrop provided information85

on the stratigraphic column below the outcropping Callovian strata, down to Toarcian-Aalenian deposits (COPEFA, 1967)

(Fig. 1C–D). The uniform Toarcian-Aalenian ’Marly Lias’ has been partially penetrated for 1.5 km; the overlying 600 m thick

’Calcareous Dogger’ is a limestone-marl alternation dated Bajocian to Bathonian pro parte. The Bathonian to Oxfordian Terres

Noires Formation is a uniform package of shales about 1.9 km thick in the Aurel area; it grades upward into limestone-marl

alternations locally known as ‘Argovian’ facies (Artru, 1972).90

2.3 Potential oil and gas sources

Potential hydrocarbon source rocks of the SE France Basin have been studied in a report by the Institut Français du Pétrole

(IFP, 1982a, b, c) and later by Wannesson and Bessereau (1999) and Mascle and Vially (1999). In stratigraphic order, the

potential source rocks are:

• Carboniferous coals in post-Hercynian basins, known from outcrops and coal mines around the SE-France Basin but95

speculative in the vicinity of Aurel.

• The “Lias marneux” Formation (Marly Lias) is >1500 m thick in the Aurel borehole and contains on-average 0.6% TOC

(Wannesson and Bessereau, 1999).

• The Terres Noires Formation yielded TOC values of 0.5–1%. Common occurrence of oil in septarian concretions indicate

that some hydrocarbons were generated in the Terres Noires Formation (Montenat and Patillet, 1968; Oddou, 2004).100

2.4 Seep carbonates in the Jurassic SE France basin

Lenticular carbonate bodies scattered in the Terres Noires Formation have been intensively studied over the past 60 years,

starting with Orgeval and Zimmermann (1975). Artru and Gauthier (1966) and Artru (1972) proposed a first interpretation

as sponge bioherms based on the abundance of disarticulated spicules. The lack of in-situ frame building organisms and the

absence of evidence for relief above the seafloor, however, led Flandrin (1974) to question this hypothesis. To account for105

this uncertainty, Gaillard et al. (1985) and Rolin (1987) coined the term ‘pseudobioherm’, defined as “carbonate anomalies of

early diagenetic origin, characterized by the predominance of endobenthic organisms”. Rolin (1987), Rolin et al. (1990) and

Gaillard et al. (1992) noticed similarities between the numerous assumed chemosynthetic bivalves often associated with the

pseudobioherms and the fauna discovered a few years earlier at cold hydrocarbon seeps (Suess et al., 1985). Since then, the

hypothesis of hydrocarbon seepage has been developed for the outcrop of Beauvoisin, located ca. 50 km to the south of Aurel110

where 19 pseudobioherms are vertically distributed over 350 m inside an 800-m diameter perimeter (Gay et al., 2019, 2020).

Gay et al. (2020) interpreted the Beauvoisin cluster as a long-lived giant pockmark and assigned the multiple generations of

pseudobioherms to self-organized lateral migration of the fluid conduit over time.
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3 Material and Methods

The paleogeographic, structural and stratigraphic context of the Aurel pseudobioherm has been determined at regional scale115

based on the 1/50,000 geological map (Flandrin, 1974) and the Aurel borehole (COPEFA, 1967). At basin scale, the context has

been evaluated using seismic data (Roure et al., 1992; Wannesson and Bessereau, 1999), isopach and facies maps (Debrand-

Passard et al., 1984), and a few exploration boreholes compiled by Wannesson and Bessereau (1999). In total, 20 rock slabs

were cut and polished, 6 to 25 cm long (average 13 cm), and 6 of them were oriented. They were studied in natural light and

365 nm ultraviolet light (UV) emitted by a Vilber VL-6 (Eberhardzell, Germany). The 3-D geometry of tubular structures was120

approached by comparing closely spaced sections such as those on opposite sides of 3 mm-wide sawcuts. Thirty thin sections

were investigated microscopically using plane and cross-polarized light, cathodoluminescence (CL) and epifluorescence UV

(epi-UV). The CL was generated by a CITL system (Hatfield, United Kingdom), model CCL 8200 ink4 (12kV, 450 mA).

The epi-UV was emitted by a Leica (Wetzlar, Germany) EL 6000-light mounted on a Leica DMRXP microscope (bandpass

340–380nm). For X-ray diffraction (XRD), 27 samples were crushed manually in an agate mortar. The powders were analyzed125

with a Rigaku (Tokyo, Japan) Ultima IV diffractometer system equipped with a Cu X-ray tube, operated at 40 kV and 40 mA,

and with a D-Tex linear detector. Scans were run from 5° to 70°2θ, with a step interval of 0.01°2θ and a goniometric speed of

2θ•120s−1. The identification of all minerals was performed using the Rigaku PDXL2 software package and the ICDD Powder

Diffraction File 2014 database (International Centre for Diffraction Data). For stable oxygen and carbon isotope analyses, 40

samples of carbonate cements were selected. They were taken from polished blocks and rock chips using a handheld microdrill130

under the alternation of natural and UV light. Due to the size of the drilling bit, only thick enough cements could be sampled

individually, whereas grainstone was taken as bulk, including cement and grains. Samples were analyzed using a Kiel III

automated carbonate preparation device coupled to a Finnigan MAT (Bremen, Germany) 252 isotope-ratio mass spectrometer.

Carbonate material was reacted with 100% phosphoric acid for 10 min at 70°C. The produced CO2 was then passed through

the isotope-ratio mass spectrometer for masses 44, 45, and 46 measurements alternately with the measurement of a calibrated135

reference CO2 gas. Instrumental precision was monitored by analysis of NBS 18, NBS 19, and LSVEC reference material.

Precisions are –0.05‰ for carbon and –0.14‰ for oxygen. All isotope data are given relative to the Vienna Peedee Belemnite

standard (V-PDB).

4 Results and interpretation

Four pseudobioherms have been identified less than 1 km away from the Aurel borehole (Artru, 1972, Fig.1D). Three of them140

near the Vaunière ruin are covered by vegetation and the relationships to the surrounding marls are not visible. In contrast,

the pseudobioherm at “La Touche” is well exposed in lateral continuity with its background sediments; it is the focus of this

paper. The host sediment consists of an alternation of mid-Callovian marls and thin platy limestone beds dipping 15° towards

ESE (log in Fig. 2). Two massive limestone bodies are exposed ca. 30 m apart along a small thalweg roughly oriented E-W.

The upper one, on the northern bank of the thalweg, is a 7–10 m-wide columnar body that interfingers with background marl-145

limestone alternations. It exposes a 15-m-thick section of carbonate. The top is truncated by erosion and its lower part is cut
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by a low-angle fault (strike 040, dip 38W) filled by a cm-thick calcite vein. The vein shows crude striations with an azimuth

095–125, without direct evidence for normal vs. reverse movement. The lower exposure is a westward-dipping subcircular

section ca. 8 m in diameter on the southern bank of the same thalweg. It exposes the same facies as the upper one over 6 m.

The relationships between the limestone body and its host sediments are poorly exposed and its basal contact with the marls150

is not visible. The low angle and the orientation of the fault, perpendicular to the trend of the exposures, suggest that these are

two parts of the same columnar body offset by a reverse fault later during the Alpine orogeny.

4.1 Architecture of the pseudobioherm

Mapping of the southern flank (Fig. 3A–B) and eastern flank (Fig. 3C–D) shows that the columnar pseudobioherm is made up

of stacked lenses. Individual lenses are a few tens of cm thick and most of them pinch out within the massive body. They are155

separated by cm-thick marl layers with or without nodules or they merge laterally or vertically. The center of an individual lens

generally consists of massive limestone, which grades outward into nodular limestone that in turn splits laterally into several

wedges grading into nodular marl. Nodules feather out into background marl over 1–2 meters. Lenses in lateral continuation

with limestone beds in the background sediments have the greatest lateral extension and are the most indurated. Overall, the

pseudobioherm can be subdivided vertically into 3 units comprising from base to top:160

• Unit 1. At the base, it is partially truncated by a fault. It mostly exposes nodular limestone grading laterally into nodular

marls. Locally some limestone lenses tend to be stacked vertically. The contact to Unit 2 above is defined by an abrupt,

apparent lateral offset by 1–2 meters westward.

• Unit 2. The lowermost bed continues laterally into a prominent limestone bed in the background deposits classified as

‘marker bed A’. The middle portion of Unit 2 is made up of lenses consisting of nodular to massive limestone facies,165

locally organized in vertical stacks. The top of Unit 2 becomes increasingly massive. The transition from Unit 2 to Unit

3 is, once again, affected by an apparent offset by 1–2 meters northward, similar to the transition from Unit 1 to Unit 2.

• Unit 3. The lowermost bed of Unit 3, classified as ‘marker bed B’, continues laterally into a limestone bed of the host

sediment and is particularly massive. The southern flank is massive, while the eastern flank shows lateral grading of the

massive limestone into the host sediment.170

4.2 Facies of the pseudobioherm and background sediments

4.2.1 Facies 1 (F1): Background, marl-limestone alternation

In the studied area, the typical middle Callovian facies consists of marls with intercalated limestone beds, a few cm to 20-cm-

thick, regionally known as “Marnes à plaquettes rousses” (marl with platy, rusty weathered beds) (Artru, 1972, Flandrin1974)

(Fig. 4A). Individual limestone strata commonly show plane bed lamination and current ripples, as well as occasional burrows175

at the base of a bed (Fig. 4B). The only common macrofossils are shells of Bositra sp., a bivalve typically associated to

dysoxic settings (Meesook et al., 2009). In thin sections, both the background marl and the limestone beds exhibit a dominant

wackestone fabric having a similar grain content composed of microfossils and silt-grade quartz representing a calcilutite.
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They differ with respect to the matrix, being shaly in marls (Fig. 4C) and microsparitic in limestones (probably recrystallized

micrite, Fig. 4D). Laminae in limestone beds appear as mm-thick alternations of wackestone and packstone (Fig. 4E). The180

most abundant microfossils are spheres with a diameter of ca. 100 µm, likely calcispheres and/or recrystallized radiolarians,

and sponge spicules (Fig. 4F). Echinoderm ossicles are rare. Most microfossils have been recrystallized into sparite. Sinuous

filaments, up to several hundreds of µm in length and less than 10 µm wide correspond to the structures identified as fragments

of exfoliated shells of Bositra sp. (Negra et al., 2011) (Fig. 4C).

4.2.2 Facies 2 (F2): Nodular marl185

This facies comprises the transition between background sediments and the pseudobioherm limestone body (Fig. 5A). It con-

sists of micritic limestone nodules embedded in a marly matrix exhibiting a matrix/marl-supported floatstone texture. The most

common nodules are isolated prolate ellipsoids with the long axis parallel to stratification. The nodules are 1–2 cm in diameter

and up to 5 cm in length. Some show rod-like, straight, or curved protuberances (Fig. 5B). Nodule density increases towards the

limestone body. At higher concentration, adjacent nodules commonly aggregate into peanut-shaped clusters of two or three,190

in a pattern similar to that described in Beauvoisin by Gay et al., 2019; 2020. In thin sections, nodules show a wackestone

texture containing the same grain types as the encasing marl and limestone beds described above, such as microfossils and

detrital silt. As peloids represent a key component of F4 (see below), we paid particular attention to their possible presence.

Neither direct observation, nor fluorescence or cathodoluminescence provided any evidence of their (former) presence in F2.

Nodules are weakly fluorescent under UV light (Fig. 5C–D). F2 shows a gradual transition to facies F3 comprising nodular195

limestone as the concentration of nodules increases towards the axis of the pseudobioherm and individual nodules may become

amalgamated. A threshold of 50% nodules marks the limit between F2 that is sensitive to weathering as being a nodular marl

and F3 that remains rather massive and less prone to weathering. The different weatherability of the two facies was used for

pseudobioherm facies mapping of hardly accessible zones (Fig. 3).

4.2.3 Facies 3 (F3): Nodular limestone200

Across the transition of F2 to F3, nodules become more frequent and the matrix between the nodules is strongly indurated and

shows pervasive rusty speckles (Fig. 6A). The nodules are weakly fluorescent in a non-fluorescent matrix as in F2 (Fig. 6B).

In contrast to nodular marl, the nodular limestone represents a nodule-supported rudstone texture. In thin sections, the rusty

speckles consist of euhedral crystals of saddle dolomite about 100 µm in size, locally replacing and overgrowing carbonate

bioclasts (Fig. 6C). The rusty color of the crystals is due to oxidation of iron along cleavage planes and gives the matrix its205

speckled macroscopic appearance.

4.2.4 Facies 4 (F4): Massive limestone

Macroscopic observations and macrofauna

7



Facies F4 consists of gray to brownish limestone that typically interfingers with the nodular limestone. In contrast to the

background sediments, no primary sedimentary structures or laminations have been observed, although laminated limestone210

beds of the surrounding host sediment occur in continuity with prominent lenses of the pseudobioherm. Severe weathering

hinders observation of facies details in the field, except on a few isolated surfaces. One of these, ca. 30 cm x 70 cm, exposes the

feathering out of F4 into marker bed A that extends farthest away from the axis of the pseudobioherm (Fig. 7A). The surface

shows three articulated bivalves (Fig. 7B–D). In addition, a single, internal mold of a 6 cm-long articulated specimen found

on the margin of the pseudobioherm was identified as a lucinid, possibly Beauvoisina carinata (Kiel et al., 2010) although215

it seems to be more asymmetrical than the type specimen and the diagnostic carinate lunule could not be recognized on the

mold (Fig. 7E–F). A few small gastropods were also observed in the outcrop and in cut samples (Fig. 7G), indicating that

benthic mollusks were relatively common and diverse in F4. Facies 4 commonly shows ˜5-mm-diameter cement-filled tubular

structures with the characteristic branching pattern of Thalassinoides/Spongeliomorpha (Fig. 7H).

220

Fabric and bioturbation

The fabric is best characterized by using combined plane and UV light on cut sections. Macroscopically, most samples show

a complex mosaic of patches, which under UV light appear to consist of low-fluorescence micrite and calcarenite exhibiting

various levels of fluorescence (Fig. 8). At hand lens magnification, the calcarenitic limestone consists of peloid grainstone

having fluorescent cement. The proportions of micrite and calcarenite vary, the former ranging from 20–50%, the latter from225

80–50%. Near the transition to facies F3, where micrite is enriched ( 50%) it forms continuous domains, whereas calcarenitic

material constitutes a network of 2–3 cm-wide patches surrounded by a darker, commonly fluorescent halo (Figs. 8C–D,

9A–C). This texture evidences pervasive bioturbation, with two populations of burrows. Calcarenitic domains 2–3 cm in width

are referred to as “large burrows” and 0.5–1.5 cm-sized ones as “medium burrows” in the following. In addition, numerous

mm-diameter burrows (“small burrows”) filled by fluorescent cements are scattered throughout the section. In calcarenite-rich230

samples, micrite occurs as low/moderate-fluorescence patches, 1 mm to 2 cm in diameter, angular to subrounded, commonly

surrounded by a dark halo. The micrite domains are interpreted as remnants of the initial sediment that were not reworked by

burrowing. They are described as so-called ’pheno-intraclasts’ floating in the dominant peloid grainstone (Fig. 8E–G), in con-

trast to true intraclasts defined as reworked particles. The overall fabric of calcarenite-rich areas reflects pervasive bioturbation,

including but likely not restricted to the large burrows.235

a) Large burrows The margins of large burrows, as defined by their dark halo, are rather irregular. The geometrical arrange-

ment of the large burrows suggests that they constitute a complex branched network (see Cunningham et al., 2012). They are

filled with sediment, typically peloid grainstone/wackestone identical to that of the background indicative of passive fill. Large

burrows have variable intensity of fluorescence, with peloid grainstone being the most fluorescent. At the transition from F3 to

F4, granular/fluorescent material becomes progressively enriched. The more granular/fluorescent patches dominantly crosscut240

less fluorescent ones. (Fig. 8D)

b) Medium burrows The morphology of the medium burrows is best observed by narrow-spaced parallel sections, on oppo-

site sides of a sawcut (Fig. 9A–B). Some burrows show abrupt changes in direction and/or diameter between closely spaced
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parallel sections (Fig. 9A–B, D). Burrows commonly show a dark halo around the cement fill, which in some cases can be

followed into the sediment, defining a subcircular shape (Fig. 9E). Its lower part is filled with sediment and the upper part with245

cement. Within the burrows, the contact between sediment within burrows and cement above is planar, with an apparent dip

of 0°–30° (Fig. 9E), indicating partially passive fill. Some burrows show laminated sediment fill recording multiphase passive

infill. Macroscopically, the lumen of most medium burrows shows a concentric bipartite cement fill with a ca. 1 mm-thick tan,

translucent, continuous outer rim around the lumen and a white to yellow/gold final axial fill (Fig. 10A–B). Both the dark halo

and the outer rim are brightly fluorescent, in contrast to the slightly-fluorescent final fill (Figs. 9C, 10A–B). Burrow margins250

commonly show irregularities that might have resulted from burrow excavation, corrosion by fluids circulating in the burrows,

in particular when they contain (hydrogen) sulfide, or local collapse of the burrow top. The distance between medium burrows

ranges from 2–10 cm with an estimated average of 5 cm. Burrows show subvertical, oblique and subhorizontal segments, with-

out preferential orientation. The abrupt changes of orientation and diameter over short distances and the coexistence of vertical,

oblique, and horizontal segments are diagnostic of burrows of the Thalassinoides – Spongeliomorpha suite (e.g., Cunningham255

et al. 2012, Knaust, 2017). These are produced by decapod crustaceans that may penetrate as deep as two meters or more

below seafloor (e.g., Sarnthein, 1972, Pemberton and Buckley, 1976). Thalassinoides corresponds to smooth-walled burrows,

being lined with mucus in soft sediment and unlined in sediment stiff enough to remain open and Spongeliomorpha to burrows

scratched by body appendages indicating firm sediment (Wetzel and Uchman, 1998). Medium burrows occur preferentially in

calcarenite and appear to get around pheno-intraclasts (Fig. 8A–B, E–G). However, in calcarenite patches, they do not follow260

specific patterns that could suggest spatial relationship between large and medium burrows (Fig. 8).

c) Small burrows Small, cement-filled burrows are better visible under UV light. Some of these small burrows are directly

connected to medium burrows while most appear isolated in vertical section (Fig. 9A, C, F), but out-of-plane contact with

medium burrows appears likely. Their geometry, size, and fill match the characteristics of Trypanites representing borings in

hard substrate. Small burrows may cut across pheno-intraclasts and/or peloid limestone, or locally follow the contact between265

the two.

4.2.5 Relative timing and tiering

Based on cross-cutting relationships, it is possible to distinguish successive phases of burrowing evidenced by intensely mixed,

homogeneous sediment, overprinted by abundant shallow-produced large Thalassinoides, in turn cross-cut by deep, but scarcer

and smaller Thalassinoides or Spongeliomorpha; occasional Trypanites borings entrenched into the cemented margins of the270

latter traces represent the last phase of bioturbation. In addition, the non-fluorescent wackestone occurring in patches has a

grain content similar to the background sediment of Facies 1 or to the nodular facies F2 and F3. In contrast to the back-

ground sediment, it never shows lamination, nor stratification on the scale of limestone-marl alternations of the host sediment.

Nonetheless, the processes that produced layering and lamination must have been active at the pseudobioherm site like in the

surroundings. The uniform texture of the wackestone, therefore, reflects efficient mixing of the uppermost soupy/soft sediment275

by near-surface burrowing organisms producing so-called biodeformational structures that overprint pre-existing structures but
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do not constitute distinct traces (e.g., Schafer, 1956, Wetzel, 1991). Consequently, it is possible to distinguish four phases of

endobenthic activity recorded by

• tier 1 comprising biodeformational structures homogenizing soft sediment into wackestone (Phase 1),

• tier 2 constituted by burrows emplaced in soft to firm sediment mainly by large decapod crustaceans and filled by peloids280

(Phase 2),

• tier 3 characterized by burrows produced by smaller decapod crustaceans in sediment so stiff that the tunnels remained

open (Phase 3), and occasionally,

• tier 4 solely evidenced by Trypanites borings originating at the walls of tier-3 burrows (Phase 4).

4.3 Microfacies and diagenesis285

Tier 1: Micrite pheno-intraclasts Marl/calcilutite homogenized by biodeformational bioturbation in tier 1 before it was ce-

mented is only found as isolated remnants between burrows of deeper tiers. In thin section, these pheno-intraclasts consist

of shaly-silty-bioclastic wackestone, with the same grain types as in background sediment (Fig. 4C), such as calcispheres,

sponge spicules, and bivalve fragments (Fig. 10C). Tier 2: Large burrows and their infill Phase-2 burrows are filled with

peloid grainstone. Peloids have a narrow size-range of fine-to-medium sand, typically 200–300 µm (Fig. 10D). Their mor-290

phology is ovoid, and their internal fabric is identical to that of pheno-intraclasts of F4 and nodules of F2, F3, consisting

of silt/microfossil wackestone. Epifluorescence microscopy confirms the macroscopic observations that fluorescence mainly

comes from microsparite cementing the grainstone (Fig. 10E). Tier 3: Medium burrows and their infill Cements composing

the dark halo at the burrow boundary are commonly interlayered with sediment and thus, coeval with passive burrow infill

(Fig. 9E). In thin section, the dark halo shows the same succession of cements irrespective of their position, between sedi-295

ment laminae or at the sediment/cement boundary (Figs. 10A–C). It starts with a sediment-coating, 0.1–0.3 mm-thick layer of

brown microsparite (BMSpar), commonly covered by 0.2–0.5 mm-thick clear microsparite (CMSpar, Figs. 11A, C, D, 12A).

CMSpar, in turn, is locally covered by sets of radiaxial gray carbonate crystals (RAx; Fig. 11D). Sediment within burrows can

show geopetal features above this succession, in some cases covered by a similar BMSpar-CMSpar couplet. The sediment-

BMSpar-CMSpar succession has been observed up to 3 times (Fig. 12A). Individual microspar crystals are continuous across300

the boundary between brown and clear microspar (Figs. 12B–C). At high magnification, the brown color of BMSpar is due

to bush-forming sets of brown filaments (Fig. 12D) whose diameters are close to the limit of optical resolution of ca. 1 µm.

Individual “bushes” are about 100 µm in diameter and have a smooth, convex margin. Neither the abundant inclusions that

characterize BMSpar, nor the calcite cementing the filaments are fluorescent, in contrast to CMSpar that shows both gen-

eral mineral fluorescence and brightly fluorescent fluid inclusions (Fig. 12E–H). Fluorescent inclusions appear most abundant305

along the contact between BMSpar and CMSpar (Fig. 12F). Early diagenetic cements are, thus, arranged into repetitive se-

quences made of sediment/BMSpar/CMSpar, occasionally capped by radiaxial sets of calcite crystals; these will be referred

to as “sediment-cement sequences”. Above the last sediment-cement sequence, the dominant cement is sparry calcite (Spar-1;

Figs. 11C–D), with the occasional presence of botryoidal chalcedony (Figs. 11E–F). Above the sediment-cement sequences
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and occasional Spar-1, there is a continuous 100–300 µm-thick rim of white cement, which in thin section consists of a high-310

relief light brown mineral (Figs. 10C, 11A) that shows the typical texture of flamboyant chalcedony in cross-polarized light

(Sander and Black, 1988; Figs. 11B, F). This mineral, noted Chal-2, generally occurs in association with saddle dolomite (Dol-

1) and is commonly covered by euhedral quartz crystals (Figs. 11D–F). Flamboyant chalcedony commonly cross-cuts single

sparite crystals (Fig. 11C). It locally replaces older cryptocrystalline botryoidal chalcedony (Chal-1; Figs. 11 E–F). Below the

continuous rim, discontinuous Chal-2/Dol-1 patches commonly replace the upper part of sediment-cement sequences thereby315

defining a complex, digitated surface of replacement. Silica replacement never occurs above a surface characterized by the

occurrence of euhedral quartz crystals but can locally affect any of the underlying cements, except those cementing grainstone.

We refer to this surface as the “main silicification surface”, which can be traced as the envelope of euhedral quartz crystals (see

Figs. 11 D, F). Cements above the main silicification surface are dominantly sparry calcite (Spar-2) and/or saddle dolomite

(Dol-2), in variable proportions (Figs. 10C, 11A). Subordinate minerals include fracture-filling microcrystalline chalcedony320

and occasional sulfates (barite-celestite mixtures).

4.4 Stable isotopes

The stable carbon and oxygen isotope data of the studied carbonates exhibit a trend between the marl sample with δ13C of

1‰ and δ18O of -2.2‰ and a cluster centered at δ13C = -10‰ and δ18O = -1.5‰ (Fig. 13A; Appendix 1). Samples of the
13C-depleted cluster comprise microsparitic cements of the sediment-cement sequences (BMSpar and CMSpar) and Spar-1;325

all these cements pre-date the main silicification event (Fig. 13B–C). It also includes some peloids and some nodules. The

majority of nodules and peloids and all micrite pheno-intraclast samples follow a mixing trend between marine sediment (F1

marl) and the 13C-depleted cluster. The δ18O values vary in a narrow range from -1.8‰ to -2.2‰ for early cements precipitated

at seafloor temperature and from -1.1‰ to -2.1‰ for peloids and micrite pheno-intraclasts. Five of the 6 samples of saddle

dolomite have similar values (-0.9‰ to -2.2‰) whereas the last one is the most depleted showing -7.5‰.330

5 Discussion

The main proxies to identify seep carbonates in the rock record are the presence of specific methanotrophic fauna (e.g., Kiel,

2010) and/or the carbon isotope signature of the carbonate minerals, generally considered diagnostic if δ13C depletion exceeds -

30‰. In Aurel, no sample meets the latter criterion. Similarly, the scarcity of CH4-related macrofauna with one single specimen

of a lucinid does not provide a compelling proof for the nature of the whole carbonate body. The most convincing evidence335

comes from combined analysis of bioturbation, early diagenesis in and around burrows and isotope geochemistry.

5.1 Alternatives to the bioturbation interpretation

The homogeneous character of micrite pheno-intraclasts and the tubular structures are interpreted as the result of bioturbation,

affecting sediment of soupy consistency in the upper few cm of the subseafloor and firm sediments below, respectively. Could

these features be abiogenic and simply result from gas escape itself? Homogenization by ascending fluid, known as fluidization,340
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occurs in non-cohesive material when fluid ascent velocity exceeds the settling velocity of the particles (Allen, 1992). In the

case of cohesive material interacting with gas, however, observations systematically indicate bubbling at discrete points rather

than pervasive ebullition (Dupre et al., 2020). Both analogue and numerical modeling have shown that individual bubbles move

as discrete lenticular hydrofractures within the cohesive material (Boudreau, 2012; Katsman et al., 2013). On the other hand,

homogenization by bioturbation by meiofauna in the first few cm below seafloor is a well-documented phenomenon (Wetzel,345

1983, Wetzel and Uchman, 1998, and references therein). Moreover, the presence of discrete open conduits in the sub-seafloor

ensures that any upcoming fluid (liquid or gas) will migrate along these conduits up to discrete venting points rather that

homogenize the whole shallow sub-seafloor (Blouet et al., 2021c). Could the tubular structures interpreted as burrows be

related to other structures, for instance to abiogenic gas conduits? Generally speaking, due to its buoyancy gas tends to migrate

vertically in homogeneous and isotropic sediment. As observed for sand injectites and demonstrated by analogue modeling,350

deflection to horizontal can occur where changes in lithology/cohesion and/or permeability make it more energy-effective

for ascending gas to follow a permeable, non-cohesive bed and lift the cohesive overburden than to (hydro) fracture it. This

phenomenon typically results in sill development, as observed for sand or magma injectites and modeled by Mourgues et al.

(2012), and could explain limited subhorizontal segments (Boudreau, 2012). Abiogenic gas conduits have been interpreted

by De Boever et al. (2009) in permeable sandy sediments, where free gas migrates vertically as long as the sediment is355

homogeneous and it is deflected laterally below less permeable stringers. An abiogenic origin has also been proposed for

tubes in the Teepee Buttes Fm., whose dimensions and character are closer to what is observed in Aurel. The interpretation

as abiogenic, 3-phase (gas-oil-water) flow is based on both the overall subvertical character, which is not the case in Aurel,

and on the presence of silty laminae around the lumen of the tubes, interpreted to reflect deposition of clastic microparticles

“adher[ing] to the surface of methane gas bubbles and entrained in the wake of the bubbles” (Krause et al., 2009). Neither360

criterion matches our observations, whereas the similarity with Thalassinoides/Spongeliomorpha is clear for most of the tubes.

We therefore consider a biogenic origin as the most likely hypothesis in the case of Aurel.

5.2 Nature of the pseudobioherm

The co-occurrence of peloids and pervasive bioturbation strongly suggests a genetic link. In addition, the uniform size and

regular ovoid morphology of the peloids, their internal grain content identical to that of pheno-intraclasts and adjacent nodules365

imply in-situ recycling of local sediment by deposit feeders. We thus interpret the peloids as fecal pellets, produced either

by the organisms that dug Phase-2 burrows close to the seafloor or passively transferred into the burrows by bottom currents.

The latter might also have formed the ripples in the background sediment. The pseudobioherm appears as an oasis of thriving

benthic life, essentially endobenthic, within an area marked by much lower abundance of benthos and scarce bioturbation. One

key factor to support benthos is the availability of food/energy. Below the photic zone, benthos depends on the availability370

of organic matter produced in the photic zone and settling to the seafloor or brought in by currents, or, alternatively, by

chemosynthesis. Very localized spots of sustained benthic life like the Aurel pseudobioherm (< 10 m in diameter) are found

in particular at seep sites (e.g., Jensen et al., 1992). The Aurel pseudobioherm contains neither frame-building nor sediment-

binding organisms. The vertical extent of the pseudobioherm of at least 15 m largely exceeds the maximum penetration depth
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of burrowing organisms. In F4, the final fill of burrows generally consists of saddle dolomite, which is known to precipitate375

from saline fluids at temperatures in the range 80–160°C (Spotl and Pitman, 1998). The network of Phase-3 burrows, thus,

remained open until this temperature value was reached supposedly at a burial depth of a few kilometers. During early stages

of burial when the pseudobioherm still grew, the fine-grained background sediment had a strongly anisotropic permeability.

Vertical permeability was low due to the dominance of laterally continuous marl strata wherea lateral permeability was high

due to the presence of the intercalated calcilutite beds providing pathways for lateral fluid migration. In contrast, the absence380

of laminated limestone in the pseudobioherm and the pervasive biodeformational sediment mixing and hence, homogenization

during the very first stages of burial imply an isotropic low permeability of the pseudobioherm deposits in the first 5–10 cm

below seafloor. In contrast, the open burrow network of F4 provided localized natural conduits for fluid flow during compaction,

making the whole pseudobioherm an effective vertical drain at large scale. Therefore, we interpret the vertical development of

the Aurel pseudobioherm to have resulted from dominantly vertical fluid seepage facilitated by burrows and making it a fluid385

seep carbonate body.

5.3 Nature of the fluid

Stable carbon isotope analysis is the most commonly used method to elucidate the origin of fluids from which seep carbon-

ates are derived (Campbell, 2006); a “classical seep carbonate” signature is in the range of -60 to -30‰ for δ13C and -2 to

+8‰ for δ18O (Campbell, 2006: Fig. 9A). There appears to be a consensus that any authigenic carbonate exhibiting δ13C390

values lower than -30‰ can be considered diagnostic of methane oxidation, whereas less negative values may result from

mixing of bicarbonate derived from other sources, in particular seawater (Campbell, 2006). In the Aurel pseudobioherm, the

most δ13C-depleted samples exhibiting about -10‰ are those predating the emplacement of the main silicification surface and

being large enough to be sampled without mixing. Samples comprising both sedimentary carbonate and diagenetic cement

have δ13C values along the trend between marine sediments and the most depleted cements (Fig. 13A). In this study, the most395
13C depleted-cements are significantly less depleted than the commonly accepted diagnostic 13C threshold value of -30‰.

This threshold results from the successive changes in δ13C depletion during the maturation of organic matter to hydrocarbons

and eventual precipitation of carbonate when anaerobic oxidation of these hydrocarbons took place. The δ13C of sedimentary

organic matter ranges from -10 to -35‰, with an average of -25‰ in marine environment. During burial, microbial methano-

genesis leads to further depletion. Microbially generated methane shows a δ13C depletion from -120‰ to 50‰ (Botz et al.,400

1996; Whiticar, 1999), whereas thermogenic maturation yields methane with δ13C values from -50 to -35‰ (Fuex, 1977).

Comparing carbon isotopy of recent seep carbonates with that of gas bubbling from the corresponding seep sites evidenced

enrichment in δ13C by ca. 20‰ on average upon carbonate precipitation, interpreted to result from mixing with dissolved

inorganic carbon (Peckmann and Thiel, 2004). Combining the successive phases of depletion/enrichment, seep carbonates

should have typical values of -100‰ to -35‰ when derived from microbial methane and -35‰ to -15‰ when sourced from405

thermogenic gas. A recent review of methane carbon isotopy based on more than 20,000 samples indicates that the δ13C of

thermogenic methane ranges from -65‰ to -25‰ and depends very much on the maturity of CH4 (Milkov et al., 2018). In

detail, oil-associated methane matches the values proposed by Fuex (1977), whereas early mature values are in the range of
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-65‰ to -50‰ and late mature ones cluster around -30‰. Assuming that the average mixing effect with seawater is in the

range of 20‰ as observed by Peckmann and Thiel (2004), we interpret the δ13C of -10‰ in the early cements of the Au-410

rel pseudobioherm to indicate that anaerobic oxidation of late thermogenic methane fueled seep carbonate precipitation. The

values measured at Aurel show a dominant trend in the negative δ13C zone, in sharp contrast with the wider range of values

reported from the neighboring Beauvoisin pseudobioherms, from +17‰ to -24‰ (Gay et al., 2020). At the same time, the

influence of AOM has been evidenced by the presence of lipid biomarkers in Beauvoisin (Peckmann et al., 1999), and the most
13C-depleted samples fall much closer to the generally admitted diagnostic threshold than in Aurel. We interpret the difference415

to result mostly to a difference in the source of fluids, microbial methane from the Bathonian-Oxfordian in Beauvoisin (Gay

et al., 2020) and late thermogenic methane in Aurel, hypothetically from a deeply buried Carboniferous source rock. Oxygen

isotope values exhibit a poorly organized pattern, especially as regards saddle dolomite. The latter is known to have precipi-

tated at 80°C at least (Spotl and Pitman, 1998), typically resulting in δ18O values below 6‰. Five of the 6 values obtained here

for saddle dolomite are inconsistent with precipitation from hot fluids. The apparently erratic character of oxygen isotopes in420

saddle dolomite could be due to the fact that oxygen is much more affected than carbon by isotope exchange during diagenesis

of carbonates (Peckmann et al., 2003; Zwicker et al., 2015). We acknowledge the problem but consider that the issue goes

beyond the scope of this study. Nonetheless the Aurel pseudobioherm is interpreted as a column of seep carbonate precipitated

at the top of a stationary, 5–10 m-diameter fluid chimney supplying late mature thermogenic methane.

5.4 Facies interpretation425

5.4.1 Facies F1, F2, F3

Background sediment records hemipelagic settling of fine-grained siliciclastic and carbonate particles forming marl and

episodic density currents that transported material from the slope or the shelf downward constituting calcareous, commonly

calcilutite beds. Hydrocarbon(-charged fluids) seeping up through the limestone column does not appear to have affected

sedimentation or early diagenesis more than a few meters away from the venting site. Only the ’normal’, basin-wide burial430

compaction affected the diagenesis of F1. For F2 and F3, the isotope signature of nodules show an input of AOM-generated

bicarbonate to levels above the precipitation threshold of calcite, the more as the nodules become more abundant and coalesce

closer to the axis of the pseudobioherm (Fig. 14). Calcite precipitation occurred in the SMTZ that has been shallower above the

pseudobioherm than in the surrounding ’host’ area due to the increased methane supply (Fig. 14, cf. Paull and Ussler, 2008). In

F3, the saddle dolomite crystals in the matrix between coalescing nodules indicate percolation of late diagenetic fluids through435

the limestone-dominated column that still acted as a local fluid conduit even if burial depth was sufficient to reach a temperature

of at least 80°C.

5.4.2 Facies 4

Carbon isotope data of the Phase-3 burrow infill indicates that the main silicification surface separates AOM-influenced early

diagenetic cement from late diagenetic saddle dolomite as prominent mineral. Anaerobic oxidation of methane can only occur440

14



if sulfate is available at a seep site and only within the first few meters below seafloor at the deepest. The high temperatures

required for saddle dolomite precipitation, however, imply that late diagenesis took place at depths largely exceeding 1 km,

more likely 2 km assuming geothermal gradients of 30°–40°C km−1. In F4, the early, AOM-dominated diagenesis prevailed

whereas the late diagenetic phase only affected Phase-3 burrows. The F4 fabric records the interplay between sedimentation,

bioturbation and early diagenesis. Sedimentation at the seep site must have been identical to that recorded by background facies445

F1, since hemipelagic settling and current deposition acted on a larger scale than the 10-m diameter of the pseudobioherm.

Homogenization by bioturbation was the first process that modified the surface sediment, followed by very early cementation

that started stiffening the deposits. Bioturbation phases 2 and 3 occurred after enough seep carbonate had been precipitated to

maintain burrows open and preservable (e.g., Wetzel and Uchman, 1998). The open burrows in turn guided upward methane

migration and promoted AOM and further gradual cementation around the burrows (Wetzel, 2013). Leaving aside the effects of450

silicification, the cement infill of Phase-3 burrows and their host sediment is quite simple: AOM-related carbonate precipitation

in the SMTZ is expressed by diagenetic micrite within the pores of homogenized ’depositional’ micrite, by microspar crystals

in the pores of pellet grainstone and in the first 0.1–0.5 mm off the burrow walls (BMSpar-CMSpar) and by spar-size crystals

(Spar-1) in the remaining free space of the lumen. The radiaxial sets of gray carbonate crystals that occasionally terminate the

sequence of cements (RAx) may represent recrystallized equivalents to the aragonite fans described by Blouet et al. (2017) in455

the Panoche Hills (CA, USA) or by Peckmann et al. (1999) from Beauvoisin. Calcite crystals continuing across the BMSpar-

CMSpar contacts indicate that the brown color of the former simply reflects the inclusion of the filamental bushes into the

growing microspar. These bushes are reminiscent of the dumbbell-shaped crystal aggregates reported by Peckmann et al. (1999)

from the Miocene seep carbonates of Marmorito (Italy), and are most likely filamentous, bush-shaped microbial colonies having

grown over free surfaces of micrite pheno-intraclasts or pellets at burrow walls. The presence or absence of geopetal sediment460

in the burrows simply reflects the capacity of a burrow segment to trap pellets avalanching from above. Pellets could fall down

due to biological activity above or bottom currents inducing circulation within burrows. The variability of 13C depletion of

micrite (nodules and pheno-intraclasts) reflects variations in the amount of marine carbonate mixed with the AOM-derived

cement. In multi-phase samples such as pellet grainstone containing AOM-derived cement, the variability may result from

varying amounts of pellets derived from micrite with a variable isotope signature and cement (Figs. 8D, 10C). At seep sites,465

the SMTZ crops out at the seafloor (Paull and Ussler, 2008). In the Aurel pseudobioherm, the cm-scale geometry of the SMTZ

was most likely complex, with pervasive downward digitations following the open burrow network that provided connection

to the sulfate-bearing open water. In addition to this complex geometry, tube ventilation by seawater is known to be induced by

bottom currents such as tidal currents (“passive ventilation”: Wetzel, 2014, Gingras and Wonneveld, 2015, Rodriguez-Tovar

et al., 2019) and by the burrowing organism itself (“active ventilation”). Active ventilation has been shown to be used by470

decapod crustaceans to promote microbial growth on burrow walls (Savrda, 2007). The microbial colonies of BMSpar may

result from one or the other type of ventilation. The key information provided by late diagenesis about the vertical growth of

the pseudobioherm, is that the tube network constituted by burrow lumina remained open long after the pseudobioherm was

buried, at least as long as the pseudobioherm was growing. Silica diagenesis occurred in two phases: in the first one, chalcedony

botryoids precipitated locally above a first succession of AOM-related cements were in turn covered by AOM-related sparite475
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Spar-1; the second phase post-dates all AOM-related carbonate precipitation and is coeval with the precipitation of saddle

dolomite. Silica is ubiquitous in the host sediment as sponge spicules and so it was readily available within and all around

the pseudobioherm. Precipitation of AOM-related carbonates followed by silicification and in turn precipitation of non-AOM

related carbonates has been reported from Paleozoic–Cenozoic fossil seep carbonates hosted in siliceous microfossil-bearing

sediments by Kuechler et al. (2012) and Smrzka et al. (2015). These authors interpret the silicification event to reflect silica480

dissolution by alkalinity/pH increase during AOM, favoring dissolution of the silica, followed by reprecipitation when AOM

ceased (Kuechler et al., 2012) or the zone of main methane flux shifted laterally (Smrzka et al., 2015). The first phase of

silica precipitation in Aurel is coeval with AOM, and thus does not fully match the observations of Kuechler et al. (2012) or

Smrzka et al. (2015). However, early silica could have precipitated during temporary, local interruption of AOM by redirection

of methane(-bearing fluids) to another of the numerous conduits in the pseudobioherm that was followed by another episode485

of AOM when the flow was re-established. The second, more pervasive phase of silicification was coeval with precipitation

of saddle dolomite and largely post-dated the demise of AOM. We hypothesize that it corresponds to a specific step of silica

diagenesis affecting the sponge-rich interval of the pseudobioherm, perhaps upon entering the Opal C-T-Quartz transformation

window around 55–85°C (Keller and Isaacs, 1985), which overlaps with the lower range of precipitation temperature for saddle

dolomite.490

5.5 Parameters controlling the stacking pattern

The Aurel seep-carbonate body comprises vertically stacked carbonate lenses interfingering with the host marls. The stacking

pattern and the uniform character of F4 over the whole thickness of the pseudobioherm indicate overall upward growth keeping

pace with deposition. Lateral compensation between successive lenses, due to self-sealing and lateral shift, remains well within

the diameter of the carbonate body, except across marker beds A and B where the axis of the pseudobioherm shifted by several495

meters and stabilized in its new position (Fig. 3). Downward growth, if any, would be restricted to individual lenses a few tens

of cm thick. Which parameters controlled the vertical growth of the pseudobioherm between the marker beds? The role of

Thalassinoides in focusing migration of methane(-charged fluids) has been identified by Wetzel (2013) and later by Wiese et

al. (2015), Zwicker et al. (2015) and Blouet et al. (2017). Evidently, in spite of likely overprinting by shallower-tier burrowers,

individual Phase-3 burrows remained open until burial reached at least 1 km and provided obvious fluid migration pathways as500

deep as the burrowing organisms penetrated, likely in the range of 1–3 m as known for present-day decapod crustaceans (see

above). Within tier 1, mainly small-sized organisms (meiofauna < 300 µm) that represent the most efficient ’homogenizers’

(e.g. Wetzel, 1983) probably avoided the shafts of Thalassinoides not to fall into them. Therefore, at least some shafts remained

open after burrow abandonment. Burrowers of tier 2, however, could have intersected the upper part of abandoned tier-3

burrows and shed sediment and pellets down the intersected shafts. The estimated average spacing of 5 cm between tier-3505

burrows implies a tunnel density of about 400 per m2, in the mid-to-high density range defined by D’Andrea and DeWitt

(2009). As the burrows have a complex branching geometry made of segments with highly variable azimuth and inclination,

there is room for many intersections between active and abandoned Phase-3 burrows. Thalassinoides-/Spongeliomorpha-type

burrows generally show variable orientation on a cm-scale (e.g., Griffis and Suchanek, 1991, Dworschak and de Rodrigues,
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1997, Stamhuis et al., 1997, Ziebis et al., 1996), as observed in the Aurel samples (Fig. 15A). The gently inclined segments510

provide dead ends or traps for sediment avalanching in or entering the burrows; as soon as sediment derived from above reached

a segment dipping less than the angle of repose of granular material, passive fill is hindered and the tunnel network underneath

remains open (Fig. 15B). The geometric arrangement of the tier-3 burrows with subhorizontal segments thus represents an

important factor ensuring that these burrows provided an open tube network over the whole thickness of the pseudobioherm

as long as there were organisms active in providing the final opening to the seafloor. Vertical growth is the consequence515

of such fluid circulation ’highways’. Fluids expelled during compaction and buoyant hydrocarbons, once they reached the

base of the pseudobioherm, were funneled within the open-burrow network up to domains close to the seafloor where seep

carbonate precipitation occurred in the SMTZ. Free gas trapping by any local permeability restriction inside a tube would

have initiated builtup of a continuous gas column below. Its buoyancy could overcome the mechanical resistance of the plug

as soon as the height of the column reached about the thickness of the plug (Cathles et al., 2010). The resulting sudden520

fluid release may have episodically flushed the tube system, contributing to keeping it open. At any time during active seep

carbonate growth, the tier-3 burrows provided connection with the seawater on the one hand and brought up methane on the

other, ensuring both seep carbonate precipitation in the shallow sub-seafloor and multiple bypass pathways preventing self-

sealing. Increasing cementation around the open tubes prevented their collapse. Decapod crustaceans are known to dig deep

into the sediment and periodically ventilate their burrow systems with seawater that contains sulfate and to induce cross-stratal525

fluid flow (e.g., Forster and Graf, 1992, Ziebis et al., 1996). Once initiated, vertical growth became a self-sustaining process.

What caused the offset of the seep carbonate column upon crossing marker beds A and B? Event deposition of a few tens

of cm thick marker beds should not have significantly affected burrowers within tiers 2 and 3 as they have the capability

to maintain the connection to the seafloor (e.g., Bromley, 1996) and evidently did so, and vertical communication up to the

seafloor as previously described must have been reestablished rapidly after the deposition. Because massive calcilutite beds in530

the pseudobioherm became homogenized by bioturbation in the very shallow, 0–10 cm sediment depth (Wetzel, 1981), it is

highly likely that bioturbational mixing broke the continuity of thinner limestone beds by displacing grains into the adjacent

marly mud, whereas sufficiently thick beds would just show blurred contact at the top limestone/marl contact but preserve a

permeable lower part. Any restriction to fluid flow above the permeable bed likely deflects at least part of incoming methane(-

bearing fluid) along the permeable bed, where migration would follow the local gradient at the top of the permeable bed535

(regional slope combined with local irregularities at the base of the bioturbated, impermeable top-of-bed interval). Upslope

migration of hydrocarbon-charged fluids, in turn, shifts the zone of maximum hydrocarbon concentration laterally upslope

and also the habitat of burrowers feeding on chemosynthetic microbial communities along their burrow walls and on the

seafloor. In summary, the main factor governing seep carbonate stacking in Aurel appears to be the contrast in m3-scale

permeability between the pseudobioherm and its host sediment (Fig. 15C). Sedimentation of the background facies defines a540

strongly anisotropic permeability tensor on m3-scale, with low vertical permeability due to the fine-grained marls whereas high

lateral permeability occurs before lithification due to the presence of calcilutite limestone beds. At the same scale in the seep

carbonate column, the Thalassinoides/Spongeliomorpha tube network results in high vertical permeability (e.g., Cunningham

et al., 2012, Gingras et al., 2012) whereas lateral permeability is generally lowered by bioturbational blurring of thin granular
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limestone beds into the marls. Only granular beds significantly thicker than the mixing depth of near-surface endobenthic545

organisms remain to a large proportion in their original state (e.g., Wheatcroft, 1990, Wetzel, 2009). They can retain sufficient

permeability to act as drains, leading to lateral deflection of incoming fluids and lateral shift of the stacking pattern.

6 Conclusions

The development of the Aurel pseudobioherm, a 15-m-thick, 8-m-diameter columnar seep-carbonate body encased in a >500

m-thick marl succession, was modulated by factors that promoted its vertical growth and limited lateral shift induced by self-550

sealing. The following two points help explain one key factor that appears to be intense bioturbation by decapod crustaceans:

a) The specific morphology of the burrows produced in a deep tier includes low-inclination to horizontal segments that could

hinder passive infill by sediment falling from the seafloor or shallower bioturbation tiers, preserving a network of open tubes

below. b) The areal density of burrows of ca. 400 burrows m−2, was sufficient to ensure cross-cutting between successive

generations of burrows, providing a connected network extending deep below the base of the SMTZ and thereby fostering555

unrestricted vertical fluid percolation through the whole carbonate body due to their high vertical permeability.

The host sediment is dominated by fine-grained marls resulting in very low vertical permeability. In contrast, intervening

cm-thick laterally continuous calcilutite beds make up to a few percent of the formation and create a relatively high lateral per-

meability. At the location of the pseudobioherm, these thin beds were mixed with mud through biodeformational bioturbation

in the upper 5–10 cm below seafloor, blocking lateral fluid circulation inside the pseudobioherm and into the host sediment.560

Conversely, the few >10-cm-thick calcilutite beds were not fully homogenized, leading to (possibly upslope) lateral pseudobio-

herm migration by a few meters along the thicker beds. The critical factors thus appear to be the adequate type and abundance

of burrows; they foster compaction fluid flow into the pseudobioherm with positive feedback on the development of endoben-

thic life. Decapod crustacean-promoted focusing of fluid flow into a seepage area could be the antidote to self-sealing and

promote sustained vertical growth of seep carbonate bodies. This type of bioturbation, known to be common at hydrocarbon565

seep sites, may thus be a small-scale but critical factor fixing a seepage site at the same point for long spans of time, as has

commonly been observed on seismic sections worldwide.
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27



. Figure 1: Geological setting of the studied outcrop. A) Cross-section from the margin to the center of the Dauphinois Basin traversing

the Aurel borehole (after Wannesson and Bessereau, 1999, modified). B) Facies map of the Dauphinois Basin for the Callovian (Debrand-

Passard et al., 1984). Isopachs (in m), after Baudrimont and Dubois (1977), are shown for the basin facies represented by the Terres Noires

Formation (middle Bathonian up to lower Oxfordian) in the central part of the basin. Outcrops of the Terres Noires Formation (after Artru,835

1972) are noted by a darker shade of brown and the locations of major pseudobioherms are marked by red stars (after Rolin, 1987). C)

Lithologic log of the Aurel area (Flandrin, 1974). The Aurel borehole penetrated the carbonate-dominated Dogger and the marly upper Lias.

The pseudobioherms in the Aurel area are hosted in middle Callovian sediments (red star on the log); in the Dauphinois Basin overall,

they occur in upper Bathonian to middle Oxfordian deposits. D) Geological map of the Aurel area (after Flandrin, 1974, modified). Several

pseudobioherms are poorly exposed near the Vaunière ruin; the studied pseudobioherm is located near La Touche farm.840
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. Figure 2: Lithologic log of the middle Callovian deposits in the pseudobioherm-bearing interval, logged about 20 m to the west of the upper

part of the pseudobioherm, not affected by faulting; note marker beds A and B, easily recognizable in both host sediment and pseudobioherm.
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. Figure 3: A) and B), image and interpretation of the southern flank of the Aurel pseudobioherm; dashed lines represent assumed axis of the845

pseudobioherm. C) and D), image and interpretation of the eastern flank of the pseudobioherm. LST = limestone.
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. Figure 4: Background facies F1. A) Typical alternation between marl and limestone showing platy bedding. B) Surface of a slab with

radiating burrow (Gyrophyllites multiradiatus); inset shows the bivalve Bositra, the only common fossil in F1. C) Marl with numerous

filamentous structures interpreted as disaggregated Bositra shells. D) Limestone showing the same microfossil content as the marl but850

in microsparitic matrix. E) Limestone consisting of alternating packstone and wackestone laminae. F) Marl with numerous recrystallized

microfossils in a micritic matrix; circular objects are interpreted as calcispheres or radiolarians; inset showing a tubular structure interpreted

as a sponge spicule.
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. Figure 5: Facies F2, nodular marl. A) Outcrop view. B) Individual nodules and nodule clusters. C) and D), cross-section of a nodule under855

natural (C) and UV light (D); the vertical parting in the middle of the sample which shows a darker colour in (C) but is non-fluorescent in

(D), is suggestive of previous boundary between two, now clustered nodules.

37



38



39



. Figure 6: Facies F3, nodular limestone. A) and B), vertical section under natural (A) and UV light (B); arrows point upward. C) Photomi-

crograph showing contact between a nodule and matrix (marked by yellow dashed line). Grain packing in matrix is denser than in nodule,860

suggesting cementation of the nodule prior to compaction.
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. Figure 7: Facies F4, massive limestone, and associated fauna. A) Weathered surface showing three bivalves shown in (B) to (D) in detail,

apparently belonging to different species. D) Bivalve with geopetal filling. E) and F) two valves of the only lucinid found (likely Beauvoisina

carinata, Kiel et al., 2010). G) Section of a small gastropod. H) Bedding plane view of Thalassinoides; smaller tape measure graduations in865

mm.
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. Figure 8: Fabric of intensely bioturbated sediment. A) Natural light and B) UV fluorescence light, Facies F4. White arrows in B) point at

some of the micrite pheno-intraclasts. Note the variability of pheno-intraclasts in roundness and size. MB = medium burrow. C) Natural light

and D) UV fluorescence light, transition from F3 to F4. In both samples, medium burrows (MB) appear independent from variations in fabric870

around them; black rectangles drawn for thin section selection. E) Natural light, F) UV fluorescence light and G) line drawing, facies F4,

unoriented vertical section. White arrows in (G) show points where the burrow’s edge is tangent to pheno-intraclasts.
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47



. Figure 9: Burrow architecture in F4. A) and B), opposing sides of a sawcut, ca. 3 mm apart; Note 3 types of burrows: Large burrows

(one marked as Ba) surrounded by white dashed line; medium burrows, (partly) filled with white-yellowish cement (labelled B1–B6); small875

burrows (t1–t3) encircled in red. White rectangle in (A) is the position of close-up in panel (E). C) UV-light view of the section shown in

(A). Yellow lines follow main dark halos, as marked in (A). D) Line drawing of (c); black lines are dark halos copied from (C), yellow

dotted lines are the position of dark halos on the opposite side of the sawcut (drawn on panel B and flipped), illustrating changes in burrow

size and orientation across the 3 mm gap between the sections. E) Close-up of B6 marked in (A) showing burrow surrounded by dark halo

(bold arrows) and half-filled with geopetal sediment; thin white arrows show halos inside the geopetal filling. F) Cross-cutting relationships880

between burrows (UV fluorescence). White circles point at small burrows connected to adjacent medium burrows. White rectangle highlights

longitudinal cross-sections of small burrows. Black rectangles drawn on the sample for thin section selection.
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50



. Figure 10: A) and B), close-up of Figs 8 A, B showing the details of burrow infill; white rectangle marks the position of the thin section

close-up in (C). A) Plane polarized light view; EC = early cements, LC = late cements; orange arrows mark dark halo surrounding the burrow885

on the left side and opening into sediment on the right side; yellow arrows mark thin, continuous, milky white cement rim following the dark

halo on the left side of the image but the sediment-cement contact on the right side. B) UV fluorescence view indicates that the fluorescent

halo expands on the right side into peloid grainstone (PG); the blurry appearance results from diffusion of light emitted from fluorescent parts

into non-fluorescent ones; Int = micrite pheno-intraclasts; pheno-intraclasts, like nodules in F2 and F3 exhibit a low level of fluorescence. The

brightly fluorescent zone is bounded by the dark rim on the outer side (orange arrows in (A)) and the white rim on the inner side of the burrow890

(yellow arrows in (A)). C) Microphotograph of the sample shown in (A) and (B); dark halo (orange arrows) corresponds to superposition

of brown and clear microsparite layers (BMSpar and CMSpar, respectively), with BMSpar directly covering the burrow wall. The white rim

(yellow arrows) consists of beige chalcedony (for details, see Fig.11). Thin white arrows point to shell fragments, PW = peloid wackestone,

Dol 2 = late saddle dolomite. D) and E) photomicrographs of peloid grainstone in F4. D), internal texture of the peloids in plane polarized

light; E) as (D) in UV epifluorescence light.895
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. Figure 11: Cements within Phase-3 burrows and host sediment. A) and B) General view of burrow margin in plane light (A) and cross-

polarized light (B). Note continuous rim of beige chalcedony (Chal-2) associated with saddle dolomite (Dol-1); BMSpar and CMSpar =

brown and clear microspar, respectively; Sed = sediment. C) Detail of relationship between Chal-2 and carbonate cements in cross-polarized
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light; Spar-1 = first generation of sparite cement; white rectangle: Chal 2 cutting across a single sparite crystal. D) Burrow rim in plane900

polarized light showing one sediment-cement sequence (SCS, red bracket) capped by sediment in the left part. The cements are heavily

replaced by chalcedony. Red line = top of SCS, dashed where observed and dotted where inferred. Radiaxial gray calcite crystals (RAx)

locally cap the SCS. Blue lines (dashed at base, solid at top) outline a patch of quartz with anhedral (q) capped by euhedral (Q) crystals;

euhedral crystals are aligned roughly parallel to burrow margin wall. E) and F), main phases of silicification in plane-polarized light (E) and

cross-polarized light (F); Chal-1 = botryoidal chalcedony precipitated freely at the tube wall, Q = euhedral quartz also overgrown on a free905

surface, Chal-2 and the associated saddle dolomite Dol-1 replaced both pre-existing carbonates and Chal-1. Note the extinction pattern of

Chal-2 characterizing“flamboyant chalcedony”. The blue zigzag line marks the main silicification surface (MSS). For details see text.
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. Figure 12: Microphotographsshowing details of sediment-cement sequences. A) Repeated sequence of sediment (sed), brown microsparite

(BMSpar), and clear microsparite (CMSpar), locally overprinted by chalcedony (Chal-2). B) Detail of BMSpar-CMSpar contact (black910
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dashed line follows the underlying BMSpar/sediment contact); BMSpar appears as a set of filamentous “bushes”; white rectangle marks

area shown in detail in (D). C) as (B) in cross-polarized light, showing individual microspar crystals straddling across BMSpar/CMSpar

boundaries (marked by black arrows). D) Close-up of filamentous bush; note elongate brown inclusions within clear crystal, particularly in

white rectangle. E) and F), BMSpar/CMSpar contact in plane light (E) and UV epifluorescent light (F); fluorescent inclusions near the margin

of BMSpar following oblique contact between BMSpar and CMSpar into the thin section. G) and H), typical CMSpar in plane light (G) and915

UV epifluorescence light (H), fluorescence originating from both fluid inclusions (bright white) and microspar (dull yellow).
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. Figure 13: Stable C and O isotopes and microfacies. A) Sedimentary and diagenetic carbonate phases encountered in the Aurel pseudo-

bioherm in δ13C-δ18O plot; position of samples of facies F1 to F3 is shown in Fig. 14. MCSW = Middle Callovian seawater composition;

LMCSW = subset for the lower part of the Middle Callovian (Pellenard et al., 2014) B) Fabric and microfacies of F4 recording succes-920

sive phases of bioturbation; white box indicates general position of panel (C). C) Schematic geometric relationships between sediment and

various cement generations within facies F4; black boxes mark minimum size of samples drilled for isotope analysis, some likely mixing

different phases like peloid grainstone and BMSpar/CMSpar. GST = grainstone. In the legend box: Chal-1 = early botryoidal chalcedony;

Chal-2 = later replacement chalcedony; Q = euhedral quartz crystals; MSS = main silicification surface; BMSpar/CMSpar = brown and clear

microsparite, respectively; Spar-1 = pre-silicification sparite; Spar-2= post-silicification sparite; Dol-1 = syn-silicification saddle dolomite;925

Dol-2 = late saddle dolomite; GST = grainstone, for details, see text.
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. Figure 14: Change in depth of the sulfate-methane transition zone (SMTZ) and seep carbonates (brown) from host sediment towards the

pseudobioherm; vertical dashed line marking the axis of the pseudobioherm; geometric symbols refer to the isotope data shown in Fig. 13A,

decapod crustacean symbolizes the burrowers responsible for the gas-focusing burrow network. Not to scale.930
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. Figure 15: Fluid flow in and around the pseudobioherm (PBH). A) Typical architecture of a recent decapod crustacean burrow (Callianassa

truncata, after Ziebis et al., 1996, modified); gray surfaces indicating hypothetical limits between bioturbation tiers 1 to 3 in Aurel (tier 4

below shown interval). The blue frame marks the shallowest chamber acting as trap for sediment shed from above and minimizing further

downward sediment transfer. B) Close-up of trapping chamber; once lateral spill-out from the chamber reaches angle of repose (ca. 30°,935

Allen, 1992), additional sediment from above piles up in the shaft and deeper parts of the burrow remain open. C) Sketch of fluid circulation

in and around the Aurel pseudobioherm (PBH) during its formation. Lower part representing hypothetical deep structure focusing late ther-

mogenic methane into the pseudobioherm; red dashed arrows at depth indicate hypothetical gas migration pathways from a source rock into

the structure and further up to the base of the pseudobioherm. Upper part, circulation pattern of gas and compaction fluids within the pseu-

dobioherm; orange zigzag lines represent crustacean burrows providing a connected tube network down to the bottom of the pseudobioherm.940

White ellipses represent permeability tensors in the pseudobioherm and host sediment, with the principal axes of minimum and maximum
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permeability shown by black arrows; red arrow within the pseudobioherm marks vertical flow pattern of the gas (-charged fluids), likely with

episodic escape of gas at the seafloor (red bubbles in water column).
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