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Abstract.

Predicting effective permeabilities of fractured rock masses is a key
::::::
crucial

:
component of reservoir modelling. This is

::::::::
modeling.

:::
Its often realized with the discrete fracture network (DFN) method, where single-phase incompressible fluid flow

is modelled
:::::::
modeled

:
in discrete representations of individual fractures in a network. Depending on the overall number of

fractures, this can result in significant
::::
high computational costs. Equivalent continuum models (ECM) provide an alternative5

approach by subdividing the fracture network into a grid of continuous medium cells, over which hydraulic properties are

averaged for fluid flow simulations. While this has
:::::::::
continuum

:::::::
methods

:::::
have

:
the advantage of lower computational costs

and the possibility to include
::
of

::::::::
including

:
matrix properties, choosing the right cell size for discretizing

:
to

:::::::::
discretize the

fracture network into an ECM is crucial to provide accurate flow results and conserve anisotropic flow properties. Whereas

several techniques exist to map a fracture network onto a grid of continuum cells, the complexity related to flow in fracture10

intersections is often ignored. Here, numerical simulations of Stokes-flow in simple fracture intersections are utilized to analyze

their effect on permeability. It is demonstrated that intersection lineaments oriented parallel to the principal direction of flow

increase permeability in a process termed
::
we

::::
term

:
intersection flow localization (IFL). We propose a new method to generate

ECM’s
:::::
ECMs

:
that includes this effect with a directional pipe flow parametrization: the fracture-and-pipe model. Our approach

is tested by conducting resolution tests
::::::::
compared

::::::
against

:::
an

:::::
ECM

::::::
method

::::
that

::::::
doesn’t

::::
take

::::
IFL

::::
into

:::::::
account

::
by

::::::::::
performing15

::::::::::
ECM-based

::::::::
upscaling with a massively parallelized Darcy-flow solver , capable of representing the full permeability anisotropy

for individual grid cells. The results suggest that
:::::
While

:::
IFL

::::::
results

::
in

::
an

:::::::
increase

::
of

:::::::::::
permeability

::
at

:::
the

::::
local

:::::
scale

::
of

:::
the

:::::
ECM

:::
cell

:::::::
(fracture

::::::
scale),

::
its

::::::
effects

::
on

:::::::
network

:::::
scale

::::
flow

::
are

::::::
minor.

:::
We

::::::::::
investigated

:::
the

::::::
effects

::
of

:::
IFL

:::
for

:::
test

:::::
cases

::::
with

:::::::::
orthogonal

::::::
fracture

:::::::::
formations

:::
for

:::::::
various

:::::
scales,

:::::::
fracture

:::::::
lengths,

::::::::
hydraulic

::::::::
apertures

:::
and

:::::::
fracture

::::::::
densities.

:::::
Only

:::
for

::::::
fracture

:::::::::
porosities

:::::
above

::::
30%,

::::
IFL

:::::
starts

::
to

:::::::
increase

:::
the

::::::
system

:::::::::::
permeability.

::::
For

:::::
lower

::::::
fracture

:::::::::
densities,

:::
the

:::::
effects

:::
of

:::
IFL

:::
are

:::::::
smeared

::::
out

::
in20

::
the

:::::::::
upscaling

:::::::
process.

::::::::
However,

:::
we

::::::
noticed

::
a
::::::
strong

::::::::::
dependency

::
of

::::::::::
ECM-based

::::::::
upscaling

:::
on

:::
its

:::
grid

:::::::::
resolution.

::::::::::
Resolution

::::
tests

:::::::
suggests

::::
that,

:
as long as the cell size is smaller than the minimal fracture length and larger than the maximal hydraulic

aperture of the considered fracture network, the resulting effective permeabilities and anisotropies are resolution-independent.
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Within that range, ECM’s
::::::
ECMs are applicable to upscale flow in fracture networks, which reduces computational expenses

for numerical permeability predictions of fractured rock masses. Furthermore, incorporating the off-diagonal terms of the25

individual permeability tensors into numerical simulations results in an improved representation of anisotropy in ECM’s that

was previously reserved for the DFN method.

:
.

1 Introduction

Discontinuities in rocks provide major pathways for subsurface fluid migration. Thus, fractured reservoirs are frequent targets30

for oil, gas,
:
or water production, geothermal energy recovery,

:
and CO2 sequestration. In addition, the safety of nuclear waste

disposals as well as
:::
and subsurface contaminant transport crucially depend

:::::::
depends on the presence of fractures. Characterizing

natural fracture networks across scales and predicting their permeabilities to model fluid flow therein
:
to

::::::
predict

::::
their

::::::::
effective

:::::::::::
permeabilities

:
has thus been a long-standing topic of research (e.g., ?????).

Since the acquisition of fracture data is usually limited to borehole logs or outcrop scans (?),
::::::::
Numerical

::::::::
modeling

:::
of

::::
fluid

::::
flow35

:
is
:::::
most

:::::::::
accurately

:::::
based

::
on

:::
the

::::::::::::
Navier-Stokes

::::::::
equations

::::
(?).

:::
For

::
a

:::::
single

:::::
phase

::
of

:::::::::::::
incompressible

:::
and

::::::::::
iso-viscous

::::
fluid

::
in

:::
an

:::::::::
iso-thermal

:::::::
system,

::::
they

:::::::
simplify

::
to

:::
the

::::::
Stokes

:::::::::
equations

::
if

::::::
laminar

::::
flow

:::::::::
conditions

:::
are

::::::::::
considered

::::
(i.e.,

::::::::
Reynolds

::::::::
numbers

:::::
below

:
1
:::::

-10).
:::::::::
Assuming

::
an

:::::::::::
impermeable

:::::
rocks

:::::::
matrix,

:::
one

::::
can

:::::
solve

:::
for

:::
the

:::::::
velocity

::::::::::
distribution

:::::::
resulting

:::::
from

:::::::::
prescribed

:::::::
pressure

::::::::
boundary

:::::::::
conditions,

::::::::
allowing

::
to

:::::::::
determine

:::
the

:::::
rocks

:::::::
effective

:::::::::::
permeability

:::::::
utilizing

:::::::
Darcy’s

::::
law

:::
for

::::
flow

:::::::
through

:::::
porous

::::::
media

::::::::::::
(e.g., ?????).

::::::
Those

::::::::
so-called

:::::::::
direct-flow

:::::::::
modeling

:::::::::
approaches

::::::::
crucially

::::
rely

:::
on

:
a
::::::

digital
::::::::::::
representation

:::
of40

:
a
::::
rock

::::
that

::::::::
separates

::::::::::
pore-space

::::
from

:::
the

:::::::
matrix,

::::::
which

::::::
results

::::
from

:::::::::::::
high-resolution

::::::
X-ray

::::::::
computed

::::::::::::
tomographies

:::::
(??).

::::::::
However,

:::
they

:::
are

::::::
limited

::
in
:::::::::
maximum

::::::::
scannable

::::
size

:::
and

:::::::::
respective

:::::::
trade-off

::
to

::::::::
numerical

:::::::::
resolution,

:::::::
making

::::
them

:::::::::
applicable

::
to

::::
small

::::::
scales

::::
only

::::::::::
(nanometers

::
to

:
a
::::::
couple

::
of

::::::::::
centimeters

::
at

:::::
most).

:::
At

:::::
larger

:::::
scales

::::::
(above

:
a
::::::
couple

::
of

:::::::::::
centimeters),

::::::::
so-called

:::::::::::::
continuum-flow

:::::::::
approaches

:::::
serve

::
to

::::::
model

::::
fluid

::::
flow,

:::::::
usually

:::::
based

::
on

:::
the

::::::::
concepts

:::
for

::::
flow

::::::
through

::::::
porous

::::::
media

::::::::
proposed

::
by

::::::
Darcy

:::
(?).

::::::
Instead

:::
of

:
a
::::::::::::
representation

:::
of

:::
the

::::::::
medium’s

::::::::::
pore-space,

::::
they

::::::
require

:::
an

:::::
initial

::::::::
hydraulic

::::::::::::
representation

:::
of

:::
the45

:::::::
medium.

::::
This

::
is
:::::
given

:::
by

:::::::::
prescribed

:::::::
effective

::::::::::::
permeabilities

:::
for

::::::
certain

:::::::
control

:::::::
volumes

::::::
within

:::
the

::::::::
medium,

:::::
which

:::::::
upscale

::::::::
hydraulic

::::::::
properties

::::
from

::::::
smaller

::::::
scales

::
to

:::::::::
observation

::::::
scales.

:::::
Thus,

:::
the

:::
key

::
of

:::
this

::::::::
so-called

::::::::
upscaling

:::::::
problem

:::::::::::
(e.g., ???) is

::
to

:::::::::
adequately

:::::::
represent

:::
the

::::
rock

::::::::
structure

::::
with

::
an

:::::::::
appropriate

::::::
model

::
of

:::::::
effective

::::::::::::
permeabilities,

::::::
which

::
for

::::::::
fractured

::::
rock

::::::
masses

::
is

::::
often

:::::::::::
cumbersome

:::
due

::
to

::::
their

::::::::
structural

:::::::::::
heterogeneity

:::::
(??).

:::
The

::::
main

::::::::
problem

:
is
::::
that

::::::::
acquiring

::::::
detailed

::::::
natural

:::::::
fracture

::::
data

::
in

::
3D

::
is
::::::::
intricate,

::
as

::::::
seismic

:::::::
imaging

:::::::::
techniques

::::::
suffer

::::
from

::::::::
resolution

:::::
limits

:::::
(??),

:::::::::
preventing

:
a
:::::::::
multi-scale

::::::::
structural

::::::::::
assessment50

::
of

::::::::
individual

:::::::
features

::
in

:::::::
fracture

:::::::::
formations.

::::::
Hence,

:::::::
outcrop

::::
(2D)

:::
and

::::::::
borehole

::::
(1D)

::::::
studies

:::
are

::
the

::::
only

::::::::::
possibilities

::
to
:::::::
acquire

::::::
detailed

::::::
natural

:::::::
fracture

::::
data,

::::::
despite

:::::
their

::::::
reduced

:::::::::::::
dimensionality

:::
(?),

:::
and

::::::::
acquiring

:::::::::::
deterministic

::::::::::
knowledge

::
of

::
all

:::::::::
individual

::::::::
structures

::
in

:
a
:::::::
fracture

:::::::::
formation

:
is
::::::::::
impossible.

::::
Due

::
to

::::
this,

:
the discrete fracture network (DFN) model is commonly

::::::
method

:::
has

::::
been

::::::::::
extensively used as a conceptual framework to provide statistically based

:::::::::::::::
statistically-based approximations of real

fracture networks (????). Measured
::
for

:::::::
decades

:::::::::
(???????).

::
In

::::
this

::::::::
approach,

:::::
each

::::::
fracture

::
in
::

a
:::::
given

:::::::
network

::
is

::::::::::
represented55

::::
with

:
a
:::::::

reduced
:::::

order
::::::

object
:::::
(lines

:::
in

:::
2D

:::
and

:::::
discs

:::
or

:::::::::
rectangles

::
in

::::
3D)

::::
with

::
a
:::::::::
prescribed

::::::::
location,

::::
size,

::::
and

::::::::::
orientation.
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::::::::
Naturally

::::::::
measured

:
structural properties like size- and orientation-distributions (??) as well as fracture density and spacing

(?) serve as quantitative basis to generate synthetic DFN realizations for further analysis
:::::::
prescribe

::::
their

::::::::::
geometrical

:::::::::
properties

(e.g., ??). The hydraulic response to pressure changes of each individual fracture is then parametrized with the cubic law (??),

relating the fractures effective permeability to its aperture. In reality, surface roughness, fracture closure as well as fluid-rock60

interactions (e.g., erosion or crystal growth) cause deviations from the parallel-plate assumption (???). Semi-empirical func-

tions derived from numerical simulations in rough-walled fractures with quantified statistics of the aperture field (e.g., ?????)

serve as corrections to the cubic-law, if the fractures internal correlation length-scale is significantly smaller than the size of

the considered fracture (e.g., ??).

A large number of numerical methods to compute effective permeabilities of fractured media have been developed (see reviews65

of ??), all relying on (modified) cubic-law assumptions. Improved discretization techniques with individual fracture treatment

like the DFN method
:::::
(DFN

:::::::
method),

::::::::
inclusion

::
of

::::::
matrix

:::::::::
properties

::
in

:::::::::::::::
multi-dimensional

::::::
meshes

::::::::
(discrete

:::::::
fracture

:::
and

::::::
matrix

:
-
:::::
DFM

:
-
:::::::
method)

:::
or

::::::::::::::
multi-continuum

:::::::
methods

::::
and

:
come at the cost of high computational expenses, making it difficult to

employ it for reservoir scale simulations. Discretizing the fractured media as equivalent
::::
single

:
continuum blocks significantly

reduces the computational effort at comparable numerical accuracy (?).70

According to ? and ?, fractured rocks behave similar to porous media and can be represented by a positive definite permeabil-

ity tensor (?) as long as the considered system behaves like a representative elementary volume (REV) (?), i.e., its effective

properties (permeability or porosity for example) are more or less homogenous at the reference scale of the system. Due to

the multi-scale character of fracture systems (e.g., ??), determining the required homogenization scale is difficult, as overall

flow may be dominated by distinct larger features
:::
may

::::::::
dominate

::::::
overall

::::
flow. Thus, a discrete representation of all fractures75

in a network as given by the DFN method is essential to adequately capture that multi-scale character. ?, ?, ?, ? and ?, among

others, have however showed, that representing a DFN with a grid of equivalent continuum blocks of sizes lower than the REV

yields similar flow results, if resolved sufficiently, and thus reproduces the overall flow-behaviour of the DFN method. This

highlights that the use of continuum methods for flow modelling
:::::::
modeling

:
in fractured rocks is

::
are

:
not restricted to REV scales

and can thus be used equivalently to the DFN method.80

Several techniques to generate equivalent continuum models (ECM) of DFN’s
:::::
DFNs have been developed in 2D (????) and 3D

(??), whereby the so-called Oda method (see ?) is used to formulate permeability tensors of grid cells that intersect fractures.

There, the permeability tensor is aligned with the orientation of the intersecting fracture
:
, and the permeabilities of the individ-

ual fractures are summed up , if multiple fractures intersect one cell, yielding a positive definite, fully anisotropic tensor (e.g.,

?). The groundwater-flow equations for porous media (?), i.e., Darcy’s law (?), are then used to simulate laminar, steady-state,85

single phase
::::::::::
single-phase

:
flow to compute effective permeabilities of the medium. However,

:::::
There,

:::::::
current

:::::
issues

::
in commonly

used 3D flow solverslike PFLOTRAN (?)or MODFLOW (?) have numerical difficulties treating fully anistropic permeability

tensors and rather use their principal components or maximum values for flow simulations,
::::
such

:::
as

::::::::::
PFLOTRAN

::::
(?),

:::
are

:
a
::::
lack

::
of

:
a
::::
fully

::::::::::
anisotropic

::::::::::
permeability

::::::::::::
representation

::
at

:::
the

::::
local

::::
cell

::::
level. So-called stair-case patterns are the direct consequence

of these simplifications, which introduce artificially prolonged flow-paths, especially in transport simulations, which have to90

be compensated for (e.g., ???) when predicting effective permeabilities of fractured media.
::
On

:::
the

:::::
other

:::::
hand,

:::::::::::
MODFLOW
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:::::::::::
(?) introduced

:::::::
support

:::
for

::::
local

:::::::::::
permeability

:::::::::
anisotropy

:::
but

:::
not

:::::
within

::
a
::::::::
massively

::::::::::
parallelized

::::::::::
framework,

::::::
making

::
it
:::::::
difficult

::
to

::::::
conduct

:::::
large

:::::::
numbers

:::
of

::::::::::::
high-resolution

:::::::::::
simulations.

::::::::
However,

::::::::
assessing

:::::::::::
permeabilities

:::
in

:
a
::::::::::::::
Monte-Carlo-like

::::::::::
framework

::::::::
(e.g., ?) is

:::::::::
necessary

::
to

::::::
explore

::::
the

:::::::
variance

::
of

:::::::::
hydraulic

::::::
system

:::::::::
properties

:::::::
induced

::
by

::::::::::::
stochastically

::::::::
generated

::::::::::
input-data.

::::::
Hence,

:
a
::::::::::
flow-solver

::::
that

::::::::
combines

:::
the

::::::::::
advantages

::
of

:::::
local

:::::::::::
permeability

:::::::::
anisotropy

::::
and

:::::::
massive

::::::::::::
parallelization

::::::
should

:::
be95

::::::::
beneficial

:::
for

::::::::
numerical

:::::::::::
permeability

::::::::::
assessments

::
of

:::::::
fracture

::::::::
networks.

This
::::
Next

::
to

::::
these

::::::
issues,

:::
this

:
study focuses on an often ignored but

::::::::
potentially

:
important aspect in fracture network modelling,

that is
:::::::
modeling

:
given by the complexity of fracture intersection flow. To our knowledge, only a

:
few studies have presented

3D flow simulations within fracture intersections (??), revealing the fact that flow velocities will increase within the fracture

intersections compared to the fractures itself (shown by increasing Péclet numbers within the intersections). Theoretically, this100

effect should increase if the direction of the applied pressure gradient is aligned with the orientation of the intersection. As

a consequence, the
::::::
systems

:
effective permeability should increase by a certain amount

::
due

:::
to

:
a
:::::
local

:::::::::::
permeability

:::::::
increase

within the intersection. To demonstrate that, we systematically conduct 3D numerical simulations of Stokes flow within differ-

ently oriented, planar fracture crossings to analyse
::::::
analyze

:
the permeability increase caused by intersection flow localization

(IFL). Using these results, we extend the current state-of-the-art methodology for equivalent continuum representations of105

DFN’s
:::::
DFNs to account for IFL in a quantitative manner and analyse

::::::
analyze

:
its impact on effective permeability computa-

tions
::
at

:::::::
fracture

:::
and

:::::::
network

::::::
scales. There, it is still unclear , at which level of detail the ECM has to be discretized in order

to conserve the structural complexity of the DFN, as aforementioned stair-case patterns and artificial connectivity cause reso-

lution dependencies. Subsequently, resolution tests are performed on two DFN test-cases with a newly developed, massively

parallelizedand high-performance-computing ,
::::

and
:::::::::::::::
high-performance

:::::::::
computing

:
(HPC) optimized finite element Darcy-flow110

solver , that is capable of handling fully anisotropic permeability tensor cells. By that, we consistently investigate the upscaling

capabilities of the ECM method, which is frequently used for effective permeability predictions in fractured porous media.

2 Fracture intersection flow modelling

Fluid flow in porous and fractured media is described by the well-known Navier-Stokes equations (?). It is commonly assumed

that sub-surface flow in fractures ranges in the laminar regime, i.e. Reynolds numbers below unity (?). Assuming the flowing115

fluid to be incompressible, isoviscous and the impact of gravity to be negligible, steady-state flow at constant temperature is

defined by Stokes momentum balance (eq. 1) and continuity (eq. 2) equations (?):

µ∇2v =∇P, (1)

∇ · v = 0, (2)120

with the fluid’s dynamic viscosity µ, pressure P and velocity vector v = (vx,vy,vz). ∇, ∇·, and ∇2 denote the gradient,

divergence, and Laplace operator for 3D Cartesian coordinates, respectively.
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Here, the 3D staggered grid, finite-difference code LaMEM (?) is used to solve the coupled system of equations 1 and 2,

utilizing PETSc (?) for HPC optimisation. Applying different absolute pressures on two opposing sides of a 3D voxel model

representing the fractured or porous medium (e.g., a) or d) in figure 1) while setting the other boundaries to no-slip (velocity125

component normal to the boundary is zero) enables the prediction of the mediums directional permeability. After obtaining

the steady-state solution, the volume integral of the pressure-gradient aligned velocity component vz (e.g., ?) is computed

according to:

a)
:
v̄ =

1

V

∫
V

|vz|dz, (3)

with domain volume V. Using Darcy’s law for flow through porous media (?), that relates the specific dischargeQ
::
for

::
a

:::::::
pressure130

::::
drop

:::
∆P

:::::
along

::
a
:::::::
distance

::
L according to:

Q=−kA∆P

µ

kA∆P

µL
::::::

, (4)

with intrinsic permeability k and cross-sectional area A in combination with the fact that Q= v̄A, the directional permeability

kz is calculated by:

kz =
µv̄

∆P

µv̄L

∆P
::::

. (5)135

As demonstrated by ???, the numerical resolution has to be sufficiently high to produce a converged result. Generating

every model at different levels of detail (e.g.,
:
1283, 2563 , 5123 and 10243 voxels), ensures that the most accurate solution is

obtained (see
::
as

::::
will

::
be

::::::
shown

::::
later

:::
by

:
a
:
comparison of errors to the result at largest resolution in plot b, figure 5). Figure 1

presents Stokes-flow in simple fracture intersections and highlights the IFL effect. If the fracture intersection is aligned with the

principal flow direction (plot a) - c)), the velocity significantly increases within the intersection, resulting in higher directional140

permeabilities. In the opposite case, when the fracture intersection connects no-pressure boundaries (plot d) - f) ) and is thus

oriented oblique to the flow direction, the flow velocity slightly disperses around the intersection,
:
and the overall impact on the

directional permeability is minor.

3 Permeability parametrization concepts

As the two main structural features (fractures and intersections) composing a fracture network differ significantly in terms of145

their hydraulics (figure 1), they require independent concepts to parametrize their permeabilities for formulating their effective

grid block permeability tensor. For fractures, it is usual practice to use the cubic-law parametrization (e.g., ??), relating the

specific discharge Q through a void system between two parallel plates
::
for

::
a

:::::::
pressure

::::
drop

::::
∆P

:::::
along

:
a
:::::::
distance

::
L
:
according

to:

Q=−wa
3
m∆P

12µ

wa3m∆P

12µL
:::::::

, (6)150
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(a) (b) (c)

(d) (e) (f)

velocity [m/s]

velocity [m/s]

0 2⋅10-4 4⋅10-4

0 2⋅10-4 4⋅10-4

Figure 1. a) and d) show the binary voxel-models (impermeable matrix in transparent gray) for a fracture intersection that is orientated

along and transverse to the flow direction, respectively. The red bottom faces
:::
face is the high pressure

::::::::::
high-pressure boundary (0.02 Pa),

the blue top faces
:::
face the low pressure

:::::::::
low-pressure boundary (0.01 Pa),

:
forcing the fluid to flow in z-direction. The orientations (arranged

as dip-direction/dip) for the fracture pair in a) are f1 = 100/90, f2 = 190/80, and f1 = 170/90, f2 = 260/10 for the fractures in d). The

length of both cubes is 1 cm and all fracture apertures are constant (1.25 mm). b) and e) visualize flow velocity distribution in the void

space. e) and f) highlight velocity vectors within the intersections at slices indicated with green rectangles in b) and e), respectively.

with the fractures widthw and distance between the two plates, i.e. mechanical aperture am. Comparing this analytical solution

with Darcy’s law (eq. 4, cross-sectional area A= wam) leaves the intrinsic permeability of a fracture kf defined by:

kf =
a2m
12
. (7)

Natural fractures deviate from the assumptions of parallel plates, which is why am in eq. 7 is commonly replaced with a

hydraulic aperture ah that corrects the parametrization for fracture closure and surface roughness (e.g., ?????). Yet, there is155

no ready to use parametrization concept tailored for fracture intersections. The simulations shown on figure 1 suggest that the

flow in the intersection is approximately pipe-like. Then, the specific discharge Q through a tube of radius rt and length lt :
L is

related by the Hagen-Poiseuille flow solution through a pipe (e.g., ?) according to:

Q=−πr
4
t∆P

8ltµ

πr4t∆P

8Lµ
::::::

. (8)
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Again, combining this equation with Darcy’s law (eq. 4, cross-sectional area A= πr2) results in the following expression for160

the intrinsic permeability of a pipe ki:

ki =
r2

8
. (9)

The apparent pipe radius should then be modified based on the intersection shape to calculate an equivalent hydraulic radius

rh to compensate for the structural difference. As a first order
::::::::
first-order

:
approximation, we use half the size of the hypotenuse

in a right-angled triangle whose legs are given by the two intersecting apertures (called half-hypotenuse assumption in the165

following, see figure 2 for details). This delivers sufficiently good results, as will be demonstrated later (figure 6).

ah1

ah2

rh

Figure 2. 2D Sketch of the half-hypotenuse assumption in an idealized rectangular fracture crossing (grey regions indicate rock matrix, white

regions fracture pore space). The hydraulic apertures (ah1 and ah2) of both intersecting fractures are indicated with solid blue lines. The

hypotenuse of the right-angled triangle with the two hydraulic apertures as legs is given by the black dashed line. The hydraulic radius rh

(indicated by the red solid
:::
red line) to approximate the radius of the pipe model is defined as half of the length of the hypotenuse.

4 Equivalent continuum representation of DFN’s
:::::
DFNs

The use of the ECM approach instead of the DFN method to predict the effective permeabilities of fractured media crucially

depends on the capability to reflect the anisotropic flow properties at the scale of the continuum cells. Therefore, it is essential

to integrate the geometry of a DFN into the generation procedure of the ECM , instead of generating the grid cell conduc-170

tivities in a stochastic manner (?). The accuracy of the ECM permeability prediction then depends on the resolution of the

DFN-mapped continuum grid. ? and ? already demonstrated that using cell sizes that are larger than the average fracture spac-

ing of the network introduces artificial connectivity and hence overestimates effective permeabilities. Sufficient resolution of
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the continuum grid is therefore required to obtain comparable results with the DFN method (e.g., ??).

To our knowledge, there is no approach to generate an ECM of a DFN that takes the effect of IFL (figure 1) into account.175

Thus, we will explain our new approach to generate continuum representations based on DFN structures - the fracture-and-

pipe model.

Generally, the DFN approach offers a straightforward way to characterize structurally complex fracture networks. Most com-

monly, every fracture is modelled
:::::::
modeled

:
as a geometric primitive (here a disc) with a prescribed length l, center coordinate

p0 and unit normal vector n̄ defining its orientation. Based on this, fracture intersections can be calculated to define the back-180

bone of the network. Here, fracture intersections are approximated with a line defined by two points i0 and i1, whereas the

unit vector ī between the two points defines its orientation. The goal of the ECM method is to generate a 3D regular grid with

constant x-y-z spacing δx, whereas every grid cell
::
of

::::::::::::
computational

::::
cells

::::
that contains a symmetric, positive definite perme-

ability tensor that is based on the fractures and their intersections.
::
For

:::::::::
simplicity,

:::
we

::::::::
prescribe

::
a
::::::
regular

::::
grid

::::
with

::::::::
constant

:::::
x-y-z

::::::
spacing

:::
δx

::::::
instead

::
of

:::::
octree

:::::::
refined

::::
grids

::
as

:::::::
utilized

::
by

::
?.185

To map each individual fracture to its corresponding grid cells, we first assume a horizontal disc (normal vector ḡ = [0,0,1])

at center point pg = (0,0,0) with corresponding fracture radius r (r = l/2) and represent it with an equally spaced set of points

in the x-y plane Pg , with the condition ||Pg − pg)|| ≤ r. By that, we obtain a constantly spaced grid of points representing the

fracture in horizontal orientation, provided that the initial equal spacing of the points δp is a small fraction of the cell size δx

to prevent gaps in the mapped 3D grid. Next, we seek the rotation matrix Rf that aligns the current normal vector of the x-y190

plane ḡ = [0,0,1] with the actual normal vector of the fracture n̄. Utilizing Rodrigues’s rotation formula (?) around the rotation

axis w = (ḡ× n̄)/||(ḡ× n̄)|| (unit vector orthogonal to ḡ and n̄) yields the rotation matrix Rf according to:

Rf = I + ||ḡ× n̄|| C + (1− ḡ · n̄) C2, (10)

with ×, ·, and ||x|| denoting the cross-product, dot-product and vector norm of x, respectively. I represents the 3-by-3 identity

matrix and C the cross-product matrix of the rotation axis w = [wx,wy,wz]:195

C =


0 wz wy

wz 0 −wx
−wy wx 0

 . (11)

Following this, Rf is used to rotate the 3×n array of points representing the fracture plane Pg (n is the number of 3D points

in Pg) around pg and translate all points to the actual center point p0 to produce a rotated set of points Pr representing the

fracture in its actual 3D position:

Pr = Pg ∗Rf + p0, (12)200

where ∗ denotes matrix-matrix multiplication. By ensuring that the lower left corner coordinate of the rectangular grids bound-

ing box is initially located at (0,0,0) (this may require a translation of all center points to incorporate all fractures), we obtain

the grid-indices (i,j and k in x,y and z-direction, respectively) of the fracture by dividing Pr with the cell size δx and round-

ing the results. Finally, we compute the individual anisotropic permeability tensor Kijk for the cells by using a parametrized

8



(a)

(b)

(c)

Figure 3. Workflow for generating an equivalent continuum model of a DFN. a) shows the input fracture network of 4 arbitrarily oriented

fractures (gray) and their intersections (magenta). b) displays a grid of ellipsoids, each reflecting the shape of the permeability tensor in the

equivalent continuum model of a) with a resolution of 43 voxels. The size of the ellipses is scaled to the norm of the permeability tensor

of the cell, such that larger ellipsoids denote higher permeabilities. The green plane in b) indicates the location of the 2D slice displayed in

c). There, different green-intensities present the norm of the permeability tensor of each cell. Black lines denote fractures in 2D and yellow

ellipses the x- and y-shape of the permeability tensor of each cell. Note, how the shape of the ellipse changes from being planar, if multiple

fractures cross a cell.

fracture permeability value (eq. 7) and the rotation matrix Rf according to:205

Kijk =
Vf
Vc

kf

Rf


1 0 0

0 1 0

0 0 0

R′f
 . (13)

Vc denotes the cell volume (δx3) and Vf the fracture volume per cell, which is approximated by counting the number of Pr

points per individual cell, multiplying it with the squared initial point spacing δp and the hydraulic aperture ah of the fracture.

Obviously, the accuracy of Vf crucially depends on the initial point spacing of Pg - the finer the spacing, the better the approx-

imation of Vf . Plot c in figure 4 shows that the condition δp/δx≥ 16
:::::::::
δx/δp≥ 16

:
delivers sufficiently constant permeability210

values. In case multiple fractures transect the same cell, the permeability tensors are summed, similar to ? or ?. However,

these cells need additional treatment as they incorporate fracture intersections. To
:::
We

::::::
follow

:::
the

::::
same

::::::::
workflow

:::
as

::::::::
presented

::
for

:::::::::
individual

::::::::
fractures

::
to

:
map all previously found intersections to the grid cells and formulate their permeability tensors,

we follow the same workflow as presented for individual fractures. A horizontal line of the same length as the intersection

9



(a)

(b)

(c)

Figure 4. Fracture intersection caused changes of permeability tensor characteristics. a) shows a simple DFN structure of two arbitrary

oriented fractures (grey) intersecting at a line (magenta). The cube length is set to 1m and the system origin is at (0,0,0). The center point of

the first fracture is located at (0.4899|0.5685|0.5110) and its normal vector is given as (−0.3195,0.7894,0.524). The second fractures center

point is located at (0.7604|0.5000|0.5000), whereas its normal vector is given by (−0.9461,0.1715,0.2747). Both fractures have the same

hydraulic aperture of 1 ·10−3 m and both fully penetrate the system. The resulting intersection ranges from point (0.6499|0.3086|1.000) to

(0.8003|1.000|0.0505) and its orientation is given by the unit vector (0.1270,0.5839,−0.8018). The hydraulic pipe radius resulting from

the half-hypotenuse assumption is 7.0711 · 10−4. b) visualizes the shape of the permeability tensor for an ECM model that considers only

fracture permeability (grey, inside) and for the presented fracture-and-pipe model (transparent magenta, outside). The size of both ellipses is

scaled with the norm of the resulting permeability tensor to provide comparability. c) presents the norm of the permeability tensor Kijk as a

function of the ratio between
::
the

::::
ECM

::::
grid

::::::
spacing

::
δx

:::
and

:::
the initial point spacing δp

::
for

::
the

:::::::::::
discretization

:::::::
approach

:::::::
described

::
in

::::::
section

:
4
:::
(the

:::::::::::::
fracture-and-pipe

::::::
model) and ECM grid spacing δx

::
an

::::::::
approach,

::::
where

:::
we

:::::
didn’t

:::
take

:::
the

:::
IFL

::::::::::::
parametrization

:::
into

::::::
account

:
(see text

for explanations
::
i.e.,

::::::
leaving

:::
out

:::
eq.

::
14

::
in
:::

the
:::::::::::
discretization

::::::::
procedure,

:::::
hence

::
the

:::::
name

::::::::::
fracture-only). The dashed black line denotes the

condition δp/δx≥ 16, that
::::
which

:
is used to provide an

:
a
:
correct approximation of the fracture and intersection volume per cell.

(||i1−i0||), parallel to the x-axis is represented by a constantly spaced set of points (similar spacing as in the case of a fracture,215

i.e.
:
,
:
δp), whereas the .

::::
The

:
mean point of the line is again located at (0,0,0). We then calculate the rotation matrix Ri (eq.

10) by using ḡ = [1,0,0] and n̄= (i1− i0)/||i1− i0||. After identifying the corresponding grid i,j,
:
and k indices as described

above, their permeability tensors are increased by using a parametrized interesection
:::::::::
intersection

:
permeability (eq. 9):

Kijk =Kijk +
Vi
Vc

ki

Ri


1 0 0

0 0 0

0 0 0

R′i
 . (14)
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cubic voxels

(a) (b)

Figure 5. a) displays the location of all 100 intersection lineaments considered in the flow benchmark. 52 intersection configurations directly

connect in- and outlets of flow (upper and lower z-face), whereas 48 connecting non-boundary flow faces. b) compares the numerically

estimated permeability at highest resolution (10243 voxels) to the ones obtained at lower resolutions by calculating their error norms ||δk||

according to eq. 15. Gray dots represent the average error norm for all considered intersection configurations at resolutions lower than 10243

voxels,
::

and
:
the light gray area highlights the range between minimum and maximum error.

Vi represents the intersection volume per cell, which is again approximated by counting the number of Pr points per cell and220

multiplying it with point spacing δp and the term πr2h, whereas rh denotes the hydraulic radius of the pipe approximating

the intersection. Figure 3 shows the resulting ECM structure with 43 cells of an arbitrary complex DFN, generated with the

presented approach. For certain fracture systems (ideally no more than two fractures that fully penetrate the system, e.g.
:
,

plot a) in figure 4), the presented approach can be used to derive an analytical solution for permeability by setting δx equal

to the system size, resulting in a single permeability tensor for the whole system. Figure 4 demonstrates that incorporating225

the intersection as a pipe has a significant effect on the shape and absolute value of the permeability tensor at intersections,

that
:::::
which could cause an overall permeability increase by almost one order of magnitude. However, the exact amount of

permeability increase depends on the chosen hydraulic radius of the pipe,
:
and the impact on the overall permeability at the

network needs to be evaluated.

5 Intersection
:::::::
Fracture

:::::
scale

::::::::::
intersection

:
flow benchmark230

To test the half-hypotenuse assumption (see figure 2 for details) as a first order
::::::::
first-order

:
approximation for the hydraulic

radius of the pipe, we conduct a benchmark study in the following. The directional permeabilities of simple fracture crossings

with varying orientations are calculated from high-resolutions Stokes-flow simulations (e.g., section 2) and
::
are

:
compared to

their analytically derived ECM single-cell counterparts (
:::
i.e., δx is equal to the full system size L) using

:::
(1) the half-hypotenuse

parametrization
::
for

::::::::::
intersection

::::
flow

:::::::::::::::
(fracture-and-pipe

::::::
model)

:::
and

:::
(2)

:::::::
omitting

:::
this

::::::::::
intersection

::::
flow

:::::::::::::
parametrization

:::::::::::
(fracture-only235

::::::
model). For each intersection model, two fully persistent fractures with constant hydraulic apertures of 1.25 mm are placed
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in a cube of length 10 mm. Two fractures with a dip angle of 90° and dip directions separated by 90° (i.e., 90° and 180°)

are consecutively rotated counter-clockwise by increments of 10° around the center of the cube until a total rotation of 90° is

reached. This procedure is repeated nine times, whereas the dip angle of one of the two fractures is consecutively reduced by

increments of 10° for each iteration. The dip angle of the remaining fracture is kept constant (i.e.
:
, 90) to maintain connectivity240

in the z-direction. This results in a total of 100 different intersection configurations (52 representing direct in- and outlets of

flow, 48 connecting non-boundary flow faces), producing a broad
::::
wide

:
variety of intersection orientations within two opposing

octants in the cube (see figure 5 a for all generated intersection lineaments). For each configuration, we produce a binary voxel

model (pore-space and matrix) of two crossing parallel plate fractures (similar to a) and d) in figure 1). Following the approach

described in section 2, different pressures at the bottom and top boundary are applied to numerically estimate the directional245

permeability (setting the remaining boundaries to no-slip yields the vertical permeability component of the permeability tensor,

kz). We
::::
were systematically increasing the numerical resolutions of the Stokes-flow simulations (1283, 2563 , 5123 and 10243

voxels) for each intersection configuration (resulting in a total of 400 HPC flow simulations) to determine , weather
:::::::
whether the

result at the highest level of detail represents a sufficiently converged solution. This is done by calculating the L2-error-norm

||δk|| according to:250

||δk||=
∣∣∣∣kx− k1024k1024

∣∣∣∣ , (15)

whereas k1024 represents the directional permeability obtained at the highest resolution (i.e. 10243 voxels) and kx the direc-

tional permeability from simulations with lower resolution (i.e., 1283, 2563 , 5123 voxels). The resulting average error norms

for all 100 intersection configurations are plotted in figure 5 b, which demonstrate the convergence towards the numerical

result at the highest resolution. With an average error norm of about 0.6 % and a maximum error of 2.4 % for simulations with255

5123 voxels compared to the simulations at 10243 voxels, we assume that the solution at 10243 voxels represents a sufficiently

accurate solution and can furthermore be used to benchmark the tensors generated with the ECM approach. Next, we follow

the approach of section 4 to generate a single-cell permeability tensor of each intersection model, using a δp/δx ratio of 16

and extract the vertical permeability component of the tensor (kzz) and compare it with the one resulting from the Stokes-flow

simulations. The results (figure 6) demonstrate that, if the intersection connects the two pressure boundary faces (intersection-260

to-flow-direction angle γ ≤ 40°), the actual permeability obtained from the Stokes simulations is reasonably well reproduced

with a small underestimation by the fracture-and-pipe model and heavily underestimated by the fracture-only approach (e.g.,

?). Using the half-hypotenuse assumption sufficiently integrates the effect of IFL at the scale of a continuum cell. If intersec-

tions that connect no-pressure boundary faces are considered (γ > 40°), both models fail to predict the accurate directional

permeabilities, indicating that the effect of flow dispersion within the crossing fracture may play a more important role then265

:::
than

:
previously thought. However, the cumulative error boxplot in figure 6 indicates that both methods give statistically accept-

able predictions of the directional permeabilities (median error of 2.7 % for the fracture-and-pipe model and a median error of

7.9 % for the fracture-only model). Thus, the systematic error observed for γ > 40° appears negligible.
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ecm

Figure 6.
::
The

:::
left

::::
plot

:::::
shows

:
a
:::::::::
comparison

::
of
:::::::::

directional
::::::::::
permeabilities

:::::::
obtained

::::
from

::::::::::::
high-resolution

:::::::::
Stokes-flow

:::::::::
simulations

::::
(ks)

:::
and

::::::::
analytically

::::::::::
counterparts

:::::
(kecm)

::::::
derived

::::
with

:::
the

:::::::::::
ECM-approach

::::::::
described

::
in

:::
the

:::
text

::
as

:::::::
function

::
of

::
the

:::::
angle

:
γ
:::::::

between
:::
the

:::::::::
intersection

:::
and

::
the

:::::::
principal

::::
flow

:::::::
direction.

:::::::
Magenta

:::
dots

:::::::
represent

:::
the

::::
mean

::::::::::
permeability

::::
ratios

:::
(10

:::::
values

:::
per

:::::
point)

::
for

:::
the

::::
ECM

:::::::
approach

::::::::
described

:
in
::::::
section

:
4
::::
with

:::
the

::::::::::::
half-hypotenuse

:::
pipe

:::::
radius

::::::::::::
parametrization.

::::
Gray

::::
dots

:::::
present

:::
the

:::::
mean

:::::::::
permeability

::::
ratio

::
for

:::
an

::::::::::::
ECM-approach,

:::
that

:::::
ignores

:::
the

::::
effect

::
of
::::::::::

intersections.
::::

The
::::
right

:::
plot

:::::
shows

:
a
::::::
boxplot

::
of

:::
the

::::
error

::::
norm

::::
||δk||::::::::

computed
:::::::
according

::
to

:::
eq.

::
15

::::
with

::::
kecm::

as
::
kr:::

for

::
all

:::
100

:::::::::::::
fracture-and-pipe

::::::::
(magenta)

:::
and

::::::::::
fracture-only

:::::
models

:::::
(gray).

6
::::::::::
Intersection

::::
flow

::::::
effects

::
at

::::::::
network

:::::
scales

::
In

:::
the

:::::::
previous

::::::
section,

:::
we

:::::::::::
demonstrated

:::
the

::::::
effects

::
of

::::
IFL

::
on

:::
the

:::::::::::
permeability

::
of

::::::
systems

::
at
:::
the

:::::
scale

::
of

:
a
:::::
local

::::
ECM

::::
cell

::::
(i.e.,270

::::::
system

::::
sizes

::::
near

::
to

:::
the

::::::::
fractures

::::::::
aperture)

::
by

:::::::::
comparing

::::::::::
analytically

:::::::
derived

:::
cell

::::::::::::
permeabilities

::
to

:::
the

::::::
results

::
of

::::::::::
direct-flow

:::::::::
simulations

:::::::
(Stokes

:::::::::
equations).

::
If

:::
the

::::::::::
intersection

:::::::::
orientation

:::::
aligns

::::
with

:::
the

:::::::
applied

:::::::
pressure

:::::::
gradient

::::
and

:::::::
connects

::::
inlet

::::
and

:::::
outlet

:::::::
pressure

:::::
faces,

:::
the

:::::::::::
permeability

::
of

::::
the

::::::
system

::
is

::::::::
increased

::::
(i.e.,

::::
case

::
b

:
in

::::::
figure

:::
1).

::
To

:::::::
explore

:::
the

::::::
effects

::
of

::::
IFL

:::
on

::
the

:::::::::::
permeability

::
of
:::::::

systems
:::

at
:::::
larger

:::::
scales

::::
that

::::::
cannot

::
be

:::::
fully

:::::::
resolved

::::
with

:::::::
current

:::::::
imaging

:::::::::
techniques

::::
(i.e.,

::::::
above

:
a
::::
few

::::::::::
decimeters),

:::
we

::::::
conduct

::::::::::::::
continuum-flow

:::::::::
simulations

:::
(as

::::::::
described

::
in

:::
the

::::::::
appendix)

::
of

::::::
several

:::::::::
test-cases,

:::::
where

::::
IFL

:::::::::
potentially275

::::::
matters.

:::::::::
Following

:::
the

:::::
results

::
of

:::
the

::::::::
previous

::::::
section,

:::
this

::::::
should

::
be

:::
the

::::
case

:::
for

::::::
fracture

:::::::::
formations

:::::::::
containing

::::
two

::::::
fracture

::::
sets

::::
with

:::::::::::
perpendicular

:::::
strike

::::
and

::::
steep

::::
dip

::::::
angles.

:::::
These

::::::::
so-called

:::::::::
cross-joint

:::::::
patterns

:::
can

:::
be

::::::::
naturally

:::::::
observed

:::::::::::::
(e.g, ???) and

::
are

:::::::
thought

::
to

::::::
mainly

:::::
result

:::::
from

::::
local

:::::
stress

:::::
field

:::::::
rotations

::
in

::::::::::
extensional

:::::::
tectonic

::::::
settings

:::::
(??).

::::::
Hence,

:::
we

:::
use

:::
the

::::::::
software

:::::::
ADFNE

:::::
(?) to

:::::::
generate

::::::
several

:::
test

::::::
DFNs

::::
with

:::
two

:::::::::::
orthogonally

:::::::
striking

::::::::::::
(dip-directions

:::
are

::::::::
separated

:::
by

::::
90◦)

::::
and

::::::::
vertically

::::::
dipping

:::::::::
(dip-angle

::
of

::::
90◦)

:::::::
fracture

:::
sets

::::
with

:::::::
constant

:::::::
fracture

::::
sizes

:::
for

:::::::::
simplicity.

:::::
Slight

:::::::::
variability

::
in

::::::::
dip-angle

::::
and-

::::::::
direction280

:
is
:::::::::
introduced

:::
by

:
a
:::::
Fisher

:::::::::
dispersion

::::::::
parameter

::
of

:::
20.

:::
By

::::
this,

:::
we

::::::
ensured

::::
that

::
the

:::::::
primary

:::::::::
orientation

::
of

:::
the

::::::
formed

:::::::::::
intersections

:
is
:::::::
oriented

:::::::
parallel

::
to

:::
the

:::::::::
z-direction

::
in

:::
the

:::::
model

::
to

:::::::
provoke

:::
the

:::::::
possibly

::::::::
maximal

:::::
effect

::
of

:::
IFL

:::
on

::
the

:::::::
network

:::::
scale.

::::
For

::::
each

::::::::
test-DFN,

:::
we

::::
vary

:::
the

::::::::
following

::::::::
structural

:::::::::
parameters

::::::
during

:::
the

:::::::::
generation

:::::::
process:

–
:::
The

:::::
cubic

::::::
overall

:::::::
systems

:::
side

::::::
length

::
L

::
by

::
1,
:::
10,

::::
100,

::::
and

::::
1000

:::
m.

–
:::
The

:::::::
constant

::::
size

:
l
::
of

:::
all

:::::::
fractures

::
in

:::
the

::::::
system

:::
by

::::
0.25,

::::
0.5,

::
1,

:::
and

::
2

:::::
times

:::
the

::::::
systems

::::
side

::::::
length

:
L
:

285
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The left plot shows a comparison of directional permeabilities obtained from high-resolution Stokes-flow simulations (ks) and analytically

counterparts (kecm) derived with the ECM-approach described in the text as function of the angle γ between the intersection and the

principal flow direction. Magenta dots represent the mean permeability ratios (10 values per point) for the ECM approach described in

section 4 with the half-hypotenuse pipe radius parametrization. Gray dots present the mean permeability ratio for an ECM-approach, that

ignores the effect of intersections. The right plot shows a boxplot of the error norm ||δk|| computed according to eq. 15 with kecm as kr for

all 100 fracture-and-pipe (magenta) and fracture-only models (gray).
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e

Figure 7.
:
a)

::::::::
visualizes

:::
the

:::::::::
geometrical

:::::::::::
configurations

::
of

::
all

::::
381

::::::::
test-DFNs

::
as

:
a
:::::::

function
::
of

::::
their

:::::
global

:::::::
fracture

::::::
porosity

::::
P33 :::

and
::::
their

:::
ratio

:::::::
between

::::::::
maximum

:::::::::
intersection

:::::
length

::
li::

to
:::::
system

::::
size

::
L.

::::::
Colors

::::::
indicate

:::
the

:::::
model

:::
size

:::
L.

::::
Note

:::
that

::::
high

::::::
fracture

::::::::
porosities

:::
are

::::::::::
predominantly

:::::::
achieved

:::
for

::::::
smaller

::::::
system

::::
sizes

::
for

:::
the

::::::::
considered

:::
test

:::::
cases.

::::::
Panels

::
b)

::
to

::
g)

::::
show

:::
the

::::::::
underlying

:::::
DFNs

:::::::
structure

::
of

:::
the

:::::
models

:::::::
indicated

::
in

::
a)

:::
with

::::::
system

::::
sizes

::
of

:::
100

::
m.

::::::::
Fractures

::
are

:::::::::::
approximated

:::
with

:::::
green

::::
disks

:::
and

:::::::::
intersections

::::
with

::::::
magenta

:::::
lines.

:::::
Panels

::
b),

::
c)

:::
and

::
d)

::::
have

:
a
:::
low

::::::::
prescribed

::::::
number

::
of

:::::::
fractures

:::::::::
(10 ∗L/2l),

::::::
whereas

:::::
panels

:::
e),

:
f)
:::
and

::
g)
::::
have

:
a
::::
high

::::::::
prescribed

::::::
number

::
of

:::::::
fractures

::::::::
(100L/2l).

:::
The

::::
ratio

::
of

:::::::
constant

::::::
fracture

:::::
length

:
l
:::
and

:::::
system

:::
size

::
L

:::
for

:::::
panels

::
b)

:::
and

:
e)
::

is
::::
0.25,

:::
0.5

:::
for

:::::
panels

::
c)

:::
and

::
f),

:::
and

:
1
:::
for

:::::
panels

::
d)

:::
and

::
g).

–
:::
The

::::
total

:::::::
number

::
of

:::::::
fractures

:::
for

::::
each

:::
set

:::
by

:::
10,

:::
50,

:::
and

:::
100

:::::
times

:::::
L/2l.

::::
The

:::::
latter

:::::::
rescaling

:::::
factor

::
is
:::::::::
arbitrarily

::::::
chosen

::
to

:::::::
increase

:::
the

::::
total

::::::
number

::
of

:::::::
fracture

:::
for

:::::::
systems

::::
with

:::::
lower

:::::::
fracture

:::::
sizes).

:

:::
The

::::::::
following

::::::::::
parameters

:::
are

:::::
varied

::
in

:::
the

::::::::::
prescription

::
of

:::
the

:::::::::
hydraulics

::
of

::::
each

:::::::::
test-DFN:

–
:::
The

::::::
scaling

:::::::::
parameter

:
β
::
in

:
a
:::::::::
sub-linear

:::::::::::::
aperture-length

:::::::::
correlation

:::::
model

:::::::::::
(e.g., ??) by

::::::
1e− 4,

::::::
1e− 3,

::::::
1e− 2.

::::
This

:::::
infers

::
the

::::::::
fractures

::::::::
hydraulic

::::::::
apertures

::
ah:::::

from
::::
their

::::
sizes

:::::::::
according

::
to

:::::::::
ah = βl0.5.

:
290

–
:::
The

::::::::
isotropic

:::
and

:::::::
constant

:::::::::::
permeability

::
of

:::
the

::::
rock

::::::
matrix

::
by

::::::::::::::
1e− 17,1e− 15,

:::
and

:::::::
1e− 13

::::
m2.

::::
This

:::::
results

::
in

::::
432

:::::::::
test-DFNs,

:::::
which

:::
are

:::::::::
discretized

::
to

::
an

:::::
ECM

::::
with

:::
the

:::
two

:::::::
different

:::::::
methods

:::::::
already

::::::::
described

::
in

::
the

::::::::
previous

::::::
section

::
to

::::::::::
analytically

::::::
derive

:::::
local

:::
cell

:::::::::::
permeability

:::::::
tensors

::::
(i.e.,

::::
the

:::::::::::::
aforementioned

:::::::::::::::
fracture-and-pipe

:::
and

::::::::::::
fracture-only

::::::
method

::
as

:::::::::
described

::
in

::::::
section

:::::
4).For

::::
this,

:::
we

::::
start

:::::
with

::
an

:::::
ECM

::::
grid

::::::::
resolution

:::
of

:::::::::::
128x128x128

:::::::::
numerical

::::
cells

::
to

:::::::
prevent

:::::::
artificial

::::::::::
connectivity

:::::::::::
(e.g., ??) for

::::::::
networks

::::
with

::::
high

:::::::
fracture

::::::::
densities.

::
If

:::
this

::::::
results

::
in

::::::::
a-physical

:::::::
fracture

:::::::::
porosities

:::::
above295

::::
unity

::
at

:::
the

:::::
local

:::
cell

:::::
level,

:::
we

::::::::::::
consecutively

::::::
reduce

:::
the

::::
grid

:::::::::
resolutions

:::
by

::::::
powers

:::
of

:::
two

:::
up

::
to

::::::
4x4x4

::::
until

:::
all

::::
local

:::::
cells

14
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Figure 8.
:::
The

::::
plot

::::::::::
demonstrates

::::
the

::::::::
difference

:::::::
between

:::
the

::::::
vertical

:::::::::
component

:::
of

:::
the

::::::::::
permeability

:::::
tensor

::::::
∆Kzz:::::::

resulting
:::::

from

:::::::::::
continuum-flow

:::::::::
simulations

::
of

:::::
ECMs

::::::::
discretized

::::
with

:::
the

:::::::::::::
fracture-and-pipe

:::
and

::::::::::
fracture-only

::::::
methods

:::::::
described

::
in
:::
the

:::
text

::
as

:
a
:::::::
function

::
of

::::::
fracture

::::::
porosity

:::
P33.

::::::
Colors

::::::
indicate

::
the

:::::::
constant

:::::::
hydraulic

::::::
aperture

::
of

::
all

:::::::
fractures

::
in

::
the

::::::::
respective

:::::
model.

::::
Note

:::
that

::::
high

::::::
fracture

:::::::
densities

::
are

:::::::::::
predominantly

::::::
reached

:::
for

:::
high

::::::
fracture

::::::::
apertures.

::::
have

:::::::
fracture

::::::::
porosities

::::::
below

:::::
unity.

::
If

:::
this

::::::::
condition

::::::
cannot

:::
be

::::::::
achieved

::::
(e.g.,

:::
for

:::::
small

::::::
scales

::::
with

::::
high

:::::::
fracture

::::::::
densities

:::
and

::::
high

:::::::::
apertures),

:::
the

::::::
model

:
is
::::::::
excluded

:::::
from

:::
the

:::::::
analysis.

:::::::::::
Furthermore,

::::::
models

::::
with

:::::::::
hydraulic

:::::::
apertures

::::::
above

:
1
:::
cm

:::::
were

:::::::
excluded

::
as

:::::
well,

::
as

:::
we

:::::::
assume

:::
that

:::
the

::::::::::::
simplification

::
of

:::::::
laminar

::::
flow

:::::
might

:::
not

::::
hold

::::::::
anymore.

::::
This

::::::
results

::
in

::
a
::::
total

::
of

::::
381

:::::::::
test-DFNs,

:::::
whose

::::::::
structure

:::
we

:::::::
quantify

:::
in

:
a
:::
2D

::::::::::::::
non-dimensional

:::::::::
parameter

::::::
system

:::::
given

:::
by

:::
(1)

:::
the

:::::
ratio

::
of

:::
the

:::::::::
maximum300

:::::::::
intersection

::::::
length

::
of

:::
the

::::::
system

::
li ::

to
:::
the

::::::
system

:::
size

::
L

:::
and

:::
(2)

::::
their

::::::
global

:::::::
fracture

:::::::
porosity

:::
P33::::

(i.e.,
:::::::
fracture

::::::
volume

:::::::
divided

::
by

::::
total

:::::::
volume

::::::::
according

::
to

:::
?).

::::::
Figure

:
7
::::::::::::

demonstrates
:::
the

:::::::::
distribution

:::
of

:::
the

::::::::
generated

:::::::::
test-DFNs

::::::
within

:::
this

:::
2D

:::::::::
parameter

::::
space

::::
and

:::::
shows

:::
the

:::::
DFN

:::::::
structure

:::
of

::::
some

::::::
chosen

:::::::::
examples.

:::
For

:::::
each

::::::::::
geometrical

::::
DFN

:::::::::::
configuration

::::::::
displayed

:::
in

:::
the

::::
plot,

::
we

::::::::
compute

:
3
::::
(one

:::
for

::::
each

:::::::::::
discretization

:::::::
method)

::::::::
effective

::::::::::
permeability

::::::
tensors

::::
with

:::
the

:::::::::
continuum

::::
flow

:::::::::
procedure

::::::::
described

::
in

:::
the

::::::::
appendix.

::::
We

:::::::
quantify

:::
the

:::::::
absolute

:::::::::
difference

:::
of

:::
the

::::::
vertical

::::::::::
component

::
in

:::
the

::::::::
resulting

:::::::::::
permeability

::::::
tensors

:::
of

:::
the305

::::::::::::::
fracture-and-pipe

:::::
(kfp)

::
to

:::
the

:::::::::::
fracture-only

:::::
model

:::::
(kfo)::

by
::::::
∆Kzz::::::::

according
:::
to:

∆Kzz =
|kfp− kfo|

kfp
,

:::::::::::::::::

(16)

:::::
which

:::::
serves

:::
as

:
a
:::::::
measure

:::
for

:::
the

:::::::::
magnitude

::
of

::::
IFL

::::::
effects

::
on

:::
the

:::::::
network

:::::
scale.

::::::
Figure

:
8
:::::::::::
demonstrates

::::
that

:::
the

:::::
effect

::
of

::::
IFL

::
on

::::::::::::
network-scale

::::
flow

:::::::
depends

::::::
linearly

:::
on

::::::
fracture

:::::::
porosity

:::
by

:::::::::::::::::
||∆kzz||= 0.285P33.

::::::::
However,

:::
the

::::::::
generally

::::
very

::::
low

:::::::
absolute

:::::::::
differences

::
in

::::::
vertical

::::::
system

:::::::::::
permeability

:::::::
indicate

:
a
:::::::::
negligible

:::::
effect

::
of

:::
IFL

::
at
:::::::
network

::::::
scales.

:::::
Only

::
for

::::::::
networks

::::
with

::::::
global310

::::::
fracture

::::::::
porosities

:::
in

::
the

:::::
range

:::
of

::::::::
30− 40%

:::
we

:::::
could

::::::
observe

::::::::::
differences

::
of

:::::
about

:::::
10%.

ECM based permeability upscaling of DFN’s
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7
:::::::::
Resolution

:::::::::::
dependency

::
of

:::::
ECM

::::::::
methods

So far, we presented a methodology to transfer a DFN into a regular grid of equivalent continuum cells and demonstrated its

accuracy for simple fracture crossings at the scale of the continuum cells . This suggests that we can expect similar accuracy315

if larger DFN ’s with complex structures are represented by an equivalent continuum representation, provided that the grid

resolution

:::
The

:::::::::
resolution

::::::::::
dependency

::
of

:::::
ECM

:::::::
methods

::
to

::::::
upscale

:::
the

::::::::::::
permeabilities

::
of

:::::::
fracture

::::::::
networks

:
is
::
a
::::::
crucial

:::::
aspect

::::
that

:::
has

::
to

::
be

:::::::::
considered

::
to

:::::::
provide

:::::::
accurate

::::::::
upscaling

::::::
results.

::::::::
Artificial

::::::::::
connectivity

::
is

:::
one

::
of

:::
the

:::::
main

:::::
issues

:::
that

::::::
arises,

:
if
:::
the

:::::::::
resolution

a) and b) display the test DFN’s with 10000 and 1000 fractures, respectively. Both are generated with the software ADFNE (?), whereas

input parameters are given in the text. Yellow lines depict the location of the slice shown in c) and d). There, black lines indicate fractures

and magenta spheres the location of fracture intersections.

(a) (b)

(c) (d)

Figure 9.
:

a)
:::
and

::
b)

::::::
display

:::
the

:::
test

::::
DFNs

::::
with

:::::
10000

::::
and

::::
1000

:::::::
fractures,

::::::::::
respectively.

::::
Both

::
are

::::::::
generated

::::
with

::
the

:::::::
software

:::::::
ADFNE

:::
(?),

::::::
whereas

::::
input

:::::::::
parameters

::
are

:::::
given

::
in

::
the

::::
text.

::::::
Yellow

::::
lines

:::::
depict

::
the

:::::::
location

::
of

::
the

::::
slice

:::::
shown

::
in
::

c)
:::
and

:::
d).

:::::
There,

:::::
black

:::
lines

:::::::
indicate

::::::
fractures

:::
and

:::::::
magenta

::::::
spheres

::
the

:::::::
location

::
of

::::::
fracture

::::::::::
intersections.
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::
of

:::
the

:::::
ECM

::
is

:::::::::::
insufficiently

::
as

:::::::::::
demonstrated

:::
by

:::::
? and

::
?.

:::::
Their

::::::
results

::::::
suggest

::::
that

:::
we

:::
can

::::::
expect

:::::::
accurate

::::::::
upscaling

:::::::
results,320

::::
only

:::::
when

:::
the

::::::::
resolution

:::
of

:::
the

:::::
ECM is sufficiently large to resolve the DFN in a similar way

:::::::
structure

::
of

:::
the

:::::
DFN

:
(i.e.,

:
a

maximum of two fracture segments and one intersection per cell). As fracture networks typically have a multi-scale character

with power law
:::::::::
power-law or log-normal fracture size distributions (e.g., ??), fulfilling that conditions requires

:::
may

:::::::
require

very large grid resolutions, making this method infeasible for practical applications. Predicting the effective permeability of the

DFN by solving the groundwater flow equations (Darcy’s law) would then require prior upscaling of the grid cell conductivities325

(e.g., ??), depending on chosen flow solver and the available computational resources. However, averaging or flow-based

upscaling approaches may misrepresent network-scale flow characteristics, depending on the chosen coarse grid resolution.

It
:::::
Hence,

::
it
:
is often unclear , how the resolution dependency affects the accuracy of effective permeability computations and

whether flow anisotropy is conserved. In the following,
:
we will demonstrate , that using ECM’s of DFN’s

:::
that

:::::
using

::::::
ECMs

::
of

:::::
DFNs

:
with sufficiently high resolutions is capable of doing exactly that,

:::
this

:
while avoiding initial upscaling. For this, we330

compare effective permeability tensors obtained from massively parallelized continuum flow simulations (see Appendix A)

for different DFN scenarios with varying resolutions of their equivalent continuum counterparts. We generate two test DFN’s

:::::
DFNs utilising the open-source MATLAB toolbox ADFNE (?). Similar to ?, the fractures in each DFN are separated

:::
For

:::::::::::
comparability

:::::::
reasons,

:::
we

:::
use

::::::
similar

:::::
input

:::
data

::
as

::
?,
::::
who

::::::::
separated

:::
all

:::::::
fractures

:
into three orthogonal sets, reflecting naturally

observed properties
::::
based

:::
on

:::
the

::::
data

:
reported in ?. S1 : 90|090 , S2 : 90|000 , S3 : 00|360 give the mean dip-angle and335

dip-direction for the three fracture sets, respectively with a constant Fisher distribution concentration value of 5 accounting for

variability around the mean. Fracture sizes l are distributed as a power law according to:

l =
[(
lα+1
1 − lα+1

0

)
u+ lα+1

0

]1/α+1
, (17)

whereas l1 is the upper cut-off length (500m) and l0 the lower cut-off length (15m), u represents a set of uniformly distributed

random numbers in the interval (0,1) and α the power law exponent (here α=−2.5). All fracture centers are randomly placed340

in a cube with 500m side lengths (the resulting DFN’s
:::::
DFNs are displayed in figure 9) with a background matrix permeability

of 10−18 m2. A sub-linear scaling of aperture versus length (e.g., ??) is employed to correlate the hydraulic apertures ah of

the fractures to their lengths l:

ah = β l0.5, (18)

with a scaling factor β of 10−4. The only difference between the two test DFN’s
::::
DFNs

:
is the overall fracture number, which345

is 10000 for the DFN-A (plot a in figure 9) and 1000 for the DFN-B (b in figure 9), such that we obtain a densely and sparsely

fractured system, respectively. DFN-A thus represents the scenario of a typical REV network, according to ??. DFN-B, on the

other hand, reflects a flow scenario closer to the percolation threshold with anisotropic, non-REV behaviour (?).

After calculating all fracture intersections with ADFNE’s built-in function Intersect (see b and d in figure 9 for intersection

spots in a 2D slice), we use the method presented in section 4, which incorporates the permeability parametrization concepts350

from section 3, to generate several ECM’s
::::::
ECMs with varying grid resolutions. Starting from 43 voxels and increasing by

powers of two up to 10243 voxels yields 9 different continuum representations for each test DFN (see figure 10 for examples).
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(a) (b) (c) (d)

(e) (f)

Figure 10. a), b), c) and d) display the norm of the permeability tensor for each cell in an ECM representations of the 10000 fracture test

DFN displayed in figure 9 a) for grid resolutions of 323, 643, 1283 and 2563 voxels, respectively. e) and f) visualize the resulting velocity

distribution for an applied pressure gradient in z-direction.

For each representation, we compute the effective permeability tensor of the DFN by repeatedly solving the Darcy equations

in three principal flow directions (see Appendix A for a detailed description). The results are displayed in figure 11. For

both test DFN’s
:::::
DFNs, the norm of the resulting effective permeability tensor ranges within the same order of magnitude. For355

DFN-A, we obtain a difference of about 30 % from coarse (43 voxels, ||kij ||= 5.24 ∗ 10−11) to fine (10243 voxels, ||kij ||=
4.03 ∗ 10−11) grid resolution, whereas DFN-B shows a larger difference of about 129 % (coarse ||kij ||= 5.07 · 10−12, fine

||kij ||= 2.21 · 10−12). Thus, the resolution dependence of the absolute permeability is small for fracture networks with an

expected REV-behaviour
::::
REV

::::::::
behavior (DFN-A) and more pronounced if fracture networks with non-REV behaviour

:::::::
behavior

(DFN-B) are considered. Interestingly, the individual components of the permeability tensor converge to constant values above360

resolutions of 1283 voxels for both test-cases
:::
test

:::::
cases, indicating that anisotropy magnitude depends on the level of detail of

the ECM grid.
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Figure 11. Absolute permeability values k for the 6 main components of the computed effective permeability tensor (principial components

in red, off-diagonal components in black) and the norm of the permeability tensor in magenta as a function of the grid resolution in cubic

voxels (number of voxels in x-y-z direction).

8 Discussion

Including a pipe-flow model into the ECM generation process improves the representation of permeability anisotropy therein

and can have impacts on overall permeabilities as well. For example
:
, at the scale of the intersection itself, it significantly mod-365

ifies the shape and absolute values of the permeability tensor (figure 4). However, looking at the presented
::
the

:
errors of the

intersection benchmark (2.7 % and 7.9 % for the fracture-and-pipe and fracture-only model, respectively) indicates
:::::::
indicate

that, from a statistical perspective, the effect of IFL on overall permeability seems minor. Repeating the resolution test from

section 6 with a
::
is

::::::
usually

:
a
:::::::::::
second-order

::::::
effect.

::::
This

::
is

:::::::
because

:::
the fracture-only discretization approach for both test DFN’s

indeed resulted in almost identical permeability values (deviations of about 0.02 %). Thus,
:::::
ECM

:::::::::::
discretization

::::::::
approach

:::
by370

::::::
default

:::::::
accounts

:::
for

:::
the

::::::::
increased

:::::::::::
permeability

::
of

::::::::::
intersection

:::::
cells

::
in

::
an

::::::::
isotropic

:::::::
manner,

::::::
simply

:::
by

:::
the

:::::::::
summation

:::
of

:::
the
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::::::::
individual

:::::::
fracture

:::::::::::
contributions

:::
per

::::
cell.

:::
The

:::::::::
parameter

::::
study

:::::
from

::::::
section

:
6
::::::
shows

:::
that

:::::::::::
incorporating

:
the effects of IFL seems

to disappear at DFN sizes much larger than intersection size (mean hydraulic radius of approx. 0.7mm versus 500m system

size in our case). This may be attributed to the fixed aperture-length correlation chosen for the test cases in this study.If, for

example, two dominant fractures with larger
:::
into

:::
an

::::::::::
ECM-based

::::::::
upscaling

::::::::
approach

::
is
::::
only

:::::::::
necessary

:::
for

:::::::
fracture

:::::::
systems375

:::
that

:::
(1)

:::::::
produce

::
a
:::::::::
significant

:::::::
amount

::
of

:::::::
fracture

::::::::::
intersection

:::::
(i.e.,

:::
for

:::::::
fracture

:::::::
systems

::::
with

::::
two

:::::::
fracture

::::
sets

::
of

::::::::
strongly

:::::::
different

:::::::::
directions)

::::
and

::
(2)

:::::
have

:::::::::
sufficiently

:::::
high

::::::
fracture

:::::::::
porosities

::::::
(above

::
30

::::
%),

:::::::::
regardless

::
of

:::::
scale.

:::::::::
Achieving

:::
the

:::::
latter

::
in

:::
our

:::::::::::
test-scenarios

::
is
::::::::

strongly
:::::::
coupled

::
to

:::::
large

::::::
fracture

::::::::
apertures

:::
(in

:::
the

:::::
order

:::
of

:
1
::::
cm,

:::
see

::::::
figure

::
8)

::::
and

:
a
::::
ratio

::::::::
between

::::
mean

::::::::::
intersection

::::
and

::::::
system

:::
size

:::::
close

::
to

::
or

:::::
above

:::::
unity

::::
(i.e.,

::::::::::
intersections

:::::
fully

:::::::::
penetrating

:::
the

:::::::
system).

:::
So,

::
if
::::
two

::::::::
dominant

:::::::::
orthogonal

:::::::
fractures

::::
with

:::::
large apertures form an intersection that is penetrating the whole system along the direction of flow,380

the effect of IFL might become significant again due
::::::::
influences

:::
the

:::::::
systems

::::::::
effective

:::::::::::
permeability.

::::
Due

:
to the non-linear

radius-permeability relation. Also, if small DFN’s ,
:::
this

::::
may

:::::::
become

:::::
more

::::::::
important

:::
for

:::::::
fractures

::::
with

::::::::
apertures

::::::
above

:
1
::::
cm.

::::::::
However,

::
for

::::::::
apertures

:::::
above

::
1
::::
cm,

::::::::
Reynolds

:::::::
numbers

:::
can

:::::
easily

::::::
exceed

:::
the

::::::
critical

::::::::
threshold

:::
of

::::
unity

::::::::
(e.g., ?),

:::::
which

::::::
would

::::::
require

::::::::
non-linear

::::::::
concepts

::
to

:::::
relate

:::::::
fracture

:::
and

::::::::::
intersection

:::::::::::
permeability

::::
(e.g.,

::::::::::::
Forchheimers

::::
law),

:::
as

::::
well

::
as

::::::::::::
Navier-Stokes

:::::
rather

::::
than

:::::
Stokes

:::::::::::
simulations.385

:
If
:::::
small

:::::
DFNs

:
with sizes closer to the mean hydraulic radius of the intersections (e.g.

:
, micro-fracture networks

::
of

:
1
::
m

::::
size,

::::
that

:::::
cannot

:::
be

::::::::
naturally

:::::::
resolved

::::
with

:::::::
current

:::::::
imaging

:::::::::
techniques) are considered for permeability prediction, IFL should

:::::
could

play an important role. Then, however, additional factors have to be considered as well. For example, ? have shown that fracture

scale heterogeneity affects network scale connectivity due to flow channelling
:::::::::
channeling

:
caused by closure in the aperture

field. This may appear , if the ECM cell size is similar to the internal correlation length of the fractures (e.g., ??) which would390

ultimately require new concepts to account for deviations from the average flow behaviour
:::::::
behavior instead of using fracture

permeability parametrizations. A possible solution would be , to introduce fracture permeability fluctuations , if the ECM cell

size is smaller than the individual fractures correlation length. Unfortunately, the scaling of the correlation length in fractures

is poorly understood
:
, so further research is required before integrating these effects. Additionally, the pipe parametrization we

use as first order
:
a
::::::::
first-order

:
approximation for intersection permeability requires refinement to account for irregular shapes,395

tortuosity,
:
or closure, representing another interesting question to solve in future studies.

For flow simulations at reservoir scales (similar to the test-cases considered here
:::
test

:::::
cases

:::::::::
considered

::
in
:::::::

section
:
7), the only

computationally feasible solution is to use parametrization concepts (e.g.,
:
section 3). For that, we were able to demonstrate that

the presented fracture-and-pipe ECM method is capable to provide
:
of

::::::::
providing

:
converged effective permeability tensors if the

ECM resolution, i.e., the ratio of system size to discretization step size, is sufficiently large. This resolution dependency for 3D400

ECM’s
:::::
ECMs

:
has not been reported at this level of detail so far , but was expected based on previous works of ? and ?. There,

the main problem is identified as artificially increased connectivity at lower resolutions, which occurs if the resolution is larger

than either the average spacing of the fracture network or the minimal fracture length of the DFN, leading to overestimated

permeabilities and misinterpreted anisotropy. Here, we use the average minimal distance of each fractures
::::::
fracture

:
center to

all other fracture centers in the network as a first order
::::::::
first-order approximation for fracture spacing. With an average spacing405

of 13.1± 4.5 m, continuum grid resolutions above roughly 38 cubic voxels should theoretically start preventing artificial con-
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nectivity for DFN-A. For DFN-B ,
:::
with

:
an approximated average spacing of 28.9± 10.9 m, the required resolution to damp

that effect is even lower (about 17 cubic voxels). Both test DFN’s
:::::
DFNs have the same lower cutoff fracture size of 15m,

so artificial connectivity should start decreasing above resolutions of about 33 cubic voxels. Looking at figure 11, we observe

ongoing permeability convergence at these three mentioned resolutions. We attribute this to the fact that fractures are spaced410

randomly in space but sampled with a regular grid. Thus, the distance between fracture tips and continuum cell-edges might be

larger for low resolutions, again causing permeability overestimations. Only above a resolution of 128 cubic voxels,
:

all these

effects seem to dampen out, allowing to declare the solution as sufficiently converged with quantitative errors below 10% for

tensor norm and individual components. Hence, we suggest a general upper boundary of a third of the minimal fracture length

l0 as cell size for an ECM discretization of a DFN to provide constant results.415

Based on analytical solutions of flow in fracture networks with constant apertures, ? proposed that the ratio of ECM cell size

to hydraulic aperture should not exceed two to provide small flow errors. So far, the ratio of cell size to
::
the

:
minimal hydraulic

aperture in the system was much larger (about 1260) due to the low scaling factor β of the sub-linear aperture to length cor-

relation (eq. 18). To achieve similar discretization ratios of ? while maintaining a power-law size scaling, we would have to

increase β to 10−1, resulting in minimal and maximal apertures of 0.39 and 2.14m, respectively. As this would violate the as-420

sumption of laminar flow conditions within the fractures, we cannot test their hypothesis and rather recommend to stay
::::::
staying

above the maximum hydraulic aperture ah1 of the system, as otherwise the volume-fraction based permeability scaling factor

in equations 13 and 14 exceed unity. In that case, parametrization assumptions might not hold any more
:::::::
anymore, preventing

the use of continuum flow methods. However, as demonstrated here, sticking to l0/3> δx > ah1 as condition for ECM dis-

cretization delivers constant effective permeabilities and conserves flow anisotropy for the upscaling. Within that discretization425

range, mapping a DFN onto an equivalent continuum grid can be used as an a
:

geometric upscaling procedure for further ef-

fective permeability analysis. Notably, this range strongly depends on the structural character
:::::::::::
characteristics

:
of the considered

DFN, especially on the fracture size distribution and corresponding aperture correlation functions. For some DFN’s
::::
DFNs

:
this

may require to crop the fracture size distributions from below to a few multiples of the cell size and compensate the hydraulic

contribution of lower sized fractures with a background permeability.430

9 Conclusions

In this study , we have analysed
:::
This

:::::
study

::::::::
analyzed the complexity of fracture intersection flow by conducting Stokes-flow

simulations in simple fracture crossings. Intersections that are aligned with the pressure gradient initiating the flow cause an

increase in permeability, as they act similar to a pipe. This results in intersection flow localisation
:::::::::
localization

:
(IFL), i. e.,435

intersections represent preferred pathways for the fluids compared to the connected fractures. We thus extended the state-

of-the-art methodology to generate equivalent continuum models (ECM) for effective permeability computations of discrete

fracture networks (DFN) to incorporate IFL effects. Those are integrated by using a directional pipe-flow parametrization

with a hydraulic radius of half the hypotenuse size in a right-angled triangle with side lengths of both intersecting hydraulic
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apertures. By assessing numerically the permeabilities of fracture intersections
:::::::::
numerically, we could demonstrate , that for440

system sizes close to the approximated pipe-radius (typically
::::
pipe

::::::
radius

:
(mm to cm), the effect of IFL on permeability

can be almost one order of magnitude. At larger scales (system size of several hundred
:::::::
network

:::::
scales

::
(m ) on the other

hand
:
to
:::::
km), the impact of IFL on overall flow is minor. There,

:::
the

:::::::
systems

:::::::
effective

:::::::::::
permeability

::
is
::::::::
generally

::::::
minor.

:::::
Only

::
for

:::::::
fracture

:::::::
systems

::::
with

:::::
high

::::::
fracture

:::::::::
porosities

::::::
(above

:::::
30%)

::::
IFL

::::::
effects

::::::
become

::::::::::
noticeable.

:::::::::
Analyzing

:::
the

::::::
effects

::
of

::::
IFL

::
on

:::::
mass

:::::::
transport

:::::::
through

:::::::
fracture

::::::::
networks

:::::
poses

::
an

:::::::::
interesting

::::::::
question

::
for

::
a
::::::::
follow-up

::::::
study.

:::
For

::::::::
example,

:::::
? have

:::::::
shown,445

:::
that

::::
early

::::::::::::
breakthrough

::::
times

:::
of

:::::
solute

:::::::
transport

:::::::
through

:::::::::::::
kilometer-scale

:::::
DFNs

:::
are

:::::::
sensitive

::
to
:::::
local

::::::::::
permeability

:::::::::::
fluctuations.

:::::
Thus,

::::
local

::::::::::
permeability

::::::::
increases

:::::::
induced

:::
by

:::
IFL

:::::
could

:::::::::
potentially

:::::
affect

::::::::
transport

:::::::
behavior

::
as

:::::
well.

::::
Next

::
to

:::
the

::::::
effects

::
of

::::
IFL,

:::
we

::::::::::
investigated

:::
the

::::::::
resolution

::::::::::
dependency

:::
of

::::::
current

::::::::::
ECM-based

::::::::
upscaling

::::::::::
approaches,

::
as

:
the cell

size with which the ECM is discretized represents the most crucial aspect for the accuracy of ECM-based effective permeability

predictions. Based on a resolution test with two different DFN scenarios, we suggest that the ECM cell size should to be lower450

::
be

:::::::
smaller than a third of the minimal fracture size and larger then

:::
than

:
the maximal hydraulic aperture of the system to

conserve constant permeabilities and full anisotropy of flow. Within that range, we conclude that ECM methods equivalently

serve as geometric upscaling procedures for fluid flow problems. Whether this holds for transport problems as well, needs to

be determined in future studies
:
It
::
is

::::::::
important

:::
to

::::
note,

::::
that

:::
the

:::::::
accuracy

::
of
:::::

ECM
::::::::
methods

::
to

::::::
predict

::::
flow

:::
are

::::::
always

::::::
linked

::
to

::
the

::::::
quality

:::
of

:::
the

::::
input

:::::
DFN.

:::::::::
Improving

:::
the

::::
DFN

:::::::
method

::
to

:::::
better

::::::::::
characterize

::::::
natural

:::::::
fracture

:::::::
systems,

:::::::::
especially

::
in

:::::
terms

::
of455

::::::
fracture

::::::::::
termination

::::
rules

::::
and

:::::
spatial

:::::::::
clustering,

::
is
::::
still

::
an

:::::::
ongoing

:::::
topic

::
of

:::::::
research.

Appendix A: ECM-based effective permeability prediction workflow

In the following, we will explain our method to obtain the effective permeability tensor of continuum cell representations for

fractured-porous media. The governing equations for steady-state single-phase flow equations for an incompressible, isothermal

and isoviscous fluid without sources and sinks are given im compact form by the following system of mass (eq. A1) and460

momentum (eq. A2) conservation equations:

∇ · q = 0, (A1)

q =−K∇P, (A2)

whereas ∇ and ∇· denote the gradient and divergence operator for global 3D Cartesian coordinates, respectively. The specific465

discharge (flux) is given by q, pressure by P and the positive definite and symmetric hydraulic conductivity tensor by K

according to:

K =


kxx kyx kzx

kyx kyy kzy

kzx kzy kzz

 ρgµ , (A3)
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with the principal permeability tensor components kxx, kyy and kzz , the off-diagonal components kyx, kzx and kzy as well

as fluid density ρ, gravitational acceleration g and fluid dynamic viscosity µ. We employ a 3D finite-element discretization470

scheme (e.g., ????) for equations A2 and A1 to simulate boundary driven pressure diffusion through any input grid consisting

of unique permeability tensors. Using the Galerkin method (e.g., ??), we transform equation A1 into an expression for the

nodal residual R according to:

R=

∫
V

∇NTK∇NdV P = 0. (A4)

V denotes the domain volume, N the nodal shape function matrix and P the nodal pressure. We use 8-node rectangular ele-475

ments (voxels) with linear interpolation functions (e.g., ?) for volume integral approximation, whereas element integrals are

evaluated by Gauss-Legendre quadrature rule (e.g., ?) over 8 integration points with parametric coordinates. Within each ele-

ment, standard coordinate transformation is employed to compute shape function derivatives with respect to global coordinates

∇N :

∇N = J−1∇LN, J =∇LNx, (A5)480

where ∇L denotes gradient operator for local 3D element coordinates, J the Jacobian matrix and x the 3D global element

coordinates. After imposing initial pressure conditions at the boundary nodes, the global residual vector Rg is assembled from

elemental contributions (e.g., ?) according to eq. A4 to solve the linear system of equations:

CgP
new =Rg, (A6)

for the unknown pressure Pnew. Cg denotes the global coefficient matrix, which is assembled from the nodal coefficient matrix485

C given by:

C =

∫
V

∇NTK∇NdV. (A7)

Following this, we evaluate the nodal Darcy velocities
:::::
Darcy

::::::::
velocities

::
at
:::

the
::::::::::

integration
:::::
points

:
u based on the newly solved

nodal pressures by:

u=K∇NPnew, (A8)490

whereas the velocity vectors on the nodes are averaged from the neighbouring
::::::::::
neighboring integration points.

Three principal directions of the applied pressure gradient have to be considered to predict the full tensor of permeability.

Thus, the flow simulation procedure has to be repeated three times such that each principal flow direction (x-, y- and z-direction

in a Cartesian coordinate system) is covered. For each iteration, two constant pressure values are applied at two opposing495

boundary faces (e.g., lower and upper face in a cube for principal flow in z-direction) and the same linear interpolation between

those two values is applied at the remaining four boundary faces (see figure A1 for an example). This ensures to capture
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Figure A1. Pressure boundary conditions for an applied gradient in z-direction. Here, top and bottom faces experience constant pressures

of 1 and 0 Pa, respectively. A linearly interpolated pressure distribution is applied at the remaining four boundary faces, as indicated by

the coloured wedges next to the side-faces of the model. Thus,
::
the

:
principal direction of flow is in z-direction, allowing to calculate the

z-component related terms of the permeability tensor according to eq. A9

both, the diagonal and off-diagonal terms of the permeability tensor properly, which are computed by substituting the volume

average ū of all nodal velocity vectors uI (see eq. 3) into Darcy’s law for flow through porous media in the form of eq. 4. Figure

A1 displays the situation of a vertically aligned pressure gradient (∆Pz = δP
δz ). The corresponding entries in the permeability500

tensor are computed according to:
kzx

kzy

kzz

=
µ

∆Pz


ūx

ūy

ūz

 , (A9)

and vice versa for the iterations with pressure gradients in x- and y- direction to obtain the permeability tensor as shown in eq.

A3.

The used single-continuum discretization scheme might appear simplistic compared to more sophisticated mesh-representations505

(see ?). However, the merits of our approach rather lay (1) on a fully anisotropic permeability representation of the in-

dividual continuum cells and (2) massive parallelisation
:::::::::::
parallelization

:
and HPC optimization. Utilizing the parallelisation

:::::::::::
parallelization

:
framework of PETSc (?) and their multigrid preconditioned solvers significantly reduces

:::
the computational

cost, allowing routinely simulations
::::::::::
simulations

:::::::
routinely

:
with 109 individual grid cells. An increase in grid resolution com-

pensates
:::
for the benefits of using conforming meshes or multi-continuum formulations (e.g., ?). To test this, we compare our510

modelling
:::::::
modeling

:
procedure against benchmark case 1 from ?, who compare 17 different methods of simulating single-
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target field
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Figure A2. Benchmark case 1 from ?. a) shows the benchmark geometry of an embedded fracture (aperture of 10−2 m) in a matrix with a

hydraulic conductivity of 10−6. The hydraulic conductivity in the grey band at the bottom is increased to 10−6. Constant pressures of 4 Pa

and 1 Pa are applied at the inlet band (blue) and outlet band (red), respectively. The diagonal light grey line through the model indicates the

sampling line for the pressures shown plot in b). There, the pressure distribution is plotted as a function of arc length of the gray line in a)
:
,

and the results of different resolutions are compared to the benchmark target field obtained from 17 different numerical methods. The dark

grey region illustrates the area between the 10th and 90th percentiles for the highest refinement level of the benchmarked methods, whereas

the light grey region illustrates the same area for their lowest refinement level.

phase flow in fractured porous media. The initial setup (displayed in a) in figure A2) consists of an inclined fracture with an
:
a

hydraulic aperture of 10−2 m embedded in a cube of 100 m length with a matrix hydraulic conductivity of 10−6 m2, whereas

the hydraulic conductivity of a small band of 10m width at the bottom is increased to 10−5 m2. We prescribe these two values

as background permeabilities and use the methodology described in section 3 to incorporate fracture permeability accordingly.515

The boundary conditions are given by small pressure inlet (4 Pa) and outlet (1 Pa) bands as indicated in plot a in figure A2.

The comparison of the pressure distribution (plot b in figure A2) highlights , that already with a resolution of 323 voxels, we

obtain a good fit with the benchmark target field. This thus suggest that our modelling
:::::::
suggests

:::
that

:::
our

::::::::
modeling

:
procedure is

sufficiently correct for effective permeability predictions.
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