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Abstract.

Predicting effective permeabilities of fractured rock masses is a key component of reservoir modelling. This is often real-

ized with the discrete fracture network (DFN) method, where single-phase incompressible fluid flow is modelled in discrete

representations of individual fractures in a network. Depending on the overall number of fractures, this can result in significant

computational costs. Equivalent continuum models (ECM) provide an alternative approach by subdividing the fracture network5

into a grid of continuous medium cells, over which hydraulic properties are averaged for fluid flow simulations. While this has

the advantage of lower computational costs and the possibility to include matrix properties, choosing the right cell size for dis-

cretizing the fracture network into an ECM is crucial to provide accurate flow results and conserve anisotropic flow properties.

Whereas several techniques exist to map a fracture network onto a grid of continuum cells, the complexity related to flow in

fracture intersections is often ignored. Here, numerical simulations of Stokes-flow in simple fracture intersections are utilized10

to analyze their effect on permeability. It is demonstrated that intersection lineaments oriented parallel to the principal direction

of flow increase permeability in a process termed intersection flow localization (IFL). We propose a new method to generate

ECM’s that includes this effect with a directional pipe flow parametrization: the fracture-and-pipe model. Our approach is tested

by conducting resolution tests with a massively parallelized Darcy-flow solver, capable of representing the full permeability

anisotropy for individual grid cells. The results suggest that as long as the cell size is smaller than the minimal fracture length15

and larger than the maximal hydraulic aperture of the considered fracture network, the resulting effective permeabilities and

anisotropies are resolution-independent. Within that range, ECM’s are applicable to upscale flow in fracture networks, which

reduces computational expenses for numerical permeability predictions of fractured rock masses. Furthermore, incorporating

the off-diagonal terms of the individual permeability tensors into numerical simulations results in an improved representation

of anisotropy in ECM’s that was previously reserved for the DFN method.20

1 Introduction

Discontinuities in rocks provide major pathways for subsurface fluid migration. Thus, fractured reservoirs are frequent targets

for oil, gas or water production, geothermal energy recovery and CO2 sequestration. In addition, the safety of nuclear waste
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disposals as well as subsurface contaminant transport crucially depend on the presence of fractures. Characterizing natural

fracture networks across scales and predicting their permeabilities to model fluid flow therein has thus been a long-standing25

topic of research (e.g., Long et al., 1982; Dershowitz and Einstein, 1988; Cacas et al., 1990; Neuman, 2005; de Dreuzy et al.,

2012).

Since the acquisition of fracture data is usually limited to borehole logs or outcrop scans (Lei et al., 2017), the discrete fracture

network (DFN) model is commonly used as a conceptual framework to provide statistically based approximations of real frac-

ture networks (Darcel et al., 2003; Xu and Dowd, 2010; Davy et al., 2013; Maillot et al., 2016). Measured structural properties30

like size- and orientation-distributions (Odling et al., 1999; Healy et al., 2017) as well as fracture density and spacing (Ortega

et al., 2006) serve as quantitative basis to generate synthetic DFN realizations for further analysis (e.g., Hyman et al., 2015;

Fadakar Alghalandis, 2017). The hydraulic response to pressure changes of each individual fracture is then parametrized with

the cubic law (Snow, 1969; Witherspoon et al., 1980), relating the fractures effective permeability to its aperture. In reality,

surface roughness, fracture closure as well as fluid-rock interactions (e.g., erosion or crystal growth) cause deviations from the35

parallel-plate assumption (Brown, 1995; Oron and Berkowitz, 1998; Méheust and Schmittbuhl, 2000). Semi-empirical func-

tions derived from numerical simulations in rough-walled fractures with quantified statistics of the aperture field (e.g., Patir

and Cheng, 1978; Brown, 1987; Renshaw, 1995; Zimmerman and Bodvarsson, 1996; Mourzenko et al., 2018) serve as correc-

tions to the cubic-law, if the fractures internal correlation length-scale is significantly smaller than the size of the considered

fracture (e.g., Méheust and Schmittbuhl, 2003; Kottwitz et al., 2020).40

A large number of numerical methods to compute effective permeabilities of fractured media have been developed (see reviews

of Jing, 2003; Berre et al., 2019), all relying on (modified) cubic-law assumptions. Improved discretization techniques with

individual fracture treatment like the DFN method come at the cost of high computational expenses, making it difficult to em-

ploy it for reservoir scale simulations. Discretizing the fractured media as equivalent continuum blocks significantly reduces

the computational effort at comparable numerical accuracy (Hadgu et al., 2017).45

According to Long et al. (1982) and Oda (1985), fractured rocks behave similar to porous media and can be represented by

a positive definite permeability tensor (Chen et al., 1999) as long as the considered system behaves like a representative el-

ementary volume (REV) (Bear, 1972), i.e., its effective properties (permeability or porosity for example) are more or less

homogenous at the reference scale of the system. Due to the multi-scale character of fracture systems (e.g., Bonnet et al.,

2001; Davy et al., 2006), determining the required homogenization scale is difficult, as overall flow may be dominated by50

distinct larger features. Thus, a discrete representation of all fractures in a network as given by the DFN method is essential

to adequately capture that multi-scale character. La Pointe et al. (1995), Jackson et al. (2000), Svensson (2001), Leung et al.

(2012) and Hadgu et al. (2017), among others, have however showed, that representing a DFN with a grid of equivalent con-

tinuum blocks of sizes lower than the REV yields similar flow results, if resolved sufficiently, and thus reproduces the overall

flow-behaviour of the DFN method. This highlights that the use of continuum methods for flow modelling in fractured rocks55

is not restricted to REV scales and can thus be used equivalently to the DFN method.

Several techniques to generate equivalent continuum models (ECM) of DFN’s have been developed in 2D (Reeves et al., 2008;

Botros et al., 2008; Rutqvist et al., 2013; Chen et al., 2015) and 3D (Hadgu et al., 2017; Sweeney et al., 2020), whereby the
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so-called Oda method (see Oda, 1985) is used to formulate permeability tensors of grid cells that intersect fractures. There,

the permeability tensor is aligned with the orientation of the intersecting fracture and the permeabilities of the individual frac-60

tures are summed up, if multiple fractures intersect one cell, yielding a positive definite, fully anisotropic tensor (e.g., Chen

et al., 1999). The groundwater-flow equations for porous media (Bear, 1972), i.e., Darcy’s law (Darcy, 1856), are then used

to simulate laminar, steady-state, single phase flow to compute effective permeabilities of the medium. However, commonly

used 3D flow solvers like PFLOTRAN (Lichtner et al., 2015) or MODFLOW (McDonald and Harbaugh, 1988) have numeri-

cal difficulties treating fully anistropic permeability tensors and rather use their principal components or maximum values for65

flow simulations. So-called stair-case patterns are the direct consequence of these simplifications, which introduce artificially

prolonged flow-paths, especially in transport simulations, which have to be compensated for (e.g., Reeves et al., 2008; Botros

et al., 2008; Sweeney et al., 2020) when predicting effective permeabilities of fractured media.

This study focuses on an often ignored but important aspect in fracture network modelling, that is given by the complexity of

fracture intersection flow. To our knowledge, only few studies have presented 3D flow simulations within fracture intersections70

(Zou et al., 2017; Li et al., 2020), revealing the fact that flow velocities will increase within the fracture intersections compared

to the fractures itself (shown by increasing Péclet numbers within the intersections). Theoretically, this effect should increase if

the direction of the applied pressure gradient is aligned with the orientation of the intersection. As a consequence, the effective

permeability should increase by a certain amount within the intersection. To demonstrate that, we systematically conduct 3D

numerical simulations of Stokes flow within differently oriented, planar fracture crossings to analyse the permeability increase75

caused by intersection flow localization (IFL). Using these results, we extend the current state-of-the-art methodology for

equivalent continuum representations of DFN’s to account for IFL in a quantitative manner and analyse its impact on effective

permeability computations. There, it is still unclear, at which level of detail the ECM has to be discretized in order to con-

serve the structural complexity of the DFN, as aforementioned stair-case patterns and artificial connectivity cause resolution

dependencies. Subsequently, resolution tests are performed on two DFN test-cases with a newly developed, massively paral-80

lelized and high-performance-computing (HPC) optimized finite element Darcy-flow solver, that is capable of handling fully

anisotropic permeability tensor cells. By that, we consistently investigate the upscaling capabilities of the ECM method, which

is frequently used for effective permeability predictions in fractured porous media.

2 Fracture intersection flow modelling

Fluid flow in porous and fractured media is described by the well-known Navier-Stokes equations (Bear, 1972). It is commonly85

assumed that sub-surface flow in fractures ranges in the laminar regime, i.e. Reynolds numbers below unity (Zimmerman and

Bodvarsson, 1996). Assuming the flowing fluid to be incompressible, isoviscous and the impact of gravity to be negligible,

steady-state flow at constant temperature is defined by Stokes momentum balance (eq. 1) and continuity (eq. 2) equations

(Bear, 1972):

µ∇2v =∇P, (1)90
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∇ · v = 0, (2)

with the fluid’s dynamic viscosity µ, pressure P and velocity vector v = (vx,vy,vz). ∇, ∇·, and ∇2 denote the gradient,

divergence, and Laplace operator for 3D Cartesian coordinates, respectively.

Here, the 3D staggered grid, finite-difference code LaMEM (Kaus et al., 2016) is used to solve the coupled system of equations95

1 and 2, utilizing PETSc (Balay et al., 2018) for HPC optimisation. Applying different absolute pressures on two opposing

sides of a 3D voxel model representing the fractured or porous medium (e.g., a) or d) in figure 1) while setting the other

boundaries to no-slip (velocity component normal to the boundary is zero) enables the prediction of the mediums directional

permeability. After obtaining the steady-state solution, the volume integral of the pressure-gradient aligned velocity component

vz (e.g., Osorno et al., 2015) is computed according to:100

v̄ =
1
V

∫

V

|vz|dz, (3)

with domain volume V. Using Darcy’s law for flow through porous media (Darcy, 1856), that relates the specific discharge Q

according to:

Q=−kA∆P
µ

, (4)

with intrinsic permeability k and cross-sectional area A in combination with the fact that Q= v̄A, the directional permeability105

kz is calculated by:

kz =
µv̄

∆P
. (5)

As demonstrated by Eichheimer et al. (2019); Kottwitz et al. (2020); Eichheimer et al. (2020), the numerical resolution has

to be sufficiently high to produce a converged result. Generating every model at different levels of detail (e.g. 1283, 2563 ,

5123 and 10243 voxels), ensures that the most accurate solution is obtained (see comparison of errors to the result at largest110

resolution in plot b, figure 5). Figure 1 presents Stokes-flow in simple fracture intersections and highlights the IFL effect. If

the fracture intersection is aligned with the principal flow direction (plot a) - c)), the velocity significantly increases within

the intersection, resulting in higher directional permeabilities. In the opposite case, when the fracture intersection connects

no-pressure boundaries (plot d) - f) ) and is thus oriented oblique to the flow direction, the flow velocity slightly disperses

around the intersection and the overall impact on the directional permeability is minor.115

3 Permeability parametrization concepts

As the two main structural features (fractures and intersections) composing a fracture network differ significantly in terms of

their hydraulics (figure 1), they require independent concepts to parametrize their permeabilities for formulating their effective
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(a) (b) (c)

(d) (e) (f)

velocity [m/s]

velocity [m/s]

0 2⋅10-4 4⋅10-4

0 2⋅10-4 4⋅10-4

Figure 1. a) and d) show the binary voxel-models (impermeable matrix in transparent gray) for a fracture intersection that is orientated along

and transverse to the flow direction, respectively. The red bottom faces is the high pressure boundary (0.02 Pa), the blue top faces the low

pressure boundary (0.01 Pa) forcing the fluid to flow in z-direction. The orientations (arranged as dip-direction/dip) for the fracture pair in

a) are f1 = 100/90, f2 = 190/80, and f1 = 170/90, f2 = 260/10 for the fractures in d). The length of both cubes is 1 cm and all fracture

apertures are constant (1.25 mm). b) and e) visualize flow velocity distribution in the void space. e) and f) highlight velocity vectors within

the intersections at slices indicated with green rectangles in b) and e), respectively.

grid block permeability tensor. For fractures, it is usual practice to use the cubic-law parametrization (e.g., Snow, 1969; Long

et al., 1982), relating the specific discharge Q through a void system between two parallel plates according to:120

Q=−wa
3
m∆P
12µ

, (6)

with the fractures widthw and distance between the two plates, i.e. mechanical aperture am. Comparing this analytical solution

with Darcy’s law (eq. 4, cross-sectional area A= wam) leaves the intrinsic permeability of a fracture kf defined by:

kf =
a2
m

12
. (7)

Natural fractures deviate from the assumptions of parallel plates, which is why am in eq. 7 is commonly replaced with a125

hydraulic aperture ah that corrects the parametrization for fracture closure and surface roughness (e.g., Patir and Cheng,

1978; Brown, 1987; Renshaw, 1995; Zimmerman and Bodvarsson, 1996; Kottwitz et al., 2020). Yet, there is no ready to use

parametrization concept tailored for fracture intersections. The simulations shown on figure 1 suggest that the flow in the

intersection is approximately pipe-like. Then, the specific discharge Q through a tube of radius rt and length lt is related by
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the Hagen-Poiseuille flow solution through a pipe (e.g., Batchelor, 1967) according to:130

Q=−πr
4
t∆P

8ltµ
. (8)

Again, combining this equation with Darcy’s law (eq. 4, cross-sectional area A= πr2) results in the following expression for

the intrinsic permeability of a pipe ki:

ki =
r2

8
. (9)

The apparent pipe radius should then be modified based on the intersection shape to calculate an equivalent hydraulic radius135

rh to compensate for the structural difference. As a first order approximation, we use half the size of the hypotenuse in a right-

angled triangle whose legs are given by the two intersecting apertures (called half-hypotenuse assumption in the following, see

figure 2 for details). This delivers sufficiently good results, as will be demonstrated later (figure 6).

ah1

ah2

rh

Figure 2. 2D Sketch of the half-hypotenuse assumption in an idealized rectangular fracture crossing (grey regions indicate rock matrix, white

regions fracture pore space). The hydraulic apertures (ah1 and ah2) of both intersecting fractures are indicated with solid blue lines. The

hypotenuse of the right-angled triangle with the two hydraulic apertures as legs is given by the black dashed line. The hydraulic radius rh

(indicated by the red solid line) to approximate the radius of the pipe model is defined as half of the length of the hypotenuse.

4 Equivalent continuum representation of DFN’s

The use of the ECM approach instead of the DFN method to predict the effective permeabilities of fractured media crucially140

depends on the capability to reflect the anisotropic flow properties at the scale of the continuum cells. Therefore, it is essential

to integrate the geometry of a DFN into the generation procedure of the ECM, instead of generating the grid cell conductivities
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in a stochastic manner (Hadgu et al., 2017). The accuracy of the ECM permeability prediction then depends on the resolution

of the DFN-mapped continuum grid. Jackson et al. (2000) and Svensson (2001) already demonstrated that using cell sizes that

are larger than the average fracture spacing of the network introduces artificial connectivity and hence overestimates effective145

permeabilities. Sufficient resolution of the continuum grid is therefore required to obtain comparable results with the DFN

method (e.g., Botros et al., 2008; Leung et al., 2012).

To our knowledge, there is no approach to generate an ECM of a DFN that takes the effect of IFL (figure 1) into account.

Thus, we will explain our new approach to generate continuum representations based on DFN structures - the fracture-and-

pipe model.150

Generally, the DFN approach offers a straightforward way to characterize structurally complex fracture networks. Most com-

monly, every fracture is modelled as a geometric primitive (here a disc) with a prescribed length l, center coordinate p0 and

unit normal vector n̄ defining its orientation. Based on this, fracture intersections can be calculated to define the backbone of

the network. Here, fracture intersections are approximated with a line defined by two points i0 and i1, whereas the unit vector ī

between the two points defines its orientation. The goal of the ECM method is to generate a 3D regular grid with constant x-y-z155

spacing δx, whereas every grid cell contains a symmetric, positive definite permeability tensor that is based on the fractures

and their intersections.

To map each individual fracture to its corresponding grid cells, we first assume a horizontal disc (normal vector ḡ = [0,0,1])

at center point pg = (0,0,0) with corresponding fracture radius r (r = l/2) and represent it with an equally spaced set of points

in the x-y plane Pg , with the condition ||Pg − pg)|| ≤ r. By that, we obtain a constantly spaced grid of points representing the160

fracture in horizontal orientation, provided that the initial equal spacing of the points δp is a small fraction of the cell size δx to

prevent gaps in the mapped 3D grid. Next, we seek the rotation matrixRf that aligns the current normal vector of the x-y plane

ḡ = [0,0,1] with the actual normal vector of the fracture n̄. Utilizing Rodrigues’s rotation formula (Rodrigues, 1840) around

the rotation axis w = (ḡ× n̄)/||(ḡ× n̄)|| (unit vector orthogonal to ḡ and n̄) yields the rotation matrix Rf according to:

Rf = I + ||ḡ× n̄|| C + (1− ḡ · n̄) C2, (10)165

with ×, ·, and ||x|| denoting the cross-product, dot-product and vector norm of x, respectively. I represents the 3-by-3 identity

matrix and C the cross-product matrix of the rotation axis w = [wx,wy,wz]:

C =




0 wz wy

wz 0 −wx
−wy wx 0


 . (11)

Following this, Rf is used to rotate the 3×n array of points representing the fracture plane Pg (n is the number of 3D points

in Pg) around pg and translate all points to the actual center point p0 to produce a rotated set of points Pr representing the170

fracture in its actual 3D position:

Pr = Pg ∗Rf + p0, (12)

7
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(a)

(b)

(c)

Figure 3. Workflow for generating an equivalent continuum model of a DFN. a) shows the input fracture network of 4 arbitrarily oriented

fractures (gray) and their intersections (magenta). b) displays a grid of ellipsoids, each reflecting the shape of the permeability tensor in the

equivalent continuum model of a) with a resolution of 43 voxels. The size of the ellipses is scaled to the norm of the permeability tensor

of the cell, such that larger ellipsoids denote higher permeabilities. The green plane in b) indicates the location of the 2D slice displayed in

c). There, different green-intensities present the norm of the permeability tensor of each cell. Black lines denote fractures in 2D and yellow

ellipses the x- and y-shape of the permeability tensor of each cell. Note, how the shape of the ellipse changes from being planar, if multiple

fractures cross a cell.

where ∗ denotes matrix-matrix multiplication. By ensuring that the lower left corner coordinate of the rectangular grids bound-

ing box is initially located at (0,0,0) (this may require a translation of all center points to incorporate all fractures), we obtain

the grid-indices (i,j and k in x,y and z-direction, respectively) of the fracture by dividing Pr with the cell size δx and round-175

ing the results. Finally, we compute the individual anisotropic permeability tensor Kijk for the cells by using a parametrized

fracture permeability value (eq. 7) and the rotation matrix Rf according to:

Kijk =
Vf
Vc

kf


Rf




1 0 0

0 1 0

0 0 0


R
′
f


 . (13)

Vc denotes the cell volume (δx3) and Vf the fracture volume per cell, which is approximated by counting the number of

Pr points per individual cell, multiplying it with the squared initial point spacing δp and the hydraulic aperture ah of the180

fracture. Obviously, the accuracy of Vf crucially depends on the initial point spacing of Pg - the finer the spacing, the better the

approximation of Vf . Plot c in figure 4 shows that the condition δp/δx≥ 16 delivers sufficiently constant permeability values.
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(a)

(b)

(c)

Figure 4. Fracture intersection caused changes of permeability tensor characteristics. a) shows a simple DFN structure of two arbitrary

oriented fractures (grey) intersecting at a line (magenta). The cube length is set to 1m and the system origin is at (0,0,0). The center point of

the first fracture is located at (0.4899|0.5685|0.5110) and its normal vector is given as (−0.3195,0.7894,0.524). The second fractures center

point is located at (0.7604|0.5000|0.5000), whereas its normal vector is given by (−0.9461,0.1715,0.2747). Both fractures have the same

hydraulic aperture of 1 ·10−3 m and both fully penetrate the system. The resulting intersection ranges from point (0.6499|0.3086|1.000) to

(0.8003|1.000|0.0505) and its orientation is given by the unit vector (0.1270,0.5839,−0.8018). The hydraulic pipe radius resulting from

the half-hypotenuse assumption is 7.0711 · 10−4. b) visualizes the shape of the permeability tensor for an ECM model that considers only

fracture permeability (grey, inside) and for the presented fracture-and-pipe model (transparent magenta, outside). The size of both ellipses is

scaled with the norm of the resulting permeability tensor to provide comparability. c) presents the norm of the permeability tensor Kijk as a

function of the ratio between initial point spacing δp and ECM grid spacing δx (see text for explanations). The dashed black line denotes the

condition δp/δx≥ 16, that is used to provide an correct approximation of the fracture and intersection volume per cell.

In case multiple fractures transect the same cell, the permeability tensors are summed, similar to Chen et al. (1999) or Hadgu

et al. (2017). However, these cells need additional treatment as they incorporate fracture intersections. To map all previously

found intersections to the grid cells and formulate their permeability tensors, we follow the same workflow as presented for185

individual fractures. A horizontal line of the same length as the intersection (||i1− i0||), parallel to the x-axis is represented

by a constantly spaced set of points (similar spacing as in the case of a fracture, i.e. δp), whereas the mean point of the line is

again located at (0,0,0). We then calculate the rotation matrix Ri (eq. 10) by using ḡ = [1,0,0] and n̄= (i1− i0)/||i1− i0||.
After identifying the corresponding grid i,j and k indices as described above, their permeability tensors are increased by using
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a parametrized interesection permeability (eq. 9):190

Kijk =Kijk +
Vi
Vc

ki


Ri




1 0 0

0 0 0

0 0 0


R
′
i


 . (14)

Vi represents the intersection volume per cell, which is again approximated by counting the number of Pr points per cell and

multiplying it with point spacing δp and the term πr2h, whereas rh denotes the hydraulic radius of the pipe approximating

the intersection. Figure 3 shows the resulting ECM structure with 43 cells of an arbitrary complex DFN, generated with the

presented approach. For certain fracture systems (ideally no more than two fractures that fully penetrate the system, e.g. plot195

a) in figure 4), the presented approach can be used to derive an analytical solution for permeability by setting δx equal to

the system size, resulting in a single permeability tensor for the whole system. Figure 4 demonstrates that incorporating the

intersection as a pipe has a significant effect on the shape and absolute value of the permeability tensor at intersections, that

could cause an overall permeability increase by almost one order of magnitude. However, the exact amount of permeability

increase depends on the chosen hydraulic radius of the pipe and the impact on the overall permeability at the network needs to200

be evaluated.

cubic voxels

(a) (b)

Figure 5. a) displays the location of all 100 intersection lineaments considered in the flow benchmark. 52 intersection configurations directly

connect in- and outlets of flow (upper and lower z-face), whereas 48 connecting non-boundary flow faces. b) compares the numerically

estimated permeability at highest resolution (10243 voxels) to the ones obtained at lower resolutions by calculating their error norms ||δk||
according to eq. 15. Gray dots represent the average error norm for all considered intersection configurations at resolutions lower than 10243

voxels, the light gray area highlights the range between minimum and maximum error.

10

https://doi.org/10.5194/se-2020-208
Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



5 Intersection flow benchmark

To test the half-hypotenuse assumption (see figure 2 for details) as a first order approximation for the hydraulic radius of the

pipe, we conduct a benchmark study in the following. The directional permeabilities of simple fracture crossings with varying

orientations are calculated from high-resolutions Stokes-flow simulations (e.g., section 2) and compared to their analytically205

derived ECM single-cell counterparts (δx is equal to the full system sizeL) using the half-hypotenuse parametrization. For each

intersection model, two fully persistent fractures with constant hydraulic apertures of 1.25 mm are placed in a cube of length

10mm. Two fractures with a dip angle of 90° and dip directions separated by 90° (i.e., 90° and 180°) are consecutively rotated

counter-clockwise by increments of 10° around the center of the cube until a total rotation of 90° is reached. This procedure

is repeated nine times, whereas the dip angle of one of the two fractures is consecutively reduced by increments of 10° for210

each iteration. The dip angle of the remaining fracture is kept constant (i.e. 90) to maintain connectivity in the z-direction.

This results in a total of 100 different intersection configurations (52 representing direct in- and outlets of flow, 48 connecting

non-boundary flow faces), producing a broad variety of intersection orientations within two opposing octants in the cube (see

figure 5 a for all generated intersection lineaments). For each configuration, we produce a binary voxel model (pore-space and

matrix) of two crossing parallel plate fractures (similar to a) and d) in figure 1). Following the approach described in section 2,215

different pressures at the bottom and top boundary are applied to numerically estimate the directional permeability (setting the

remaining boundaries to no-slip yields the vertical permeability component of the permeability tensor, kz). We systematically

increasing the numerical resolutions of the Stokes-flow simulations (1283, 2563 , 5123 and 10243 voxels) for each intersection

configuration (resulting in a total of 400 HPC flow simulations) to determine, weather the result at the highest level of detail

represents a sufficiently converged solution. This is done by calculating the L2-error-norm ||δk|| according to:220

||δk||=
∣∣∣∣
kx− k1024

k1024

∣∣∣∣ , (15)

whereas k1024 represents the directional permeability obtained at the highest resolution (i.e. 10243 voxels) and kx the direc-

tional permeability from simulations with lower resolution (i.e., 1283, 2563 , 5123 voxels). The resulting average error norms

for all 100 intersection configurations are plotted in figure 5 b, which demonstrate the convergence towards the numerical

result at the highest resolution. With an average error norm of about 0.6 % and a maximum error of 2.4 % for simulations with225

5123 voxels compared to the simulations at 10243 voxels, we assume that the solution at 10243 voxels represents a sufficiently

accurate solution and can furthermore be used to benchmark the tensors generated with the ECM approach. Next, we follow

the approach of section 4 to generate a single-cell permeability tensor of each intersection model, using a δp/δx ratio of 16

and extract the vertical permeability component of the tensor (kzz) and compare it with the one resulting from the Stokes-flow

simulations. The results (figure 6) demonstrate that, if the intersection connects the two pressure boundary faces (intersection-230

to-flow-direction angle γ ≤ 40°), the actual permeability obtained from the Stokes simulations is reasonably well reproduced

with a small underestimation by the fracture-and-pipe model and heavily underestimated by the fracture-only approach (e.g.,

Hadgu et al., 2017). Using the half-hypotenuse assumption sufficiently integrates the effect of IFL at the scale of a continuum

cell. If intersections that connect no-pressure boundary faces are considered (γ > 40°), both models fail to predict the accurate
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ecm

Figure 6. The left plot shows a comparison of directional permeabilities obtained from high-resolution Stokes-flow simulations (ks) and

analytically counterparts (kecm) derived with the ECM-approach described in the text as function of the angle γ between the intersection

and the principal flow direction. Magenta dots represent the mean permeability ratios (10 values per point) for the ECM approach described

in section 4 with the half-hypotenuse pipe radius parametrization. Gray dots present the mean permeability ratio for an ECM-approach, that

ignores the effect of intersections. The right plot shows a boxplot of the error norm ||δk|| computed according to eq. 15 with kecm as kr for

all 100 fracture-and-pipe (magenta) and fracture-only models (gray).

directional permeabilities, indicating that the effect of flow dispersion within the crossing fracture may play a more important235

role then previously thought. However, the cumulative error boxplot in figure 6 indicates that both methods give statistically

acceptable predictions of the directional permeabilities (median error of 2.7 % for the fracture-and-pipe model and a median

error of 7.9 % for the fracture-only model). Thus, the systematic error observed for γ > 40° appears negligible.

6 ECM based permeability upscaling of DFN’s

So far, we presented a methodology to transfer a DFN into a regular grid of equivalent continuum cells and demonstrated240

its accuracy for simple fracture crossings at the scale of the continuum cells. This suggests that we can expect similar ac-

curacy if larger DFN’s with complex structures are represented by an equivalent continuum representation, provided that the

grid resolution is sufficiently large to resolve the DFN in a similar way (i.e. a maximum of two fracture segments and one

intersection per cell). As fracture networks typically have a multi-scale character with power law or log-normal fracture size

distributions (e.g., Bonnet et al., 2001; Davy et al., 2006), fulfilling that conditions requires very large grid resolutions, making245

this method infeasible for practical applications. Predicting the effective permeability of the DFN by solving the groundwater

flow equations (Darcy’s law) would then require prior upscaling of the grid cell conductivities (e.g., Zhou et al., 2010; Hauge

et al., 2012), depending on chosen flow solver and the available computational resources. However, averaging or flow-based

upscaling approaches may misrepresent network-scale flow characteristics, depending on the chosen coarse grid resolution. It

is often unclear, how the resolution dependency affects the accuracy of effective permeability computations and whether flow250

anisotropy is conserved. In the following we will demonstrate, that using ECM’s of DFN’s with sufficiently high resolutions

12

https://doi.org/10.5194/se-2020-208
Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



is capable of doing exactly that, while avoiding initial upscaling. For this, we compare effective permeability tensors obtained

from massively parallelized continuum flow simulations (see Appendix A) for different DFN scenarios with varying resolutions

of their equivalent continuum counterparts. We generate two test DFN’s utilising the open-source MATLAB toolbox ADFNE

(Fadakar Alghalandis, 2017). Similar to Hadgu et al. (2017), the fractures in each DFN are separated into three orthogonal255

sets, reflecting naturally observed properties reported in SKB (2010). S1 : 90|090 , S2 : 90|000 , S3 : 00|360 give the mean

dip-angle and dip-direction for the three fracture sets, respectively with a constant Fisher distribution concentration value of 5

accounting for variability around the mean. Fracture sizes l are distributed as a power law according to:

l =
[(
lα+1
1 − lα+1

0

)
u+ lα+1

0

]1/α+1
, (16)

(a) (b)

(c) (d)

Figure 7. a) and b) display the test DFN’s with 10000 and 1000 fractures, respectively. Both are generated with the software ADFNE

(Fadakar Alghalandis, 2017), whereas input parameters are given in the text. Yellow lines depict the location of the slice shown in c) and d).

There, black lines indicate fractures and magenta spheres the location of fracture intersections.
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(a) (b) (c) (d)

(e) (f)

Figure 8. a), b), c) and d) display the norm of the permeability tensor for each cell in an ECM representations of the 10000 fracture test

DFN displayed in figure 7 a) for grid resolutions of 323, 643, 1283 and 2563 voxels, respectively. e) and f) visualize the resulting velocity

distribution for an applied pressure gradient in z-direction.

whereas l1 is the upper cut-off length (500m) and l0 the lower cut-off length (15m), u represents a set of uniformly distributed260

random numbers in the interval (0,1) and α the power law exponent (here α=−2.5). All fracture centers are randomly placed

in a cube with 500m side lengths (the resulting DFN’s are displayed in figure 7) with a background matrix permeability of

10−18 m2. A sub-linear scaling of aperture versus length (e.g., Olson, 2003; Klimczak et al., 2010) is employed to correlate

the hydraulic apertures ah of the fractures to their lengths l:

ah = β l0.5, (17)265

with a scaling factor β of 10−4. The only difference between the two test DFN’s is the overall fracture number, which is

10000 for the DFN-A (plot a in figure 7) and 1000 for the DFN-B (b in figure 7), such that we obtain a densely and sparsely

fractured system, respectively. DFN-A thus represents the scenario of a typical REV network, according to Long et al. (1982);

Oda (1985). DFN-B, on the other hand, reflects a flow scenario closer to the percolation threshold with anisotropic, non-REV
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Figure 9. Absolute permeability values k for the 6 main components of the computed effective permeability tensor (principial components

in red, off-diagonal components in black) and the norm of the permeability tensor in magenta as a function of the grid resolution in cubic

voxels (number of voxels in x-y-z direction).

behaviour (Maillot et al., 2016).270

After calculating all fracture intersections with ADFNE’s built-in function Intersect (see b and d in figure 7 for intersection

spots in a 2D slice), we use the method presented in section 4, which incorporates the permeability parametrization concepts

from section 3, to generate several ECM’s with varying grid resolutions. Starting from 43 voxels and increasing by powers of

two up to 10243 voxels yields 9 different continuum representations for each test DFN (see figure 8 for examples). For each

representation, we compute the effective permeability tensor of the DFN by repeatedly solving the Darcy equations in three275

principal flow directions (see Appendix A for a detailed description). The results are displayed in figure 9. For both test DFN’s,

the norm of the resulting effective permeability tensor ranges within the same order of magnitude. For DFN-A, we obtain

a difference of about 30 % from coarse (43 voxels, ||kij ||= 5.24 ∗ 10−11) to fine (10243 voxels, ||kij ||= 4.03 ∗ 10−11) grid
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resolution, whereas DFN-B shows a larger difference of about 129 % (coarse ||kij ||= 5.07 ·10−12, fine ||kij ||= 2.21 ·10−12).

Thus, the resolution dependence of the absolute permeability is small for fracture networks with an expected REV-behaviour280

(DFN-A) and more pronounced if fracture networks with non-REV behaviour (DFN-B) are considered. Interestingly, the

individual components of the permeability tensor converge to constant values above resolutions of 1283 voxels for both test-

cases, indicating that anisotropy magnitude depends on the level of detail of the ECM grid.

7 Discussion

Including a pipe-flow model into the ECM generation process improves the representation of permeability anisotropy therein285

and can have impacts on overall permeabilities as well. For example at the scale of the intersection itself, it significantly

modifies the shape and absolute values of the permeability tensor (figure 4). However, looking at the presented errors of the

intersection benchmark (2.7 % and 7.9 % for the fracture-and-pipe and fracture-only model, respectively) indicates that, from a

statistical perspective, the effect of IFL on overall permeability seems minor. Repeating the resolution test from section 6 with

a fracture-only discretization approach for both test DFN’s indeed resulted in almost identical permeability values (deviations290

of about 0.02 %). Thus, the effects of IFL seems to disappear at DFN sizes much larger than intersection size (mean hydraulic

radius of approx. 0.7mm versus 500m system size in our case). This may be attributed to the fixed aperture-length correla-

tion chosen for the test cases in this study. If, for example, two dominant fractures with larger apertures form an intersection

that is penetrating the whole system along the direction of flow, the effect of IFL might become significant again due to the

non-linear radius-permeability relation. Also, if small DFN’s with sizes closer to the mean hydraulic radius of the intersections295

(e.g. micro-fracture networks) are considered for permeability prediction, IFL should play an important role. Then, however,

additional factors have to be considered as well. For example, de Dreuzy et al. (2012) have shown that fracture scale hetero-

geneity affects network scale connectivity due to flow channelling caused by closure in the aperture field. This may appear, if

the ECM cell size is similar to the internal correlation length of the fractures (e.g., Méheust and Schmittbuhl, 2003; Kottwitz

et al., 2020) which would ultimately require new concepts to account for deviations from the average flow behaviour instead300

of using fracture permeability parametrizations. A possible solution would be, to introduce fracture permeability fluctuations,

if the ECM cell size is smaller than the individual fractures correlation length. Unfortunately, the scaling of the correlation

length in fractures is poorly understood so further research is required before integrating these effects. Additionally, the pipe

parametrization we use as first order approximation for intersection permeability requires refinement to account for irregular

shapes, tortuosity or closure, representing another interesting question to solve in future studies.305

For flow simulations at reservoir scales (similar to the test-cases considered here), the only computationally feasible solution

is to use parametrization concepts (e.g. section 3). For that, we were able to demonstrate that the presented fracture-and-pipe

ECM method is capable to provide converged effective permeability tensors if the ECM resolution, i.e., the ratio of system size

to discretization step size, is sufficiently large. This resolution dependency for 3D ECM’s has not been reported at this level of

detail so far, but was expected based on previous works of Jackson et al. (2000) and Svensson (2001). There, the main problem310

is identified as artificially increased connectivity at lower resolutions, which occurs if the resolution is larger than either the
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average spacing of the fracture network or the minimal fracture length of the DFN, leading to overestimated permeabilities

and misinterpreted anisotropy. Here, we use the average minimal distance of each fractures center to all other fracture centers

in the network as a first order approximation for fracture spacing. With an average spacing of 13.1± 4.5 m, continuum grid

resolutions above roughly 38 cubic voxels should theoretically start preventing artificial connectivity for DFN-A. For DFN-B,315

an approximated average spacing of 28.9± 10.9 m, the required resolution to damp that effect is even lower (about 17 cubic

voxels). Both test DFN’s have the same lower cutoff fracture size of 15m, so artificial connectivity should start decreasing

above resolutions of about 33 cubic voxels. Looking at figure 9, we observe ongoing permeability convergence at these three

mentioned resolutions. We attribute this to the fact that fractures are spaced randomly in space but sampled with a regular grid.

Thus, the distance between fracture tips and continuum cell-edges might be larger for low resolutions, again causing perme-320

ability overestimations. Only above a resolution of 128 cubic voxels all these effects seem to dampen out, allowing to declare

the solution as sufficiently converged with quantitative errors below 10% for tensor norm and individual components. Hence,

we suggest a general upper boundary of a third of the minimal fracture length l0 as cell size for an ECM discretization of a

DFN to provide constant results.

Based on analytical solutions of flow in fracture networks with constant apertures, Svensson (2001) proposed that the ratio of325

ECM cell size to hydraulic aperture should not exceed two to provide small flow errors. So far, the ratio of cell size to minimal

hydraulic aperture in the system was much larger (about 1260) due to the low scaling factor β of the sub-linear aperture to

length correlation (eq. 17). To achieve similar discretization ratios of Svensson (2001) while maintaining a power-law size

scaling, we would have to increase β to 10−1, resulting in minimal and maximal apertures of 0.39 and 2.14m, respectively.

As this would violate the assumption of laminar flow conditions within the fractures, we cannot test their hypothesis and330

rather recommend to stay above the maximum hydraulic aperture ah1 of the system, as otherwise the volume-fraction based

permeability scaling factor in equations 13 and 14 exceed unity. In that case, parametrization assumptions might not hold any

more, preventing the use of continuum flow methods. However, as demonstrated here, sticking to l0/3> δx > ah1 as condition

for ECM discretization delivers constant effective permeabilities and conserves flow anisotropy for the upscaling. Within that

discretization range, mapping a DFN onto an equivalent continuum grid can be used as an geometric upscaling procedure for335

further effective permeability analysis. Notably, this range strongly depends on the structural character of the considered DFN,

especially on the fracture size distribution and corresponding aperture correlation functions. For some DFN’s this may require

to crop the fracture size distributions from below to a few multiples of the cell size and compensate the hydraulic contribution

of lower sized fractures with a background permeability.

340

8 Conclusions

In this study, we have analysed the complexity of fracture intersection flow by conducting Stokes-flow simulations in simple

fracture crossings. Intersections that are aligned with the pressure gradient initiating the flow cause an increase in permeability,

as they act similar to a pipe. This results in intersection flow localisation (IFL), i. e., intersections represent preferred pathways

17

https://doi.org/10.5194/se-2020-208
Preprint. Discussion started: 8 January 2021
c© Author(s) 2021. CC BY 4.0 License.



for the fluids compared to the connected fractures. We thus extended the state-of-the-art methodology to generate equivalent345

continuum models (ECM) for effective permeability computations of discrete fracture networks (DFN) to incorporate IFL

effects. Those are integrated by using a directional pipe-flow parametrization with a hydraulic radius of half the hypotenuse size

in a right-angled triangle with side lengths of both intersecting hydraulic apertures. By assessing numerically the permeabilities

of fracture intersections, we could demonstrate, that for system sizes close to the approximated pipe-radius (typically mm to

cm), the effect of IFL on permeability can be almost one order of magnitude. At larger scales (system size of several hundred350

m) on the other hand, the impact of IFL on overall flow is minor. There, the cell size with which the ECM is discretized

represents the most crucial aspect for the accuracy of ECM-based effective permeability predictions. Based on a resolution test

with two different DFN scenarios, we suggest that the ECM cell size should to be lower than a third of the minimal fracture

size and larger then the maximal hydraulic aperture of the system to conserve constant permeabilities and full anisotropy of

flow. Within that range, we conclude that ECM methods equivalently serve as geometric upscaling procedures for fluid flow355

problems. Whether this holds for transport problems as well, needs to be determined in future studies.

Appendix A: ECM-based effective permeability prediction workflow

In the following, we will explain our method to obtain the effective permeability tensor of continuum cell representations for

fractured-porous media. The governing equations for steady-state single-phase flow equations for an incompressible, isothermal

and isoviscous fluid without sources and sinks are given im compact form by the following system of mass (eq. A1) and360

momentum (eq. A2) conservation equations:

∇ · q = 0, (A1)

q =−K∇P, (A2)

whereas ∇ and ∇· denote the gradient and divergence operator for global 3D Cartesian coordinates, respectively. The specific365

discharge (flux) is given by q, pressure by P and the positive definite and symmetric hydraulic conductivity tensor by K

according to:

K =




kxx kyx kzx

kyx kyy kzy

kzx kzy kzz



ρg

µ
, (A3)

with the principal permeability tensor components kxx, kyy and kzz , the off-diagonal components kyx, kzx and kzy as well

as fluid density ρ, gravitational acceleration g and fluid dynamic viscosity µ. We employ a 3D finite-element discretization370

scheme (e.g., Hughes, 1987; Zienkiewicz and Taylor, 2000; Belytschko et al., 2000; Lin et al., 2014) for equations A2 and

A1 to simulate boundary driven pressure diffusion through any input grid consisting of unique permeability tensors. Using the
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Galerkin method (e.g., Belytschko et al., 2000; Lin et al., 2014), we transform equation A1 into an expression for the nodal

residual R according to:

R=
∫

V

∇NTK∇NdV P = 0. (A4)375

V denotes the domain volume, N the nodal shape function matrix and P the nodal pressure. We use 8-node rectangular

elements (voxels) with linear interpolation functions (e.g., Zienkiewicz and Taylor, 2000) for volume integral approximation,

whereas element integrals are evaluated by Gauss-Legendre quadrature rule (e.g., Belytschko et al., 2000) over 8 integration

points with parametric coordinates. Within each element, standard coordinate transformation is employed to compute shape

function derivatives with respect to global coordinates∇N :380

∇N = J−1∇LN, J =∇LNx, (A5)

where ∇L denotes gradient operator for local 3D element coordinates, J the Jacobian matrix and x the 3D global element

coordinates. After imposing initial pressure conditions at the boundary nodes, the global residual vector Rg is assembled from

elemental contributions (e.g., Hughes, 1987) according to eq. A4 to solve the linear system of equations:

CgP
new =Rg, (A6)385

for the unknown pressure Pnew. Cg denotes the global coefficient matrix, which is assembled from the nodal coefficient matrix

C given by:

C =
∫

V

∇NTK∇NdV. (A7)

Following this, we evaluate the nodal Darcy velocities u based on the newly solved nodal pressures by:

u=K∇NPnew, (A8)390

whereas the velocity vectors on the nodes are averaged from the neighbouring integration points.

Three principal directions of the applied pressure gradient have to be considered to predict the full tensor of permeability.

Thus, the flow simulation procedure has to be repeated three times such that each principal flow direction (x-, y- and z-direction

in a Cartesian coordinate system) is covered. For each iteration, two constant pressure values are applied at two opposing395

boundary faces (e.g., lower and upper face in a cube for principal flow in z-direction) and the same linear interpolation between

those two values is applied at the remaining four boundary faces (see figure A1 for an example). This ensures to capture

both, the diagonal and off-diagonal terms of the permeability tensor properly, which are computed by substituting the volume

average ū of all nodal velocity vectors uI (see eq. 3) into Darcy’s law for flow through porous media in the form of eq. 4. Figure

A1 displays the situation of a vertically aligned pressure gradient (∆Pz = δP
δz ). The corresponding entries in the permeability400
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Figure A1. Pressure boundary conditions for an applied gradient in z-direction. Here, top and bottom faces experience constant pressures of

1 and 0 Pa, respectively. A linearly interpolated pressure distribution is applied at the remaining four boundary faces, as indicated by the

coloured wedges next to the side-faces of the model. Thus, principal direction of flow is in z-direction, allowing to calculate the z-component

related terms of the permeability tensor according to eq. A9

tensor are computed according to:



kzx

kzy

kzz


=

µ

∆Pz




ūx

ūy

ūz


 , (A9)

and vice versa for the iterations with pressure gradients in x- and y- direction to obtain the permeability tensor as shown in eq.

A3.

The used single-continuum discretization scheme might appear simplistic compared to more sophisticated mesh-representations405

(see Berre et al., 2019). However, the merits of our approach rather lay (1) on a fully anisotropic permeability representation of

the individual continuum cells and (2) massive parallelisation and HPC optimization. Utilizing the parallelisation framework of

PETSc (Balay et al., 2018) and their multigrid preconditioned solvers significantly reduces computational cost, allowing rou-

tinely simulations with 109 individual grid cells. An increase in grid resolution compensates the benefits of using conforming

meshes or multi-continuum formulations (e.g., Berre et al., 2019). To test this, we compare our modelling procedure against410

benchmark case 1 from Berre et al. (2020), who compare 17 different methods of simulating single-phase flow in fractured

porous media. The initial setup (displayed in a) in figure A2) consists of an inclined fracture with an hydraulic aperture of

10−2 m embedded in a cube of 100 m length with a matrix hydraulic conductivity of 10−6 m2, whereas the hydraulic con-

ductivity of a small band of 10 m width at the bottom is increased to 10−5 m2. We prescribe these two values as background
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Figure A2. Benchmark case 1 from Berre et al. (2020). a) shows the benchmark geometry of an embedded fracture (aperture of 10−2 m)

in a matrix with a hydraulic conductivity of 10−6. The hydraulic conductivity in the grey band at the bottom is increased to 10−6. Constant

pressures of 4 Pa and 1 Pa are applied at the inlet band (blue) and outlet band (red), respectively. The diagonal light grey line through the

model indicates the sampling line for the pressures shown plot in b). There, the pressure distribution is plotted as a function of arc length of

the gray line in a) and the results of different resolutions are compared to the benchmark target field obtained from 17 different numerical

methods. The dark grey region illustrates the area between the 10th and 90th percentiles for the highest refinement level of the benchmarked

methods, whereas the light grey region illustrates the same area for their lowest refinement level.

permeabilities and use the methodology described in section 3 to incorporate fracture permeability accordingly. The boundary415

conditions are given by small pressure inlet (4 Pa) and outlet (1 Pa) bands as indicated in plot a in figure A2. The comparison

of the pressure distribution (plot b in figure A2) highlights, that already with a resolution of 323 voxels, we obtain a good fit

with the benchmark target field. This thus suggest that our modelling procedure is sufficiently correct for effective permeability

predictions.
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