
Authors’ response to RC1 (Alexander Schaaf’s) interactive comment on "Uncertainty assessment for 3D
geologic modeling of fault zones based on geologic inputs and prior knowledge”.

Reviewer’s comments are shown in italicized fonts, and the authors’ responses and changes to the manuscript are highlighted
with callouts. The general comments are shown and addressed first, then the specific comments are addressed by line/figure5
number.

1 General comments

The paper presents a step forward in the uncertainty-aware modeling of subsurface faults in structural geomodels. The authors
make use of Monte Carlo simulations to simulate uncertainty of fault zones based on a specific fault zone parameterization
(surface traces, vertical termination surfaces, structural orientation and fault zone thickness) using a proprietary software10
suite. The authors elaborate the use of anisotropic spherical distributions for parameterizing orientation data for uncertainty
simulation, which is a valuable contribution. The manuscript is overall well structured, except for a few re-arrangements nec-
essary to increase readability (detailed in the specific comments). The authors give proper credit to related work and clearly
indicate their own contribution. The title clearly reflects the contents of the paper. The figures presented will require some work
to improve legibility and to avoid confusion of the reader.15

But the authors appear to be confusing their simulation approach: They introduce MCUP (i.e. Monte Carlo simulation)
in the methodology and properly parameterize their stochastic geomodel using probability distributions. But they then erro-
neously describe that they use Markov Chain Monte Carlo (MCMC) sampling. MCMC sampling is used for exploring the
posterior space, which does not exist in a Monte Carlo simulation (i.e. MCUP). As the probability space is known in a Monte20
Carlo simulation, it needs no exploration. In a Monte Carlo simulation we only don’t know how the combination of samples
effect the output of the simulator function (the geomodeling software), thus we randomly sample (Monte Carlo sampling) from
the parameter distributions to create a geomodel ensemble that shows us how the uncertainty in the input parameters effects
the geomodel output. Luckily, to my knowledge, the used probabilistic programming framework pymc3 defaults to Monte Carlo
sampling when no likelihood function is given (and thus no Bayesian inference can be conducted). Thus the authors appear to25
have accidentally conducted the simulations they wanted to do (MCUP/Monte Carlo sampling). The use of trace plots (as in
Figure 6 and 8) for Monte Carlo simulation results is meaningless though (and potentially misleading), as no sampler is being
used that requires determination of convergence. As, luckily, the presented simulation results appear to be valid MCUP results,
the authors only need to change their writing accordingly, without the need for re-running simulations.

30
In its current state, mixing up the terminology of Bayesian inference and MCUP, I can not recommend the paper to be ac-

cepted. But if the authors fix their method descriptions and discussions of the results to fit the MCUP simulations they actually
conducted, I believe this could become a valid scientific contribution that is worth publishing in Solid Earth.

Authors’ answer:35

The authors truly appreciate the detailed clarifying comments, especially regarding the description of the simulation ap-
proach. The authors acknowledge that there was confusion regarding how the simulation approach was described, primarily in
the erroneous usage of the term Markov Chain Monte Carlo (MCMC) when the method applied in the study is in fact simply
Monte Carlo sampling to explore the set of input probability distributions. The authors wish to reaffirm that the methodology40
employed in the study is intended to be that which the reviewer identified: the use of Monte Carlo sampling to explore the
prior uncertainty space of geologic modeling inputs. As is, the analysis performed in the study does not contain any use of
Bayesian inference via MCMC (i.e., no likelihood functions were defined or used), nor was this an intended description of
the methodology employed. The authors have taken steps throughout the text to remove any erroneous descriptions of the
methodology and clarify the intended use of Monte Carlo sampling. A broad overview of the changes made to rectify this error45
include (i) removal of any mention of MCMC or posterior distributions and replacement with appropriate terminology and (ii)
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the removal of trace plots and a rethinking of the simulation quality assessment section.

2 Specific comments

2.1 1 - Introduction50

2.1.1 The Introduction of the paper needs to clearly state the scope of the study / hypothesis to be tested or explored.

Authors’ answer:

The two paragraphs previously in lines 52-68 have been incorporated fluidly into the introduction to specify the scope and
motivation of the study.55

Changes to the manuscript:

Text moved to the end of Section 1 – Introduction. . . This study expands the use of MCUP probabilistic geomodeling to a
new aspect of geologic modeling – fault zones, or the localized volume of fractured and displaced rock surrounding a finite fault60
surface, typically composed of a fault core and a damage zone (Caine et al., 1996; Childs et al., 2009; Peacock et al., 2016; Choi
et al., 2016). Fault zones introduce regions of altered geotechnical strength and hydraulic permeability into the surrounding
in-tact rockmass and are therefore of major importance to geological engineering projects that rely on accurate assessments of
subsurface rock properties (e.g., tunnels, mines). While faults have been the focus of a significant amount of recent geologic
modeling research (Røe et al., 2014; Cherpeau et al., 2010; Cherpeau and Caumon, 2015; Aydin and Caers, 2017), these works65
have focused on modeling fault surfaces directly rather than modeling the 3D geometry of fault zones. Detailed modeling of the
3D geometry of fault zones can improve the understanding of faults’ impacts on geotechnical and reservoir engineering projects
due to the fact that variations in fault zone thickness or composition can greatly alter the mechanical and hydrological behavior
of a fault, e.g., its sealing potential (Caine et al., 1996; Fredman et al., 2008; Manzocchi et al., 2010). By an in-depth search of
the literature, as of yet there is no dedicated approach to characterizing the uncertainty of fault zones in 3D geologic models.70
Building on the existing literature on understanding the uncertainties about faults in the subsurface (Choi et al., 2016; Shipton
et al., 2019; Torabi et al., 2019b), this study develops a novel, dedicated approach to leveraging probabilistic geomodeling to
characterize the uncertainty of fault zones using 3D geologic models.

Fault zones may be irregular in shape, creating complex geometries which are difficult to characterize quantitatively (Torabi
et al., 2019a, b). Peacock et al. (2016) provide a detailed list of the various types of damage zones and intersecting fault75
networks that comprise the general term “fault zone”. The inherent complexity of fault zone structure makes their precise
modeling intractable in an automated MCUP formulation. The inherent complexity of fault zone structure makes their precise
modeling intractable in an automated geologic modeling application, such as that required by probabilistic geomodeling. A
simplified approach to modeling fault zones in 3D geologic models is developed in this study based on the key elements
defining fault zone geometry at a practical level of detail.80

2.2 2 - Model implementation

2.2.1 L52 - Both paragraph (lines 52-68) need to incorporated into the introduction as they define the scope and
motivation of the study.

Authors’ answer:
85

See above comment regarding reorganizing the content of the Introduction.
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2.3 3 - Probability distributions for MCUP

2.3.1 L138 - How do you evaluate the likelihood of the proposal step in a Markov Chain during MCUP? This is only
possible when doing a Bayesian inference, not a Monte Carlo uncertainty propagation, as you don’t have any
likelihood function.90

Authors’ answer:

The erroneous mention of MCMC sampling algorithms has been removed and edited to specify the use of Monte Carlo
sampling algorithms. This eliminates the question of "How do you evaluate the likelihood of the proposal step in a Markov
Chain during MCUP?" by clarifying that only Monte Carlo sampling is performed, and not Bayesian inference.95

Changes to the manuscript:

Simulation of scalar data is straightforward and well-established through the use of Markov-chain Monte Carlo (MCMC)
sampling algorithms, easily accessible through the open source Python package PyMC3 (Salvatier et al., 2016). Simulation100
of scalar data is straightforward and well-established through the use of Monte Carlo sampling algorithms, easily accessible
through the open source Python package PyMC3 (Salvatier et al., 2016).

2.3.2 Overall the description of simulation/sampling should be moved into Section 3.2.

Authors’ answer:105

The description of simulation and sampling has been incorporated into Section 3.2.

Changes to the manuscript:
110

The paragraph referenced has been moved to Section 3.2: Simulation of scalar data is straightforward and well-established
through the use of Markov-chain Monte Carlo (MCMC) sampling algorithms, easily accessible through the open source Python
package PyMC3 (Salvatier et al., 2016). The PyMC3 library has been demonstrated as a platform for performing MCUE of
3D geologic models (de la Varga and Wellmann, 2016; Schneeberger et al., 2017), and has even been implemented in the
open source geologic modeling platform GemPy (de la Varga et al., 2019). An additional consideration in the case of con-115
tinuous data types is the distinction between scalar and vectorial data (e.g., structural orientations). A probability distribution
describing orientation data resides on the surface of a unit-sphere in 3D, and can be characterized using spherical probability
distributions (Fisher et al., 1987; Mardia and Jupp, 2000). The benefit of using spherical probability distributions to describe
structural orientation uncertainty in 3D geologic modeling is clearly stated by Pakyuz-Charrier et al. (2018b), and their ap-
plication in MCUE formulations continues to develop (Pakyuz-Charrier et al., 2018b, a; Carmichael and Ailleres, 2016). To120
remain concise, the following section focuses on the new contributions made to the use of spherical probability distributions
utilizing the R-fast open source package available in the R language (Papadakis et al., 2018).

2.3.3 L140 - The paper de la Varga & Wellmann (2016) uses pymc to conduct a Bayesian inference - thus not MCUP.

Authors’ answer:125

While the referenced study in question includes the use of the MCUP approach for probabilistic geomodeling, the authors
realize the lack of clarity due to the referenced paper’s focus on PyMC’s capability to perform Bayesian inference. The sen-
tence has been reworded and expanded to emphasize the capability of PyMC3 to perform Monte Carlo sampling outside of a
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Bayesian inference, fitting its application in the current study.130

Changes to the manuscript:

The PyMC3 library has been demonstrated as a platform for performing MCUP of 3D geologic models (de la Varga and Wellmann, 2016; de la Varga and Wellmann, 2017),
and has even been implemented in the open source geologic modeling platform GemPy (de la Varga et al., 2019). The PyMC3135
library is designed to facilitate Bayesian inference using computational sampling algorithms, though the inclusion of likelihood
functions is not required thereby allowing for utilization of the package functions for Monte Carlo sampling alone. The use
of PyMC3 has been demonstrated successfully in the context of 3D geologic modeling by de la Varga and Wellmann (2016);
Schneeberger et al. (2017), and its implementation in Theano has allowed for seamless integration with the open source geo-
logic modeling platform GemPy (de la Varga et al., 2019). This study focuses solely on the step of probabilistic geomodeling140
based on 3D geologic modeling inputs, leveraging only the Monte Carlo sampling capabilities of PyMC3.

2.4 3.2 - Simulation

2.4.1 A more adequate name for the section would be “Sampling”.

Authors’ answer:145

The section name has been changed to Sampling.

2.5 3.3 - Rotation

2.5.1 This section is part of sampling and should be merged into Section 3.2

Authors’ answer:150

The section has been appended to Section 3.2 - Sampling.

2.6 4.2 - Surface trace

2.6.1 L291 - It is unclear to me what the “approximate geographical error of known landmarks” is.

Authors’ answer:155

The section containing this sentence has been revised and expanded to clearly define the sources of uncertainty affecting the
fault trace and the methods with which they are quantified - including the geographical error arising from the use of a historic
geologic map.

160
Changes to the manuscript:

The uncertainty affecting the surface fault trace results in changes in the trace location and shape. Independent perturbations
of the trace’s endpoints are applied and linearly propagated along the fault trace to arrive at a smoothly varied location and
shape. A normal distribution characterizing the uncertainty about the location of each trace endpoint is parameterized from165
the joint uncertainty stemming from fault zone centerline definition, digitization error and geographical errors in addition to a
random direction of shift obtained from a uniform distribution. The three primary sources of uncertainty are quantified using the
available information listed in respective order: average fault zone thickness, published metrological studies (Zhong-Zhong,
1995) and approximate geographical error of known landmarks (e.g., mountain tops). Additional details on the method of
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perturbing the location and shape of the surface trace based on the joint effect of these sources of uncertainty are available in170
the code supplement.

A bounded uniform distribution is parameterized to simulate a random direction of perturbation for each trace endpoint
due to geographical error (i.e., drafting and georeferencing error). The normal distribution representing the total bound on
geographical error is converted to respective x̂ and ŷ components using the directional cosine of the angle sampled from the
uniform distribution. This conversion to unit components is used similarly with the fault zone centerline definition uncertainty175
and digitization uncertainty using the acute angle θ between the orientation of the fault trace with the northing and easting
directions. An additional logical check for the strike quadrant of the surface trace is required to implement this approach.

The individual sources of uncertainty affecting the surface trace endpoint locations are combined into a derived distribution
using a deterministic function to determine the total uncertainty affecting the location of each endpoint, given by Eq. 1.180

P (x̂|σcenterline,σdig,σgeo,θ) = cos(θ)
(
N(0,σcenterline)+N(0,σdig)

)
+N(0,σgeo)sin

(
U(0,2π)

)
,

P (ŷ|σcenterline,σdig,σgeo,θ) = sin(θ)
(
N(0,σcenterline)+N(0,σdig)

)
+N(0,σgeo)cos

(
U(0,2π)

) (1)

The average fault zone thickness was used to characterize the fault zone centerline definition uncertainty affecting each
surface trace endpoint. The geographical error was calculated to be approximately 40 meters based on the average distance
measured between known landmarks (e.g., mountain tops) on the geologic map and modern satellite imagery data. For both185
of these sources of uncertainty, the maximum error range described is treated as a 95% confidence interval, allowing a normal
distribution to be parameterized with a mean of zero and a standard deviation equal to maximumerror/3.92. The digitization
error for a 1:12,000 map was represented by a normal distribution with a standard deviation of 3.666 m based on (Zhong-Zhong,
1995).

2.7 4.3 - Vertical termination depth190

2.7.1 L312 - What is a deterministic distribution? Do you mean a derived distribution? Or an empirically parametrized
distribution? A distribution should be by definitiv nondeterministic.

Authors’ answer:

The phrase "deterministic distribution" was used following the PyMC3 function terminology pm.Deterministic(), which is195
used for combining multiple stochastic variables (i.e., distributions) using a deterministic function. As the reviewer notes, this
function is in fact empirically parameterized, and the more appropriate name “empirically derived distribution" – also known as
a deterministic model combining multiple stochastic variables in PyMC3 terminology – has been substituted. The description
of the use of this style of distribution has been modified to clarify the reliance on combining several stochastic variables using
an empirically derived deterministic function.200

Changes to the manuscript:

The vertical termination depth is sampled from a deterministic distribution combining uncertainty about the aspect ratio,
fault trace persistence and prior information of the fault elevation and average dip. Sampling the uncertainty of the fault zone205
vertical termination depth involves combining multiple probability distributions using a deterministic function to generate an
empirically derived probability distribution. In the derived distribution for fault zone vertical termination depth, flength and
Aspectratio are characterized as independent probability distributions (respectively) and combined using a deterministic func-
tion based on the empirically derived description of 3D fault surface geometry, zterm = zoutcrop− fheight ∗ sin(θ);fheight =

flength

Aspectratio . In this manner, the vertical termination depth (zterm) is calculated by converting the fault height to the vertical210
height using the average dip angle (θ) and subtracting this from the average elevation of the fault outcrop (zoutcrop).
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2.8 4.5 - Simulation quality assessment

2.8.1 L334 - Without a likelihood function you can’t use a MCMC sampler, as you are unable to evaluate the step
proposals.215

2.8.2 L336 - In an MCUP simulation, you have no posterior uncertainty space, as you are not using any likelihood
function. You are mixing up terminology of MCUP and Bayesian inference. Again, MCMC sampling is only
possible with a likelihood function (thus not in MCUP).

Authors’ answer:
The entire Section 4.5 has been revised in depth to remove erroneous inclusions of the terminology MCMC sampler and to220
remove the erroneous use of trace plots in assessing the quality of Monte Carlo simulation for exploring the prior uncertainty
space.

Changes to the manuscript:
225

The quality of probabilistic simulation relies on primarily is a product of the size of the uncertainty space, the simulation
method used and the number of samples drawn. For any simulation, the realizations generated can be plotted in the data
space and visually examined for appropriate coverage and shape (termed a realization plot). For non-spherical scalar data
types, use of MCMC simulation methods creates trace plots and posterior histograms of the Monte Carlo draws provide an
intuitive method for independently assessing the quality of simulation for each input. , which provide an intuitive method for230
independently assessing the quality of simulation for each input. Uniformity of the trace plot and width of the 95% highest
posterior density (HPD) indicate, respectively, the convergence of the Markov Chain sampling and the thorough exploration of
the posterior uncertainty space. Visual analysis of the shape of the histogram compared to the expected shape of the distribution
and a comparison between the input distribution parameters (e.g., mean and standard deviation for a normal distribution) and
their values calculated from the samples can quickly determine whether the samples drawn have sufficiently explored the235
uncertainty space. Figure 6 shows an example of the realization plot, trace plots and posterior sample histograms generated for
the simulation of vertical termination depths from Section 4.3. This figure allowed for identifying a strong tailing behavior in
the output realizations, leading to a reparameterization discussed in Section 6.2.
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Figure 1. Realizations and Monte Carlo analysis results (trace plot and posterior histograms) Visualization of Monte Carlo samples and
associated geologic input realizations from perturbation of the fault zone vertical termination depth based on a uniform distribution of fault
aspect ratio. The 95% highest posterior predictive density is overlain on the posterior histograms of the Monte Carlo samples.

Trace plots are not available for the spherical data simulations due to reliance on the acceptance-rejection simulation method,
while posterior For spherical data simulations, histograms may be replaced by Exponential Kamb contouring (Vollmer, 1995)240
or Rose diagrams to visualize the density of sampled poles across the surface of the unit sphere (as projected onto a lower-
hemisphere projection). This visual assessment provides a semi-quantitative evaluation of the shape and distribution of the
posterior spherical probability distribution sampled structural orientations. Additionally, a recalculation of the eigenvector
decomposition from the set of simulated samples provides a measure of the accuracy of the posterior distribution with respect
to the input orientation parameter values. Tools for generating figures for simulation quality assessment are provided and245
detailed in the input perturbation script.

Based on the assessment of simulation quality and consideration of compounding factors during uncertainty propagation, the
MCUE formulation for the single fault model was run for a number of various realization counts (100, 300, 500, 1,000, 2,000
and 3,000). The processing time generally increases linearly with realization count, reaching many hours to several days for
high realization counts on the single fault mock model containing 2.5 million cells. The vast majority of processing time is taken250
up by the model updating and block model calculation in Leapfrog. For the single fault mock model with 1,000 realizations and
2.5 million cells the sampling benchmark time was 87 seconds while the model processing benchmark time was 38.5 hours.
This study is intended to introduce and expand on the use of MCUE formulations for specific geologic modeling problems, and
work regarding optimizing the efficiency of model processing is not a focus. The experiments conducted do highlight the need
to understand (i) the realization requirement for exploring modeling inputs independently and its relationship to the size of the255
independent uncertainty spaces, (ii) the interactions of various, related parameters during the uncertainty propagation step and
(iii) identification of a balance between final model resolution, coverage, complexity and processing time.

2.9 6.2 - Model parameterization

2.9.1 L388 - The use of “posterior distribution” is false, as you are doing MCUP, not a Bayesian inference.

Authors’ answer:260
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In line with the general comments regarding erroneous usage of terms from Bayesian inference (MCMC, posterior distribu-
tions), the description here has been revised to appropriately describe the prior predictive model that was explored using Monte
Carlo sampling.

265
Changes to the manuscript:

However, the posterior empirically derived distribution of vertical termination depths resulting from a bounded uniform
parameterization of fault aspect ratio showed a strong tailing effect (right skewed).

2.10 6.3 - Parameter relationships270

2.10.1 L411 - The meaning of the entire paragraph is unclear to me and needs to be revised.

Authors’ answer:

The specified paragraph on addressing the observed relationships among geologic modeling input parameters using the
MCUP formulation has been revised clarify the authors’ stance on why and how these parameter relationships arise in the275
MCUP formulation. In essence, the paragraph is intended to highlight the potential for undersampling the geologic model
uncertainty space when considering overlapping uncertainty envelopes of individual model inputs.

Changes to the manuscript:
280

Relationships between modeling inputs also arise in different ways, for example the vertical termination depth and structural
orientation uncertainty envelopes overlap heavily in the combined model uncertainty (Figure 5) leading to undersampling of
the model uncertainty space when the independent uncertainty envelopes are combined. Similar behavior is observed when
comparing orientation perturbations to fault zone thickness where thinner fault zones require finer orientation perturbations to
fully populate the uncertainty space of the 3D geologic model. Despite performing a thorough exploration of each, independent285
parameter’s uncertainty during Monte Carlo sampling (Section 4.5), undersampling of the combined geologic model uncer-
tainty space can still occur during uncertainty propagation. An example of this arises when considering the vertical termination
depth and structural orientation. Truncation of fault zone realizations at any given termination interval effectively reduces the
number of realizations available for sampling the full range of structural orientation uncertainty at deeper intervals. This is
evidenced in Figure 5(b) by the increasing prevalence of "stair-stepping" artefacts in the combined model uncertainty with290
depth.

2.10.2 L419 - Gibbs sampling is not applicable to MCUP, as no likelihood is used.

Authors’ answer:
295

The erroneous mention of Gibbs sampling has been removed. The section has been revised to better highlight the potential
for exploring the input uncertainty space using joint distributions among various parameters believed to be correlated.

Changes to the manuscript:
300

A treatment of these relationships through the use of Gibbs sampling or other conditional methods of Monte Carlo simulation
parameterizing previously independent input probability distributions using a joint distribution (and an appropriate sampling
scheme) could potentially generate more realistic and efficient assessments of model uncertainty.
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3 Figures

3.1 Figure 2305

The dotted volume texture makes annotations for uncertainty extremely hard to read. The same goes for there fault zone signa-
ture/texture. I’d highly recommend removing as much texture as possible from the plot to improve legibility.

“The Visual Display of Quantitative Information” by Edward Tufte provides ample of additional reasons for reducing dis-
tracting “ink” from scientific visualizations and is well worth a read :-)310

Authors’ answer:

The suggested changes have been made to the fault zone schematic figure, clearing away non-informative ink and empha-
sizing the illustrated uncertainty envelopes. Thank you very much to the reviewer for the kind suggestion on better practices315
for graphical display.

Changes to the manuscript:
Fa
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Fault centerline definition 
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Fault zone thickness variability
Fault orientation variability
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Figure 2. A schematic showing the sources of uncertainty possible uncertainty envelopes about the four geologic modeling inputs used to
characterize the 3D geometry of a fault zone in the subsurface. Modified from Krajnovich et al. (2020).

3.2 Figure 4320

Highlighting of fault traces is really difficult to see. I highly recommend making this figure more legible to the reader by re-
moving visual complexity: e.g. remove coloring of geological map in the background.
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Authors’ answer:
325

The figure has been edited to make the fault traces bolder and to provide a stronger contrast between the fault traces and the
geological map in the background.

Changes to the manuscript:
330

Figure 3. 1:12,000 geologic map from Robinson et al. (1974) showing mapped fault zones of varying widths. The white rectangle and
associated overlay (a) show the single fault model while the blue rectangle and associated overlay (b) show the fault network model. Fault
trace(s) used for modeling are highlighted within each rectangle as green polylines.

3.3 Figure 5

– legend is barely legible - please increase text size

– entropy plot of the fault zone thickness barely shows any uncertainty. If your discretization is not fine enough to resolve
the simulated uncertainties, then is it worth incorporating into you model?

Authors’ answer:335

The legend text size has been increased to match the average text size of the paper’s text.

The reviewer’s comment is interesting and insightful, and is addressed briefly in the preceding section. While it is quite
clear that the fault zone thickness uncertainty is largely insignificant in this single fault model (where the fault zone thickness340
was 8 m, vs. the 5 m block size), the authors observed that the wider fault zone present in the second, fault network model
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would contribute more heavily to the model uncertainty. This reasoning, and the desire to present general recommendations to
modeling the uncertainty of fault zones, led the authors to leave the results as is for the single fault model.

Changes to the manuscript:345

Figure 4. Block models showing information entropy quantified from (a) independent modeling inputs and (b) combined modeling inputs.
The difference between the combined geologic model uncertainty and each independent modeling input is shown in (c), where blue values
indicate that the independent modeling input showed greater entropy than the combined model uncertainty.

3.4 Figure 6

The use of trace plots is only useful if evaluating convergence of (e.g.) Markov chains. MCUP uses Monte Carlo simulation,
thus the use of trace plots serves no purpose and is confusing. Also the rug plot on the left size shows the same information as
the histogram of the vertical termination depth in the lower right. I’d recommend just using the histogram to demonstrate that350
you’ve sampled enough samples.

Authors’ answer:

In line with this specific comment and the general comments above, the erroneous referrals to MCMC methods and the use of355
trace plots have been eliminated from the paper. They have been replaced by the appropriate discussion of assessing the explo-
ration of the input uncertainty space using graphical representations of realizations and histograms of the Monte Carlo samples.

Changes to the manuscript:
360
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Figure 5. Realizations and Monte Carlo analysis results (trace plot and posterior histograms) Visualization of Monte Carlo samples and
associated geologic input realizations from perturbation of the fault zone vertical termination depth based on a uniform distribution of fault
aspect ratio. The 95% highest posterior predictive density is overlain on the posterior histograms of the Monte Carlo samples.

3.5 Figure 8

Authors’ answer:

See above comment.
365

Changes to the manuscript:
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Figure 6. Realizations and Monte Carlo analysis results (trace plot and posterior histograms) Visualization of Monte Carlo samples and
associated geologic input realizations from perturbation of the fault zone vertical termination depth, reparameterized using a log-normal
distribution of fault aspect ratio. The 95% highest posterior predictive density is overlain on the posterior histograms of the Monte Carlo
samples.
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