Study Site/	-		Contact		a
Location	Formations	Lithologies of Interface	Туре	Structure	Scientist
OUTCROP AN	NALOG SITES				
Gallinas Canyon (New Mexico) 35° 39' 37.4" N, 105° 20' 13.6" W	Del Padre Member of the Espiritu Santo Fm. overlying Precambrian Gneiss and Schist	Silica and calcite cemented massive fine- to very coarse-grained sandstone overlying crystalline basement which varies from gneiss, granite, basalt, and green schist	Type I	Faults were observed in the sedimentary units truncating against the contact and bisecting the contact. The outcrop was severely deformed. Mineralized and non-mineralized fractures were observed in the sedimentary units.	Mozely and Kerner (2015; M.S.), Evans and Hesseltine (2019; M.S.)
Phantom Canyon (Colorado) 38° 30' 43.3" N, 105° 06' 40.7" W	Pennsylvanian Fountain Fm overlying Precambrian Granite	Silica rich dolomitized marine carbonates with shallow karst erosion with intergranular microporosity and iron oxide minerals between dolomite grains overlying weathered granite with granitic dikes	Туре І	Two normal faults were observed bisecting the contact with associated damage zones surrounding them. In both cases, the basement fault core was wider than the sedimentary fault core.	Mozely and Kerner (2015; M.S.)
Merrimack, Wisconsin	Cambrian Parfrey's Glen Fm overlying Precambrian Baraboo Quartzite	Pebble- to boulder-sized quartzite clast conglomerate overlying quartzite	Туре 0	Boulders up to 2m in diameter were observed No faults were observed at this site.	Evans and Cuccio (2017; M.S.)
Presque Isle, Marquette, Michigan 46° 35' 24.7" N, 87° 23' 04.29" W	Proterozoic Jacobsville Sandstone overlying Archean Serpentinized Peridotites	Fine-medium grained subarkosic sandstone with iron oxide and clay alteration interbedded with cohesive conglomerates and friable, incohesive basal conglomerates with clasts consisting of jasperoid, quartz, feldspar, and sandstone overlying serpentinized peridotite	Type II	Sandstone, conglomerate, and regolith are all observed in direct contact with the underlying serpentinized peridotite Three of four observed faults truncate at the interface and are associated with iron oxide mineralization, while the fourth bisects the contact and appears as a silica rich vein in the basement rock	Bradbury and Cuccio (2017; M.S.)
Hidden Beach/Little Presque Isle, Marquette, Michigan 46° 37' 19.37" N, 87° 28'01.48" W	Proterozoic Jacobsville Sandstone overlying Archean Compeau Creek Gneiss	Fine-medium grained subarkosic sandstone with a basal conglomerate of sub-angular to rounded jasperoid, gneiss, and greenstone clasts overlying gneiss with inclusions of schist and thin veins of quartz and epidote	Туре 0	Bleached fracture zones are present in the Jacobsville Sandstone. Small displacement faults only observed in basement rock with truncation at conglomerate layer In some cases, basement faults align with bleached vertical fractures in overlying sandstone	Bradbury and Cuccio (2017; M.S.)
Cody, Wyoming	Cambrian Flathead Sandstone overlying Precambrian Granite	Cambrian Flathead Sandstone overlying granite with a weathered horizon and presence of grus in some parts of the exposure	Туре І	Faults were observed in both the sandstone and the granite as well as bisecting the contact between these two units. Both sandstone and basement hosted faults were observed truncating at the contact while vertical fractures were observed bisecting the contact. Sedimentary-hosted faults exhibit quartz, clay, and hematite mineralization while basement-hosted faults were quartz-rich, clay-rich, or chloritic.	Evans and Cuccio (2017; M.S.)

	Precambrian				
	Conglomerates,				
	Devonian	Precambrian conglomerates, quartz			
	Tamarron	cemented, variably colored, planar			
	Member of the	laminated, cross bedded sandstone			
	Ignacio Em and	interbedded with thin (<15 cm) shale			
	McCracken	beds (Tamarron Sandstone) and sandy			
	Member of the	dolomite (McCracken Dolomite)			
	Flbert Fm	overlying a relatively homogenous		Joints and fractures can be found	
	overlying	granite composed of microcline		cutting both the sedimentary strate and	
	Drecembrian	parthite quartz plagioclase and		the basement rock with clay infilling	Evone and
Bakar's Bridge	Rakar's Bridge	hornblanda with accessory zircon		The basement rock is relatively fresh	Hosseltine
Calarada	Cromite	noniblende with accessory zircon,	Tuna	and unweathered	(2010, MS)
Colorado		apatite, magnetite, calcite, and epidote	Type 0	and unweathered.	(2019; M.S.)
DRILL CORE	CANALOG SITES				
CPC BD-139	Cambrian Mt				
(Michigan)	Simon Sandstone				
359437 E,	overlying	Cemented fine-grained laminated		Fragmented carbonate veins were	Evans and
4732092 N	Precambrian	quartzarenite overlying a finely		observed in the weathered portion of the	Cuccio (2017;
UTM Grid 17T	Gneiss	foliated, weathered gneiss	Type II	basement rock	M.S.)
CPC BD-151	Cambrian Mt	Carbonate cemented fine-grained		No faults were observed in the	
(Michigan)	Simon Sandstone	sandstone with fine-scale laminae and		sedimentary strata. A sub-vertical	
359024 E.	overlying	evidence of bioturbation/soft sediment		alteration zone was observed in the	Evans and
4738656 N	Precambrian	deformation overlying a weathered		basement rock approximately 3m below	Cuccio (2017:
UTM Grid 17T	Gneiss	gneiss	Type I/II	the contact	M.S.)
		Tan and purple cross bedded medium-			
		grained well stored sandstone grading			
UPH_1	Cambrian Mt	into interbeddred red and green		No faults were observed in either the	
(Illinois)	Simon Sandstone	siltstone grading into interhedded grus		sedimentary strata or the basement rock	
(IIIII013) 26/30/ F	overlying	and siltstone overlying pink coarse-		bowever altered microfractures were	Evans and
204374 E, 4700540 N	Precambrian	grained granite with few fractures and		observed in quartz and feldspar grains	Cuccio (2017:
UTM Grid 16T	Granita	minor alteration	Type I	in the upper 5m of the granite	MS
			Type I	The graphitic slate has faults surfaces	141.0.)
				with purple smear. The slates are out by	
				intermittent faults, alay gouges	
				blaachad zonas laachad zonas with	
				abundant voida pressure solution	
				abundant voids, pressure solution	
		The Jacobsville and Desseman		seams, folded and contorted layers,	
	Ta als a cost!!!	The Jacobsville and Bessemer		ciay-rich shear zones, and broken core	
	Jacbosville	sandstones are red, medium- to course-		intervais. The contact between non-	
	Sandstone and	grained, and well sorted with interbeds		graphitic and graphitic slate includes a	
	Bessemer	of mudstone and shale. The sandstones		zone up to 2m thick of carbonate veins	
	Sandstone	are jointed, bleached, and silicified.		and marks the appearance of euhedral	
	overlying	The Michigamme slate is oxidized,		pyrite crystals. The sandstone and slates	Evans and
Gogebic Core	Michigamme	non-graphitic slate, graphitic slate, and		straddling the non-conformity are	Hesseltine
(Michigan)	Slate	interbeded graywacke.	Type II	mineralized.	(2019, M.S.)

RC Taylor Whole Rock Drill Core (Nebraska)	Cambrian Lamotte Sandstone overlying sheared and weathered Proterozoic granitic basement	Arkosic, fine-grained, well sorted sandstone containing abundant glauconite and veinlets of quartz, calcite, and Fe-oxide overlying weathered and sheared granitic basement	Type I	Fe-oxide veins cut quartz, and calcite veins cut Fe-oxide and quartz veins indicating three separate mineralization events Fractures and veins are observed in both the sedimentary strata and the basement rock	Petrie, McClernan, and Tello (UG research)
B-1 Whole Rock Drill Core (SE Minnesota) E 590933, N 4847944 UTM NAD 83	Cambrian Mt. Simon Sandstone overlying Proterozoic mafic basement	Quartzites, weathered/altered contact, olivine metagabbro, grano-diorites, and pegmatites	Type I/II	Intensely weathered and altered contact zone marked by iron-oxides and iron-hydroxides, dolomite, siderite, clay Abundant structural discontinuities within cm's of the nonconformity contact and that serpentinization along fracture surfaces	Bradbury and Smith (M.S. <i>in</i> <i>progress</i>)
BO-1 Whole Rock Drill Core (SEMinnesota) E 598590, N 4820569 UTM NAD 83	Cambrian Mt. Simon Sandstone overlying Proterozoic mafic basement	Quartzites, weathered/altered contact, metagabbro-norite?, grano-diorites, diabase and pegmatite dikes	Type I/II	Intensely weathered and altered contact marked by iron-oxides and iron-hydroxides, dolomite, siderite, and clay Abundant structural discontinuities within cm's of the nonconformity contact and that extend ~ 50 m depth; clay coatings on fault surfaces with calcite, dolomite, iron-oxide fracture infillings	Bradbury and Smith (M.S. in progress)

Supplemental Table 1. Summary of nonconformity study sites.

Borehole	API		ion	Section, Township, Range	
DC Taylor 1	26019050190000	Buffalo County, Nebraska		Sec 21, T11N, R18W	
KC Taylor 1	Core was examined at the U. S. Geological Survey Core Research Lab in Denver, Colorado. 3984 – 4038 ft.				
CDC DD 120	21147001398000	St. Clair County, Michigan		Sec 7, T5N, R17E	
CPC BD 139	The core was examined at the Michigan Geological Survey, in Kalamazoo, Michigan. 4607 – 4633 ft.				
DO 1	DNR # 11918		Fillmore County, Minnesota		Section 22 T10N R8W
BO-1	The core was examined at Minnesota DNR Drill Core Library in Hibbing, Minnesota 130-1600 ft				

Supplemental Table 2. Summary of borehole locations and core intervals.