
AC 1 

 

We sincerely thank the anonymous referee for reviewing this manuscript. The constructive comments 

helped us to clarify the scope of our manuscript. Please find below a point-by-point response to the 

referees’ comments (comments of the reviewer in black and our response in red)  

On behalf of all authors,  

Yours sincerely, 

Maximilian Oskar Kottwitz 

 

Scope and implications: 
The one major comment I have is about scope. The authors very clearly lay out their theoretical and 
numerical arguments. What I was missing is a bit more on the scope and on how useful their 
methodology is for characterizing natural systems. Such a discussion should include a short review of 
how well and on which scales fracture networks can be characterized in the first place (e.g by 
geophysical methods and/or imaging techniques). 
I am mainly thinking about scales here. My understanding is that if samples can be CT-scanned (e.g. 
mm to cm-scales) direct flow simulations that resolve the actual fracture geometries would be 
performed without simplifying the fractures as simple geometric entities. Here flow at fracture 
intersections would be naturally resolved. On larger scales, the apertures of fractures are very hard to 
determine and consequently fractures are often represented in models as reduced-order elements – 
the DFN approach. It remained a bit unclear to me for which input datasets and flow simulation 
approaches, flow localization at fracture intersection really needs to be considered in the way the 
authors describe. The authors address these points in the discussion and conclusion sections, where 
they talk about system sizes but I think it would help the reader if the authors expanded this discussion. 
 

We fully agree on the necessity to clarify the scope of our presented ECM approach and the 
scale dependence of IFL effects. 
Generally, the structure of fractured systems is intrinsically multi-scale and thus requires 
different modeling approaches, broadly separated in direct- and continuum-flow approaches. 
Direct flow simulations (using Navier-Stokes or Stokes equations) require an explicit 
representation of a medium's void space, which is only naturally retrievable by non-destructive 
imaging techniques (CT-scans, for example). However, they are limited to mm- or cm-scales, 
as you pointed out. Above these scales, pore-spaces cannot be imaged anymore (so natural 
data are not available) and direct-flow simulations become computationally infeasible to 
conduct. To be still able to simulate flow at scales above a few cm, we thus have to either use 
the DFN approach (if matrix is impermeable) or continuum-flow approaches. They average the 
hydraulics of any rock medium to an effective permeability tensor on the local scale 
(computational cell, size above 1 centimeter) to simulate flow on the global scale (meters to 
kilometers). So the ECM method used in this study only applies to these “continuum-scales” 
at which no direct representation of the mediums void space is possible.   
To clarify this in the paper, we extend and partly rephrased the introduction from lines 28 to 
33 according to: 
 
“Numerical modeling of fluid flow is most accurately based on the Navier-Stokes equations 
(Bear, 1972). For a single phase of incompressible and iso-viscous fluid in an iso-thermal 
system, they simplify to the Stokes equations if laminar flow conditions are considered (i.e., 
Reynolds numbers below 1 -10). Assuming an impermeable rocks matrix, one can solve for 
the velocity distribution resulting from prescribed pressure boundary conditions, allowing to 



determine the rocks effective permeability utilizing Darcy's law for flow through porous 
media (e.g., Andrä et al., 2013b; Osorno et al., 2015; Eichheimer et al.,2019, 2020; Kottwitz et 
al., 2020). Those so-called direct-flow modeling approaches crucially rely on a digital 
representation of a rock that separates pore-space from the matrix, which results from high-
resolution X-ray computed tomographies (Andrä et al., 2013a; Cnudde and Boone, 2013). 
However, they are limited in maximum scannable size and respective trade-off to numerical 
resolution, making them applicable to small scales only (nanometers to a couple of 
centimeters at most). At larger scales (above a couple of centimeters), so-called continuum-
flow approaches serve to model fluid flow, usually based on the concepts for flow through 
porous media proposed by Darcy (Darcy, 1856). Instead of a representation of the medium's 
pore-space, they require an initial hydraulic representation of the medium. This is given by 
prescribed effective permeabilities for certain control volumes within the medium, which 
upscale hydraulic properties from smaller scales to observation scales. Thus, the key of this 
so-called upscaling problem (e.g., Zhou et al., 2010; Hauge et al., 2012; Lie, 2019) is to 
adequately represent the rock structure with an appropriate model of effective 
permeabilities, which for fractured rock masses is often cumbersome due to their structural 
heterogeneity (Dershowitz and Einstein, 1988; Odling et al., 1999). The main problem is that 
acquiring detailed natural fracture data in 3D is intricate, as seismic imaging techniques 
suffer from resolution limits (Cartwright and Huuse, 2005; Malehmir et al., 2017), preventing 
a multi-scale structural assessment of individual features in fracture formations. Hence, 
outcrop (2D) and borehole (1D) studies are the only possibilities to acquire detailed natural 
fracture data, despite their reduced dimensionality (Lei et al., 2017), and acquiring 
deterministic knowledge of all individual structures in a fracture formation is impossible. Due 
to this, the discrete fracture network (DFN) method has been extensively used as a conceptual 
framework to provide statistically-based approximations of real fracture networks for 
decades (Long et al., 1982; Cacas et al., 1990; Bogdanov et al., 2003; Darcel et al., 2003; Xu 
and Dowd, 2010; Davy et al., 2013; Maillot et al., 2016). In this approach, each fracture in a 
given network is represented with a reduced order object (lines in 2D and discs or rectangles 
in 3D) with a prescribed location, size, and orientation. Naturally measured structural 
properties like size- and orientation-distributions (Odling et al., 1999; Healy et al., 2017), as 
well as fracture density and spacing (Ortega et al., 2006), serve as a quantitative basis to 
prescribe their geometrical properties (e.g., Hyman et al., 2015; Alghalandis, 2017).” 
 
 
In this paper, we demonstrated and quantified the effects of IFL on the permeability tensor at 
the local scale by conducting direct-flow simulations at scales where it is possible to conduct 
those (1cm system size) while maintaining a sufficiently high numerical resolution to ensure 
the accuracy of the results. Based on these results, we demonstrated that a fracture-and-pipe 
parametrization as presented here results in a more accurate representation of the local scale 
hydraulics than a fracture-only parametrization (usually considered in comparable studies 
from the literature). Admittedly, we only briefly discussed the importance of IFL effects at the 
global scale, where we predominantly focused on the resolution dependency of current ECM 
methods. We thus performed a more sophisticated parameter study of IFL effects on network-
scale permeability to extend the discussion part of this study. As this was also the main request 
of the second reviewer, we would refer to our reply to the review of the second reviewer at 
this stage. 

 
 
Another point that the authors may want to discuss is if their effective permeability models also 
preserve other properties, like e.g. break-through times, spatial pressure variations, and solute 
transport pattern. It’s a bit outside the scope of the paper, so the authors do not need to do this – I 
just kept thinking that break-through times would probably be affected for fracture networks where 
ILF matters. 



 
This indeed represents an exciting question as solute or particle transport tend be sensitive to 
local permeability variations. For example, Makedonska et al. 2016 (DOI: 
10.1016/j.advwatres.2016.06.010) have shown that early breakthrough times are sensitive to 
local changes of permeability, induced by in-fracture aperture variability. However, addressing 
this issue in more detail requires the solution of the transport problem, and this is – as you 
already pointed out – outside the scope of this paper but could be the scope of a follow-up 
study. We added the following statement to the conclusion part at Line 351: 
 
“Analyzing the effects of IFL on mass transport through fracture networks poses an interesting 
question for a follow-up study. For example, Makdonska et al., (2016) have shown, that early 
breakthrough times of solute transport through kilometer-scale DFNs are sensitive to local 
permeability fluctuations. Thus, local permeability increases induced by IFL could potentially 
affect transport behavior as well.” 

 
 
Minor technical points: 
l. 7: It’s not really a problem to include matrix properties in full Stokes simulations. All major CFD 
packages involve multi-physics solvers that can handle energy or mass exchange between solid and 
fluid regions. Maybe unnecessary to make this statement here? 
 

In full Stokes simulations the viscosity of the matrix is significantly larger than that of the fluid 
(usually water) which is why it makes sense to assume the matrix to be rigid and only simulate 
the motion of fluid through the pores/cracks. However, we are aware that the major 
commercial CFD packages indeed have the possibility to include matrix properties (by using 
hybrid formulations based on the Stokes-Brinkman eq. for example). The situation is different 
when performing Darcy-like continuum-flow simulations in fractured reservoirs, where the 
matrix can indeed be incorporated in a straightforward manner. Including such matrix 
properties in fracture network simulations is actually one of the significant advantages of 
continuum flow methods (e.q., ECM method) compared to discrete flow methods in fracture 
networks (e.g., DFN method), which assume the matrix to be impermeable. 
We rephrased the abstract starting at line 7 to: 
 
“While continuum methods have the advantage of lower computational costs and the 
possibility of including matrix properties, choosing the right cell size to discretize the fracture 
network into an ECM is crucial to provide accurate flow results and conserve anisotropic flow 
properties.” 

 
 
l. 12: I assume the authors coined the term “intersection flow localizations (IFL)” if so, please make it 
clear that this is your invention and not something that’s established in the literature. 
  
 Yes, we haven’t found it elsewhere. Thus, we changed line 12 to: 
 

“… in a process, we term intersection flow localization (IFL).” 
 
 
l. 28f: Maybe expand this, to make it clear how natural fracture networks can be characterized? 
  

See our answer to the first reviewer comment, where we indicated an extension of the 
introduction regarding this and multi-scale modeling approaches. 
 

l. 64: Are you sure pflotran and modflow have these shortcomings? 



 
Modflow was recently extended with the “XT3D” option in their Node Property Flow Package 
(Modflow 6, see https://pubs.er.usgs.gov/publication/tm6A56). By that, they enable 
incorporating a full three-dimensional permeability tensor into the simulations at the cost of 
an increased local stencil in their staggered-grid finite-difference discretization scheme. 
However, up to now this still runs sequentially and not in parallel, making it difficult to conduct 
high-resolution simulations.  
Pflotran on the other hand is massively parallelized by utilizing the PETSC interface to MPI, but 
until now doesn’t have the possibility to include permeability tensors at the local level. Hence 
the flow-solver we developed combines the advantages of both codes. We rephrased line 64 
accordingly: 
 
“There, current issues in commonly used 3D flow solvers, such as PFLOTRAN (Lichtner et al., 
2016) are a lack of a fully anisotropic permeability representation at the local cell level. So-
called stair-case patterns … predicting effective permeabilities of fractured media. On the other 
hand, MODFLOW (McDonald and Harbaugh, 1988) introduced support for local permeability 
anisotropy but not within a massively parallelized framework, making it difficult to conduct 
large numbers of high-resolution simulations. However, assessing permeabilities in a Monte-
Carlo-like framework (e.g., de Dreuzy, 2012) is necessary to explore the variance of hydraulic 
system properties induced by stochastically generated input data. Hence, a flow-solver that 
combines the advantages of local permeability anisotropy and massive parallelization should 
be beneficial for numerical permeability assessments of fracture networks.“ 
 
 

Equation 4: Shouldn’t there be a length scale over which the pressure drop deltaP occurs? 
 

Correct – thanks for pointing this out. Accidentally, we confused the delta sign with the 
gradient operator, which intrinsically incorporates length scale measures. We added length-
scale parameter (L) accordingly in equations 4,5,6 and 8. 

 
 
l. 256: Maybe expand what’s in this SKB 2010 reference? This is the only place where you talk about 
naturally systems; I think it would help to be more specific. 
 

The two test cases we generated to demonstrate the resolution dependency of ECM upscaling 
methods could have been chosen completely arbitrarily, as our main intention was to put the 
ECM method at test and not targeted to characterize peculiar natural systems. Discussing the 
applicability of the DFN method to characterize natural systems is, of course, a highly relevant 
question (issues of fracture terminations or spatial clustering, for example) and still an ongoing 
research topic, but out of the scope of this study. The accuracy of the ECM method to predict 
network permeabilities is strongly depending on the quality of the input DFN, which itself is 
always a question of available data and resources to acquire this data. To clarify this, we added 
the following line to the conclusion at line 356: 
 
“It is important to note, that the accuracy of ECM methods to predict flow are always linked to 
the quality of the input DFN. Improving the DFN method to better characterize natural fracture 
systems, especially in terms of fracture termination rules and spatial clustering, is still an 
ongoing topic of research.” 
 
Only for the sake of comparability we have chosen to use similar input data as provided by the 
DFN/ECM comparison study of Hadgu et al. (2017). Their input data were based on 
measurements reported for the cited SKB project, but strictly speaking generic, as they slightly 
manipulated the data (as written in table 1 of their study). We thus rephrased line 256 to: 



 
“For comparability reasons, we use similar input data as Hadgu et al.(2017), who separated all 
fractures into three orthogonal sets, based on the data reported in SKB (2010).” 

 
 
l. 390: are these really nodal velocities? Or rather cell (integration point) velocities (as 
stated in the next line)? 
 

You are right, these are actually velocities in the integration points. The nodal Darcy velocities 
are then averaged from the surrounding integration point velocities.  We changed line 389 
accordingly: 
“Following this, we evaluate the Darcy velocities at the integration points u based on the newly 

solved nodal pressures by:” 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



AC 2 
 

 
We appreciate the anonymous referee for reviewing our manuscript. The comments encouraged us to 

advance the content and clarity of our study. Please find below a point-by-point response to the 

referees’ comments (comments of the reviewer in black and our response in red)  

On behalf of all authors,  

Yours sincerely, 

Maximilian Oskar Kottwitz 

 

 
 
I have read and reviewed the manuscript “Equivalent continuum-based upscaling of flow in discrete 
fracture networks: The fracture-and-pipe model” by Kottwitz et al. The purpose of the study is to add 
the effects of “intersection flow localization” into equivalent continuum models. The authors argue 
that these localized effects are important to accurately capture the effective permeability and present 
several test cases. Overall, I found the presentation of the paper to be slightly confusing and am not 
left with a motivation to integrate such a model into my own continuum model as it seems like a 
solution to a problem that wouldn’t exist in practical applications. 
 
A few high-level comments: 
This could be my own ignorance but I’m not clear on why you would use an ECM model over a DFN 
model with an impermeable matrix in the first place. Modern computing power allows us to simulate 
DFN models with thousands (and more) fractures. At a certain number of fractures, the ECM will 
actually be harder to accurately simulate because the resolution needed to preserve the topology of 
the DFN will quickly approach very low mesh sizes as the fracture network density increases. While 
some metrics might actually not be affected by high network density and artificial connections in the 
ECM, transport metrics like breakthrough of solute certainly would. Furthermore, there is no 
comparison between the ECM models presented here and DFN models in terms of effective 
permeability. Could that be used as an additional point of comparison rather than to the authors’ own 
model? Previous ECM models (many cited within this paper) have been compared favorably (or 
unfavorably) to DFNs. 
 

From our point of view, the fact that ECM’s produce similar effective permeabilities as DFN’s 
has sufficiently been demonstrated by the studies of Leung et al., 2012, Hadgu et al., 2017, 
and Sweeny et al., 2020 (all cited in this paper). We thus haven’t seen the necessity to repeat 
this work in our studies. Our main intention rather was to promote existing ECM methods by 
incorporating the effects of IFL and local permeability anisotropy in a massively parallelized 
manner.  
Due to the demonstrated comparability, we think that choosing an ECM or a DFN method for 
flow-based upscaling in fracture networks is mainly dependent on the preference/experience 
of the user, the available computational resources (e.g., single workstations or HPC clusters), 
and the natural application (deterministic DFN structure or stochastic DFN’s). In our opinion, 
the big advantage of massive parallelization (up to 10’000s of cores) with efficient multigrid 
solvers make continuum methods highly suitable for situations, where very large numbers of 
simulations must be conducted (i.e., in Monte-Carlo-like sensitivity studies or potentially in 
adjoint based inversion approaches). For example, with our parallelized approach, ECMs with 
a resolution of 256 cubic voxels can routinely be solved on a decent workstation (here, 16 
cores) in about a minute. This resolution was enough to adequately capture the structure of 



our test DFNs from section 6 (10000 fractures). If higher fracture densities are considered, we 
can routinely simulate ECMs with a resolution of 1024 cubic voxels on HPC systems (with 512 
cores), which is enough to capture 3 orders of magnitude size scaling of fractures and very high 
fracture densities (e.g, with an average fracture spacing to system size ratio of 1e-4).  
Yet, we agree that a direct comparison of effective permeabilities obtained by our and the DFN 
method would indeed be interesting, but not feasible given the brief time period (4 weeks) we 
received from Solid Earth to make corrections to our manuscript. However, if you know about 
existing DFN benchmark studies, we are willing to compare (1) the time spent on meshing of 
and simulating flow in a DFN structure as well as (2) the effective permeabilities resulting from 
DFN-software packages to our presented approach, favorably for DFNs with very high fracture 
densities (~ 100’000 fractures). 

  
 
My biggest issue with this paper is the actual verification/validation of the IFL scheme. I encourage the 
authors to think about a way to clearly articulate: (1) when the IFL matters, (2) why it matters, and (3) 
and how much it matters (in a quantitative way). As it stands, there’s some discussion points related 
to these, but they’re not sufficient. In general, the authors have shown that a difference exists (e.g., in 
Figure 4), but not shown that this difference is indeed physically correct. I found section 5 to be very 
convoluted and not convincing with the self-comparison. 
 

This point was also raised by the first reviewer, and we fully agree on the necessity to clarify 
the scale effects of IFL in a quantitative manner.  In section 5, we have demonstrated that IFL 
increases the permeability of systems at the local ECM scale (system size of ~10times the 
fracture aperture, i.e., at fracture scales) if the intersection aligns with the applied pressure 
gradient. We did this by comparing the z-component of an analytically derived permeability 
tensor to the numerically computed permeability from high-resolution Stokes simulation (the 
benchmark). To explore the effects of IFL on larger scales (scales that cannot be resolved with 
current imaging techniques, i.e. larger than a few decimeters), we conducted effective 
permeability computations with the method described in the appendix on ECM’s of several 
test-DFN’s discretized with (1) the ECM method presented in section 4 (fracture-and-pipe 
method) and a fracture only ECM method (i.e., the method from section 4 without the 
intersection parametrization), similar as the ECM methods presented by Hadgu et al., 2017 or 
Sweeny et al., 2020. We added a new section in the revised manuscript that describes the 
details of this parameter study (section 6): 
 
With this section, we hope to properly address the points indicated by both reviewers. We 
identified orthogonal fracture formations (so-called cross joints) as a natural candidate where 
IFL potentially matters most. With the conducted parameter study, we quantified the effects 
of IFL at these systems with various scales, apertures, fracture densities and matrix 
permeabilities.  The general conclusion of this is that only for systems that have fracture 
porosities in the range of 30% (P33 is a non-dimensional quantity that combines all of the 
above-mentioned measures), IFL effects on the effective permeability become noticeable. 
 
 
This lead to following changes in the abstract, starting from Line 13: 
 
“Our approach is compared against an ECM method that doesn't take IFL into account by 
performing ECM-based upscaling with a massively parallelized Darcy-flow solver capable of 
representing permeability anisotropy for individual grid cells. While IFL results in an increase of 
permeability at the local scale of the ECM cell (fracture scale), its effects on network scale flow 
are minor. We investigated the effects of IFL for test cases with orthogonal fracture formations 
for various scales, fracture lengths, hydraulic apertures, and fracture densities. Only for 
fracture porosities above 30 %, IFL starts to increase the system permeability. For lower 



fracture densities, the effects of IFL are smeared out in the upscaling process. However, we 
noticed a strong dependency of ECM-based upscaling on its grid resolution. Resolution tests 
suggest that, as long as the cell size is smaller than the minimal fracture length and larger than 
the maximal hydraulic aperture of the considered fracture network, the resulting effective 
permeabilities and anisotropies are resolution-independent. Within that range, ECMs are 
applicable to upscale flow in fracture networks.” 
 
 
 
 
 
 
 
This also lead to the following changes in the introduction at Line 78: 
 
“Using these results, we extend the current state-of-the-art methodology for equivalent 
continuum representations of DFN's to account for IFL in a quantitative manner and analyze its 
impact on effective permeability computations at fracture and network scales.” 
 
We changed Lines 285 - 295 of the discussion to: 
 
“Including a pipe-flow model into the ECM generation process improves the representation of 
permeability anisotropy therein and can have impacts on overall permeabilities as well. For 
example, at the scale of the intersection itself, it significantly modifies the shape and absolute 
values of the permeability tensor (figure 4). However, the errors of the intersection benchmark 
(2.7 % and 7.9 % for the fracture-and-pipe and fracture-only model, respectively) indicate that, 
from a statistical perspective, the effect of IFL on overall permeability is usually a second-order 
effect. This is because the fracture-only ECM discretization approach by default accounts for 
the increased permeability of intersection cells in an isotropic manner, simply by the 
summation of the individual fracture contributions per cell. The parameter study from section 
6 shows that incorporating the effects of IFL into an ECM-based upscaling approach is only 
necessary for fracture systems that (1) produce a significant amount of fracture intersection 
(i.e., for fracture systems with two fracture sets of strongly different directions) and (2) have 
sufficiently high fracture porosities (above 30 %), regardless of scale. Achieving the latter in our 
test-scenarios is strongly coupled to large fracture apertures (in the order of 1 cm, see figure 8) 
and a ratio between average intersection and system size close to or above unity (i.e., 
intersections fully penetrating the system). So, if two dominant orthogonal fractures with large 
apertures form an intersection that is penetrating the whole system along the direction of flow, 
the effect of IFL influences the systems effective permeability. Due to the non-linear radius-
permeability relation, this may become more important for fractures with apertures above 1 
cm. However, for apertures above 1 cm, Reynolds numbers can easily exceed the critical 
threshold of unity (e.g., Zimmermann and Bodvarsson, 1996) which would require non-linear 
concepts to relate fracture and intersection permeability (e.g., Forchheimers law), as well as 
Navier-Stokes rather than Stokes simulations.” 
 
This lead to following changes in the conclusion at lines 348 - 351: 
 
“By assessing the permeabilities of fracture intersections numerically, we could demonstrate 
that for system sizes close to the approximated pipe radius (mm to cm), the effect of IFL on 
permeability can be almost one order of magnitude. At network scales (m to km), the impact 
of IFL on the systems effective permeability is generally minor. Only for fracture systems with 
high fracture porosities (above 30 %) IFL effects become noticeable.  



Furthermore, we investigated the resolution dependency of current ECM-based upscaling 
approaches, as the cell size with which the ECM is discretized represents the most crucial aspect 
for the accuracy of ECM-based effective permeability predictions.” 
 
Because of this, we also decided to change the title of the paper to: 
 
“Investigating the effects of intersection flow localization in equivalent continuum-based 
upscaling of flow in discrete fracture networks” 

 
The relationship between section 6 and the previous parts of the paper is not clear. My interpretation 
of section 6 is that it is showing the needed resolution of the ECM mesh size to have a solution 
converge. I think this is interesting, but not clear how this is related to the effects of the IFL. Seems like 
two different papers here. 
 

In our opinion, checking the consistency of an employed method is inevitable in scientific 
works, especially if problems like resolution dependency are well-known to exits. To clarify 
this, we changed the beginning of section 6 (Lines 240 -244) to: 
 
“The resolution dependency of ECM methods to upscale the permeabilities of fracture networks 
is a crucial aspect that has to be considered to provide accurate upscaling results. Artificial 
connectivity is one of the main issues that arises, if the resolution of the ECM is insufficiently 
low as demonstrated by Jackson et al., 2000 and Svensson et al., 2001. Their results suggest 
that we can expect accurate upscaling results, only when the resolution of the ECM is 
sufficiently large to resolve the structure of the DFN (i.e., a maximum of two fracture segments 
and one intersection per cell).” 
 
We also changed the title of former section 6, now section 7 to: 
 
“Resolution dependency of ECM methods” 

 
 
Some more specific comments: 
L42: With modern computing power, DFNs are commonly used at reservoir scale. I’d argue the 
difficulty is including matrix properties in DFNs/DFMs and meshing multidimensional DFMs. 
 

We changed the sentence at Line 42 to: 
“Improved discretization techniques with individual fracture treatment (DFN method), 
inclusion of matrix properties in multi-dimensional meshes (discrete fracture and matrix - DFM 
- method) or multi-continuum methods come at the cost of high computational expenses.” 

 
L74: Does a local increase in effective permeability really matter? Isn’t the global effective permeability 
usually the quantity of interest? Which is being reported here? 

 
You’re right, the effective permeability of the system is the quantity of interest. We changed 
the sentence to: 
“As a consequence, the systems effective permeability should increase by a certain amount due 
to a local permeability increase within the intersection.” 

 

I think Figure 5 is mentioned in text before Figures 2—4. 
 

We changed the wording at Line 110 to: 
“… (as will be shown later by a comparison of errors to the result at largest resolution in plot 
b, figure 5)”  



If this still represents an issue, we can simply remove the line at this stage. 
 
L155: Not all ECM models use regular grid spacing. Ref L575 used octree grids. 
 

Indeed, Sweeney et al., 2020 use octree refinements for their grids. We changed Line 155 to: 
 
“The goal of the ECM method is to generate a 3D of computational cells that contains a 
symmetric, positive definite permeability tensor that is based on the fractures and their 
intersections. For simplicity, we prescribe a regular grid with constant x-y-z spacing dx instead 
of octree refined grids as utilized by Sweeney et al., 2020.” 

 
L175-185: I’m not following how the calculation of V_f is completed regarding this point counting. Why 
not just directly compute the intersection areas of the fractures with the cells? It would be more 
accurate. Also why is the z entry in the permeability tensor (13) 0 and not 1? Is the matrix permeability 
within an intersected cell taken into account? 
 

Calculating the exact intersection areas of each fracture with a cell would of course be more 
accurate. However, it is very expensive from a computational perspective to calculate the 
intersection polygon of a disc with a 3D box, especially if cell size is very small compared to the 
fracture size. The point counting approach we use is much faster from a computational point, 
because we simply represent each fracture by a grid of equally spaced points and find the 
respective fracture points that belong to each computational cell. By multiplying the area of 
the grid spacing (dp²) with the hydraulic aperture we get the volume fraction for the specific 
subregion of the fracture that is represented by the point. Multiplying this with the number of 
points per cell gives the total fracture volume per cell. Finer point spacing (dp) of course results 
in a better fit, which we demonstrate in figure 4, plot c. 
 
The z-entry in the permeability tensor is zero, because we assume an anisotropic permeability 
tensor for a fracture that is aligned with the x-y plane. In that case there is no connectivity in 
the z-direction and hence no permeability.  This approach results in the same permeability 
tensor as produced by the approach of Chen (1999). In eq. 14 we assume the same for an 
intersection that is aligned with the x-direction, hence no connectivity and permeability in the 
y- and z-direction. 

 
Figure 4: I don’t understand the point of this plot (c). What is the purpose of showing the 
norm of the tensor? It’s showing a difference between fracture & pipe and just fracture, but what 
should we glean from this? What is the ground truth for comparison? How do we know which one is 
correct? Too much is being assumed of the reader here and elsewhere. Take us through the key points. 
There’s interesting work here, but it’s hidden in lots of verbosity. 
 

The purpose of plot c in figure 4 is to demonstrate the quantitative difference in permeability 
magnitude of the resulting permeability tensors for a single cell ECM disretized with both 
methods, the fracture-and-pipe and the fracture-only approach. We’ve chosen to compare the 
norm of both tensors, as they also incorporate the difference of the off-diagonal components 
of the tensor.  
Hence, the main point we want to make here is that we can actually have a large difference in 
permeability at the local fracture scale between both discretization methods, which is also 
evident by looking at the visualized tensors in plot b.  
Admittedly, we haven’t described the fracture-and-pipe and the fracture-only in the caption 
which is why this part can be confusing. We therefore expanded the caption of figure 4: 
 
“c) presents the norm of the permeability tensor K_ijk as a function of the ratio between the 
ECM grid spacing dx and the initial point spacing dp for the discretization approach described 



in section 4 (the fracture-and-pipe model) and an approach, where we didn't take the IFL 
parametrization into account (i.e., leaving out eq. 14 in the discretization procedure, hence the 
name fracture-only).” 
 
The only assumption we stress in that section is the applicability of the point-counting method 
to approximate the cell volume fraction to rescale the permeability in the analytical ECM 
approach. By showing the convergence of the point-counting technique we argue that we 
properly addressed this assumption: With finer point spacing dP, we produce converged 
permeability values. I.e., if we use a cell size to point spacing ratio of 16, we are confident that 
the volume is sufficiently approximated by our point-counting approach to produce converged 
permeability results. We also corrected a typo in the x-label of figure 4, which should be 
written the other way around, i.e., dx/dp instead of dp/dx. We have changed that in the 
revised manuscript an in Line 211. 
 

The presentation of section 5 is not very clear. What exactly is the benchmark solution being used for 
comparing the two different ECM approaches? How was this error metric (eq. 15) chosen – isn’t this 
just a measure of convergence – why is it being compared between the two ECM approaches? The way 
I read this is that the method in section 2 is being used as the benchmark. So my two questions are 
then: (1) has the solver in section 2 itself been verified? And (2) Doesn’t the method in section 2 include 
the “fracture & pipe” model (or is it DNS?)? Meaning that comparing the ECM without the intersection 
permeability will of course yield a worse fit. 
 

We use the results of our direct flow approach (section 2, finite difference Stokes-flow with 
LaMEM) in resolved pore spaces of simple fracture crossings (e.g. figure 1) as the benchmark 
solution, i.e. the “true” value (k1024 in eq. 15). We are confident, that this represents the most 
accurate permeability result we can obtain for these simple fracture intersection models, as 
the software has been benchmarked for pore and fracture-scale cases in the studies of 
Eichheimer et al., 2019 and Eichheimer et al., 2020 (both cited in the paper), and also includes 
a large number of Stokes benchmarks as part of the testing suite. In both papers, we could 
reproduce the results of several analytical solutions, analog permeability measurements on 
the Fontainebleau sandstone and sintered glass beads with our numerical simulations. In all 
cases, the numerical resolution of the direct flow simulations should be sufficiently high 
(usually 1024 cubic voxels, which are computationally quite expensive as they involve HPC 
simulations on 8000 cores). We conducted the same type of HPC simulations here and showed 
the convergence of the result with increasing resolutions (plot b in figure 5). With an average 
error of the result of 0.6% for the last step of resolution increase (512 to 1024 cubic voxels), 
we assume that the result is sufficiently converged and represents an accurate solution of the 
systems permeability. 
 
Thus, we use this solution as the true benchmark value that is compared to the analytically 
derived, single cell ECM permeabilities (kx in eq. 15) that result from the fracture-and-pipe and 
the fracture-only discretization approach. By this, we can test the accuracy of the ECM method, 
which, to our knowledge, has not been benchmarked elsewhere. The chosen error metric (L2 
error norm) is indeed often (actually as well in figure 5) used to demonstrate numerical 
convergence. However, it is also a good indicator for the accuracy of a prediction, as it 
quantifies the error or absolute difference of one quantity with respect to another. 

 
The one thing I noticed throughout this paper is the fracture apertures are quite large (mm to cm). 
Most practical applications the authors listed in the beginning of the paper can include fractures with 
much smaller apertures. How will this affect the influence of the IFL? This might be interesting to 
investigate here. 
 



We incorporated quite small apertures (sub-millimeter) in the parameter study in the new 
section 6 by utilizing a prefactor of 1e-4 in the sub-linear aperture-length correlation model. 
As already mentioned above, the influence of IFL for small apertures was not as significant as 
for fracture systems with larger apertures.  

 
Just a note that it’s not “DFN’s” and “ECM’s”, but “DFNs” and “ECMs” 
 

We changed the spelling accordingly throughout the paper. 
 
L262: I think this is the first mention of matrix permeability in the paper. How is the matrix permeability 
included in the fracture intersection cells if their dimensions are larger than the fracture apertures? 
Also, how do the effects change with different matrix permeabilities? 
 

Matrix permeabilities are prescribed as isotropic (constant k_xx, k_yy and k_zz values) in the 
computational grid prior to adding fracture and intersection permeabilities to respective cells. 
We assume that the prescribed value is already properly rescaled to the cell volume. We 
incorporated different matrix permeabilities (1e-17, 1e-15, and 1e-13) in the parameter study 
of the new section 6. There was no noticeable dependence of the IFL effect on matrix 
permeability. 

 
What are the readers supposed to learn from Figure 9? That changing the cell size changes the 
permeability? That’s obvious based on the upscaling equations. Please explain further. I think it’s 
showing the effects of artificial connections in the ECM, but again, this doesn’t mean it’s physically 
correct. It just means it’s converging. Please expand on the discussion here. 
 
 

With this figure and section, we wanted to demonstrate the resolution dependency of ECM 
methods. We’d argue that if one wants to upscale a structure properly based on an ECM, the 
permeability should not change as a function of cell size but rather be consistent throughout 
scales. 
The changes for large cell sizes are indeed caused by artificial connectivity. However, they 
vanish at sufficiently high resolutions. So if the resolution is sufficiently high and artificial 
connectivity is avoided, we have demonstrated that we actually produce constant/converged 
permeability tensors with our ECM method. I.e., the permeability does not change anymore 
with cell-size changes, and which we argue to be the most accurate ECM representation of a 
DFN.  
Determining whether the resulting permeability tensor is physically correct is indeed a 
challenging issue. We guess that this can only be properly addressed in an extensive 
benchmark study with a comparison to natural field measurements, which we are actually 
working on at the moment. However, due to the seminal results of Leung et al., 2012, Hadgu 
et al., 2017 and Sweeny et al., 2020, we at least assume that the result is at least similar to the 
results of the DFN method.  

 
In the same light, what is the point of section 6? The topic sentences in the beginning of the section 
promise some presentation of the accuracy of the method for large DFNs. I see no quantitative 
measures of error in this section. Just numerical convergence. 
 

Please see previous answers. Using the term “accuracy” was indeed misleading and could 
cause confusion. We changed the title and the first sentences of the topic to highlight that we 
address the resolution dependency of ECM methods. 
 

 
 


