
Authors’ response to RC1 (Alexander Schaaf’s) interactive comment on "Uncertainty assessment for 3D
geologic modeling of fault zones based on geologic inputs and prior knowledge”.

Reviewer’s comments are shown in italicized fonts, and the authors’ responses and changes to the manuscript are highlighted
with callouts. The general comments are shown and addressed first, then the specific comments are addressed by line/figure5
number.

1 General comments

The paper presents a step forward in the uncertainty-aware modeling of subsurface faults in structural geomodels. The authors
make use of Monte Carlo simulations to simulate uncertainty of fault zones based on a specific fault zone parameterization
(surface traces, vertical termination surfaces, structural orientation and fault zone thickness) using a proprietary software10
suite. The authors elaborate the use of anisotropic spherical distributions for parameterizing orientation data for uncertainty
simulation, which is a valuable contribution. The manuscript is overall well structured, except for a few re-arrangements nec-
essary to increase readability (detailed in the specific comments). The authors give proper credit to related work and clearly
indicate their own contribution. The title clearly reflects the contents of the paper. The figures presented will require some work
to improve legibility and to avoid confusion of the reader.15

But the authors appear to be confusing their simulation approach: They introduce MCUP (i.e. Monte Carlo simulation)
in the methodology and properly parameterize their stochastic geomodel using probability distributions. But they then erro-
neously describe that they use Markov Chain Monte Carlo (MCMC) sampling. MCMC sampling is used for exploring the
posterior space, which does not exist in a Monte Carlo simulation (i.e. MCUP). As the probability space is known in a Monte20
Carlo simulation, it needs no exploration. In a Monte Carlo simulation we only don’t know how the combination of samples
effect the output of the simulator function (the geomodeling software), thus we randomly sample (Monte Carlo sampling) from
the parameter distributions to create a geomodel ensemble that shows us how the uncertainty in the input parameters effects
the geomodel output. Luckily, to my knowledge, the used probabilistic programming framework pymc3 defaults to Monte Carlo
sampling when no likelihood function is given (and thus no Bayesian inference can be conducted). Thus the authors appear to25
have accidentally conducted the simulations they wanted to do (MCUP/Monte Carlo sampling). The use of trace plots (as in
Figure 6 and 8) for Monte Carlo simulation results is meaningless though (and potentially misleading), as no sampler is being
used that requires determination of convergence. As, luckily, the presented simulation results appear to be valid MCUP results,
the authors only need to change their writing accordingly, without the need for re-running simulations.

30
In its current state, mixing up the terminology of Bayesian inference and MCUP, I can not recommend the paper to be ac-

cepted. But if the authors fix their method descriptions and discussions of the results to fit the MCUP simulations they actually
conducted, I believe this could become a valid scientific contribution that is worth publishing in Solid Earth.

Authors’ answer:35

The authors truly appreciate the detailed clarifying comments, especially regarding the description of the simulation ap-
proach. The authors acknowledge that there was confusion regarding how the simulation approach was described, primarily in
the erroneous usage of the term Markov Chain Monte Carlo (MCMC) when the method applied in the study is in fact simply
Monte Carlo sampling to explore the set of input probability distributions. The authors wish to reaffirm that the methodology40
employed in the study is intended to be that which the reviewer identified: the use of Monte Carlo sampling to explore the
prior uncertainty space of geologic modeling inputs. As is, the analysis performed in the study does not contain any use of
Bayesian inference via MCMC (i.e., no likelihood functions were defined or used), nor was this an intended description of
the methodology employed. The authors have taken steps throughout the text to remove any erroneous descriptions of the
methodology and clarify the intended use of Monte Carlo sampling. A broad overview of the changes made to rectify this error45
include (i) removal of any mention of MCMC or posterior distributions and replacement with appropriate terminology and (ii)
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the removal of trace plots and a rethinking of the simulation quality assessment section.

2 Specific comments

2.1 1 - Introduction50

2.1.1 The Introduction of the paper needs to clearly state the scope of the study / hypothesis to be tested or explored.

Authors’ answer:

The two paragraphs previously in lines 52-68 have been incorporated fluidly into the introduction to specify the scope and
motivation of the study.55

Changes to the manuscript:

Text moved to the end of Section 1 – Introduction. . . This study expands the use of MCUP probabilistic geomodeling to a
new aspect of geologic modeling – fault zones, or the localized volume of fractured and displaced rock surrounding a finite fault60
surface, typically composed of a fault core and a damage zone (Caine et al., 1996; Childs et al., 2009; Peacock et al., 2016; Choi
et al., 2016). Fault zones introduce regions of altered geotechnical strength and hydraulic permeability into the surrounding
in-tact rockmass and are therefore of major importance to geological engineering projects that rely on accurate assessments of
subsurface rock properties (e.g., tunnels, mines). While faults have been the focus of a significant amount of recent geologic
modeling research (Røe et al., 2014; Cherpeau et al., 2010; Cherpeau and Caumon, 2015; Aydin and Caers, 2017), these works65
have focused on modeling fault surfaces directly rather than modeling the 3D geometry of fault zones. Detailed modeling of the
3D geometry of fault zones can improve the understanding of faults’ impacts on geotechnical and reservoir engineering projects
due to the fact that variations in fault zone thickness or composition can greatly alter the mechanical and hydrological behavior
of a fault, e.g., its sealing potential (Caine et al., 1996; Fredman et al., 2008; Manzocchi et al., 2010). By an in-depth search of
the literature, as of yet there is no dedicated approach to characterizing the uncertainty of fault zones in 3D geologic models.70
Building on the existing literature on understanding the uncertainties about faults in the subsurface (Choi et al., 2016; Shipton
et al., 2019; Torabi et al., 2019b), this study develops a novel, dedicated approach to leveraging probabilistic geomodeling to
characterize the uncertainty of fault zones using 3D geologic models.

Fault zones may be irregular in shape, creating complex geometries which are difficult to characterize quantitatively (Torabi
et al., 2019a, b). Peacock et al. (2016) provide a detailed list of the various types of damage zones and intersecting fault75
networks that comprise the general term “fault zone”. The inherent complexity of fault zone structure makes their precise
modeling intractable in an automated MCUP formulation. The inherent complexity of fault zone structure makes their precise
modeling intractable in an automated geologic modeling application, such as that required by probabilistic geomodeling. A
simplified approach to modeling fault zones in 3D geologic models is developed in this study based on the key elements
defining fault zone geometry at a practical level of detail.80

2.2 2 - Model implementation

2.2.1 L52 - Both paragraph (lines 52-68) need to incorporated into the introduction as they define the scope and
motivation of the study.

Authors’ answer:
85

See above comment regarding reorganizing the content of the Introduction.
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2.3 3 - Probability distributions for MCUP

2.3.1 L138 - How do you evaluate the likelihood of the proposal step in a Markov Chain during MCUP? This is only
possible when doing a Bayesian inference, not a Monte Carlo uncertainty propagation, as you don’t have any
likelihood function.90

Authors’ answer:

The erroneous mention of MCMC sampling algorithms has been removed and edited to specify the use of Monte Carlo
sampling algorithms. This eliminates the question of "How do you evaluate the likelihood of the proposal step in a Markov
Chain during MCUP?" by clarifying that only Monte Carlo sampling is performed, and not Bayesian inference.95

Changes to the manuscript:

Simulation of scalar data is straightforward and well-established through the use of Markov-chain Monte Carlo (MCMC)
sampling algorithms, easily accessible through the open source Python package PyMC3 (Salvatier et al., 2016). Simulation100
of scalar data is straightforward and well-established through the use of Monte Carlo sampling algorithms, easily accessible
through the open source Python package PyMC3 (Salvatier et al., 2016).

2.3.2 Overall the description of simulation/sampling should be moved into Section 3.2.

Authors’ answer:105

The description of simulation and sampling has been incorporated into Section 3.2.

Changes to the manuscript:
110

The paragraph referenced has been moved to Section 3.2: Simulation of scalar data is straightforward and well-established
through the use of Markov-chain Monte Carlo (MCMC) sampling algorithms, easily accessible through the open source Python
package PyMC3 (Salvatier et al., 2016). The PyMC3 library has been demonstrated as a platform for performing MCUE of
3D geologic models (de la Varga and Wellmann, 2016; Schneeberger et al., 2017), and has even been implemented in the
open source geologic modeling platform GemPy (de la Varga et al., 2019). An additional consideration in the case of con-115
tinuous data types is the distinction between scalar and vectorial data (e.g., structural orientations). A probability distribution
describing orientation data resides on the surface of a unit-sphere in 3D, and can be characterized using spherical probability
distributions (Fisher et al., 1987; Mardia and Jupp, 2000). The benefit of using spherical probability distributions to describe
structural orientation uncertainty in 3D geologic modeling is clearly stated by Pakyuz-Charrier et al. (2018b), and their ap-
plication in MCUE formulations continues to develop (Pakyuz-Charrier et al., 2018b, a; Carmichael and Ailleres, 2016). To120
remain concise, the following section focuses on the new contributions made to the use of spherical probability distributions
utilizing the R-fast open source package available in the R language (Papadakis et al., 2018).

2.3.3 L140 - The paper de la Varga & Wellmann (2016) uses pymc to conduct a Bayesian inference - thus not MCUP.

Authors’ answer:125

While the referenced study in question includes the use of the MCUP approach for probabilistic geomodeling, the authors
realize the lack of clarity due to the referenced paper’s focus on PyMC’s capability to perform Bayesian inference. The sen-
tence has been reworded and expanded to emphasize the capability of PyMC3 to perform Monte Carlo sampling outside of a
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Bayesian inference, fitting its application in the current study.130

Changes to the manuscript:

The PyMC3 library has been demonstrated as a platform for performing MCUP of 3D geologic models (de la Varga and Wellmann, 2016; de la Varga and Wellmann, 2017),
and has even been implemented in the open source geologic modeling platform GemPy (de la Varga et al., 2019). The PyMC3135
library is designed to facilitate Bayesian inference using computational sampling algorithms, though the inclusion of likelihood
functions is not required thereby allowing for utilization of the package functions for Monte Carlo sampling alone. The use
of PyMC3 has been demonstrated successfully in the context of 3D geologic modeling by de la Varga and Wellmann (2016);
Schneeberger et al. (2017), and its implementation in Theano has allowed for seamless integration with the open source geo-
logic modeling platform GemPy (de la Varga et al., 2019). This study focuses solely on the step of probabilistic geomodeling140
based on 3D geologic modeling inputs, leveraging only the Monte Carlo sampling capabilities of PyMC3.

2.4 3.2 - Simulation

2.4.1 A more adequate name for the section would be “Sampling”.

Authors’ answer:145

The section name has been changed to Sampling.

2.5 3.3 - Rotation

2.5.1 This section is part of sampling and should be merged into Section 3.2

Authors’ answer:150

The section has been appended to Section 3.2 - Sampling.

2.6 4.2 - Surface trace

2.6.1 L291 - It is unclear to me what the “approximate geographical error of known landmarks” is.

Authors’ answer:155

The section containing this sentence has been revised and expanded to clearly define the sources of uncertainty affecting the
fault trace and the methods with which they are quantified - including the geographical error arising from the use of a historic
geologic map.

160
Changes to the manuscript:

The uncertainty affecting the surface fault trace results in changes in the trace location and shape. Independent perturbations
of the trace’s endpoints are applied and linearly propagated along the fault trace to arrive at a smoothly varied location and
shape. A normal distribution characterizing the uncertainty about the location of each trace endpoint is parameterized from165
the joint uncertainty stemming from fault zone centerline definition, digitization error and geographical errors in addition to a
random direction of shift obtained from a uniform distribution. The three primary sources of uncertainty are quantified using the
available information listed in respective order: average fault zone thickness, published metrological studies (Zhong-Zhong,
1995) and approximate geographical error of known landmarks (e.g., mountain tops). Additional details on the method of
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perturbing the location and shape of the surface trace based on the joint effect of these sources of uncertainty are available in170
the code supplement.

A bounded uniform distribution is parameterized to simulate a random direction of perturbation for each trace endpoint
due to geographical error (i.e., drafting and georeferencing error). The normal distribution representing the total bound on
geographical error is converted to respective x̂ and ŷ components using the directional cosine of the angle sampled from the
uniform distribution. This conversion to unit components is used similarly with the fault zone centerline definition uncertainty175
and digitization uncertainty using the acute angle θ between the orientation of the fault trace with the northing and easting
directions. An additional logical check for the strike quadrant of the surface trace is required to implement this approach.

The individual sources of uncertainty affecting the surface trace endpoint locations are combined into a derived distribution
using a deterministic function to determine the total uncertainty affecting the location of each endpoint, given by Eq. 1.180

P (x̂|σcenterline,σdig,σgeo,θ) = cos(θ)
(
N(0,σcenterline)+N(0,σdig)

)
+N(0,σgeo)sin

(
U(0,2π)

)
,

P (ŷ|σcenterline,σdig,σgeo,θ) = sin(θ)
(
N(0,σcenterline)+N(0,σdig)

)
+N(0,σgeo)cos

(
U(0,2π)

) (1)

The average fault zone thickness was used to characterize the fault zone centerline definition uncertainty affecting each
surface trace endpoint. The geographical error was calculated to be approximately 40 meters based on the average distance
measured between known landmarks (e.g., mountain tops) on the geologic map and modern satellite imagery data. For both185
of these sources of uncertainty, the maximum error range described is treated as a 95% confidence interval, allowing a normal
distribution to be parameterized with a mean of zero and a standard deviation equal to maximumerror/3.92. The digitization
error for a 1:12,000 map was represented by a normal distribution with a standard deviation of 3.666 m based on (Zhong-Zhong,
1995).

2.7 4.3 - Vertical termination depth190

2.7.1 L312 - What is a deterministic distribution? Do you mean a derived distribution? Or an empirically parametrized
distribution? A distribution should be by definitiv nondeterministic.

Authors’ answer:

The phrase "deterministic distribution" was used following the PyMC3 function terminology pm.Deterministic(), which is195
used for combining multiple stochastic variables (i.e., distributions) using a deterministic function. As the reviewer notes, this
function is in fact empirically parameterized, and the more appropriate name “empirically derived distribution" – also known as
a deterministic model combining multiple stochastic variables in PyMC3 terminology – has been substituted. The description
of the use of this style of distribution has been modified to clarify the reliance on combining several stochastic variables using
an empirically derived deterministic function.200

Changes to the manuscript:

The vertical termination depth is sampled from a deterministic distribution combining uncertainty about the aspect ratio,
fault trace persistence and prior information of the fault elevation and average dip. Sampling the uncertainty of the fault zone205
vertical termination depth involves combining multiple probability distributions using a deterministic function to generate an
empirically derived probability distribution. In the derived distribution for fault zone vertical termination depth, flength and
Aspectratio are characterized as independent probability distributions (respectively) and combined using a deterministic func-
tion based on the empirically derived description of 3D fault surface geometry, zterm = zoutcrop− fheight ∗ sin(θ);fheight =

flength

Aspectratio . In this manner, the vertical termination depth (zterm) is calculated by converting the fault height to the vertical210
height using the average dip angle (θ) and subtracting this from the average elevation of the fault outcrop (zoutcrop).
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2.8 4.5 - Simulation quality assessment

2.8.1 L334 - Without a likelihood function you can’t use a MCMC sampler, as you are unable to evaluate the step
proposals.215

2.8.2 L336 - In an MCUP simulation, you have no posterior uncertainty space, as you are not using any likelihood
function. You are mixing up terminology of MCUP and Bayesian inference. Again, MCMC sampling is only
possible with a likelihood function (thus not in MCUP).

Authors’ answer:
The entire Section 4.5 has been revised in depth to remove erroneous inclusions of the terminology MCMC sampler and to220
remove the erroneous use of trace plots in assessing the quality of Monte Carlo simulation for exploring the prior uncertainty
space.

Changes to the manuscript:
225

The quality of probabilistic simulation relies on primarily is a product of the size of the uncertainty space, the simulation
method used and the number of samples drawn. For any simulation, the realizations generated can be plotted in the data
space and visually examined for appropriate coverage and shape (termed a realization plot). For non-spherical scalar data
types, use of MCMC simulation methods creates trace plots and posterior histograms of the Monte Carlo draws provide an
intuitive method for independently assessing the quality of simulation for each input. , which provide an intuitive method for230
independently assessing the quality of simulation for each input. Uniformity of the trace plot and width of the 95% highest
posterior density (HPD) indicate, respectively, the convergence of the Markov Chain sampling and the thorough exploration of
the posterior uncertainty space. Visual analysis of the shape of the histogram compared to the expected shape of the distribution
and a comparison between the input distribution parameters (e.g., mean and standard deviation for a normal distribution) and
their values calculated from the samples can quickly determine whether the samples drawn have sufficiently explored the235
uncertainty space. Figure 6 shows an example of the realization plot, trace plots and posterior sample histograms generated for
the simulation of vertical termination depths from Section 4.3. This figure allowed for identifying a strong tailing behavior in
the output realizations, leading to a reparameterization discussed in Section 6.2.
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Figure 1. Realizations and Monte Carlo analysis results (trace plot and posterior histograms) Visualization of Monte Carlo samples and
associated geologic input realizations from perturbation of the fault zone vertical termination depth based on a uniform distribution of fault
aspect ratio. The 95% highest posterior predictive density is overlain on the posterior histograms of the Monte Carlo samples.

Trace plots are not available for the spherical data simulations due to reliance on the acceptance-rejection simulation method,
while posterior For spherical data simulations, histograms may be replaced by Exponential Kamb contouring (Vollmer, 1995)240
or Rose diagrams to visualize the density of sampled poles across the surface of the unit sphere (as projected onto a lower-
hemisphere projection). This visual assessment provides a semi-quantitative evaluation of the shape and distribution of the
posterior spherical probability distribution sampled structural orientations. Additionally, a recalculation of the eigenvector
decomposition from the set of simulated samples provides a measure of the accuracy of the posterior distribution with respect
to the input orientation parameter values. Tools for generating figures for simulation quality assessment are provided and245
detailed in the input perturbation script.

Based on the assessment of simulation quality and consideration of compounding factors during uncertainty propagation, the
MCUE formulation for the single fault model was run for a number of various realization counts (100, 300, 500, 1,000, 2,000
and 3,000). The processing time generally increases linearly with realization count, reaching many hours to several days for
high realization counts on the single fault mock model containing 2.5 million cells. The vast majority of processing time is taken250
up by the model updating and block model calculation in Leapfrog. For the single fault mock model with 1,000 realizations and
2.5 million cells the sampling benchmark time was 87 seconds while the model processing benchmark time was 38.5 hours.
This study is intended to introduce and expand on the use of MCUE formulations for specific geologic modeling problems, and
work regarding optimizing the efficiency of model processing is not a focus. The experiments conducted do highlight the need
to understand (i) the realization requirement for exploring modeling inputs independently and its relationship to the size of the255
independent uncertainty spaces, (ii) the interactions of various, related parameters during the uncertainty propagation step and
(iii) identification of a balance between final model resolution, coverage, complexity and processing time.

2.9 6.2 - Model parameterization

2.9.1 L388 - The use of “posterior distribution” is false, as you are doing MCUP, not a Bayesian inference.

Authors’ answer:260
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In line with the general comments regarding erroneous usage of terms from Bayesian inference (MCMC, posterior distribu-
tions), the description here has been revised to appropriately describe the prior predictive model that was explored using Monte
Carlo sampling.

265
Changes to the manuscript:

However, the posterior empirically derived distribution of vertical termination depths resulting from a bounded uniform
parameterization of fault aspect ratio showed a strong tailing effect (right skewed).

2.10 6.3 - Parameter relationships270

2.10.1 L411 - The meaning of the entire paragraph is unclear to me and needs to be revised.

Authors’ answer:

The specified paragraph on addressing the observed relationships among geologic modeling input parameters using the
MCUP formulation has been revised clarify the authors’ stance on why and how these parameter relationships arise in the275
MCUP formulation. In essence, the paragraph is intended to highlight the potential for undersampling the geologic model
uncertainty space when considering overlapping uncertainty envelopes of individual model inputs.

Changes to the manuscript:
280

Relationships between modeling inputs also arise in different ways, for example the vertical termination depth and structural
orientation uncertainty envelopes overlap heavily in the combined model uncertainty (Figure 5) leading to undersampling of
the model uncertainty space when the independent uncertainty envelopes are combined. Similar behavior is observed when
comparing orientation perturbations to fault zone thickness where thinner fault zones require finer orientation perturbations to
fully populate the uncertainty space of the 3D geologic model. Despite performing a thorough exploration of each, independent285
parameter’s uncertainty during Monte Carlo sampling (Section 4.5), undersampling of the combined geologic model uncer-
tainty space can still occur during uncertainty propagation. An example of this arises when considering the vertical termination
depth and structural orientation. Truncation of fault zone realizations at any given termination interval effectively reduces the
number of realizations available for sampling the full range of structural orientation uncertainty at deeper intervals. This is
evidenced in Figure 5(b) by the increasing prevalence of "stair-stepping" artefacts in the combined model uncertainty with290
depth.

2.10.2 L419 - Gibbs sampling is not applicable to MCUP, as no likelihood is used.

Authors’ answer:
295

The erroneous mention of Gibbs sampling has been removed. The section has been revised to better highlight the potential
for exploring the input uncertainty space using joint distributions among various parameters believed to be correlated.

Changes to the manuscript:
300

A treatment of these relationships through the use of Gibbs sampling or other conditional methods of Monte Carlo simulation
parameterizing previously independent input probability distributions using a joint distribution (and an appropriate sampling
scheme) could potentially generate more realistic and efficient assessments of model uncertainty.
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3 Figures

3.1 Figure 2305

The dotted volume texture makes annotations for uncertainty extremely hard to read. The same goes for there fault zone signa-
ture/texture. I’d highly recommend removing as much texture as possible from the plot to improve legibility.

“The Visual Display of Quantitative Information” by Edward Tufte provides ample of additional reasons for reducing dis-
tracting “ink” from scientific visualizations and is well worth a read :-)310

Authors’ answer:

The suggested changes have been made to the fault zone schematic figure, clearing away non-informative ink and empha-
sizing the illustrated uncertainty envelopes. Thank you very much to the reviewer for the kind suggestion on better practices315
for graphical display.

Changes to the manuscript:
Fa
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Fault zone thickness variability
Fault orientation variability
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Figure 2. A schematic showing the sources of uncertainty possible uncertainty envelopes about the four geologic modeling inputs used to
characterize the 3D geometry of a fault zone in the subsurface. Modified from Krajnovich et al. (2020).

3.2 Figure 4320

Highlighting of fault traces is really difficult to see. I highly recommend making this figure more legible to the reader by re-
moving visual complexity: e.g. remove coloring of geological map in the background.
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Authors’ answer:
325

The figure has been edited to make the fault traces bolder and to provide a stronger contrast between the fault traces and the
geological map in the background.

Changes to the manuscript:
330

Figure 3. 1:12,000 geologic map from Robinson et al. (1974) showing mapped fault zones of varying widths. The white rectangle and
associated overlay (a) show the single fault model while the blue rectangle and associated overlay (b) show the fault network model. Fault
trace(s) used for modeling are highlighted within each rectangle as green polylines.

3.3 Figure 5

– legend is barely legible - please increase text size

– entropy plot of the fault zone thickness barely shows any uncertainty. If your discretization is not fine enough to resolve
the simulated uncertainties, then is it worth incorporating into you model?

Authors’ answer:335

The legend text size has been increased to match the average text size of the paper’s text.

The reviewer’s comment is interesting and insightful, and is addressed briefly in the preceding section. While it is quite
clear that the fault zone thickness uncertainty is largely insignificant in this single fault model (where the fault zone thickness340
was 8 m, vs. the 5 m block size), the authors observed that the wider fault zone present in the second, fault network model
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would contribute more heavily to the model uncertainty. This reasoning, and the desire to present general recommendations to
modeling the uncertainty of fault zones, led the authors to leave the results as is for the single fault model.

Changes to the manuscript:345

Figure 4. Block models showing information entropy quantified from (a) independent modeling inputs and (b) combined modeling inputs.
The difference between the combined geologic model uncertainty and each independent modeling input is shown in (c), where blue values
indicate that the independent modeling input showed greater entropy than the combined model uncertainty.

3.4 Figure 6

The use of trace plots is only useful if evaluating convergence of (e.g.) Markov chains. MCUP uses Monte Carlo simulation,
thus the use of trace plots serves no purpose and is confusing. Also the rug plot on the left size shows the same information as
the histogram of the vertical termination depth in the lower right. I’d recommend just using the histogram to demonstrate that350
you’ve sampled enough samples.

Authors’ answer:

In line with this specific comment and the general comments above, the erroneous referrals to MCMC methods and the use of355
trace plots have been eliminated from the paper. They have been replaced by the appropriate discussion of assessing the explo-
ration of the input uncertainty space using graphical representations of realizations and histograms of the Monte Carlo samples.

Changes to the manuscript:
360
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Figure 5. Realizations and Monte Carlo analysis results (trace plot and posterior histograms) Visualization of Monte Carlo samples and
associated geologic input realizations from perturbation of the fault zone vertical termination depth based on a uniform distribution of fault
aspect ratio. The 95% highest posterior predictive density is overlain on the posterior histograms of the Monte Carlo samples.

3.5 Figure 8

Authors’ answer:

See above comment.
365

Changes to the manuscript:
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Figure 6. Realizations and Monte Carlo analysis results (trace plot and posterior histograms) Visualization of Monte Carlo samples and
associated geologic input realizations from perturbation of the fault zone vertical termination depth, reparameterized using a log-normal
distribution of fault aspect ratio. The 95% highest posterior predictive density is overlain on the posterior histograms of the Monte Carlo
samples.
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Authors’ response to RC2 (Florian Wellmann’s) interactive comment on "Uncertainty assessment for 3D
geologic modeling of fault zones based on geologic inputs and prior knowledge”.

Reviewer’s comments are shown in italicized fonts, and the authors’ responses and changes to the manuscript are highlighted
with callouts. The general comments are shown and addressed first, then the specific comments are addressed by line/figure5
number.

1 General comments

In the article “Uncertainty assessment for 3D geologic modeling of fault zones based on geologic inputs and prior knowledge”,
the authors present an application of a probabilistic geological modelling approach to assess uncertainties in fault zone models.

10
The work fits into the active field of probabilistic geological modelling and uncertainty assessment in 3-D structural mod-

els. The main contribution is the detailed consideration of different fault zone parameters, combined with the evaluation of
different types of spherical distributions. In addition, the method is tested in a case study to investigate fault zone uncertainty
in a Precambrian crystalline setting with two focus areas: one investigating a single fault zone, and another model of a fault
network. Both examples are well chosen to test the application in a realistic setting.15

Interesting is specifically the description of sources of uncertainty for different faults zone parameters. Although some of the
choices are clearly debatable (e.g. the fault aspect ratio), the authors state the problem of a lack of sufficient information - and
this also implicitly highlights the relevance to, at least, consider these sources of uncertainty in a generated geological model,
as done here.20

The document is supported with code (written in Python and R), including a fully reproducible example for input file gen-
eration. The code is hosted on GitHub, and substituted with a license, ensuring the possibility for future use and adaptation.
A brief suggestion: it would be good to provide a requirements file and/or more detailed installation instructions (using conda
environments or a docker container), as the packages rpy2 and pymc3 are not part of common python distributions. The current25
version, used to generate results in this manuscript, are furthermore stored in a snapshot on Zeonodo, with a DOI.

One critical aspect in the manuscript is the description of the probabilistic model itself. There are several aspects that need
to be adjusted (or clarified) before the manuscript can be considered for publication:

– The authors seem to mix MC draws from prior distributions (and the representation in models, i.e. the prior predictive30
models) with a full Bayesian inference. The tool that is employed, pymc, is fully capable of complete Bayesian inference
methods, but as I see it (and I looked carefully, even in the code), there is no Bayesian model used here - even if the
authors mention “likelihood” (but, I think, mixing terminology here a bit, see comments below) and “MCMC” in line
334. To my best interpretation, this is not the case here - if I am wrong, then please describe more clearly. Otherwise,
the entire description on the probabilistic model needs a careful revision.35

– The statistical parameters of the model are only broadly described, and the reader is referred to the online code. Not
every interested reader can be expected to go through a submitted python code to understand and evaluate the scientific
details and I strongly suggest to include details about the distributions (including hyperparamters) here in the text.
Especially the deterministic transformation for fault depth termination would have been relevant, as it would have made
a mistake more obvious: the (as I see it) wrong interpretation of the “tailing behaviour” in figure 6.40

– The entire description in section 4.5 “Simulation quality assessment” needs to be revised: you can not present draws as
traces, if they are not from a (sequential) MCMC chain, i.e.: you do not explore the posterior space and, therefore, you
do not draw samples from a posterior distribution (if my interpretation is correct, see above) - the samples you obtain
are simply draws from the (independent) prior distributions.
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– Combining the previous two points: the interpretation of the tailing behaviour is, as I see it, wrong. It is not an effect of a45
posterior, but an effect of a derived distribution (or, in pymc lingo, a deterministic model combining multiple stochastic
variables). This is quite obvious in your code (InputUncertaintyQuantification.py, lines 495ff):

""" Define the uniform or log-normal aspect ratio distribution """
if aspect_logn == 1:

aspect_dist = pm.Lognormal(’Aspect ratio’, mu = term_mu, sd = term_sd)50
else:

aspect_dist = pm.Uniform(’Aspect ratio’,lower=aspect_min,upper=aspect_max)

""" Define the distribution for variability of persistence """
persistence_dist = pm.Normal(’Persistence’, mu = 0, sd = persistence_std)55

""" Deterministic distribution to compute termination depth based on above distributions """
zterm_dist = pm.Deterministic(’Vertical termination’,zo-np.sin(dip*pi/180)*(persistences[

You do not sample from the posterior distribution, but combine two stochastic variables with a deterministic function.
This is a very different concept (and completely fine, but needs adjustment in description).60

Authors’ answer:

The authors truly appreciate the detailed constructive comments from the referee. The authors have taken several steps to
address the misuse of terminology regarding Markov Chain Monte Carlo (MCMC) algorithms and posterior distributions. As
the referee noted, there is and was no intention of a Bayesian model being used in the study. The manuscript has been edited65
throughout to replace erroneous mentions of terms related to MCMC and Bayesian inference (e.g., MCMC sampling, posterior
distributions) to proper terminology for the Monte Carlo sampling that was performed in the study.

As for the description of the statistical parameters of the Monte Carlo model, sections of text that were previously withheld
for the sake of brevity have been reintroduced to Sections 4.1-4.4 to describe in detail the parameterization of and rationale70
behind the distributions explored using Monte Carlo sampling.

Changes to the manuscript:

. . . Text added to Section 4.1, Structural orientation: As the dataset from Robinson et al. (1974) lacks specific measure-75
ments of fault zone orientations to generate a Bingham distribution directly using the orientation matrix (Fisher et al., 1987),
the parameters of the Bingham distribution were assigned manually to generate a distribution covering the expected range
of orientations. Varying the parameterization of the Bingham distribution ultimately resulted in determining an appropriate
parameterization for the fault zone in the single fault model using an input orientation of 75o/123o (dip/dip azimuth), maxi-
mum eigenvalue of λ1 = 200 (matching the observed azimuth variation of the surface trace) and intermediate eigenvalue of80
λ2 = 22.5 (providing an approximate +/-20o dip angle variation).

. . . Text added to Section 4.2, Surface trace: First, a bounded uniform distribution is parameterized to simulate a random
direction of perturbation for each trace endpoint due to geographical error (i.e., drafting and georeferencing error). The normal
distribution representing the total bound on geographical error is converted to respective x̂ and ŷ components using the direc-85
tional cosine of the angle sampled from the uniform distribution. This conversion to unit components is used similarly with the
fault zone centerline definition uncertainty and digitization uncertainty using the acute angle θ between the orientation of the
fault trace with the northing and easting directions. An additional logical check for the strike quadrant of the surface trace is
required to implement this approach.

90
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The three individual sources of uncertainty affecting the surface trace endpoint locations are combined into a derived distri-
bution using a deterministic function to determine the total uncertainty affecting the location of each endpoint, given by Eq. 1.

P (x̂|σcenterline,σdig,σgeo,θ) = cos(θ)
(
N(0,σcenterline)+N(0,σdig)

)
+N(0,σgeo)sin

(
U(0,2π)

)
,

P (ŷ|σcenterline,σdig,σgeo,θ) = sin(θ)
(
N(0,σcenterline)+N(0,σdig)

)
+N(0,σgeo)cos

(
U(0,2π)

) (1)

95
The average fault zone thickness was used to characterize the fault zone centerline definition uncertainty affecting each

surface trace endpoint. The geographical error was calculated to be approximately 40 meters based on the average distance
measured between known landmarks (e.g., mountain tops) on the geologic map and modern satellite imagery data. For both
of these sources of uncertainty, the maximum error range described is treated as a 95% confidence interval, allowing a normal
distribution to be parameterized with a mean of zero and a standard deviation equal to maximumerror/3.92. The digitization100
error for a 1:12,000 map was represented by a normal distribution with a standard deviation of 3.666 m based on (Zhong-
Zhong, 1995).

. . . Text added to Section 4.3, Vertical termination depth: Sampling the uncertainty of the fault zone vertical termi-
nation depth involves combining multiple probability distributions using a deterministic function to generate an empirically105
derived probability distribution. In the derived distribution for fault zone vertical termination depth, flength and Aspectratio
are characterized as independent probability distributions and combined using a deterministic function based on the empirically
derived description of 3D fault surface geometry, zterm = fheight ∗ sin(θ);fheight = flength

Aspectratio . In this manner, the vertical
termination depth (zterm) is calculated by converting the fault height to the vertical height using the average dip angle (θ) and
subtracting this from the average elevation of the fault outcrop (zoutcrop).110

flength is characterized as a normal distribution with a mean of zero and a standard deviation of 20 meters based on assumed
deviance of the surface trace length vs. the true tip-tip fault length. Aspectratio was characterized using both a uniform and a
log-normal distribution, respecting the expected maximum and minimum values of 1 and 5. Section 6.2 explores the impact of
these two different parameterizations on the shape of the derived distribution for vertical termination depth.115

. . . Text added to Section 4.4, Fault zone thickness: For the sake of visualization in the single fault example, a normal
distribution characterizing fault zone thickness used a conservative parameterization of µ= 30m and σ = 2m.

Relating to the above point regarding erroneous usage of terms from Bayesian inference, Section 4.5 has been reworked120
extensively to provide an appropriate description of how the study went about assessing the quality of the exploration of the
input uncertainty space from Monte Carlo sampling.

The authors agree that the interpretation of the tailing behavior is a result of the use of an empirically derived distribution
(previously referred to as a "deterministic distribution"), and not a result of posterior analysis. The wording has been adjusted125
to clearly state this. However, the authors chose to retain the interpretation of tailing behavior in the vertical termination depth.
The authors believe it highlights the possibility of unexpected uncertainty envelope shapes when using empirically derived
probability distributions.

The authors have also updated the README file included with the code published on Github to provide a clearer and more130
comprehensive snapshot of the dependencies required for use of the input uncertainty quantification script.

A note on terminology: I know that "MCUP“ has been used in some manuscripts in descent years. However, the concept itself
(i.e. the sampling part, Monte Carlo sampling from a distribution and observing the propagation of uncertainty) is not new at all
and in widespread use since the mid 20th century. I don‘t think it is particularly helpful to use a new term for a well established135
approach, and, on the contrary, will lead to unnecessary confusion for all researchers who are looking at the content and who
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are not familiar with the term - as it, at first, pretends to be something novel. I am confident that all appearances of MCUP and
easily be reformatted without any loss of information and without making the document significantly longer:

– I would suggest to refer to the approach itself as “probabilistic modeling” (or “probabilistic geomodeling”, when in
the clear context of the geomodeling). All references to previous work can be kept, because this is what all the previous140
works also do.

– Instead of “MCUP formulation”, simply refer to the setup or definition of the probabilistic model, where stochastic
variables are defined by distributions (with corresponding hyperparameters). Adjusting the manuscript in this way will
make the content a lot more accessible and comparable to other approaches, also outside the field of geomodeling itself.

Authors’ answer:145

The authors agree with the referee’s well thought out recommendation regarding the extraneous use of abbreviations when
referring to the concept of probabilistic geomodeling through exploration of the geologic model input uncertainty space using
Monte Carlo sampling. Changes have been made throughout the paper to refer to the method as ’probabilistic geomodeling’,
following a proper introduction of what the term means in the context of the study. This includes changing the term "MCUP150
formulation" to "probabilistic model".

More details on the workflow are also required. The provided python scripts are an important foundation, but they are only
capable of producing the input data set for the geological model. A “Leapfrog back-end support” is mentioned in line 244. Is
this method also available for other researchers? It is surely the case that the provided input script can be used to generate155
input data sets for many types of modeling approaches (even though surely not for all, line 259), but it hides a bit the fact
that the forward modeling methods (which are generally far more complex) are often implemented in commercial software and
often not accessible.

Authors’ answer:160

The authors acknowledge that the description of the automated workflow implemented in Leapfrog with custom support is
sparse, and have supplemented additional text to detail the process of automated model updating. The authors believe that the
automated model updating that was implemented for this study is in fact rather straightforward, in the sense that it follows the
same series of modeling steps that a user in Leapfrog would follow if they wished to create n realizations of their own fault165
zone model. The authors believe that the updated text clearly illustrates this concept to the reader.

The method implemented in Leapfrog is available to other researchers on the basis that they contact the developers of
Leapfrog (Seequent) independently to acquire access to the unique functionality (which is built on top of a default Leapfrog
installation). The product is not currently commercially available and was designed with the supervision of the authors to170
accomplish the specific goals of the current study. The authors of this study are not developers of Leapfrog, and are therefore
not privy to the specific code written in the Leapfrog development environment to accomplish the automated model updating.
Rather, the authors worked in collaboration with the developers of Leapfrog to guide them in implementing our own require-
ments for automated model updating. Communication between the authors and the developers of Leapfrog provided a sufficient
level of transparency in how the code was developed, although the specific code cannot be released to the public as it is built175
directly within the Leapfrog engine.

Changes to the manuscript:

Model realization creation is handled by custom Leapfrog Works back-end support developed for this study to allow for180
automated updating of geologic modeling parameters from an initial model containing input fault zones. The initial model
must be created in Leapfrog using the workflow provided in Figure 1, and naming conventions for the geologic model, fault
zones, polylines and termination surfaces being specified in a user-generated text file. The custom version of Leapfrog Works
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uses this text file in conjunction with the Leapfrog model and input realization files to automatically step through creation
of each geologic model realization based on the simulated data, following the workflow from Figure 1. Model realizations185
generated in this manner are automatically evaluated onto a grid of cells defined by the text file for subsequent analysis. The
method put forward by Wellmann and Regenauer-Lieb (2012) is implemented to calculate the probability of occurrence of
fault zone lithology in each cell. The probability of occurrence is then used to compute information entropy to describe the
uncertainty of fault zones in the geologic model. In a binary system (e.g., fault zone vs. intact rock), information entropy
is maximal when the probability of occurrence of a fault zone is 50%, which as discussed in Krajnovich et al. (2020) can190
introduce potential for misinterpretation of the geologic model uncertainty envelope if an inappropriate colormap is used. The
method implemented in Leapfrog can be made available to other researchers on the basis that they contact the developers
of Leapfrog (Seequent) independently to inquire about access to the unique functionality (which is built on top of a default
Leapfrog installation).

2 Specific comments195

2.1 Line 14: Note that the presented results are not a sensitivity analysis, but more a (visual) comparison of propagated
uncertainties. A sensitivity analysis typically relates to a quantity of interest.

Authors’ answer:

The authors recognize that the term "sensitivity analysis" typically refers to a specific method of analysis performed on a200
probabilistic model, and the usage has been revised to match the "visual comparison of the contribution of independent input
uncertainties to the geologic model uncertainty" performed in the study.

Changes to the manuscript:
205

The MCUP formulation developed is applied to a simple geologic model built from historically available geologic mapping
data to assess the allowing for a visual comparison of the independent sensitivity contributions of each modeling input on the
combined model uncertainty, revealing that vertical termination depth and structural orientation uncertainty dominate model
uncertainty at depth while surface trace uncertainty dominates model uncertainty near the ground surface.

210

2.2 Line 23: Would be suitable to include here the reference Wellmann Caumon (2018) (not fishing for citations here,
but as you reference it anyway later...).

Authors’ answer:

The reference to Wellmann and Caumon, 2018 has been added here as the authors agree that it is a fundamental work to-215
wards the growing use of 3D geologic models for prediction and communication of subsurface geology. Instead of Line 23, it
was added in the reference of Line 22.

Changes to the manuscript:
220

Three-dimensional (3D) geologic models are becoming the state of the art for the prediction and communication of subsurface
geology in a wide range of projects (Turner and Gable, 2007) including. . . Three-dimensional (3D) geologic models are be-
coming the state of the art for the prediction and communication of subsurface geology in a wide range of projects (Turner and
Gable, 2007; Wellmann and Caumon, 2018) including. . .
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2.3 Line 38: See comments above for terminology (MCUP)225

Authors’ answer:

Changes to the use of the "MCUP" and "MCUP formulation" terminology have been made throughout the paper in line with
the general comment addressed above.

230
Changes to the manuscript:

Recently, a Monte-Carlo simulation, input uncertainty propagation method, commonly known as Monte Carlo simulation
for uncertainty propagation (MCUP), has grown into a widely used method for 3D geologic model uncertainty assessment
(Wellmann and Caumon, 2018). Recently, the well established Monte-Carlo simulation method has been adopted into a widely235
used method for 3D geologic model uncertainty assessment by way of uncertainty propagation of geologic model inputs into
the 3D geologic model space (Wellmann and Caumon, 2018). The method, henceforth termed "probabilistic geomodeling",
focuses on the impact of uncertainty in geologic modeling inputs on a 3D geologic model by generating a set of model
realizations based on perturbations in selected modeling inputs, sampled using Monte Carlo simulation algorithms. MCUP
Probabilistic geomodeling is flexible, allowing for a wide variety of uncertainty sources affecting various geologic modeling240
inputs to be quantified by the user and propagated into the 3D geologic model.

2.4 Line 63: I am quite sure that there are studies on uncertainties in fault zone characterization. The topic of
uncertainties about the characterization of fault zones has been discussed recently in a paper by Shipton et al. (2019,
Fault Fictions: Cognitive biases in the conceptualization of fault zones.). But you probably refer to the treatment in a
probabilistic geomodel? Please specify.245

Authors’ answer:

The authors acknowledge the lack of clarity when referring to characterizing the uncertainties present in understanding fault
zone structure. The section has been revised to specify the application of studied uncertainties about fault zone structure to a
probabilistic geomodeling workflow.250

Changes to the manuscript:

By an in-depth search of the literature, as of yet there is no dedicated approach to characterizing the uncertainty of fault zones
in 3D geologic models. Building on the existing literature on understanding the uncertainties about faults in the subsurface255
(e.g., Choi et al., 2016; Shipton et al., 2019; Torabi et al., 2019a), this study develops a novel, dedicated approach to leveraging
probabilistic geomodeling to characterize the uncertainty of fault zones using 3D geologic models.

2.5 Line 67: Here, for example, no need to refer exclusively to MCUP - this is true for any automated modeling
approach.

Authors’ answer:260

The reference to complex modeling of fault zone structures has been revised to refer to any automated geologic modeling
workflow, rather than only the previously mentioned MCUP approach.

Changes to the manuscript:265

The inherent complexity of fault zone structure makes their precise modeling intractable in an automated MCUP formulation.
The inherent complexity of fault zone structure makes their precise modeling intractable in an automated geologic modeling
application, such as that required by probabilistic geomodeling.
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2.6 Line 78: RBFs are not really a rivaling approach - mostly another form for the kernel, otherwise a lot of similarity.270
Also, the first paper on RBF’s in geomodeling dates back to 2002 (Cowan, on which Leapfrog is based), so also not
“so” recent.

Authors’ answer:

The sentence intended to illustrate that RBF based implicit modeling approaches are comparable to the more common co-275
kriging based methods has been revised to properly respect the literature behind RBF based implicit modeling.

Changes to the manuscript:

Use of RBFs in implicit geologic modeling has developed in recent years to rival co-kriging based methods (Hillier et al.,280
2014, 2017). Implicit geologic modeling using RBFs is comparable in quality to modeling using popular co-kriging approaches
(Cowan et al., 2003; Hillier et al., 2014, 2017).

2.7 Line 105: Suggestion: avoid “prior knowledge” when referring to likelihood functions, as these are different
concepts. “Additional geological knowledge or observations” would make more sense.

Authors’ answer:285

The sentence has been revised as suggested to avoid confusion between "prior knowledge" and likelihood functions in the
context of a Bayesian model.

Changes to the manuscript:290

The second method, operating within a Bayesian inference scheme, is to incorporate the prior knowledge as a likelihood
function additional geological knowledge or observations to validate – or rather, as Tarantola (2006) states, invalidate – model
realizations.

2.8 Fig. 2 caption: here, you actually consider different parameters of the probabilistic model (fault zone thickness,295
vertical termination, etc.) - not the sources of uncertainty? Please clarify or adjust.

Authors’ answer:

The sentence has been revised to match the figure’s content, which is a depiction of possible uncertainty envelopes about the
four geologic inputs used in 3D modeling of fault zones.300

Changes to the manuscript:

A schematic showing the sources of uncertainty possible uncertainty envelopes about the four geologic modeling inputs used
to characterize the 3D geometry of a fault zone in the subsurface. Modified from Krajnovich et al. (2020).305

2.9 Line 118: You can only accommodate information in a form that can be included as a stochastic variable into the
specific interpolation approach (see also treatment in Wellmann Caumon, 2018). It is possible to include additional
information in the form of likelihood functions (e.g. de la Varga Wellmann, 2016), but this requires a full integration
of modeling and a formulation in a Bayesian framework.

Authors’ answer:310
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The authors agree with the referee’s comment regarding what kind of information can be incorporated into the MCUP
formulation. The sentence has been revised to highlight that any additional observations that can be accommodated into the
modeling workflow are required to be of the same format as the four inputs considered in the study, i.e., inputs to the implicit
modeling interpolation.315

Changes to the manuscript:

While formulated for a case with limited data, the developed MCUP formulation probabilistic geomodeling approach allows
for accommodating additional observations of the fault zone geologic modeling inputs (e.g., via a modern outcrop study)320
without significant reparameterization through a straightforward reparameterization of the input probability distributions to
include the new data.

2.10 Line 138: See above about terminology: you do not use MCMC here, so also referring to it here should be removed
(even if the statement is true). If you want to mention MC, then simply MC sampling algorithms will do.

Authors’ answer:325

The erroneous mention of MCMC sampling algorithms has been removed and edited to specify the use of Monte Carlo
sampling algorithms.

Changes to the manuscript:330

Simulation of scalar data is straightforward and well-established through the use of Markov-chain Monte Carlo (MCMC)
sampling algorithms, easily accessible through the open source Python package PyMC3 (Salvatier et al., 2016). Simulation
of scalar data is straightforward and well-established through the use of Monte Carlo sampling algorithms, easily accessible
through the open source Python package PyMC3 (Salvatier et al., 2016).335

2.11 Line 312: I don‘t understand this sentence here, as the same is true for all other continuous interfaces in the model,
which are finally mapped onto a discrete mesh. Can be removed, in my opinion.

Authors’ answer:
340

The sentence has been revised to clarify the idea that the implementation of fault zone vertical terminations in the developed
fault zone modeling approach relies on a series of pre-defined horizontal termination surfaces. Unlike the discretization of the
implicit scalar field isovalues onto meshes (which is handled by the Leapfrog modeling engine), this step requires the user to
pre-generate termination surfaces at specifically chosen depths in the subsurface prior to performing probabilistic geomodeling
steps.345

Changes to the manuscript:

Sampled vertical termination depths are continuous, and are subsequently discretized onto the pre-defined termination sur-
faces in the geologic model created during the initial geologic modeling step (Figure 1(b)). The scale at which interval of these350
termination surfaces are defined is determined can be adjusted based on the end user needs of the geologic model; 50 meter
intervals were used in this study to balance illustrative quality with model processing time.
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2.12 Section 4.5: the entire section has to be removed or adjusted, as a posterior analysis does not make sense (see
above), even if arviz produces nice plots. You can, of course, show samples of the model realizations (left side) and it
is also fine to discuss the histogram to discuss the effect of the derived distribution. But any notion of posterior355
analysis and the plot of the chains are misleading.

Authors’ answer:

The entire Section 4.5 has been revised in depth to remove erroneous terminology of an MCMC sampler and to remove the
erroneous use of trace plots in assessing the quality of Monte Carlo simulation for exploring the prior uncertainty space.360

Changes to the manuscript:

The quality of probabilistic simulation relies on primarily is a product of the size of the uncertainty space, the simulation
method used and the number of samples drawn. For any simulation, the realizations generated can be plotted in the data365
space and visually examined for appropriate coverage and shape (termed a realization plot). For non-spherical scalar data
types, use of MCMC simulation methods creates trace plots and posterior histograms of the Monte Carlo draws provide an
intuitive method for independently assessing the quality of simulation for each input. , which provide an intuitive method for
independently assessing the quality of simulation for each input. Uniformity of the trace plot and width of the 95% highest
posterior density (HPD) indicate, respectively, the convergence of the Markov Chain sampling and the thorough exploration of370
the posterior uncertainty space. Visual analysis of the shape of the histogram compared to the expected shape of the distribution
and a comparison between the input distribution parameters (e.g., mean and standard deviation for a normal distribution) and
their values calculated from the samples can quickly determine whether the samples drawn have sufficiently explored the
uncertainty space. Figure 1 shows an example of the realization plot, trace plots and posterior sample histograms generated for
the simulation of vertical termination depths from Section 4.3. This figure allowed for identifying a strong tailing behavior in375
the output realizations, leading to a reparameterization discussed in Section 6.2.
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Figure 1. Realizations and Monte Carlo analysis results (trace plot and posterior histograms) Visualization of Monte Carlo samples and
associated geologic input realizations from perturbation of the fault zone vertical termination depth based on a uniform distribution of fault
aspect ratio. The 95% highest posterior predictive density is overlain on the posterior histograms of the Monte Carlo samples.
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Trace plots are not available for the spherical data simulations due to reliance on the acceptance-rejection simulation method,
while posterior For spherical data simulations, histograms may be replaced by Exponential Kamb contouring (Vollmer, 1995)
or Rose diagrams to visualize the density of sampled poles across the surface of the unit sphere (as projected onto a lower-
hemisphere projection). This visual assessment provides a semi-quantitative evaluation of the shape and distribution of the380
posterior spherical probability distribution sampled structural orientations. Additionally, a recalculation of the eigenvector
decomposition from the set of simulated samples provides a measure of the accuracy of the posterior distribution with respect
to the input orientation parameter values. Tools for generating figures for simulation quality assessment are provided and
detailed in the input perturbation script.

Based on the assessment of simulation quality and consideration of compounding factors during uncertainty propagation, the385
MCUE formulation for the single fault model was run for a number of various realization counts (100, 300, 500, 1,000, 2,000
and 3,000). The processing time generally increases linearly with realization count, reaching many hours to several days for
high realization counts on the single fault mock model containing 2.5 million cells. The vast majority of processing time is taken
up by the model updating and block model calculation in Leapfrog. For the single fault mock model with 1,000 realizations and
2.5 million cells the sampling benchmark time was 87 seconds while the model processing benchmark time was 38.5 hours.390
This study is intended to introduce and expand on the use of MCUE formulations for specific geologic modeling problems, and
work regarding optimizing the efficiency of model processing is not a focus. The experiments conducted do highlight the need
to understand (i) the realization requirement for exploring modeling inputs independently and its relationship to the size of the
independent uncertainty spaces, (ii) the interactions of various, related parameters during the uncertainty propagation step and
(iii) identification of a balance between final model resolution, coverage, complexity and processing time.395

2.13 Line 350: Even for this high resolution, this seems like a long computation time. Can you comment on the relative
timing for sampling (i.e. your script) and the runtime of the model using Leapfrog?

Authors’ answer:

The runtime of the model generation in Leapfrog is approximately three orders of magnitude longer than the timing for sam-400
pling ( 38 hrs vs. 1.5 minutes). The focus of the study was admittedly on the input uncertainty quantification, and efficiency of
the automated model updating process was not sought after at this stage. Benchmark statistics on an example run of sampling
and model generation have been introduced into the text to clarify this.

Changes to the manuscript:405

The processing time generally increases linearly with realization count, reaching many hours to several days for high real-
ization counts on the single fault mock model containing 2.5 million cells. The vast majority of processing time is taken up by
the model updating and block model calculation in Leapfrog. For the single fault mock model with 1,000 realizations and 2.5
million cells the sampling benchmark time was 87 seconds while the model processing benchmark time was 38.5 hours.410

2.14 Line 388: It is not a posterior distribution, but a derived distribution.

Authors’ answer:

Correct, and the appropriate revision has been made in line with this specific comment and the earlier general comments.
415

Changes to the manuscript:

However, the posterior empirically derived distribution of vertical termination depths resulting from a bounded uniform
parameterization of fault aspect ratio showed a strong tailing effect (right skewed).
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2.15 Line 393: Also: typically correlations between parameters are unknown. Effect can (partly) be mitigated through an420
implementation in a full Bayesian framework with appropriate likelihood functions.

Authors’ answer:

The authors agree with the referee’s comments regarding lack of knowledge about the possible correlations between model-
ing parameters. The authors however believe that the suggested commentary fits naturally into the next Section 6.3 - Parameter425
relationships. The following sentence has been appended onto the end of Section 6.2 to smoothly transition into that discussion.

Changes to the manuscript:

This reparameterization highlights the key strength – and susceptibility – of MCUP formulations, the reliance on a user430
defined characterization of input uncertainty. Again, it is necessary to reiterate that the modeler must take into consideration
not only field observations and theoretical prior knowledge when assessing a geologic modeling uncertainty formulation, but
also their informed expectation of what is geologically realistic for their chosen modeling problem. Furthermore, reparame-
terizing individual aspects of the probabilistic model may prove to be insufficient due to the presence of inherently unknown
relationships between the chosen model parameters.435

2.16 Line 405: Which artefacts do you refer to? Please highlight or show difference plot, nothing too obvious.

Authors’ answer:

The phrase artefacts has been replaced with the more accurate concept of a skewed uncertainty envelope. The figure in
question has also been replaced with a closer view of the uncertainty envelopes, highlighting the skewing (i.e., tendency of440
realizations towards more vertical dips) suspected due to disagreement between surface trace and structural orientation in-
puts when sampling orientations from wide, isotropic spherical distributions. A difference plot is also included to highlight
the slight skewing of the geologic model uncertainty envelope towards steeper dipping fault zones when parameterized using
wide, isotropic spherical distributions.

445
Changes to the manuscript:

Deviations in the modeled fault surface from the input orientations can occur when the two inputs are significantly different,
typically arising in Leapfrog Works by way of overestimation of fault surface dip by up to 10o when the surface trace azimuth
(i.e., average normal to the fault surface trace) and global trend dip azimuth differed by greater than 20o (Krajnovich et al.,450
2020). Comparing two geologic models generated with orientations sampled from anisotropic and isotropic Bingham distribu-
tions with equivalent maximum uncertainty ranges (Figure 9) showed artefacts a skewing of the present in the geologic model
uncertainty envelope when generated from the isotropic Bingham distribution. The results show a consistent skew towards
near-vertical dips of the modeled fault zone realizations. This issue is alleviated when the structural orientation is parameter-
ized with an anisotropic Bingham distribution, allowing for increased variability in the dip angle without compromising the455
certainty of the dip azimuth.
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Figure 2. Visual comparison of geologic model entropy generated using anisotropic (a) and isotropic (b) Bingham distributions. The entropy
difference between these two models (c) highlights slight skewing of the uncertainty envelope towards steeper dipping fault zones when
parameterized using samples from an isotropic Bingham distribution (d). Entropy difference is shown such that negative values indicate
higher entropy in the isotropic orientation model.

2.17 Line 420: Gibbs sampling is a variant of an MCMC approach, again: should not be referred to here. Do you simply
mean appropriate sampling schemes from a joint distribution? Same difficulty concerning correlations as in line
393.

Authors’ answer:460

The erroneous reference to Gibbs sampling has been removed, and the correction that the referee identified has been added
to the section.

Changes to the manuscript:465

A treatment of these relationships through the use of Gibbs sampling or other conditional methods of Monte Carlo simulation
parameterizing previously independent input probability distributions using a joint distribution (and an appropriate sampling
scheme) could potentially generate more realistic and efficient assessments of model uncertainty. While the correlation be-
tween parameters in a probabilistic model is typically unknown, in some cases – such as the correlation between fault trace470
azimuth and structural orientation azimuth – the correlation can be assumed based on available prior geologic knowledge of
the parameter’s real-world relationships.

2.18 Line 440: Authors, I assume?

Authors’ answer:
475

Correct.

Changes to the manuscript:

The authors acknowledges that in reality fault zone geometry includes horizontal terminations.480
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2.19 Line 472: The difficulty here: you would need to implement the forward model completely into the modeling
framework (if information on the basis of the generated model should be considered). Is this possible with the
approach used here (running Leapfrog as an integrated part of the Python script)? Please clarify.

Authors’ answer:
485

The authors appreciate the referee’s useful insights into the future of this work. Full integration of the probabilistic model
(i.e., the "MCUP formulation") into the geologic modeling framework (i.e., Leapfrog) – or vise versa – is currently not possi-
ble. Without entering into too much detail on yet unfinished work, the authors believe that Bayesian inference can be leveraged
to implement additional information in the form of subsurface observations of fault zones. The anticipated Bayesian model
formulation would use information from the preliminary probabilistic geomodel as the prior uncertainty, validated against new490
subsurface observations by way of a misfit-style likelihood function, building on the approach published by Schneeberger et al.
(2017). As this future work is only in a preliminary stage of planning at the time of this writing, the authors believe its detailed
treatment lies outside of the scope of the current publication.

The sentence has been revised to introduce a clearer stance on the possible uses of Bayesian inference following the proba-495
bilistic geomodeling laid out in this study.

Changes to the manuscript:

Future work stemming from this preliminary modeling input-based probabilistic geomodeling formulation may include in-500
corporating new information in a Bayesian inference scheme to further refine the geologic model, either following the method-
ology introduced by de la Varga and Wellmann (2016) to infer additional information about the model parameters (requiring a
full integration of the probabilistic modeling with the automated geologic modeling approach) or by Schneeberger et al. (2017)
to validate the initial model in light of its generated uncertainty.

3 Figures505

overall good quality, but labels are generally far too small. Block diagrams also need orientation (at least North arrow) and
axes labels should also be included.

Authors’ answer:
510

The necessary changes to figures throughout the text have been made as suggested by the referee.
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Abstract. Characterizing the zone of damaged and altered rock surrounding a fault surface is highly relevant to geotechnical

and reservoir
:::::::::::::::
geo-environmental

:
engineering works in the subsurface. Evaluating the uncertainty associated with 3D geologic

modeling of these fault zones is made possible using the popular and flexible input-based uncertainty propagation approach to

geologic model uncertainty assessment – termed Monte Carlo Simulation for Uncertainty Propagation (MCUP)
::::::::::
probabilistic

::::::::::
geomodeling. To satisfy the automation requirements of MCUP

::::::::::
probabilistic

:::::::::::
geomodeling

:
while still preserving the key ge-5

ometry of fault zones in the subsurface, a clear and straightforward modeling approach is developed based on four geologic

inputs used in implicit geologic modeling algorithms (surface trace, structural orientation, vertical termination depth and fault

zone thickness). The rationale applied to identifying and characterizing the various sources of uncertainty affecting each input

are explored and provided using open-source codes. In considering these sources of uncertainty, a novel model formulation

is implemented using prior geologic knowledge (i.e., empirical and theoretical relationships) to parameterize modeling inputs10

which are typically subjectively interpreted by the modeler (e.g., vertical termination depth of fault zones). Additionally, the

application of anisotropic spherical distributions to modeling disparate levels of information available regarding a fault zone’s

dip azimuth and dip angle is demonstrated, providing improved control over the structural orientation uncertainty envelope.

The MCUP formulation
::::::::::
probabilistic

:::::::::::
geomodeling

::::::::
approach developed is applied to a simple

:::
fault

:::::
zone geologic model built

from historically available geologic mapping data to assess the independent sensitivity
:::::::
allowing

:::
for

::
a

:::::
visual

::::::::::
comparison

::
of

:::
the15

::::::::::
independent

:::::::::::
contributions of each modeling input on the combined model uncertainty, revealing that vertical termination depth

and structural orientation uncertainty dominate model uncertainty at depth while surface trace uncertainty dominates model

uncertainty near the ground surface. The method is also successfully applied to a more complex
:::
fault

:::::::
network

:
model containing

intersecting major and minor fault zones. The impacts of the model parameterization choices, the fault zone modeling approach

and the effects of fault zone interactions on the final geologic model uncertainty assessment are discussed.20

1 Introduction

Three-dimensional (3D) geologic models are becoming the state of the art for the prediction and communication of subsurface

geology in a wide range of projects (Turner and Gable, 2007)
::::::::::::::::::::::::::::::::::::::::::::::
(Turner and Gable, 2007; Wellmann and Caumon, 2018) includ-

ing regional geologic characterization (Stafleu et al., 2012; Waters et al., 2015); natural resource exploration (Zhou et al., 2007; Zhou, 2009; Zhou et al., 2015)
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::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zhou et al., 2007; Zhou, 2009; Anderson et al., 2014; Zhou et al., 2015); structural geology (Bond et al., 2015)

::::::::::::::::::::::::::::::::
(Bond et al., 2015; Ailleres et al., 2019)25

; geotechnical site characterization (Thum and De Paoli, 2015; Zhu et al., 2013); geophysics (Guillen et al., 2008; Høyer et al., 2015)

::::::::::::::::::::::::::::::::::::::::::::::::::
(Guillen et al., 2008; Høyer et al., 2015; Anderson et al., 2014); hydrology (Watson et al., 2015); and mining (Wellmann et al.,

2018; Yang et al., 2019). The recent widespread adoption of flexible, implicit 3D geologic modeling algorithms (Cowan et al.,

2003; Calcagno et al., 2008; Guillen et al., 2008; Jessell et al., 2014; Hillier et al., 2014, 2017) is leading the field of 3D geo-

logic modeling away from the creation of static models based on a single, best interpretation and towards stochastic geologic30

modeling with quantified uncertainty (Caumon, 2010). Understanding the uncertainty of a 3D geologic model provides not

only a measure of model quality to an end user (Turner and Gable, 2007; Walker et al., 2003; Stamm et al., 2019), but also

aids the geologist during model creation by analyzing the quality of input data and highlighting the impacts of subjective prior

knowledge and interpretations (Bond, 2015; Wood and Curtis, 2004; Jessell et al., 2018). As the use of 3D geologic modeling

continues to grow, novel methods for assessing the uncertainty of various aspects of geologic models is pertinent.35

Because a single model conveys no information regarding its uncertainties (Wellmann and Caumon, 2018), multiple realiza-

tion approaches are becoming a popular method for assessing geologic model uncertainty (Wellmann et al., 2010; Wellmann

and Regenauer-Lieb, 2012; Pakyuz-Charrier et al., 2018a, b; Pakyuz-charrier et al., 2019; Jessell et al., 2014, 2018; Lind-

say et al., 2013; de la Varga and Wellmann, 2016; de la Varga et al., 2019; Schweizer et al., 2017; Thiele et al., 2016; Yang

et al., 2019; Schneeberger et al., 2017). Recently, a
::
the

::::
well

:::::::::
established

:
Monte-Carlo simulation , input uncertainty propagation40

method , commonly known as Monte Carlo simulation for Uncertainty Propagation (MCUP) (Pakyuz-Charrier et al., 2018a, b),

has grown
::::::
method

::::
has

::::
been

::::::
adopted

:
into a widely used method for 3D geologic model uncertainty assessment (Wellmann and Caumon, 2018)

::
by

::::
way

::
of

:::::::::
uncertainty

::::::::::
propagation

::
of
::::::::
geologic

:::::
model

::::::
inputs

:::
into

:::
the

:::
3D

:::::::
geologic

::::::
model

:::::
space

:::::::::
(Wellmann

:::
and

::::::::
Caumon,

:::::
2018).

The method,
:::::::::
henceforth

::::::
termed

:::::::::::
"probabilistic

:::::::::::::
geomodeling", focuses on the impact of uncertainty in geologic modeling inputs

on a 3D geologic model by generating a set of model realizations based on perturbations in selected modeling inputs, sampled45

using Monte Carlo simulation algorithms. MCUP
::::::::::
Probabilistic

:::::::::::
geomodeling is flexible, allowing for a wide variety of uncer-

tainty sources affecting various geologic modeling inputs to be quantified by the user and propagated into the 3D geologic

model.

While growing in popularity, the field of geologic model uncertainty assessment remains a developing one and the application

of MCUP
::::::::::
probabilistic

:::::::::::
geomodeling to new, practical problems requires unique model formulations. The development of novel50

MCUP formulations
::::::::::
probabilistic

:::::::::::
geomodeling

::::::::::
approaches to address specific aspects of 3D geologic modeling will lead to

growth in the field not only by broadening the usability of the method, but also by advancing the understanding of the method’s

strengths and limitations. In addition to assessing the uncertainty of a single geologic model, MCUP
::::::::::
probabilistic

:::::::::::
geomodeling

::::
using

::::::
Monte

:::::
Carlo

::::::::
sampling naturally fits into Bayesian inference schemes (de la Varga and Wellmann, 2016; Salvatier et al.,

2016; Scalzo et al., 2019; Thiele et al., 2019), allowing for future refinement of model uncertainty as new information is made55

available.
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2 Model implementation

This study expands the use of MCUP
::::::::::
probabilistic

:::::::::::
geomodeling

:
to a new aspect of geologic modeling – fault zones, or the

localized volume of fractured and displaced rock surrounding a finite fault surface, typically composed of a fault core and

a damage zone (Caine et al., 1996; Childs et al., 2009; Peacock et al., 2016; Choi et al., 2016). Fault zones introduce re-60

gions of altered geotechnical strength and hydraulic permeability into the surrounding in-tact rockmass and are therefore of

major importance to geological engineering projects that rely on accurate assessments of subsurface rock properties (e.g.,

tunnels, mines). While faults have been the focus of a significant amount of recent geologic modeling research (Røe et al.,

2014; Cherpeau et al., 2010; Cherpeau and Caumon, 2015; Aydin and Caers, 2017), these works have focused on model-

ing fault surfaces directly rather than modeling the 3D geometry of fault zones. Detailed modeling of the 3D geometry of65

fault zones can improve the understanding of faults’ impacts on geotechnical and reservoir engineering projects due to the

fact that variations in fault zone thickness or composition can greatly alter the mechanical and hydrological behavior of a

fault, e.g., its sealing potential (Caine et al., 1996; Fredman et al., 2008; Manzocchi et al., 2010). By an in-depth search

of the literature, as of yet there is no
:::::::
Building

:::
on

:::
the

:::::::
existing

::::::::
literature

:::
on

::::::::::::
understanding

:::
the

:::::::::::
uncertainties

:::::
about

:::::
faults

:::
in

::
the

:::::::::
subsurface

:::::::::::::::::::::::::::::::::::::::::::::::::
(Choi et al., 2016; Shipton et al., 2019; Torabi et al., 2019b),

::::
this

:::::
study

:::::::
develops

:
a
::::::
novel, dedicated approach to70

characterizing
::::::::
leveraging

:::::::::::
probabilistic

::::::::::
geomodeling

::
to
:::::::::::
characterize the uncertainty of fault zones in

:::::
using 3D geologic models.

Fault zones may be irregular in shape, creating complex geometries which are difficult to characterize quantitatively (Torabi

et al., 2019a, b). Peacock et al. (2016) provide a detailed list of the various types of damage zones and intersecting fault

networks that comprise the general term “fault zone”. The inherent complexity of fault zone structure makes their precise

modeling intractable in an automated MCUP formulation
:::::::
geologic

::::::::
modeling

::::::::::
application,

::::
such

::
as

::::
that

:::::::
required

::
by

:::::::::::
probabilistic75

::::::::::
geomodeling. A simplified approach to modeling fault zones in 3D geologic models is developed in this study based on the

key elements defining fault zone geometry at a practical level of detail.

2
:::::
Model

::::::::::::::
implementation

:

The proposed workflow for modeling fault zones is provided in Figure 1. The workflow combines observations from a geologic

map with prior knowledge from the literature to approximate the 3D geometry of subsurface fault zones. The implicit geologic80

modeling software Leapfrog Works, a software specially designed to support creation of subsurface geological models, is used

in this study. The 3D fault zone is modeled in Leapfrog Works from four inputs – surface trace (polyline), structural orientation

(dip/dip azimuth vector), fault zone thickness (scalar distance function) and vertical termination depth (discretized surfaces).

The modeling approach preserves the essential 3D geometry of fault zones in the subsurface while providing sufficient gen-

eralization to fit into an MCUP formulation for uncertainty assessment
::::::::
automated

:::::::
implicit

::::::::
modeling

::::::::
workflow

:::
for

::::::::::
uncertainty85

::::::::::
propagation.
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Figure 1. The proposed fault zone modeling workflow implemented includes (a) modeling the central fault surface from a polyline and

structural orientation, (b) terminating the fault surface on a predefined vertical termination surface and (c) defining the 3D fault zone volume

using a distance function from the central fault surface
::::::::::::::::::
(Krajnovich et al., 2020a).

The popular implicit geologic modeling method was chosen for modeling the uncertainty of fault zones due to its ability

to directly incorporate structural orientation data to modeling geologic structures. Leapfrog Works uses radial basis functions

(RBFs) to efficiently interpolate the scalar fields describing implicit geologic surfaces (Seequent, 2014). Use of RBFs in implicit

geologic modeling has developed in recent years to rival
:::::::
Implicit

:::::::
geologic

::::::::
modeling

:::::
using

:::::
RBFs

::
is
::::::::::
comparable

::
in
:::::::

quality
::
to90

::::::::
modeling

::::
using

:::::::
popular co-kriging based methods (Hillier et al., 2014, 2017)

:::::::::
approaches

:::::::::::::::::::::::::::::::::::::
(Cowan et al., 2003; Hillier et al., 2014, 2017)

.

2.1 MCUP formulation
:::::::::::
Probabilistic

::::::::
geomodel

:::::
setup

:

The MCUP formulation
::::::
Setting

::
up

:::
the

:::::::::::
probabilistic

::::::::
geomodel

:
begins with the careful selection of key geologic modeling in-

puts for perturbation (Figure 1). The set of geologic modeling inputs are characterized using probability distributions chosen95

and parameterized based on the believed and/or observed uncertainties in the input variables. Monte Carlo simulations indepen-

dently explore the uncertainty space of each input, generating a set of input realizations which are propagated into 3D geologic

models through the use of an automated implicit geologic modeling algorithm. From the set of geologic model realizations, the

commonly used Shannon information entropy metric (Shannon, 1948) allows for quantifying the uncertainty about modeled

geologic structures (Wellmann and Regenauer-Lieb, 2012). This overview is provided merely to introduce the reader to the100

general idea of MCUP
::::::::::
probabilistic

:::::::::::
geomodeling as applied to implicit geologic modeling; the reader is referred to the book

by Wellmann and Caumon (2018) for a more thorough review of the MCUP
::::::::::
probabilistic

:::::::::::
geomodeling and implicit modeling

methods’ conceptual bases.

The same flexibility that allows MCUP
::::::::::
probabilistic

:::::::::::
geomodeling

:
to be effectively formulated for nearly any geologic

modeling problem is also a potential susceptibility of MCUP – that the model formulation and input uncertainties must be105
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predefined by the user. This can lead to potential over- or under-estimation and biases in the uncertainty assessment performed

with MCUP
::::::::::
probabilistic

:::::::::::
geomodeling due to inappropriate selection of modeling inputs or incorrect parameterization of input

probability distributions (de la Varga and Wellmann, 2016; Wellmann and Caumon, 2018; Pakyuz-Charrier et al., 2018b).

Following the school of thought reviewed by Nearing et al. (2016), the modeler must ask questions along the lines of:

– What inputs control the geometry of the modeled structure?110

– How can these inputs be defined probabilistically?

– What information is available to characterize each source of input uncertainty?

For hard data inputs (e.g., observed contacts, structural orientation measurements), the answers to these questions are relatively

well-established using measures of variance and deviation to directly characterize uncertainties (Caers, 2011; Wellmann and

Caumon, 2018). On the other hand, for subjective inputs to geologic models (e.g., interpreted fault terminations), there are115

generally two approaches with which the subjective uncertainties can be characterized. The first is describing and quantifying

the uncertainty associated with prior knowledge by utilizing believed theoretical or empirical relationships to quantify the rea-

soning behind a subjective geologic interpretation (Wood and Curtis, 2004). The second method, operating within a Bayesian

inference scheme, is to incorporate the prior knowledge as a likelihood function to validate –
::::::::
additional

::::::::
geological

::::::::::
knowledge

::
or

::::::::::
observations

::
to

:::::::
validate

:
–
:
or rather, as Tarantola (2006)

::::::::
Tarantola

::::::
(2006) states, invalidate –

:
–
:
model realizations. This study120

focuses on the first method of applying prior knowledge from published structural geology literature (Torabi et al., 2019a)

to parameterize the reasoning behind subjective inputs used for modeling fault zonesin the MCUP formulation
::::::::::
probabilistic

::::::::::
geomodeling

:::
of

::::
fault

:::::
zones. This approach is demonstrated effectively in this study when considering the vertical termination

depth of fault surfaces (Section 4.3).

Having identified the geologic modeling inputs controlling the geometry of the modeled fault zone and appropriate methods125

for defining these inputs probabilistically, Figure 2 shows the careful consideration of the various
::
an

::::::::::
illustration

::::::::
depicting

:::::::
possible

:::::::::
uncertainty

::::::::
envelopes

::::
due

::
to

:::
key

:
sources of uncertainty affecting each input.
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Figure 2. A schematic showing
::::::
expected

:::::::::
uncertainty

::::::::
envelopes

::::
due

::
to
:

the
:::::::
specified

:
sources of uncertainty influencing

:::::::
regarding

::::::::::
characterizing

:
the 3D geometry of a fault zone in the subsurface.

:::::::
Modified

::::
from

::::::::::::::::::
Krajnovich et al. (2020a)

:
.

In the 3D geologic model, the geometry and extent of fault zones in the subsurface often are approximated from limited in-

formation available. While useful for conceptualizing subsurface geology and guiding future investigations, the lack of detailed

data contributes significant sources of uncertainty to the 3D geologic model (Figure 2). This study focuses on and provides130

guidelines for performing realistic uncertainty assessments when creating 3D geologic models of fault zones from limited,

preliminary investigation data (e.g., a geologic map), further demonstrating how prior knowledge is used to characterize un-

certainty about inputs which are typically subjective (i.e., vertical termination depth). While formulated for a case with limited

data, the developed MCUP formulation
::::::::::
probabilistic

:::::::::::
geomodeling

:::::::
approach

:
allows for accommodating additional observations

::
of

:::
the

::::
fault

::::
zone

:::::::
geologic

:::::::::
modeling

:::::
inputs (e.g.,

::
via

::
a
::::::
modern

:
outcrop study) without significant reparameterization

::::::
through

::
a135

::::::::::::
straightforward

::::::::::::::::
reparameterization

::
of

:::
the

:::::
input

:::::::::
probability

::::::::::
distributions

::
to

:::::::
include

:::
the

:::
new

::::
data.

Moving forward, Section 3 details the appropriate selection and parameterization of probability distributions to accurately

characterize input uncertainties for various the data types used in 3D geologic modeling of fault zones. Section 4 highlights

the considerations for characterizing each modeling input’s uncertainty, and references the Python code written for performing

and assessing the input perturbations on a single fault zone model built from a geologic map in the Rocky Mountains of Col-140

orado, USA. Section 5 demonstrates the MCUP formulation
::::::::::
probabilistic

:::::::::::
geomodeling

::::::::
approach

:
applied to a more complex,

fault network model to assess how the method scales and investigate the interaction of intersecting fault zones. Section 6 dis-
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cusses the observed results of each model, highlighting key contributions of the MCUP formulation
::::::::::
probabilistic

:::::::::::
geomodeling

:::::::
approach

:
including the impact of different uncertainty parameterizations and guidelines for future model refinement. Section 7

reviews the MCUP
::::::::::
probabilistic

:::::::::::
geomodeling implementation for fault zone modeling

:::::
zones and reiterates the importance of145

the rationale used, concluding with recommendations for future work.

3 Probability distributions for MCUP

The MCUP formulation
::::::::::
probabilistic

:::::::::::
geomodeling

::::::::
approach developed requires additional advancements in the selection and

parameterization of probability distributions used for characterizing the uncertainty of objective and subjective geologic mod-

eling inputs. The selection of an appropriate probability distribution type from the various distributions available for modeling150

involves the consideration of two factors: the data type and the level of knowledge about the input. Geologic data may be

discrete (e.g., lithological categories) or continuous (e.g., thickness), with various probability distributions available to charac-

terize both data types (e.g., Normal, Uniform, Log-normal, Binomial – see Gelman et al. (2004)). All of the modeling inputs

used for modeling the 3D geometry of fault zones are described using continuous data types.

Simulation of scalar data is straightforward and well-established through the use of Markov-chain Monte Carlo (MCMC)155

sampling algorithms, easily accessible through the open source Python package PyMC3 (Salvatier et al., 2016). The PyMC3

library has been demonstrated as a platform for performing MCUP of 3D geologic models (de la Varga and Wellmann, 2016; Schneeberger et al., 2017)

, and has even been implemented in the open source geologic modeling platform GemPy (de la Varga et al., 2019). An addi-

tional consideration in the case of continuous data types is the distinction between scalar and vectorial data (e.g., structural

orientations). A probability distribution describing orientation data resides on the surface of a unit-sphere in 3D, and can160

be characterized using spherical probability distributions (Fisher et al., 1987; Mardia and Jupp, 2000). The benefit of using

spherical probability distributions to describe structural orientation uncertainty in 3D geologic modeling is clearly stated by

Pakyuz-Charrier et al. (2018b), and their application in MCUP formulations
::::::::::
probabilistic

:::::::::::
geomodeling

:
continues to develop

(Pakyuz-Charrier et al., 2018b, a; Carmichael and Ailleres, 2016). To remain concise, the following section focuses on the new

contributions made to the use of spherical probability distributions utilizing the R-fast open source package available in the R165

language (Papadakis et al., 2018).

3.1 Spherical probability distributions

Fault orientations are vectors described by dip and dip azimuth components. Stereographic projection is often used to describe

the fault plane using its pole (i.e., normal), defined by a unit vector or a trend and plunge. For
:::::::
handling orientation data in MCUP

formulations
:::
the

::::::::::
probabilistic

:::::::::
geomodel, distributions of the Fisher-Bingham family (Bingham, 1964; Kent, 1982) provide a170

wide variety of choices for modeling varying degrees of uncertainty. Pakyuz-Charrier et al. (2018b) recently showed that scalar

distributions are inadequate for modeling the uncertainty of structural orientation data, providing an example using the von-

Mises Fisher (vMF) distribution (spherical analogue to the isotropic bivariate normal distribution). This research continues

the exploration into the use of spherical distributions in MCUP
::::::::::
probabilistic

:::::::::::
geomodeling

:
by implementing the more general
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Bingham and Kent distributions (Fisher et al., 1987) from the Fisher-Bingham family to characterize anisotropic uncertainty175

of structural orientations used in 3D geologic modeling.

In structural geology, the use of spherical distributions to understand the uncertainty about structural orientation measure-

ments is well established (Mardia, 1981; Cheeney, 1983; Davis and Titus, 2017; Roberts et al., 2019). The open source Orient

and Stereonet softwares by Vollmer (2018) and Allmendinger (2015) provide uncertainty estimates of structural data using

spherical statistics, while Davis and Titus (2017) and Roberts et al. (2019) used spherical distributions to estimate confidence180

intervals about uncertain structural orientation measurements of folds and foliations. The analysis of anisotropic orientation

uncertainty in structural geology is well established with Zhou and Maerz (2002), Peel et al. (2001), Carmichael and Ailleres

(2016) and Davis and Titus (2017) applying it to joint set identification, structural data clustering and foliation-lineation char-

acterization. While Pakyuz-Charrier et al. (2018a) showed clearly that the dip angle and dip azimuth should not be simulated

independently as scalar values, it is apparent that the uncertainty affecting each of these aspects of the structural orientation185

need not be equal.

Two spherical distributions were reviewed in this study: the Bingham and Kent distributions. As opposed to the isotropic

vMF distribution, the Bingham and Kent distributions are capable of modeling potentially more realistic anisotropic uncertainty

envelopes. This study explores a novel application of anisotropic spherical distributions in MCUP
::::::::::
probabilistic

:::::::::::
geomodeling:

characterizing subjective bias in the structural orientation uncertainty of fault zones (i.e., differing levels of information regard-190

ing the dip angle and dip azimuth of faults modeled in implicit 3D geologic models). The distributions, typically characterized

from a series of input measurements, can also be characterized by directly controlling the input parameters themselves. This

method allows for the modeller to assume the size and shape of the structural orientation uncertainty envelope in the MCUP

formulation
::::::::::
probabilistic

:::::::::
geomodel

:::::
setup.

The Bingham distribution is an antipodally symmetric distribution for axial data, defined explicitly in R3 (p= 3) by a set of195

orthogonal eigenvectors (e1,e2,e3) and corresponding eigenvalues (λ1 ≥ λ2 ≥ λ3 = 0). The eigenvector and eigenvalue pairs

respectively detail the direction and degree of maximum, intermediate and minimum variance of the Bingham distribution. The

distribution is described by Eq. 1 where A= diag(λ1,λ2,λ3) and c(A) is the corresponding normalization constant (Fallaize

and Kypraios, 2016). Setting λ3 = 0 merely ensures that the distribution shows maximum variance in the axial direction

(i.e., across the unit sphere), allowing λ1 and λ2 to fully control the shape of the distribution when projected onto the lower200

hemisphere.

P (x|A) = exp

(
−

p−1∑
i=1

λix
2
i

)
1

c(A)
c(A) =

∫
x∈Sp−1

exp

(
−

p−1∑
i=1

λix
2
i

)
dSp−1(x) (1)

The Kent distribution (or Fisher-Bingham 5-parameter distribution) is a more generalized form of the Bingham distribution,

defined for vectorial data focused around a known mean vector with an anisotropic uncertainty envelope. It is characterized by

a mean vector (x = x1,x2,x3), the concentration parameter κ and an ovalness parameter β. Its density is described by Eq. (2)205

for κ≥ 0,β ≥ 0 where Ω is an orthogonal p× p matrix that can be likened to the eigenvector matrix used in simulating the

Bingham distribution. The reader is referred to Appendix C of Pakyuz-Charrier et al. (2018a) for a more thorough explanation
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of the parameterization of the Kent distribution.

P (x|Ω,κβ) = C3(κ,β)exp

(
κωT

1 x+β
[
(ωT

2 x)2− (ωT
3 x)2

])
C3(κ,β) = 2π

∞∑
j

Γ

(
j+ 1

2

)
Γ
(
j+ 1

) β2j
(
κ
2

)
−2j− 1

2 I2j+ 1
2
(κ) (2)

When modeling structural geologic orientation data, the distinction between axial (i.e., undirected) and vectorial (i.e., di-210

rected) data is irrelevant following the application of lower-hemisphere stereographic projection. The stereographic projection

is applicable because in reality the orientation of geologic structures is defined by an axis laying within the plane of the

structure. Regardless of the method of characterizing and sampling the orientation data, a stereographic projection to the

lower-hemisphere will return the conventional down-dip orientations as defined by dip/dip-azimuth or right-hand-rule systems.

3.2 Simulation
::::::::
Sampling

:
215

::::::::
Sampling

::
of

:::::
scalar

::::
data

::
is
:::::::::::::
straightforward

::::
and

:::::::::::::
well-established

:::::::
through

:::
the

::::
use

::
of

::::::
Monte

:::::
Carlo

::::::::
sampling

:::::::::
algorithms,

::::::
easily

::::::::
accessible

:::::::
through

:::
the

::::
open

::::::
source

::::::
Python

:::::::
package

::::::
PyMC3

::::::::::::::::::
(Salvatier et al., 2016).

::::
The

::::::
PyMC3

:::::
library

::
is

:::::::
designed

::
to

::::::::
facilitate

:::::::
Bayesian

:::::::::
inference

:::::
using

::::::::::::
computational

::::::::
sampling

::::::::::
algorithms,

::::::
though

:::
the

::::::::
inclusion

::
of
:::::::::

likelihood
::::::::

functions
:::

is
:::
not

::::::::
required,

::::::
thereby

::::::::
allowing

:::
for

:::::::::
utilization

::
of

::::
the

:::::::
package

::::::::
functions

::::
for

::::::
Monte

:::::
Carlo

::::::::
sampling

::::::
alone.

::::
The

:::
use

:::
of

:::::::
PyMC3

:::
has

:::::
been

:::::::::::
demonstrated

::::::::::
successfully

::
in

:::
the

::::::
context

::
of

:::
3D

:::::::
geologic

::::::::
modeling

::
by

::::::::::::::::::::::::::::
de la Varga and Wellmann (2016)

:::
and

:::::::::::::::::::::
Schneeberger et al. (2017)220

:
,
:::
and

:::
its

:::::::::::::
implementation

::
in

:::::::
Theano

::
has

:::::::
allowed

:::
for

::::::::
seamless

:::::::::
integration

:::::
with

:::
the

::::
open

::::::
source

::::::::
geologic

::::::::
modeling

::::::::
platform

::::::
GemPy

::::::::::::::::::::
(de la Varga et al., 2019)

:
.
::::
This

:::::
study

:::::::
focuses

:::::
solely

:::
on

:::
the

::::
step

::
of

:::::::::::
probabilistic

:::::::::::
geomodeling

:::::
based

:::
on

:::
3D

::::::::
geologic

::::::::
modeling

:::::
inputs,

:::::::::
leveraging

::::
only

:::
the

::::::
Monte

:::::
Carlo

::::::::
sampling

:::::::::
capabilities

:::
of

::::::
PyMC3

:
.

Simulating samples from spherical distributions requires dedicated algorithms separate from those used for scalar data types,

due to the transformation between rectangular and spherical coordinates creating non-uniform areas of angular trend and225

plunge increments on the unit-sphere. Several solutions have been demonstrated to simulate random samples from spherical

distributions which are comprehensively documented in Kent et al. (2018). Simulation algorithms for distributions of the

Fisher-Bingham family have been implemented by Papadakis et al. (2018) in an open-source R package Rfast. Open-source

tools for statistical simulation in the R and Python environments (including their combined usage through the rypy2 package),

provide convenient, well-documented tools for applying established statistical techniques to novel fields in geoscience.230

The algorithm for simulating random points from the Bingham and Kent distributions included in Rfast uses the acceptance-

rejection method, inspired by Kent et al. (2013) and Fallaize and Kypraios (2016). The method uses a Central Angular Gaussian

(CAG) distribution as an envelope to approximate the Bingham distribution. The algorithm uses only the first two eigenvalues

for identifiability, resulting in the need to use a rotation to align the sampled points with the desired orientation. The rotation of

data sampled from spherical distributions to any new set of axes is possible due to the rotation-independence of the dispersion235

of spherical distributions.
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3.3 Rotation

Two rotations using the Euler-Rodrigues formula (Dai, 2015) are useful for properly aligning the data simulated using the Rfast

algorithms. The first, necessary for the Bingham distribution, interchanges two axes by a rotation of π about an axis defined

by the sum of the two axes to be interchanged, k = v1 +v2. The second rotation is necessary with either the Bingham or Kent240

distribution to correct for the arbitrary alignment of the orientation uncertainty envelope (Figure 3(a)), which is not desired

when characterizing anisotropic uncertainty of dip angle and dip azimuth of a fault. This occurs in the MCUP formulation

::::::::::
probabilistic

::::::::
geomodel

:::::
setup

:
when characterizing the distributions from input parameters directly rather than through eigen-

decomposition or maximum likelihood estimation. An effective approach to rotating anisotropic spherical distributions was

developed which rotates iteratively by small increments about the input orientation vector until an accuracy threshold on the245

desired alignment of the e3 plane is satisfied (Figure 3(b)).

Figure 3. (a) Random e3 orientation of anisotropic Bingham distribution resulting from simulation and (b) rotated distribution with properly

aligned e3 orientation.

4 Uncertainty assessment

After determining the appropriate probability distributions to use in the MCUP formulation
::::::::::
probabilistic

:::::::::
geomodel, the uncer-

tainty of chosen geologic modeling inputs is quantified based on geologic data and prior knowledge available. This essential

step requires a thorough consideration of the types of uncertainty and methods for quantification available for each modeling250
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input. To minimize potentially unwanted bias in the MCUP formulation
::::::::::
probabilistic

:::::::::
geomodel, careful attention must be paid

to understanding the geologic nature of the objective and subjective sources of uncertainty affecting each modeling input.

Two models were generated for this study from data derived from a historical geologic map in the Rocky Mountains of

Colorado, USA (Figure 4). The first model contains a single fault zone (Figure 4(a)) and is analyzed to clearly illustrate

the impacts of different geologic modeling inputs and uncertainty parameterizations on a 3D geologic model. The second255

model contains a network of major and minor fault zones (Figure 4(b)) and is provided to demonstrate how the methodology

developed can be generalized to more complex models and to discuss the implications of fault zone interactions on geologic

model uncertainty. The models follow the workflow illustrated in Figure 1 to simplify the 3D geometry of fault zones to satisfy

the flexibility and automation required by MCUP
:::
for

:::::::::
uncertainty

::::::::::
propagation.

The geology in the project area consists of uplifted, Precambrian crystalline igneous and metamorphic rocks. The most260

recent period of tectonic activity occurred from c. ~70-40 Ma. during the Laramide Orogeny which formed the modern day

Rocky Mountains. During this time, brittle faulting occurred pervasively throughout the study area as part of the regional

Loveland-Berthoud Pass Fault Zone which passes just east of the study site, where it trends NNE for nearly 50 km (Lovering,

1935). A large number of fault zones of varying widths cross through the study area and were mapped at a 1:12,000 scale by

Robinson et al. (1974). The geologic map (Figure 4) contains approximate traces and boundaries of fault zones in the study265

area, showing fault zones with thickness ranging from 5-50 ft (~1.5-15 m) as lines and fault zones greater than 50 ft (~15 m)

thick as hatched zones. Robinson et al. (1974) provided contoured stereonets of all faults mapped in the area, revealing that the

majority of fault zones mapped dip steeply to the east/northeast. However, specific information on the dip angle of individual

faults is missing from the geologic map. In addition to this significant source of orientation uncertainty, the historic map also

includes significant geographical uncertainty resulting from georeferencing and drafting errors.270
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Figure 4. 1:12,000 geologic map from Robinson et al. (1974) showing mapped fault zones of varying widths. The white rectangle and

associated overlay (a) show the single fault model while the blue rectangle and associated overlay (b) show the fault network model. Fault

trace(s) used for modeling are highlighted within each rectangle
:

as
::::
green

::::::::
polylines.

Model realization creation is handled by custom Leapfrog Works back-end support developed for this study to allow for

automated updating of geologic modeling parameters from an initial model containing input fault zones.
:::
The

:::::
initial

::::::
model

::::
must

::
be

:::::::
created

::
in

::::::::
Leapfrog

:::::
using

:::
the

::::::::
workflow

::::::::
provided

::
in

::::::
Figure

::
1,

:::
and

:::::::
naming

::::::::::
conventions

:::
for

:::
the

:::::::
geologic

::::::
model,

:::::
fault

:::::
zones,

::::::::
polylines

:::
and

::::::::::
termination

:::::::
surfaces

:::::
being

::::::::
specified

::
in

:
a
:::::::::::::
user-generated

:::
text

::::
file.

:::
The

:::::::
custom

::::::
version

::
of

::::::::
Leapfrog

::::::
Works

:::
uses

::::
this

::::
text

:::
file

::
in

::::::::::
conjunction

:::::
with

:::
the

::::::::
Leapfrog

:::::
model

::::
and

:::::
input

:::::::::
realization

::::
files

::
to

::::::::::::
automatically

::::
step

:::::::
through

:::::::
creation275

::
of

::::
each

::::::::
geologic

:::::
model

:::::::::
realization

::::::
based

::
on

:::
the

:::::::::
simulated

::::
data,

:::::::::
following

:::
the

::::::::
workflow

:::::
from

::::::
Figure

::
1.

:
Model realizations

generated in this manner are
::::::::::
automatically

:
evaluated onto a grid of cells

::::::
defined

::
by

:::
the

::::
text

:::
file

:
for subsequent analysis. The

method put forward by Wellmann and Regenauer-Lieb (2012) is implemented to calculate the probability of occurrence of

fault zone lithology in each cell. The probability of occurrence is then used to compute information entropy to describe the

uncertainty of fault zones in the geologic model. In a binary system (e.g., fault zone vs. intact rock), information entropy280

is maximal when the probability of occurrence of a fault zone is 50%, which as discussed in Krajnovich et al. (2020a) can

introduce potential for misinterpretation of the geologic model uncertainty envelope if an inappropriate colormap is used.
:::
The

::::::
method

:::::::::::
implemented

::
in
::::::::

Leapfrog
::::

can
:::
be

:::::
made

:::::::
available

:::
to

:::::
other

:::::::::
researchers

:::
on

:::
the

:::::
basis

::::
that

::::
they

::::::
contact

:::
the

::::::::::
developers
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::
of

::::::::
Leapfrog

:::::::::
(Seequent)

::::::::::::
independently

::
to

::::::
inquire

:::::
about

::::::
access

::
to
::::

the
::::::
unique

::::::::::
functionality

:::::::
(which

::
is

::::
built

:::
on

:::
top

::
of

::
a

::::::
default

:::::::
Leapfrog

:::::::::::
installation).285

A set of 1,000 realizations for each modeling input were propagated into the 3D geologic model independently and com-

pared with the combined geologic model uncertainty assessment from all four modeling inputs (Figure 5). The significance of

orientation and vertical termination depth uncertainty on the combined model uncertainty is clearly apparent at depth, while

the uncertainty of the fault zone near the ground surface is dominated by surface trace uncertainty. Uncertainty about the fault

zone thickness appears to be largely overshadowed by that of the surface trace, which is considered to be a consequence of the290

significant georeferencing and drafting errors arising from the use of the historic geologic map (Section 6.1).

Figure 5. Block models showing information entropy quantified from (a) independent modeling inputs and (b) combined modeling inputs.

The difference between the combined geologic model uncertainty and each independent modeling input is shown in (c), where blue values

indicate that the independent modeling input showed greater entropy than the combined model uncertainty.

The following sections provide a detailed description of the methods implemented for parameterizing each geologic model-

ing input propagated into the model shown in Figure 5. The input perturbation script, which is compatible with virtually any

3D geologic modeling software, has been developed using open source code of the R and Python languages and is published

at the code and data supplement. The interested reader is suggested to refer to the script alongside Sections 4.1-4.4 for exact295

results, figures and parameters of the MCUP formulation
::::::::::
probabilistic

::::::::
geomodel

:::::
setup.
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4.1 Structural orientation

The structural orientation of a fault zone varies along its surface and is implemented in modeling as a single dip azimuth and

dip angle vector applied to the implicit modeling interpolant. Natural variability of the fault surface and error of individual

measurements contribute objective uncertainty to the orientation used for modeling (Whitmeyer et al., 2019; Stigsson, 2016).300

Additional, subjective sources of uncertainty are present that may affect the fault orientation in non-random ways (Bond, 2015),

including the application of prior knowledge (e.g., regional structural analysis) or measurement bias from difficulty interpreting

fault slip surfaces.

Stigsson (2016) shows that the objective uncertainty of measurement imprecision often underestimates the true uncertainty

associated with a geologic structure’s orientation, suggesting that a more robust characterization of structural uncertainty305

should consider potential sources of subjective bias. In the example of modeling fault zones from a geologic map (Figure 4),

anisotropic uncertainty untold by any single measurement is present due to the inconsistent information available regarding

fault zone dip azimuth and dip angle. An anisotropic Bingham distribution is simulated to capture the uncertainty of the input

orientation data from the geologic map. Observed variability in the surface trace and the regional structural analysis provided

in Robinson et al. (1974) were used to establish the uncertainty space used in simulation. Section 6.3 continues the discussion310

regarding the use of an anisotropic structural orientation uncertainty envelope.

::
As

:::
the

:::::::
dataset

::::
from

:::::::::::::::::::
Robinson et al. (1974)

::::
lacks

:::::::
specific

::::::::::::
measurements

:::
of

::::
fault

::::
zone

::::::::::
orientations

:::
to

:::::::
generate

::
a
::::::::
Bingham

:::::::::
distribution

:::::::
directly

::::
using

:::
the

:::::::::
orientation

::::::
matrix

::::::::::::::::
(Fisher et al., 1987)

:
,
:::
the

:::::::::
parameters

::
of

:::
the

:::::::
Bingham

::::::::::
distribution

::::
were

::::::::
assigned

:::::::
manually

:::
to

:::::::
generate

:
a
::::::::::
distribution

::::::::
covering

::
the

::::::::
expected

:::::
range

::
of

:::::::::::
orientations.

:::::::
Varying

:::
the

::::::::::::::
parameterization

::
of

:::
the

::::::::
Bingham

:::::::::
distribution

:::::::::
ultimately

:::::::
resulted

::
in
:::::::::::

determining
::
an

::::::::::
appropriate

::::::::::::::
parameterization

::::
for

:::
the

::::
fault

:::::
zone

::
in

:::
the

::::::
single

::::
fault

::::::
model315

::::
using

:::
an

:::::
input

:::::::::
orientation

::
of

::::::::
75o/123o

:::::::
(dip/dip

::::::::
azimuth),

:::::::::
maximum

:::::::::
eigenvalue

::
of

::::::::
λ1 = 200

:::::::::
(matching

:::
the

::::::::
observed

:::::::
azimuth

:::::::
variation

::
of

:::
the

::::::
surface

:::::
trace)

::::
and

::::::::::
intermediate

:::::::::
eigenvalue

::
of

:::::::::
λ2 = 22.5

:::::::::
(providing

::
an

:::::::::::
approximate

:::::
+/-20o

:::
dip

:::::
angle

:::::::::
variation).

4.2 Surface trace

The surface trace of a fault zone is a polyline along the topography which follows an approximate central fault surface. In320

ideal conditions, the fault trace would follow the centerline of the fault zone and reach along the whole length of the fault,

ending at the fault tip points. However, in reality, the centerline of the fault zone can rarely be determined exactly (Childs et al.,

2009). Additionally, when extracting the surface trace from a scanned geologic map, digitization error and geographical errors

are likely to be present as well. In the proposed MCUP formulation
::::::::::
probabilistic

::::::::
geomodel

:::::
setup, the fault centerline inherits

uncertainty from its possible position within the perceived fault zone as well as from the relevant geographical errors.325

The uncertainty affecting the surface fault trace results in changes in the trace location and shape. Independent perturbations

of the trace’s endpoints are applied and linearly propagated along the fault trace to arrive at a smoothly varied location and

shape. A normal distribution characterizing the uncertainty about the location of each trace endpoint is parameterized from
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the joint uncertainty stemming from fault zone centerline definition, digitization error and geographical errors in addition to a

random direction of shift obtained from a uniform distribution.330

The three
:::
The

:::::
three

:::::::
primary sources of uncertainty are quantified using the available information listed in respective order:

average fault zone thickness, published metrological studies (Zhong-Zhong, 1995) and approximate geographical error of

known landmarks . Additional details on
::::
(e.g.,

::::::::
mountain

:::::
tops).

:

::::
First,

::
a

:::::::
bounded

:::::::
uniform

:::::::::
distribution

::
is
::::::::::::
parameterized

::
to

:::::::
simulate

::
a

::::::
random

::::::::
direction

::
of

::::::::::
perturbation

:::
for

::::
each

::::
trace

::::::::
endpoint

:::
due

::
to

:::::::::::
geographical

:::::
error

:::::
(i.e.,

:::::::
drafting

:::
and

:::::::::::::
georeferencing

::::::
error).

::
A
:::::::

normal
::::::::::
distribution

::::::::::
representing

::::
the

::::
total

::::::
bound

:::
on335

::::::::::
geographical

:::::
error

::
is

::::::::
converted

:::
to

::::::::
respective

::̂
x
::::
and

::̂
y

::::::::::
components

:::::
using

:::
the

:::::::::
directional

::::::
cosine

:::
of the method of perturbing

the location and shape of the surface trace
::::
angle

:::::::
sampled

:::::
from

:::
the

:::::::
uniform

::::::::::
distribution.

::::
This

:::::::::
conversion

::
to

::::
unit

::::::::::
components

::
is

::::
used

:::::::
similarly

::::
with

:::
the

::::
fault

:::::
zone

::::::::
centerline

::::::::
definition

::::::::::
uncertainty

:::
and

:::::::::
digitization

::::::::::
uncertainty

:::::
using

:::
the

::::
acute

:::::
angle

::
θ

:::::::
between

::
the

::::::::::
orientation

::
of

:::
the

::::
fault

::::
trace

::::
with

:::
the

:::::::
northing

::::
and

::::::
easting

:::::::::
directions.

:::
An

::::::::
additional

::::::
logical

:::::
check

:::
for

:::
the

:::::
strike

::::::::
quadrant

::
of

::
the

:::::::
surface

::::
trace

::
is

:::::::
required

::
to

:::::::::
implement

::::
this

::::::::
approach.340

:::
The

:::::
three

:::::::::
individual

:::::::
sources

::
of

::::::::::
uncertainty

::::::::
affecting

:::
the

:::::::
surface

::::
trace

::::::::
endpoint

::::::::
locations

::::
are

::::::::
combined

::::
into

::
a
:::::::
derived

:::::::::
distribution

:::::
using

::
a
:::::::::::
deterministic

:::::::
function

:::
to

::::::::
determine

::::
the

::::
total

::::::::::
uncertainty

:::::::
affecting

:::
the

::::::::
location

::
of

::::
each

:::::::::
endpoint,

:::::
given

::
by

:::
Eq.

::
3.

:

P (x̂|σcenterline,σdig,σgeo,θ) = cos(θ)
(
N(0,σcenterline) +N(0,σdig)

)
+N(0,σgeo)sin

(
U(0,2π)

)
,

P (ŷ|σcenterline,σdig,σgeo,θ) = sin(θ)
(
N(0,σcenterline) +N(0,σdig)

)
+N(0,σgeo)cos

(
U(0,2π)

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

:::
The

:::::::
average

::::
fault

:::::
zone

::::::::
thickness

::::
was

::::
used

::
to
:::::::::::

characterize
:::
the

::::
fault

:::::
zone

::::::::
centerline

:::::::::
definition

::::::::::
uncertainty

:::::::
affecting

:::::
each345

::::::
surface

::::
trace

::::::::
endpoint.

::::
The

:::::::::::
geographical

::::
error

::::
was

::::::::
calculated

::
to
:::
be

::::::::::::
approximately

::
40

::::::
meters

:
based on the joint effect

::::::
average

:::::::
distance

::::::::
measured

:::::::
between

::::::
known

:::::::::
landmarks

:::::
(e.g.,

::::::::
mountain

:::::
tops)

::
on

:::
the

::::::::
geologic

::::
map

:::
and

:::::::
modern

:::::::
satellite

:::::::
imagery

:::::
data.

:::
For

::::
both of these sources of uncertaintyare available in the code supplement. ,

:::
the

:::::::::
maximum

:::::
error

:::::
range

::::::::
described

::
is

::::::
treated

::
as

:
a
::::
95%

:::::::::
confidence

:::::::
interval,

::::::::
allowing

:
a
::::::
normal

::::::::::
distribution

::
to

:::
be

:::::::::::
parameterized

::::
with

::
a
:::::
mean

::
of

::::
zero

:::
and

::
a

:::::::
standard

::::::::
deviation

::::
equal

:::
to

:::::::::::::::::::
maximumerror/3.92.

::::
The

::::::::::
digitization

::::
error

:::
for

::
a
::::::::
1:12,000

::::
map

::::
was

::::::::::
represented

::
by

::
a
::::::
normal

::::::::::
distribution

::::
with

::
a350

:::::::
standard

::::::::
deviation

::
of

:::::
3.666

::
m

:::::
based

::
on

::::::::::::::::::
(Zhong-Zhong, 1995)

:
.

4.3 Vertical termination depth

In implicit geologic modeling, by default, all faults extend through the entire model domain. To arrive at a more realistic

approximation of the 3D fault geometry, a series of surfaces at fixed elevations are defined and used to terminate faults. The

depth at which a fault is expected to terminate is based on prior knowledge obtained from past works into approximating355

the 3D geometry of faults (Walsh and Watterson, 1988; Nicol et al., 1996; Schultz and Fossen, 2001; Torabi et al., 2019a).

These works established empirical relationships for fault surface geometry using an aspect ratio of fault length along strike

from tip to tip (flength, henceforth length) vs. fault height along dip (fheight, henceforth height): Aspect ratio=
flength
fheight

. The

fault surface aspect ratio, while highly variable (ranging from ~1.5-16 in the sedimentary basin rocks studied by Torabi et al.

(2019a)), has been demonstrated to be an effective measure for quantifying the 3D geometry of fault surfaces. While studies360
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into the aspect ratio of faults in crystalline rock are scarce and typically focus on major thrust faults, a reasonable assumption

is that the aspect ratio will lie in the lower range of that for sedimentary basin rocks (Torabi et al., 2019a) due to the lack of

mechanical stratigraphy; an aspect ratio of 1 to 5 was assumed to be appropriate for the MCUP formulation in this study.

The vertical termination depth used in modeling inherits uncertainty from the aspect ratio and persistence of the fault trace

used. Lacking specific information on the location of fault tip points, an assumption of length must be made using the per-365

sistence of a fault trace at the surface as a proxy for the fault length. However, the endpoints of the fault trace may not be

the true tip points due to artificial truncation by overburden or lack of outcrop. Lacking a detailed study of fault tip points,

this uncertainty can be characterized by averaging the fault trace lengths of a number of faults of the same group (i.e., similar

orientation).

The
::::::::
Sampling

:::
the

::::::::::
uncertainty

::
of

:::
the

:::::
fault

::::
zone

:
vertical termination depth is sampled from a deterministic distribution370

combining uncertainty about the aspect ratio, fault trace persistence and prior information of the fault elevation and average

dip
:::::::
involves

:::::::::
combining

::::::::
multiple

:::::::::
probability

:::::::::::
distributions

:::::
using

:
a
::::::::::::

deterministic
:::::::
function

::
to

::::::::
generate

::
an

::::::::::
empirically

:::::::
derived

:::::::::
probability

::::::::::
distribution.

:::
In

:::
the

:::::::
derived

:::::::::
distribution

::::
for

::::
fault

:::::
zone

::::::
vertical

::::::::::
termination

::::::
depth,

::::::
flength::::

and
::::::::::::
Aspect ratio

:::
are

:::::::::::
characterized

::
as

::::::::::
independent

::::::::::
probability

::::::::::
distributions

::::
and

::::::::
combined

:::::
using

::
a
:::::::::::
deterministic

:::::::
function

:::::
based

:::
on

:::
the

::::::::::
empirically

::::::
derived

:::::::::
description

:::
of

:::
3D

::::
fault

::::::
surface

:::::::::
geometry,

:::::::::::::::::::::::::::::::::::::::
zterm = fheight ∗ sin(θ);fheight =

flength
Aspect ratio .

::
In

:::
this

:::::::
manner,

:::
the

:::::::
vertical375

:::::::::
termination

::::::
depth

::::::
(zterm)

::
is
:::::::::

calculated
:::

by
::::::::::

converting
:::
the

::::
fault

::::::
height

:::
to

:::
the

:::::::
vertical

::::::
height

:::::
using

:::
the

:::::::
average

::::
dip

:::::
angle

::
(θ)

::::
and

::::::::::
subtracting

:::
this

:::::
from

:::
the

:::::::
average

::::::::
elevation

::
of

:::
the

:::::
fault

::::::
outcrop

:::::::::
(zoutcrop). Sampled vertical termination depths are

continuous, and are subsequently discretized onto the pre-defined termination surfaces in the geologic model. The scale at

which termination surfaces are defined is determined
:::::
created

::::::
during

::::
the

:::::
initial

::::::::
geologic

::::::::
modeling

::::
step

:::::::
(Figure

:::::
1(b)).

::::
The

::::::
interval

::
of

:::::
these

::::::::::
termination

:::::::
surfaces

:::
can

:::
be

:::::::
adjusted

:
based on the end user needs of the geologic model; 50 meter intervals380

were used in this study to balance illustrative quality with model processing time.

::::::
flength :

is
::::::::::::
characterized

::
as

:
a
::::::
normal

::::::::::
distribution

::::
with

:
a
:::::
mean

::
of

::::
zero

:::
and

::
a

:::::::
standard

::::::::
deviation

::
of

::
20

::::::
meters

:::::
based

::
on

::::::::
assumed

:::::::
deviance

::
of

:::
the

::::::
surface

:::::
trace

:::::
length

:::
vs.

:::
the

::::
true

:::::
tip-tip

::::
fault

::::::
length.

:::::::::::
Aspectratio

::::
was

:::::::::::
characterized

:::::
using

::::
both

:
a
:::::::
uniform

:::
and

::
a

:::::::::
log-normal

::::::::::
distribution,

:::::::::
respecting

:::
the

:::::::
expected

:::::::::
maximum

:::
and

::::::::
minimum

::::::
values

::
of

::
1

:::
and

::
5.

:::::::
Section

::
6.2

::::::::
explores

:::
the

::::::
impact

::
of

::::
these

::::
two

:::::::
different

:::::::::::::::
parameterizations

::
on

:::
the

:::::
shape

::
of

:::
the

:::::::
derived

:::::::::
distribution

:::
for

:::::::
vertical

:::::::::
termination

::::::
depth.385

4.4 Fault zone thickness

In the ideal case, a detailed study of fault zone thickness at outcrop provides a measure of the average thickness and its

variability. Given the thickness range of 5-50 ft (1.5-15 m) on fault zones mapped as lines in Figure 4, a conservative estimate

on fault zone thickness in the
:::
case

:::::
study project area was characterized using a normal distribution

:::
with

::::::::
µ= 30m

:::
and

:::::::
σ = 2m.

While not directly applied in the model shown in Figure 5, when lacking direct observations, fault zone thickness can also390

be approximated based on prior knowledge of a fault’s estimated displacement using an established displacement to thickness

(D:T) relationship appropriate for the project’s geology (Torabi et al., 2019b; Childs et al., 2009). This approach would inherit

uncertainty from the subjective interpretation of the fault’s historical displacement and the empirical derivation of the fault’s

D:T relationship. With a measure of displacement, a power-fit relationship allows for approximating the fault zone thickness.
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The input perturbation script includes functions for exploring the use of the D:T relationship based on a linearized power law395

function provided by Torabi et al. (2019b), with curve-fitting parameters log10(b) and m to approximate fault zone thickness

(ft) from displacement (fd), and a modifier fCoreV sZone used to model different sections of the fault zone based on the work

by Childs et al. (2009). Uncertainty arises in the parameters of the D:T power-fit relationship, log10(b) and m and the assumed

fault displacement.

4.5 Simulation quality assessment400

The quality of probabilistic simulation relies on primarily
::
is

:
a
:::::::
product

::
of
:

the size of the uncertainty space, the simulation

method
:::
used

:
and the number of samples drawn. For any simulation, the realizations generated can be plotted in the data space

and visually examined for appropriate coverage and shape (termed a realization plot). For non-spherical
::::
scalar

:
data types,

use of MCMC simulation methods creates trace plots and posterior histograms , which
::::::::
histograms

:::
of

:::
the

:::::
Monte

:::::
Carlo

::::::
draws

provide an intuitive method for independently assessing the quality of simulation for each input. Uniformity of the trace plot405

and width of the 95% highest posterior density (HPD) indicate, respectively, the convergence of the Markov Chain sampling

and the thorough exploration of the posterior
::::::
Visual

:::::::
analysis

::
of

:::
the

:::::
shape

::
of

:::
the

::::::::
histogram

:::::::::
compared

::
to

:::
the

:::::::
expected

::::::
shape

::
of

::
the

::::::::::
distribution

::::
and

:
a
::::::::::
comparison

:::::::
between

::::
the

::::
input

::::::::::
distribution

:::::::::
parameters

:::::
(e.g.,

:::::
mean

::::
and

:::::::
standard

::::::::
deviation

:::
for

:
a
:::::::

normal

::::::::::
distribution)

:::
and

::::
their

::::::
values

:::::::::
calculated

::::
from

:::
the

:::::::
samples

:::
can

:::::::
quickly

:::::::::
determine

:::::::
whether

::
the

:::::::
samples

::::::
drawn

::::
have

::::::::::
sufficiently

:::::::
explored

:::
the uncertainty space. Figure 6 shows an example of the realization plot , trace plots and posterior

:::::
sample

:
histograms410

generated for the simulation of vertical termination depths from Section 4.3. This figure allowed for identifying a strong tailing

behavior in the output realizations, leading to a reparameterization discussed in Section 6.2.
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Figure 6. Realizations and
:::::::::
Visualization

:::
of Monte Carlo analysis results (trace plot

::::::
samples

:
and posterior histograms)

:::::::
associated

:::::::
geologic

::::
input

::::::::
realizations

:
from perturbation of the fault zone vertical termination depth based on a uniform distribution of fault aspect ratio. The 95%

highest posterior
::::::::
predictive density is overlain on the posterior histograms

:
of

:::
the

:::::
Monte

:::::
Carlo

::::::
samples.

Trace plots are not available for the
:::
For spherical data simulationsdue to reliance on the acceptance-rejection simulation

method, while posterior
:
, histograms may be replaced by Exponential Kamb contouring Exponential Kamb contouring (Vollmer,

1995) or Rose diagrams to visualize the density of sampled poles across the surface of the unit sphere (as projected onto a lower-415

hemisphere projection). This visual assessment provides a semi-quantitative evaluation of the shape of the posterior spherical

probability distribution
::
and

::::::::::
distribution

::
of

:::
the

::::::::
sampled

::::::::
structural

::::::::::
orientations. Additionally, a recalculation of the eigenvector

decomposition from the set of simulated samples provides a measure of the accuracy of the posterior distribution
:::::::::
distribution

::
of

:::::::
samples with respect to the input orientation

::::::::
parameter values. Tools for generating figures for simulation quality assessment

are provided and detailed in the input perturbation script.420

Based on the assessment of simulation quality and consideration of compounding factors during uncertainty propagation,

the MCUP formulation for the
::::::::::
probabilistic

:::::::::::
geomodeling

::
of

:::
the single fault model was run for a number of various realization

counts (100, 300, 500, 1,000, 2,000 and 3,000). The processing time generally increases linearly with realization count, reach-

ing many hours to several days for high realization counts on the single fault mock model containing 2.5 million cells.
:::
The

:::
vast

::::::::
majority

::
of

:::::::::
processing

::::
time

::
is
:::::
taken

:::
up

::
by

:::
the

::::::
model

::::::::
updating

:::
and

:::::
block

::::::
model

:::::::::
calculation

::
in
:::::::::

Leapfrog.
:::
For

:::
the

::::::
single425

::::
fault

:::::
mock

:::::
model

::::
with

:::::
1,000

::::::::::
realizations

:::
and

:::
2.5

:::::::
million

::::
cells

:::
the

::::::::
sampling

:::::::::
benchmark

::::
time

::::
was

::
87

:::::::
seconds

:::::
while

:::
the

::::::
model
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:::::::::
processing

:::::::::
benchmark

::::
time

::::
was

::::
38.5

:::::
hours.

:
This study is intended to introduce and expand on the use of MCUP formulations

::::::::::
probabilistic

:::::::::::
geomodeling

:
for specific geologic modeling problems, and work regarding optimizing the efficiency of model

processing is not a focus. The experiments conducted do highlight the need to understand (i) the realization requirement for

exploring modeling inputs independently and its relationship to the size of the independent uncertainty spaces, (ii) the interac-430

tions of various, related parameters during the uncertainty propagation step and (iii) identification of a balance between final

model resolution, coverage, complexity and processing time.

5 Fault network model

The fault network model shown in Figure 4(b) contains a major fault zone (thickness = ~175 m) with five minor fault zones

(thickness ≤ 16 m) branching out of it. The parameterization of modeling inputs was conducted following the methods de-435

scribed in Section 4. The input orientations of each fault were determined based on the measured surface trace strike, and

a dip angle assigned initially by a static random value based on the data published by Robinson et al. (1974). The resultant

uncertainty model is shown in Figure 7, with cross-sections highlighting the intersection of three minor fault zones with the

major fault zone. The modeling formulation scaled effectively to the more complex fault network model, which included two

deterministic horizontal terminations of minor faults into the major fault zone.440
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Figure 7. Combined geologic model entropy results for the fault network model, highlighting three intersection points between minor fault

zones with the major fault zone: (a) approaching major fault zone boundary, (b) bordering major fault zone boundary and (c) overlapping

boundaries.

Focusing on the intersection of fault zones reveals the interaction between fault zone uncertainty envelopes. In Figure 7, the

slice (a) shows the uncertainty envelope of the major fault zone being deflected by a zone of lower entropy as the nearby minor

fault zone approaches it. Slices (b) and (c) show the uncertainty envelopes of major and minor fault zones merging, showing

how the deflection from (a) transfers into a hot spot of high uncertainty at the peak intersection point (overlapping boundaries).

Just as the uncertainty of a single fault zone is maximal at its boundaries, the overlapping of two fault zone boundaries produces445

an entropy hot spot.
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6 Discussion

6.1 Historic dataset sensitivity

The observed sensitivity of the model uncertainty to the surface trace perturbation may be due to the relative significance of

geographical sources of uncertainty in the case of modeling from a historic geologic map. These errors include inherent error450

in the geologic map stemming from its accuracy and georeferencing errors arising from the conversion between geographical

and projected coordinate systems. Georeferencing typically uses a rubber-sheet method, moving, rotating and stretching the

map – in an ArcGIS platform – to optimally translate from the geographical coordinate system of the map (Lat/Long) to the

projected coordinate system required by modeling (UTM Northing and Easting), and the error typically reported by these

methods may underestimate the true error associated with the georeferenced map. Quantifying the true geographical error is455

difficult, but can be approximated by comparing the location of known landmarks (e.g., intersection of roads, mountain tops,

corners of buildings) between the georeferenced map and modern, digital datasets. From Figure 4, a maximum bound on the

error in the location of known features across the geologic map was approximated to be 40 meters by visual examination of the

georeferenced map. While the same methodology would apply to a surface trace obtained from modern mapping methods (e.g.,

global positioning systems), it is apparent that the contribution to model uncertainty could be drastically reduced. Reapplying460

the methodology to a modern dataset may highlight different sensitivity.

6.2 Model reparameterization

Based on the inherent variability of fault aspect ratios, initially a bounded uniform distribution was determined to be appro-

priate (Figure 6(a)). However, the posterior
:::::::::
empirically

:::::::
derived

:
distribution of vertical termination depths resulting from a

bounded uniform parameterization of fault aspect ratio showed a strong tailing effect
:::::
(right

:::::::
skewed). This could be interpreted465

as being unrealistic, arising as an artifact
::::::
artefact

:
due to the shortening of vertical termination depth intervals for equivalent

increases in fault aspect ratio. A reparameterization using a custom log-normal distribution of aspect ratio respecting similar

maximum bounds of 1 and 5 is illustrated in Figure 8(b), showing a significant reduction in the tailing effect present in the

vertical termination depth realizations. This reparameterization highlights the key strength – and susceptibility – of MCUP

formulations
::
-–

:::
and

::::::::::::
susceptibility

::
—

:::
of

::::::::::
probabilistic

:::::::::::
geomodeling

:::::
based

:::
on

::::::::
geologic

::::::::
modeling

:::::
inputs, the reliance on a user470

defined characterization of input uncertainty. Again, it is necessary to reiterate that the modeler must take into considera-

tion not only field observations and theoretical prior knowledge when assessing a geologic modeling uncertainty formula-

tion, but also their informed expectation of what is geologically realistic for their chosen modeling problem.
:::::::::::
Furthermore,

::::::::::::::
reparameterizing

::::::::
individual

:::::::
aspects

::
of

:::
the

:::::::::::
probabilistic

:::::
model

::::
may

:::::
prove

::
to
:::

be
:::::::::
insufficient

::::
due

::
to

:::
the

::::::::
presence

::
of

:::::::::
inherently

:::::::
unknown

:::::::::::
relationships

:::::::
between

:::
the

::::::
chosen

::::::
model

::::::::::
parameters.475
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Figure 8. Realizations and
:::::::::
Visualization

:::
of Monte Carlo analysis results (trace plot

::::::
samples

:
and posterior histograms)

:::::::
associated

:::::::
geologic

::::
input

:::::::::
realizations from perturbation of the fault zone vertical termination depth, reparameterized using a log-normal distribution of fault

aspect ratio. The 95% highest posterior
:::::::
predictive density is overlain on the posterior histograms

:
of
:::
the

:::::
Monte

:::::
Carlo

::::::
samples.

6.3 Parameter relationships

While many MCUP formulations
:::::::::
proabilistic

::::::::::::
geomodeling

:::::::::
approaches

:
– including this study – have focused on independent

perturbations of geologic modeling inputs, relationships between modeling inputs are apparent in the modeling formulation

developed. Intuitively, there is a relationship between the average orientation of a fault’s surface trace and the structural orien-

tation applied to the fault surface modeling interpolant’s global trend. Deviations in the modeled fault surface from the input480

orientations can occur when the two inputs are significantly different, typically arising in Leapfrog Works by way of overesti-

mation of fault surface dip by up to 10degrees
:

o
:
when the surface trace azimuth (i.e., average normal to the fault surface trace)

and global trend dip azimuth differed by greater than 20o
:::::::::::::::::::::
(Krajnovich et al., 2020a). Comparing two geologic models generated

with orientations sampled from anisotropic and isotropic Bingham distributions with equivalent maximum uncertainty ranges

(Figure ??) showed artifacts present in
::
9)

:::::::
showed

:
a
:::::::
skewing

::
of

:
the geologic model uncertainty envelope when generated from485

the isotropic Bingham distribution.
:::
The

::::::
results

:::::
show

:
a
:::::::::
consistent

:::::
skew

::::::
towards

:::::::::::
near-vertical

::::
dips

::
of

::::
the

:::::::
modeled

::::
fault

:::::
zone

::::::::::
realizations. This issue is alleviated when the structural orientation is parameterized with an anisotropic Bingham distribution,

allowing for increased variability in the dip angle without compromising the certainty of the dip azimuth.
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Figure 9. Block models generated from 1,000 realizations
::::
Visual

:::::::::
comparison

:
of

::::::
geologic

:::::
model

::::::
entropy

::::::::
generated

:::::
using

::::::::
anisotropic

:
(a)

an anisotropic Bingham distribution and
::::::
isotropic

:
(b) an isotropic Bingham distribution

::::::::
distributions.

:::
The

::::::
entropy

::::::::
difference

:::::::
between

::::
these

:::
two

:::::
models

:
(c) Comparison

:::::::
highlights

:::::
slight

::::::
skewing

:
of 10,000 orientation

::
the

:::::::::
uncertainty

:::::::
envelope

::::::
towards

::::::
steeper

::::::
dipping

::::
fault

:::::
zones

::::
when

:::::::::::
parameterized

::::
using samples collected from anisotropic and

::
an isotropic Bingham distributions covering the same range of maximum

uncertainty
:::::::::
distribution (λ2 = 22.5

:
d).

::::::
Entropy

:::::::
difference

::
is

:::::
shown

:::
such

:::
that

:::::::
negative

:::::
values

::::::
indicate

:::::
higher

::::::
entropy

:
in
:::
the

:::::::
isotropic

::::::::
orientation

:::::
model.

The observed interaction between the surface trace and structural orientation inputs to the implicit 3D geologic model

suggests that coupling and correlation may be present between different geologic modeling inputs.490

Relationships between modeling inputs also arise in different ways, for example the vertical termination depth and structural

orientation uncertainty envelopes overlap heavily in the combined model uncertainty (Figure 5)leading to
::::::
Despite

:::::::::
performing

::
a

:::::::
thorough

::::::::::
exploration

::
of

:::::
each,

::::::::::
independent

::::::::::
parameter’s

:::::::::
uncertainty

::::::
during

:::::
Monte

:::::
Carlo

::::::::
sampling

:::::::
(Section

::::
4.5),

:
undersampling

of the
::::::::
combined

:::::::
geologic

:
model uncertainty space when the independent uncertainty envelopes are combined. Similar behavior

is observed when comparing orientationperturbations to fault zone thickness where thinner fault zones require finer orientation495

perturbations to fully populate the uncertainty space of the 3D geologic model .
:::
can

:::
still

:::::
occur

::::::
during

:::::::::
uncertainty

:::::::::::
propagation.

::
An

::::::::
example

::
of

:::
this

:::::
arises

:::::
when

::::::::::
considering

:::
the

:::::::
vertical

::::::::::
termination

:::::
depth

:::
and

::::::::
structural

::::::::::
orientation.

:::::::::
Truncation

::
of

::::
fault

:::::
zone

:::::::::
realizations

::
at
::::

any
:::::
given

::::::::::
termination

:::::::
interval

:::::::::
effectively

:::::::
reduces

:::
the

:::::::
number

::
of

::::::::::
realizations

::::::::
available

:::
for

::::::::
sampling

:::
the

::::
full

::::
range

:::
of

::::::::
structural

:::::::::
orientation

:::::::::
uncertainty

::
at
::::::
deeper

::::::::
intervals.

::::
This

::
is

:::::::::
evidenced

::
in

:::::
Figure

::::
5(b)

:::
by

:::
the

::::::::
increasing

::::::::::
prevalence

::
of

::::::::::::
"stair-stepping"

::::::::
artefacts

::
in

:::
the

::::::::
combined

::::::
model

:::::::::
uncertainty

::::
with

::::::
depth.500
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Coupling of the surface trace and structural orientation or structural orientation and vertical termination depth is not im-

plemented in the current formulation due to inconsistencies in the sampling methods which required independent sampling of

spherical and non-spherical distributions. Increasing the number of model realizations mitigated some of the effects of input

correlations, though this comes at the expense of increased processing time. A treatment of these relationships through the505

use of Gibbs sampling or other conditional methods of Monte Carlo simulation
::::::::::::
parameterizing

:::::::::
previously

::::::::::
independent

:::::
input

:::::::::
probability

::::::::::
distributions

:::::
using

::
a
::::
joint

::::::::::
distribution

::::
(and

:::
an

:::::::::
appropriate

::::::::
sampling

::::::::
scheme) could potentially generate more re-

alistic and efficient assessments of model uncertainty.
::::
While

::::
the

:::::::::
correlation

:::::::
between

::::::::::
parameters

::
in

:
a
:::::::::::

probabilistic
::::::
model

::
is

:::::::
typically

::::::::
unknown,

::
in
:::::
some

:::::
cases

:
–
::::
such

::
as

:::
the

:::::::::
correlation

::::::::
between

::::
fault

::::
trace

:::::::
azimuth

:::
and

::::::::
structural

:::::::::
orientation

:::::::
azimuth

::
–
:::
the

:::::::::
correlation

:::
can

::
be

::::::::
assumed

:::::
based

::
on

::::::::
available

::::
prior

::::::::
geologic

:::::::::
knowledge

::
of

:::
the

::::::::::
parameter’s

::::::::
real-world

::::::::::::
relationships. However,510

until standard methods for simulating spherical and scalar data types in a single system are made available, creative model

parameterizations – such as constraining the dip azimuth uncertainty to observed surface trace variability using an anisotropic

spherical distribution – can circumvent some of the issues associated with these relationships.

6.4 Anisotropic spherical distributions

For modeling anisotropic uncertainty of structural orientation data, the Bingham and Kent distributions generate practically515

equivalent uncertainty envelopes, differing primarily in their parameterization. For the Bingham distribution, variations in the

magnitudes of λ1 and λ2 allow for independently varying the size of the uncertainty space in orthogonal directions while for

the Kent distribution variations in the values of κ and β can generate distributions with different overall size and ellipticity.

To achieve independent uncertainty ranges of the dip angle and dip azimuth, both distributions require a series of rotations

(described in Section ??
::
3.2) to properly align the distribution such that the major ellipse axis is aligned with a great circle520

with 90o dip (Figure 3). Once aligned, the range of the Bingham distribution in the dip azimuth and dip angle directions

can easily be varied independently through direct changes in the magnitudes of λ1 and λ2. The Kent distribution, however,

introduced difficulty in varying these uncertainties independently due to coupling of the κ and β parameters. Compared to the

Kent distribution, the Bingham distribution was observed to be more efficient at modeling strongly girdle-shaped distributions,

which as discussed in Section 4.1 can be particularly useful for the limited data available from a geologic map. For these525

reasons, the Bingham distribution was chosen for the analysis in this study, though methods for simulating and rotating the

Kent distribution are still provided for thoroughness.

6.5 Additional complexity for fault zone geometry

The author acknowledges
::::::
authors

:::::::::::
acknowledge that in reality fault zone geometry includes horizontal terminations. The mech-

anisms affecting the location of horizontal terminations are numerous and varied, including fault zone anastomosing, abrupt530

termination in intact rock and false trace termination due to obscuring by overburden. While several works have investigated

the nature of fault-fault terminations using stochastic simulation (Aydin and Caers, 2017; Cherpeau and Caumon, 2015), due

to the presence of other poorly defined sources of uncertainty, the placement of horizontal terminations in this study remained
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deterministic. Future work supplementing the limited dataset used in this study with detailed outcrop studies will be required

for defining the nature and uncertainty of horizontal fault zone terminations.535

Aside from horizontal fault terminations, fault zones present other interesting complexities that introduce additional levels

of refinement for the developed modeling workflow. For example, internal fault zone composition is heterogeneous and mod-

eling the different fault zone components (fault core, transition zone and damage zone) and could be implemented using the

developed MCUP formulation
:::::::
methods if desired. Asymmetry of fault zone structure between the hanging wall and footwall

has also been documented by Choi et al. (2016), which would require a new method of defining the distance function for540

generating the 3D fault zone volume. Similarly, variations in fault zone thickness along the area of the central fault surface are

realistic, though would similarly require a new method for defining the distance function. These research questions enter into

the realm of implicit geologic modeling theory, and are introduced merely to shed light on where refinements in model creation

can benefit the modeling of fault zone structure.

7 Conclusions545

The flexible MCUP
:::
The

:::::::
flexible

:::::::::::
probabilistic

:::::::::::
geomodeling method should continue to be leveraged to model novel problems

in geologic modeling, such as the uncertainty of fault zones in 3D geologic models based on limited data from a historic

geologic map and available prior knowledge. MCUP formulations developed
:::
The

:::::
setup

::
of

:::
the

::::::::::
probabilistic

:::::::::
geomodel should

make full use of open source statistical packages in the R and Python languages, many of which are experiencing ongoing

development at the time of writing. While a unique modeling case was presented, the rationale applied to assessing uncertainty550

of poorly-constrained, preliminary geologic models sheds light on new ways to implement varied types of information in

MCUP
::::::::::
probabilistic

:::::::::::
geomodeling

:
formulations.

Practical guidelines for developing MCUP formulations
::::::::::
probabilistic

:::::::::
geomodels

:
are also provided, reinforcing (i) the im-

portance of developing a clear yet robust modeling workflow for the structure of interest, (ii) consideration of varied sources of

geologic uncertainty and (iii) creatively exploring the methods available for characterizing both objective and subjective mod-555

eling inputs. Prior knowledge in the form of established empirical and theoretical relationships
::::
from

::::::::
structural

::::::
geology

:
present

an opportunity to quantify and parameterize geologic modeling inputs that are usually interpretive, allowing for their inclusion

in automated MCUP formulations
:::
the

::::::::::
probabilistic

:::::::::
geomodel. The Bingham distribution, while only moderately impactful on

model uncertainty when comparing anisotropic and isotropic parameterizations, is recommended to replace the vMF distribu-

tion for modeling structural orientations due to the increased flexibility of its parameterization. While the Bingham distribution560

was preferred in this study, the use of the Kent distribution appears to be practically equivalent.

Future work stemming from this preliminary modeling
::::::::::
input-based

::::::::::
probabilistic

::::::::::::
geomodeling formulation may include

incorporating new information in a Bayesian inference scheme to further refine the geologic model
:
,
:::::
either

::::::::
following

::::
the

:::::::::::
methodology

::::::::
introduced

:::
by

::::::::::::::::::::::::::::
de la Varga and Wellmann (2016)

:
to

::::
infer

:::::::::
additional

::::::::::
information

::::
about

:::
the

::::::
model

:::::::::
parameters

::::::::
(requiring

:
a
:::
full

:::::::::
integration

::
of

:::
the

::::::::::
probabilistic

::::::::
modeling

::::
with

:::
the

:::::::::
automated

:::::::
geologic

::::::::
modeling

::::::::
approach)

::
or

:::
by

::::::::::::::::::::::
Schneeberger et al. (2017)565

::
to

::::::
validate

:::
the

:::::
initial

::::::
model

::
in

::::
light

::
of

::
its

::::::::
generated

::::::::::
uncertainty. Additionally, refining the modeling of fault zone internal struc-
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ture and variability is recommended not only to further the usefulness of 3D geologic models in practical applications (e.g.,

subsurface construction, fluid flow), but to also expand the understanding of the geometry and characteristics of these complex

geologic structures.

Code and data availability. The necessary code and data for generating realizations of the geologic modeling inputs (including example570

results) is available at https://github.com/ajkran2/Geologic-Model-Input-Uncertainty-Characterization and https://doi.org/10.5281/zenodo.

3676094 (Krajnovich et al., 2020b). Version updates, if applicable, will be made available via GitHub.
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