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Abstract. Orogenic belts formed by collision are impressive manifestations of plate tectonics. Observations from orogenic

belts, like the Western Alps, indicate an important involvement of the mantle lithosphere, significant burial and exhumation

of continental and oceanic crustal rocks and the importance of the plate interface strength that can be modified, for example,

by the presence of serpentinites. A popular model for the formation of such belts is the so-called orogenic wedge model.

However, most wedge models consider crustal deformation only and do, hence, not consider subduction, the impact of related5

buoyancy forcesarising from density differences between subducted crust and surrounding mantle and the effects of different

plate interface strength
:::
The

::::::::
dynamics

:::
of

:::::::
growing

:::::::::
collisional

:::::::
orogens

::::
are

::::::
mainly

:::::::::
controlled

:::
by

::::::::
buoyancy

::::
and

:::::
shear

::::::
forces.

::::::::
However,

:::
the

::::::
relative

::::::::::
importance

::
of

:::::
these

::::::
forces,

::::
their

::::::::
temporal

::::::::
evolution

:::
and

:::::
their

::::::
impact

::
on

:::
the

:::::::
tectonic

:::::
style

::
of

::::::::
orogenic

::::::
wedges

::::::
remain

::::::
elusive. Here, we quantify the relative importance of buoyancy and shear forces in building collisional orogenic

wedges
:::::
during

:::::::::
collisional

:::::::
orogeny

::::
and

:::::::::
investigate

::::
their

::::::
impact

::
on

::::::::
orogenic

::::::
wedge

::::::::
formation

:::
and

::::::::::
exhumation

:::
of

:::::
crustal

:::::
rocks.10

We leverage two-dimensional (2D) petrological-thermomechanical numerical simulations of a long-term (ca. 170 Myr) litho-

sphere deformation cycle involving subsequent hyperextension, cooling, convergence, subduction and collision. We compare

simulations employing density fields calculated with linearized equations of state with simulations employing density fields

calculated by phase equilibria models including metamorphic reactions. Further, we consider serpentinisation of the mantle

material, exhumed in the hyperextended basin. Our models show that differences in density structure and in shear strengthof15

serpentinites or upper crust have a strong impact on the evolution of orogenic wedges. Higher serpentinite strength causes

a dominance of shear over buoyancy forces, resulting in either
::::::::::::
Hyperextension

:::::::::
generates

:
a
:::::
basin

::::
with

::::::::
exhumed

::::::::::
continental

:::::
mantle

::::::::
bounded

:::
by

::::::::::
asymmetric

:::::::
passive

:::::::
margins.

:::::::
Before

:::::::::::
convergence,

:::
we

::::::
replace

::::
the

:::
top

::::
few

:::::::::
kilometers

::
of

::::
the

::::::::
exhumed

:::::
mantle

::::
with

::::::::::
serpentinite

::
to
:::::::::
investigate

:::
its

:::
role

::::::
during

:::::::::
subduction

::::
and

::::::::
collision.

:::
We

:::::
study

:::
the

::::::
impact

:::
of

::::
three

:::::::::::
parameters:

:::
(1)

:::::
Shear

:::::::::
resistance,

:::
or

:::::::
strength,

:::
of

:::::::::::
serpentinites,

::::::::::
controlling

:::
the

:::::::
strength

:::
of20

::
the

::::::::
evolving

::::::::::
subduction

::::::::
interface,

:::
(2)

::::::::
strength

::
of

::::
the

:::::::::
continental

::::::
upper

::::
crust

::::
and

:::
(3)

:::::::
density

::::::::
structure

::
of

::::
the

:::::::::
subducted

:::::::
material.

::::::::
Densities

:::
are

::::::::::
determined

::
by

:::::::::
linearized

::::::::
equations

::
of

::::
state

:::
or

::
by

::::::::::
petrological

::::::
phase

::::::::
equilibria

::::::::::
calculations.

::::
The

:::::
three

:::::::::
parameters

::::::
control

:::
the

::::::::
evolution

::
of

:::
the

::::
ratio

::
of

:::::::::::::
upward-directed

::::::::
buoyancy

:::::
force

::
to

::::::::
horizontal

::::::
driving

:::::
force,

::::::
FB/FD::

=
:::
ArF,

::::::
which

::::::
controls

::::
the

:::::
mode

::
of

::::::::
orogenic

:::::
wedge

:::::::::
formation:

:::::::::
ArF ≈ 0.5

::::::
causes

:
thrust-sheet dominated orogenic wedges, involving some

diapiric exhumation at their base, or relamination of crustal material below the overriding plate . Lower serpentinite strength25

(equal importance of shear and buoyancy forces) generates orogenic wedges that are dominated by diapiric or channel-flow
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exhumation . Deep subduction (>80
::::::
wedges,

::::::::::
ArF ≈ 0.75

::::::
causes

:::::
minor

::::::
wedge

:::::::::
formation

:::
due

:::
to

:::::::::::
relamination

::
of

:::::::::
subducted

::::
crust

:::::
below

:::
the

:::::
upper

:::::
plate

:::
and

:::::::
ArF ≈ 1

::::::
causes

::::::::
buoyancy

:::::
flow,

::
or

::::::
diapir,

:::::::::
dominated

::::::
wedges

:::::::::
involving

::::::::::
exhumation

::
of

::::::
crustal

:::::::
material

::::
from

:::::
large

:::::
depth

:::::
(> 80

:
km)and subsequent surface exhumation of continental crust along the subduction interface

occurs in these models. Employing .
:::::::::::
Furthermore,

:::::::::
employing

:
phase equilibria density models decreases the average buoyancy30

contrasts, allows for deeper subduction of continental crust and reduces the average topography of the wedge
::::::
wedges

:
by several

kilometers. A decrease of upper crustal shear strength causes smaller maximal crustal burial depths. Progressive subduction

of continental crust increases upward-directed buoyancy forces of the growing wedge and in turn increases horizontal driving

forces. These driving forces eventually reach

:::
We

::::::
suggest

::::
that

::::::
during

:::
the

:::::::::
formation

::
of

:::
the

::::::::
Pyrenees

::::::::::
ArF <≈ 0.5

::::
due

::
to

:::
the

:::::::
absence

:::
of

:::::::::
high-grade

:::::::::::
metamorphic

::::::
rocks,35

:::::::
whereas

:::
for

:::
the

::::
Alps

:::::::
ArF ≈ 1

::::::
during

::::::::::
exhumation

:::
of

:::::::::
high-grade

:::::
rocks

::::
and

::::::::::
ArF <≈ 0.5

::::::
during

:::
the

:::::::::::::
post-collisional

:::::
stage.

:::
In

::
the

:::::::
models,

:::
FD::::::::

increases
::::::

during
::::::
wedge

::::::
growth

::::
and

::::::::::
subduction,

:::
and

:::::::::
eventually

:::::::
reaches

:
magnitudes (≈ 18 TN m−1) which

were required to initiate subductionduring convergence. We suggest that the evolving relation between shear and buoyancy

forces and the increase of horizontal driving forcerelated to the growing Alpine orogenic wedge has significantly slowed down

(or .
:::::
Such

:::::::
increase

::
of

:::
the

:::::::::
horizontal

:::::
force,

::::::::
required

::
to

:::::::
continue

::::::
driving

::::::::::
subduction,

::::::
might

::::
have "choked" )

::
the

:
subduction of40

the European plate below the Adriatic one between 35 and 25 Ma . This buoyancy-related "choking"
:::
and

:
could have caused

the reorganization of plate motion and the initiation of subduction of
:::::::::
subduction

:::::::
initiation

:::
of the Adriatic plate. We discuss

potential applications and implications of our model results to the Pyrenean and Alpine orogenies.

1 Introduction

The formation of collisional orogenic belts is an impressive manifestation of plate tectonics, and many studies have investi-45

gated the mechanisms causing mountain building in collisional settings (e.g. Malinverno and Ryan, 1986; Platt, 1986; Beau-

mont et al., 1996; Malavieille, 2010; Jaquet et al., 2018; Dal Zilio et al., 2020b). A popular geodynamic model explaining

the formation of collisional orogens, such as the Western Alps, the Pyrenees or the Himalayas, is the wedge model (e.g.

Chapple, 1978; Dahlen et al., 1984; Platt, 1986; Willett et al., 1993; Vanderhaeghe et al., 2003; Malavieille, 2010; Dal Zilio

et al., 2020b). The first mechanical models of so-called critical wedges considered a frictional-plastic
:::::::
frictional

:
deformation50

(stresses are controlled by a specific yield criterion) and were originally applied to accretionary wedges. The formation of

such wedges has been extensively studied with both analogue and numerical models (e.g. Gutscher et al., 1998; Simpson,

2009; Malavieille, 2010; Graveleau et al., 2012; Ruh et al., 2012; Borderie et al., 2018; Dal Zilio et al., 2020b). Wedge

models typically consider crustal deformation only and are driven by a kinematic boundary condition at the base of the

crust, involving a rigid indenter, or backstop, which creates a kinematic singularity point at the base of the wedge. Such55

crustal wedge models have also been used to study the
:::::::
formation

:::
of

::::::
viscous

::::
fold

::::::
nappes

::::::
during

::::
fold

:::
and

:::::
thrust

::::
belt

::::::::
evolution

:::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bauville and Schmalholz, 2015; Spitz et al., 2020)

::
or

:::
the impact of surface processes on wedge formation (e.g. Willett,

1999).
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These crustal
::::::
Crustal

:
wedge models have also been applied to entire collisional orogens and are frequently referred to as

orogenic wedge models (e.g. Platt, 1986; Willett et al., 1993; Dal Zilio et al., 2020b). However, the geodynamic evolution of60

collisional orogens, such as the Alps or the Himalayas, typically involves the closure of oceanic domains and the subduction of

oceanic and continental rocks before actual collision. Also, large regions of some of these orogens are characterised by exhumed

high-pressure (>1 GPa), and sometimes ultrahigh-pressure (>2.7 GPa), rocks with peak temperatures ranging typically from

500 to 700 °C (e.g. Lardeaux, 2014). Furthermore, tomographic images from the Western Alps and the Pyrenees (Zhao et al.,

2015; Schmid et al., 2017; Teixell et al., 2018) indicate that the
::::::::
overriding

:
lithospheric mantle is involved in the formation65

of orogenic wedges (see Fig. 1), implying that
::::
these

:
orogenic wedges are rather lithospheric wedges (Nicolas et al., 1990)

and not just crustal wedges. The above mentioned pre-collisional subduction, the associated formation and exhumation of

(ultra)high-pressure rocks and
::
as

::::
well

:::
as the density contrast between the subducted crustal material and the surrounding

mantle likely significantly impact
:::::
might

::::::::::
significantly

::::::
impact

:::
on the orogen dynamics (e.g. Beaumont et al., 1996; Burov et al.,

2014; Butler et al., 2014; Sizova et al., 2014). Particularly, the subduction related burial of crustal material to depths deeper than70

the isostatically balanced depth will cause
:
(upward-directed)

:
buoyancy forces, which act against the forces driving subduction

and may assist rock exhumation.

From a mechanical point of view, the
::::::::
relatively

::::
slow tectonic deformation (no inertia) of the lithosphere is controlled by the

balance of gravitational forces (acting everywhere inside a representative rock volume) and shear forces (or surface forces, act-

ing on the surface of a representative rock volume) (e.g. Forsyth and Uyeda, 1975; Ramberg, 1981; Weijermars and Schmeling,75

1986; Turcotte and Schubert, 2014; Gerya, 2019). In absence of volumetric deformation, shear forces include forces acting nor-

mal or tangential to surfaces of the representative volume and induce shear deformation, such as pure or simple shear. Crustal

wedge models typically consider shear forces and gravitational forces. The gravitational forces impact
::
on

:
frictional deforma-

tion via a depth-increasing confining pressure and the gravitational adjustment of topographic gradients. However, the
::::
Due

::
to

::
the

:::::::::
kinematic

:::::::::
singularity

::::
point

::::
that

:::::
exists

::
in

::::
most

::
of

:::
the crustal wedge modelsdo not consider

:
,
::::
such

::::::
models

::::::
cannot

::::::
predict

::::
deep80

:::::::::
subduction

::
of

::::::::::
continental

::::::
crustal

:::::
rocks.

::::::::::::
Consequently,

:
(upward-directed

:
)
:
buoyancy forces resulting from density differences

between subducted crust and surrounding mantle lithosphere. Furthermore, these crustal wedge modelsdo not consider shear

forces at the subduction interface
:::
are

:::
not

:::::::::
considered

::
in

:::::
these

::::::
models. Here, we study the formation of orogenic wedges in a

large-scale lithosphere–upper mantle
:::::::::
lithosphere

:::::
(crust

:::
and

::::::
mantle

::::::::::
lithosphere)

:::
and

:::::
upper

::::::
mantle

::::::::::::
(asthenosphere

::::
and

::::::::
transition

::::
zone)

:
framework, including subduction, to investigate the impact of shear and buoyancy forces on orogenic wedge formation.85

We further aim to investigate orogenic wedge formation relevant to the Alpine orogeny. The formation of many collisional

orogens, such as the Alps, is embedded in larger geodynamic cycles (Wilson, 1965; Wilson et al., 2019) including pre-orogenic

rifting events. The Alpine orogen
:::
(see

::::
Fig.

:::
1b) resulted from subduction of the Piemonte–Liguria oceanic domain and collision

of the European and Adriatic passive continental margins (e.g. Handy et al., 2010). Ophiolitic units found in the Alps mainly

consist of serpentinized mantle material, indicating a Piemonte–Liguria domain with exhumed and serpentinized mantle litho-90

sphere (e.g. Manatschal and Müntener, 2009; McCarthy et al., 2020). For such Alpine-type orogens, structures inherited from

continental margin formation presumably had a strong control on the dynamics of orogen formation (Chenin et al., 2017,

2019). Furthermore, subducted
:::::::::
progressive

::::::::::
subduction

::
of

:
serpentinites and sediments may weaken the plate interface (Shreve
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and Cloos, 1986; Lamb and Davis, 2003; Behr and Becker, 2018) and impact on the balance between shear and buoyancy

forces. Therefore, we consider models which involve a pre-collisional rifting phase and subduction involving serpentinites and95

sediments.

Here, we quantify the relative dominance and magnitude of buoyancy and shear forces during the formation of Alpine-type

collisional orogens. We leverage two-dimensional (2D) petrological-thermomechanical numerical models of a long-term (ca.

170 Myr) extension–cooling–convergence cycle including subduction and continent–continent collision coupled to petrolog-

ical phase equilibria modelling (Gerya et al., 2004; Kaus et al., 2005; Yamato et al., 2007; Hetényi et al., 2007; Rummel100

et al., 2020). To quantify the relative importance of buoyancy and shear forces at convergent plate boundaries, we compare

(1) simple, or linearized equation of state (LEOS) density models to complex density (CD) models that include metamorphic

reactions. The density structure of subducted continental crust and the surrounding mantle controls the magnitude of buoyancy

forces. Increased
::::::::::::::
(upward-directed)

:
buoyancy forces eventually lead to slab detachment, vanishing of slab-pull forces (Duretz

et al., 2012) and a rearrangement of forces throughout orogeny (Dal Zilio et al., 2020a). (2) We vary the strength of the upper105

crust and of serpentinites at the top of the mantle exhumed in the basin. When entering the subduction zone, the
:::::::
forming

:::
the

:::::::::
subduction

::::::::
interface.

:::
The

:
shear resistance of serpentinite lubricating the subduction interface (Hirth and Guillot, 2013; Guillot

et al., 2015, & references therein) facilitates
::::
may

:::::::
facilitate

:
subduction. Also, coupling of the continental crust to the subducting

mantle lithosphere impact
::::::
impacts

:
on the subduction and, therefore, orogen dynamics (Duretz and Gerya, 2013). We show

that the relative dominance of shear and
::::::::::::::
(upward-directed)

:
buoyancy forces generates different modes,

::
or

::::::
styles, of orogenic110

wedges, some dominated by buoyancy driven return flow and some by stacking of thrust sheets. We further analyse the im-

portance of the shear resistance of serpentinites and the upper continental crust as well as rock density to make another step

towards understanding the dynamics of Alpine-type orogen formation
::::::
orogens.

2 Numerical model

2.1 Mathematical model and numerical algorithm115

As common
:
it

::
is

:::::::::
commonly

:::::
done in continuum mechanics, the applied numerical algorithm solves the continuity and mo-

mentum equations coupled to conservation of energy expressed with respect to temperature. We consider incompressible

visco–elasto–plastic materials that slowly (no inertia ) flow
::::
flow

::::::
(inertia

::::::
forces

:::
are

:::::::::
negligible)

:
under gravity and the influ-

ence of boundary tractions. Brittle–plastic deformation is
::::
Here,

:::
the

::::
term

::::::
plastic

:::::
refers

::
to
:::
all

::::::::::::::
rate-independent

:::::::::::::
(instantaneous)

:::::::::
irreversible

:::::::::::
deformation controlled by a Drucker-Prager yield function .

::::
(Eq.

:::::
A13).

::::
The

:::::::
applied

::::::::::::::::
pressure-dependent

:::::
yield120

:::::::
function

::
is

::::::::
motivated

:::
by

:::::::::
laboratory

:::::::::::
experiments

::::::::::::::
(Byerlee, 1978)

::
and

:::
is

::::::::::::
representative

::
of

::::
rock

:::::::::::
deformation

:::::::::::
mechanisms

::
at

:::
low

:::::::::::
temperatures

:::::
(shear

::::::::
banding,

::::::::
faulting).

::::
The

::::
term

:::::::
viscous

:::::::::
comprises

::
all

::::
rate

:::::::::
dependent

:::::::
inelastic

:::::::::::
deformation,

::::::
which

:::
are

:::::::
generally

:::::::::::::::::
thermally-activated.

:::::::
Material

::::::::
properties

:::
are

::::::::
advected

::::
using

::
a

:::::::::::
marker-in-cell

::::::::
approach

::::::::::::::::::::
(Gerya and Yuen, 2003)

::::::::
involving

::::::
initially

:::
16

::::::::::
Lagrangian

:::::::
markers

:::
per

:::::::
Eulerian

:::::
finite

:::::::::
difference

::::
grid

::::
cell.

:::
Up

::
to

::
56

:::::::
Million

:::::::::
numerical

:::::::
markers

:::
are

::::::::
advected

::
in

::::
total.

:
We do not apply any strain softening, such as frictional or viscous strain softening. We also do not consider grain125

size evolution. However, thermal softening,
::::::
caused

:::
by

:::::
shear

::::::
heating,

:
is active, resulting from the conservation of energy and
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temperature-dependent effective viscosities
::::::
viscous

::::
flow

:::::
stress. The algorithm has already been used to model deformation

processes at various scales (Yamato et al., 2015; Duretz et al., 2016b; Yamato et al., 2019; Petri et al., 2019; Bessat et al., 2020)

including upper mantle convection coupled to lithospheric-scale deformation (Candioti et al., 2020). Appendix A provides a

detailed description of the algorithm.130

2.2 Model configuration

We here follow the modelling approach of Candioti et al. (2020) and we employ a 1600 km wide and 680 km deep (see Fig.

2) model domain. The global model resolution is 1x1 km in horizontal x and in vertical z direction, respectively. A stress-free

surface (Duretz et al., 2016a) is set initially at z = 0 km and
:
, to allow for dynamic build-up of topography, the topmost +20 km

of the model domain are left free of material. We impose constant material inflow/outflow velocities at the lateral boundaries135

and the mechanical boundary at the bottom of the domain is free to slip. Further, we assume that no heat flows laterally out of

the model domain and the top and bottom temperature is kept constant at 15 °C and 1612
::::
1613

:
°C, respectively. Viscous defor-

mation is modelled leveraging a combination of rheological flow lawssuch as ,
:::::::
namely dislocation, diffusion and Peierls creep.

::::::::
Diffusion

::::
creep

::::
flow

::::
laws

::::
(Eq.

::::
A9)

::::::
require

:::::::::
knowledge

::
of

:::
the

:::::
grain

::::
size.

::::::::
Including

::
an

::::::::
evolving

::::
grain

::::
size

:::
into

::::::::::
lithospheric

:::::
scale

::::::
models

::
is

::::::
usually

:::::::
achieved

:::
by

:::::::::
employing

::::::::
additional

:::::::::::::::
parameterizations

::::::::::::::::::::::::::::::::::::::::::
(e.g. paleowattmeters, e.g. Austin and Evans, 2007).

:::
As140

::::
these

:::::::::::::::
parameterizations

:::
are

:::::::::
commonly

::::::::::
determined

::
in
:::::::::

laboratory
:::::::::::

experiments
:::::::::
conducted

::
at

::::::::
relatively

::::
fast

::::::::::
deformation

:::::
rates

:::::::::
(compared

::
to

:::::::
tectonic

:::::::::::
deformation),

:::::
these

:::::::::::::::
parameterizations

::::
have

::
to

::
be

:::::::::::
extrapolated

::
to

::::::
natural

::::::::::
conditions.

::::
This

:::::::::::
extrapolation

::::::::
introduces

:::::::::
additional

::::::::::::
uncertainties.

::
To

:::::
keep

:::
the

::::::
model

::::::
simple,

:::
we

::::
here

:::::::
neglect

:::::
grain

::::
size

::::::::
evolution

:::
and

:::::::
choose

:
a
::::::::

constant

::::::
average

::::::
mantle

:::::
grain

::::
size

::
of

:
1
:
mm

:
in

::::
Eq.

:::
A9.

::::::::
Previous

::::
work

:::
has

::::::::::::
demonstrated

:::
that

::::
this

::::::
choice,

::
in

:::::::::::
combination

::::
with

:::::::
suitable

::::
flow

:::
law

:::::::::
parameters,

::::::
results

::
in

:
a
::::::::
viscosity

:::::::
structure

::::
that

:
is
:::::::::
consistent

::::
with

::::::::::
geophysical

:::::::::
constraints

::::
with

::::::
respect

::
to

:::
the

:::::::::
convection145

::::::::
dynamics

::
of

:::
the

:::::::
mantle

:::
and

::::
the

:::::::
thermal

::::::::
thickness

::
of

::::
the

::::::::
overlying,

:::::::::
horizontal

::::::::::
lithosphere

:::::::::::::::::::
(Candioti et al., 2020).

:::::::
Similar

::::::
average

:::::
grain

::::
sizes

:::
in

:::
the

:::::
order

::
of

::
1 mm

::
in

:::
the

:::::
upper

::::::
mantle

:::::
have

::::
been

::::::::
predicted

:::
by

:::::
whole

::::::
mantle

::::::::::
convection

::::::
models

::::
that

::::::
include

::::::::::::
state-of-the-art

:::::
grain

:::
size

::::::::
evolution

:::::::
models

:::::::::::::::::::::::::::::::::::::
(Dannberg et al., 2017; Schierjott et al., 2020)

:
.

The effective density of the materials is either directly calculated via a linearized equation of state or pre-computed based

on equilibrium phase-diagram sections for specific bulk-rock composition (see Appendix A).
:::
We

:::::::
consider

::::::
surface

:::::::::
processes150

::::
such

::
as

::::::
erosion

::::::::
(constant

:::::::
erosion

:::
rate

::
of

:::
0.5

:
mm yr

::

−1
:::::
above

::::::::
z≥ 2 km

::
of

::::::::::
topographic

:::::::::
elevation)

:::
and

::::::::::::
sedimentation

::::::::
(constant

:::::::::::
sedimentation

::::
rate

::
of

:::
0.5

:
mm yr

::

−1
::::::
below

:::::::::
z≤−5 km

:::
of

::::::::::
topographic

::::::::
elevation,

:::::::::
alternating

::::::
calcite

::::
and

::::
mica

:::::::::
rheology).

:
For

more detailed justifications of model assumptions and explanations for the implementation of surface processes and boundary

conditions, the reader is referred to the study of Candioti et al. (2020). Model units include an initially 25 km thick upper crust

with two vertical levels of 11 elliptical inclusions each, whose rheology is different from the upper crustal matrix
:::::::::
(weakened155

:::
wet

:::::::
anorthite

::
or
::::::::
Westerly

::::::
granite

::::::::
rheology,

:::
see

:::::
Table

::
A1

:::
for

:::
all

:::::::
material

:::::::::
parameters). These elliptical inclusions represent struc-

tural and petrological units inherited from previous orogenic cycles . Weak and strong
:::
and

:::
are

:::::::::
motivated

::
by

::::
field

:::::::::::
observations

::::::::::::::::::
(e.g. Petri et al., 2019).

:::::
Weak

:::::
(wet

::::::::
quartzite)

:::
and

::::::
strong

:::::::::
(Maryland

:::::::
diabase)

:
inclusions may represent metasedimentary units

and mafic intrusions, respectively. Below the upper crust an 8 km thick lower crust
::::
(wet

::::::::
anorthite)

:
is employed. The ini-

tial Moho is set to z =−33 km and the mantle lithosphere
::::
(dry

::::::
olivine)

:
extends down to z =−120 km. In total, 12 weak160
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::::
(wet

::::::
olivine)

:
elliptical inclusions over two vertical levels are included into the mantle lithosphere. These inclusions represent

weaknesses caused by, for example, more hydrated peridotites (see also Barnhoorn et al. (2010); Petri et al. (2019) for more

details). The elliptical inclusions help generating more realistic and
::::::::::::
heterogeneities

:::
are

:::::::::
motivated

::
by

::::::::::
geophysical

:::::::::::
observations

:::::::::::::::::::::::
(e.g. Barnhoorn et al., 2010)

:::
and

::::::::
represent

:::::::::
weaknesses

::::::
owing

::
to

:::::
spatial

::::::::::
lithological

:::::::::
variations.

::::::::
Elongated

::
or

:::::::
elliptical

:::::::::
inclusions

::::
allow

:::
for

:::
the

:::::::::
generation

::
of asymmetric margin geometries (Duretz et al., 2016b; Petri et al., 2019). We include the upper mantle165

:::::::::::
asthenosphere

:
and transition zone

:::::::
(grouped

:::
and

:::::::
termed

:::::
upper

::::::
mantle

::::::::
hereafter,

:::
dry

::::::
olivine

:::::::::
rheology) down to z =−660 km.

The distribution and emplacement of the inclusions is described in detail in appendix A
::::::::
Appendix

::
B. The difference between

mantle lithosphere and upper mantle and transition zone is due to temperature
:::
and

:::::::
pressure

:
only, i.e. all material parameters

are the same.

2.3 Simulations170

Four types of simulations are performed: (1) The reference model (REF) , generates a long-term (>160 Myr) geodynamic

cycle of subsequent extension–cooling–convergence in a single and continuous simulation. During a 50 Myr rifting period, an

≈ 360 km wide basin is formed. This basin is floored by exhumed continental mantle and bounded by two hyper-extended

magma-poor rifted margins. We apply an absolute extension velocity of 1 cm yr−1 and , we assume an ultra-slow to slow

spreading rift system with minor melt production and therefore neglect decompressional melting of the peridotites. No far-field175

plate velocity is applied to the system for the following 60 Myr. This choice of applied deformation velocity and duration

of the periods leads to margin geometries comparable to reconstructions from the ancient Alpine Tethys margin system and

Piemonte–Liguria ocean (?)
::::::::::::::::::
(Le Breton et al., 2021). In all models presented here, the subsequent convergence is driven by a

kinematic boundary velocity of 1.5 cm yr−1 (absolute value). The convergence phase involves subduction initiation, closure

of the basin floored by exhumed mantle, continental collision and orogenic wedge formation. Model REF simulates a scenario180

without serpentinisation of the exhumed mantle peridotite. Except for the mantle lithology that utilizes a complex density (CD)

model, the density of all other model lithologies is calculated using a linearized EOS (LEOS) (Eq. A3).

The geodynamic evolution of REF at the end of the cooling stage (109 Myr) serves as a self-consistently generated ini-

tial configuration for 3 additional types of simulations. (2) We parameterise a serpentinisation front propagating through

the topmost layer of exhumed peridotites , to test the impact of serpentinite strength on the convergent deformation. In this185

parametrization, we replace the dry olivine flow law parameters of the exhumed peridotites in the basin above z =−9 km with

parameters for antigorite rheology (Hilairet et al., 2007). This approach results in an effective average thickness of the serpenti-

nite layer of ca. 5.5 km. In order to investigate the effects of variable serpentinite strength, we multiply the viscosity computed

from
::::::::
gradually

:::::::
increase

:::
the

:::::::
prefactor

::
in

:::::
front

::
of the dislocation creep flow law for antigorite (Hilairet et al., 2007) by prefactors

of 1 and 18 (ζ in Eq. A8) .
:::
for

::::::::
antigorite

:::::::::::::::::
(Hilairet et al., 2007)

:
.
:::
We

::::
here

::::::
report

:::
the

::::::::
modelling

::::::
results

:::
for

:::::::::
prefactors

:
1
::::
and

:::
18,190

::::::
because

:::::
these

::::::
models

:::
are

:::::::::::
end-member

:::::
types

:::
for

:::::::::
subduction

::::
and

::::::
orogen

:::::::::
dynamics. The background upper and lower crust is

feldspar-dominated
::
are

:::::::
feldspar

:::::::::
dominated

:
(see Table A1 for details). As in REF, density is computed with a LEOS except for

the mantle where a CD-model is employed. (3) We consider serpentinisation and investigate the impact of
:::::::::::::::
(upward-directed)

buoyancy forces on the collisional stage employing a CD-model for all lithologies. Type (4) is identical to type (3), except that
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Table 1. Summary of all simulations presented in this study.

Parameter Unit REF AS1 AS18 AC1 AC18 GC1 GC18

Crustal Matrix∗ - feldspar
:::::::
Anorthite1 feldspar

:::::::
Anorthite1 feldspar

:::::::
Anorthite1 feldspar

:::::::
Anorthite1 feldspar

:::::::
Anorthite1 quartz

::::::
Granite2 quartz

::::::
Granite2

Complex density (CD) model - NO NO NO YES YES YES YES

Serpentinisation front - NO YES YES YES YES YES YES

Serpentinite pre-factor (ζ) - - 1 18 1 18 1 18

Starting time Myr 0 109 109 109 109 109 109

Bold entries highlight the differences compared to the reference model REF.
∗ All material parameters are listed in Table A1.

a
:::::::
compared

:::
to

:
a
::::::::::::::::
feldspar-dominated

:::::
(wet

::::::::
anorthite)

::::::::
rheology

:
a
::::::::
relatively

:::::::
weaker quartz-dominated upper crust is employed195

:::::::
rheology

::::::::
(Westerly

:::::::
granite)

::
is

::::::::
employed

:::
for

:::
the

:::::
upper

::::
crust. A summary of all simulations is given in Table 1. The applied ma-

terial parameters are given in Table A1 and the bulk rock compositions as well as the solution models used for phase diagram

calculations are given in Table 2.
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Table 2. Bulk rock composition for phase equilibrium calculations.200

Oxides [wt%] Pelite (avg.)1,4 Rhyolite1,4 Andesite1,4 MORB1,4 Hydr. Peridotite1,4 Serpentinite2,4 Bulk DMM3,5

2::::
SiO2:

61.500 72.800 57.900 49.200 44.710 44.210 44.710

23:::::
Al2O3:

18.600 13.300 17.000 16.100 4.160 3.130 3.980

::::
FeO 10.000 2.440 6.980 10.220 8.070 8.898 6.980

::::
8.180

:

::::
MgO

:
3.810 0.390 3.330 6.440 39.200 39.240 3.330

:::::
38.730

:

::::
CaO - - 6.790 10.500 2.420 3.060 3.170

2:::::
Na2O 1.460 3.550 3.480 3.010 0.220 - 0.130

2::::
K2O 3.020 4.300 1.620 1.100 - - -

2::::
H2O sat sat sat sat sat sat sat -

:

Solution models

Opx(HP) + + + + + + -

Gt(GCT) + + + + + + -

feldspar + + + + + + -

Chl(HP) + + + + + + -

Sp(HP) + + + + + + -

O(HP) + + + + + + -

Stlp(M) + + + + - - -

Carp + + + + - - -

Sud + + + + - - -

Bio(TCC) + + + + - - -

St(HP) + + + + - - -

Ctd(HP) + + + + - - -

Pheng(HP) + + + + - - -

hCrd + + + + + + -

Omph - - + + + + -

GlTrTsPg - - + + + + -

Pu(M) - - + + + - -

Act(M) - - + + + + -

T - - + - + + -

A-phase - - - - + + -

Chum - - - - + + -

B - - - - + + -

Wus - - - - + + -

Fperh - - - - + + -
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Solution models Pelite (avg.)1,4 Rhyolite1,4 Andesite1,4 MORB1,4 Hydr. Peridotite1,4 Serpentinite2,4 Bulk DMM3,5

Atg(PN) - - - - + + -

C2/c - - - - - - +

Wus - - - - - - +

Pv - - - - - - +

Pl - - - - - - +

Sp - - - - - - +

O - - - - - - +

Wad - - - - - - +

Ring - - - - - - +

Op+
:::
Opx - - - - - - +

Cp+
:::
Cpx - - - - - - +

Aki - - - - - - +

Gt_maj - - - - - - +

Ppv - - - - - - +

CF - - - - - - +

Modified bulk rock after 1Winter (2013), 2Pelletier et al. (2008) 3Workman and Hart (2005). We assume water saturation in all calculations.

Crosses denote solution models used for given lithologies.

Thermodynamic databases used: 4Holland and Powell (1998) updated in 2002 and 5Stixrude and Lithgow-Bertelloni (2011) for depleted MORB mantle (DMM).

Note that only the relative abundance of elements is important for our phase diagram calculations. Details on the solution models can be found in the solution_model.dat data file in

Perple_X.

3 Results205

We first describe the results of the reference model, REF, for the entire geodynamic extension–cooling–convergence cycle.

We then describe the impact of serpentinite shear resistance on the evolution of the models during convergence. Finally, we

report results of linearized and complex density models as well as the impact of upper crustal shear resistance. We focus on the

continent–continent collision stage of the individual models. Stages of basin closure, serpentinite channel formation, as well

as the subduction dynamics are documented in the video supplement of models REF (Candioti, 2020a) and GC1 (Candioti,210

2020b), but are not described in further detail here.

3.1 Reference model - REF

Figure 4 shows the geodynamic evolution of the reference model (REF). Crustal break-up occurs at≈ 19 Myr in model history

(Fig. 4a). At this stage, hot mantle material rises in the horizontal centre and diverges laterally below the plates (see arrows in

Fig. 4a). The 1300 °C isotherm remains at a depth of≈ 20–30 km .
:::::
below

:::
the

::
rift

::::::
center

::::
(Fig.

::::
4d). Two asymmetric continental215

margins have formed. The necking zone of the left margin is ≈ 20 km wide. In total, the width of this
::
the

::::
left margin is ca.
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80–90 km. The right margin is in total ca. 140–160 km wide including an ≈ 60–80 km wide necking zone. At the end of

the cooling period (109 Myr, Fig. 4b), an ≈ 360 km wide basin has opened, which is floored by exhumed mantle material.

Convection in the upper mantle stabilises the thermal and mechanical thickness of the lithosphere to ca. 90–100 km (no velocity

glyphs in Fig. 4b
::
&

:
e, see also discussion in Candioti et al. (2020) for more detail). At 112 Myr subduction is initiated at the220

transition from the proximal to the distal continental margin in the right model side (see Sutra et al. (2013) for nomenclature).

Partly, the necking zone of this margin has been subducted to ca. 40 km depth (Fig. 4c & f). At 144 Myr in model history,

the continental crust of the left margin (blue colours in Fig. 5a & b
:
d) is subducted to ca. 60 km depth. Sediments, originally

deposited in the trench have been incorporated in between the subducting and the overriding plate. With ongoing convergence,

the upper crust of the subducting plate is buried to a maximum depth of ca. 120 km. At 155 Myr, upper crustal units are sheared225

off the subducting plate at the transition to the lower crust and begin to form thrust sheets (see deflected isotherms at x≈-80

:::::::
x≈−80 km and z≈-30

:::::::
z≈−30 km

:
in

:
Fig. 5e). Major parts of continental crust are sheared-off

::::::
sheared

:::
off

:
the subducting

plate before entering the subduction zone. An orogenic wedge with several thrust sheets has formed at 164 Myr (Fig. 5f). At

this stage, the lower part of the subducting slab detaches and the deeper subducted upper crustal material flows upward. This

return flow is limited to depths between ca. 60 and 80 km (see arrows in Fig. 5f).230

3.2 Impact of low (AS1) and high (AS18) serpentinite shear resistance

As in REF, subduction is initiated at the transition from the proximal to the distal right continental margin in AS1 and AS18.

A large volume of serpentinite material is sheared-off
::::::
sheared

:::
off the subducting plate in AS1 and AS18 (Fig. 6a & e). In AS1,

the serpentinites form a coherent, inclined channel down to ca. 100-120 km depth (Fig. 6a). At 148 Myr, the upper continental

crust of the left margin (blue colours in Fig. 6) has been subducted to ca. 90–100 km depth (Fig. 6a). Between 154 and 162235

Myr, the subducted upper continental crust returns to the surface through the weak serpentinite channel in AS1. An ≈ 50 km

wide block of the overriding plate’s upper crust is separated from the right margin by subducted crustal material that is being

exhumed to the surface. At 164 Myr, large parts of the subducted continental crust have been exhumed to the surface (Fig.

6d). Units containing weak inclusions are internally deformed during the exhumation. Strong units are folded, but exhumed

coherently (Fig. 6d). The serpentinite material is surrounding the exhumed upper crustal material and the separated continental240

upper crustal block of the overriding plate. In AS18, the serpentinite channel is intersected by the two colliding plates at z≈-30

:::::::
z≈−30

:
km (Fig. 6e). In contrast to AS1, the continental upper crust is partly sheared off the subducting plate at z≈-25

:::::::
z≈−25 km in AS18 (Fig. 6e). Maximum burial depth of upper continental crust in this model is ca. 80–90 km. Exhumation

of subducted crustal material is limited to z≈-70
::::::
z≈−70

:
km (Fig. 6f & g). Instead, the upper continental crust is wedged at

shallower depths, similar to REF (see deflected isotherms at x≈-125
::::::::
x≈−125

:
km in Fig. 6g). Thrust sheets propagate along245

the upper continental crust of the subducting plate (Fig. 6h). The serpentinized mantle material forms a coherent unit emplaced

in between the wedged continental upper crust of the subducting plate and the relatively undeformed continental upper crust of

the overriding plate. Dimensions of the evolved orogenic wedge in AS18 are similar to the wedge dimensions evolved in REF

(compare Fig. 5f to Fig. 6h).
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3.3 Impact of complex density models - Models AC1 and AC18250

Density models that include predicted metamorphic assemblages (CD-models) lead to more variable density fields and larger

density changes
::
as

:
a
:::::::
function

::
of

::::::::
pressure

:::
and

::::::::::
temperature compared to LEOS-models (compare Fig. 3g to f). Similar to AS1, a

serpentinite channel
:::
(low

::::::::
viscosity

:::::
region

::
in
::::
Fig.

:::
7a)

:
forms after subduction initiation in AC1 (Fig. 8a). The continental upper

crust of the subducting plate (blue colours) is subducted to ca. 150 km depth, which is deeper compared to AS1 (compare Fig.

6b to Fig. 8b & c). In contrast to AS1, exhumation of the subducted upper continental crust has not occurred until 163 Myr255

(compare Fig. 6c to Fig. 8c) in model history. At 170 Myr, the subducted continental crust in AC1 has been exhumed to the

surface through
::::
along

:
the weak subduction interface (Fig. 8d). In contrast to AS1, the continental upper crust of the overriding

plate has not been separated by the returning continental crust of the subducting plate in AC1 (compare Fig. 6d to Fig. 8d).

Figure 9a & b shows the density field of models AS1 and AC1, respectively, computed by the algorithm at 170 Myr in model

history. Compared to AS1, in AC1 the density of the material in the wedge is much more variable. The density of the subducted260

crustal units in AC1 is up to ca. 100 kg m−3 higher than in AS1. The resulting buoyancy contrasts are much smaller leading to

significantly less uplift of topography in AC1 compared to AS1. In AS1, the maximum elevation of topography exceeds 10 km;

in AC1 the maximum elevation is locally ≈ 7 km, but high topographies are in average ≈ 5 km. The width of the wedge is ≈
350 km and≈ 275 km in AS1 and AC1, respectively. Compared to AS18, only minor volume of serpentinite material has been

sheared off the subducting slab in AC18 (compare Fig. 6e to Fig. 8e). The majority of serpentinite material is coupled to the265

slab and subducted into the upper mantle (Fig. 8f
:::
and

::::
Fig.

::
7c). Subduction of continental upper crust reaches a depth of ca. 180

km after 163 Myr (Fig. 8g). In absence of a weak, serpentinized subduction interface, the resistance of the subduction channel

is increased in AC18 (compare Fig. 8a-c to f & g
::
7a

::
to

::
c). The deeply subducted continental upper crust cannot be exhumed

along the strong subduction interface and breaks through the less resistant mantle wedge (Fig. 8h), relaminating below the

overriding plate (similar to the models presented in Currie et al. (2007) & Li and Gerya (2009)).270

3.4 Impact of crustal strength - Models GC1 and GC18

Similar to AS1 and AC1, in GC1 the serpentinites form a channel along the subduction interface down to ca. 120 km depth (Fig.

10a
:::
and

::::
Fig.

::
7b). Continental upper crust of the subducting plate is buried to z≈-120

::::::::
z≈−120

:
km (Fig. 10a & b). At ca. 153

Myr, the subducting slab detaches at a depth of ca. 400 km (see Candioti (2020b)). Between 156 and 162 Myr, the subducted

continental upper crust flows back to the surface along the weak subduction interface breaking through the continental upper275

crust of the overriding plate (Fig. 10c). The serpentinite material is surrounding the exhumed crustal material (Fig. 10d) within

the orogenic wedge. Exhumation of upper continental crust from z≈-80
:::::::
z≈−80 km to z≈-30

::::::
z≈−30

:
km occurs between 162

and 164 Myr. At ca. 165 Myr, a second slab detachment occurs at z≈-250
::::::::
z≈−250 km (see Candioti (2020b)). In contrast to

AC18, less crustal volume is subducted in GC18 (Fig. 10e). Instead, the continental upper crust is largely sheared-off
::::::
sheared

::
off

:
the subducting lithosphere at z≈-40

:::::::
z≈−40

:
km (Fig. 10f) and several thrust sheets form (Fig. 10f). Compared to GC1,280

the relatively stronger serpentinite in GC18 is largely subducted
::::
(Fig.

:::
7d) and sediments originally deposited in the trench are

incorporated into a growing orogenic thrust wedge (Fig. 10f-h).
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3.5 Evolution of buoyancy and shear forces

In order to investigate the relative impact of buoyancy and shear forces on collision, we quantify the temporal evolution of

the horizontal driving force per unit length (Fig. 11b, FD hereafter; see Appendix C) and of the
::::::::::::::
(upward-directed)

:
buoyancy285

forces of subducted crustal material (Fig. 11c, FB hereafter; see Appendix C). Buoyancy forces calculated here represent an

upward directed (negative
::::::
positive) buoyancy force of the subducted crust acting against further subduction. The ratio FB/FD

(Fig. 11a, ArF, hereafter) is a measure for the relative dominance of buoyancy and
::
or shear forces driving the deformation and

exhumation within the orogenic wedge (see Appendix C). Points 1-5 in Fig. 11a-e represent important stages of model GC1

(thick dashed turquoise blue line) and are representative for the evolution of all presented models.290

Subduction initiation occurs for FD ≈ 22 TN m−1 in models of feldspar dominated continental upper crust (AS1, AS18,

AC1 and AC18) and for FD ≈ 18 TN m−1 in models of quartz dominated upper crust (GC1 GC18, 1 and grey area in Fig

11b). Magnitudes of FD decrease after subduction initiation to ca. 10-15 TN m−1 and remain, on average, relatively constant

during basin closure (between 1 and 2 in Fig. 11). Until basin closure, ArF ≈ 0.25 and remains relatively constant in all models.

Magnitudes of FB increase with increasing volume of crustal material involved in subduction (see Fig. 11c & d) between 140295

and 153 Myr. In response, magnitudes of ArF ≈ 1 are reached in AS1, AC1 and GC1. Between ca. 153 and 156 Myr, shallower

buried crustal material is exhumed in GC1 (3 in Fig. 11, see also Fig. 10a) coinciding with a deep slab detachment (see Candioti

(2020b)). At ca. 162 Myr, the deeper subducted units are exhumed (see also Fig. 10c). This exhumation event is followed by a

shallow slab detachment leading to a rapid increase in magnitude of FD at ca. 165 Myr. The buoyancy pull of the subducting

slab is lost and a larger horizontal driving force is needed to overcome the
:
(upward-directed

:
) buoyancy push of subducted300

crust and to continue subduction with the prescribed kinematic boundary velocity. While the buoyancy forces remain relatively

constant, the increase of FD decreases the magnitude of ArF (between 4 and 5 in Fig. 11a-c). The maximum burial depth

of continental crust is reached in AC1 and AC18 (feldspar-dominated upper crust) and is ca. 200 km. In REF, GC1, GC18,

AS1 and AS18 the maximum burial depth varies between 120–150 km. During the formation of the collisional orogen, the

magnitude of FD increases and eventually exceeds the magnitude that was necessary for subduction initiation (grey area in Fig.305

11b). Magnitudes of FD and FB are on average higher in models of feldspar-dominated continental upper crust compared to

models of quartz-dominated upper crust. The increased shear resistance in these feldspar-dominated models allows for deeper

subduction of continental upper crust when the serpentinite is weak. High values for FD in AS18 and REF are explained by

a more resistant subduction interface caused by either an increased shear resistance of the serpentinite material, or absence of

serpentinisation.310

3.6 Different modes of orogenic wedge formation

The geometry, kinematics and dynamics of the evolving collision zone and orogenic wedge varies significantly in the presented

models (Fig. 12a). We refer here to these variations as different modes of orogenic wedge formation. These varying modes

depend mainly on the shear resistance of upper crust and serpentinite, and its buoyancy contrast to the surrounding mantle

material. The magnitude of ArF is used to classify the different modes of orogenic wedge formation.315
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For low shear resistance of serpentinites,
::::::::
generating

::
a
:::::
weak

:::::::::
subduction

::::::::
interface,

:
ArF ≈ 1 indicating equal importance of

buoyancy and shear forces building the orogenic wedge. Two modes are observed: (1) a diapir-like mode of exhumation due to

either (i) increased buoyancy contrast (LEOS-models) and high shear resistance of the upper crust (AS1, see Fig. 12a) or (ii) a

decreased buoyancy contrast (CD-models) and low shear resistance of the upper crust (GC1, see Fig. 12c). (2) A channel-flow

mode of exhumation occurs for a decreased buoyancy contrast (complex-EOS
::::::::::
CD-models) and increased shear resistance of320

the upper crust (AC1, see Fig. 12b).

In models of high serpentinite shear resistance,
::::::::
generating

::
a
:::::
strong

::::::::::
subduction

::::::::
interface, also two different modes are ob-

served: (3) A thrust-diapir mode of deformation for either (i) an increased buoyancy contrast and high shear resistance of the

upper crust, or (ii) a decreased buoyancy contrast and low shear resistance of upper crust. In both cases ArF ≈ 0.5, indicating

that shear forces dominate the building of the orogenic wedge (Fig. 12d & f). (4) A relamination mode due to relamination of325

deeply subducted continental crust is observed for a decreased buoyancy contrast and high shear resistance of the upper crust

(ArF ≈ 0.75, see Fig. 12e).

4 Discussion

4.1 Buoyancy vs. shear forces controlling modes of orogenic wedge formation

The shear resistance of (i) serpentinites and (ii) the upper continental crust directly impacts on the shear forces (compare GC1330

to AC1 in Fig. 11b). Determining the shear resistance, or effective viscosity, of the lithosphere deforming under geological

time scales remains challenging (Burov et al., 2006). Rock deformation experiments are performed at deformation rates that

are many orders of magnitude higher than tectonic deformation rates. Best fitting curves have to be extrapolated to natural con-

ditions, which introduces large uncertainties on the actual strength of rocks deforming under natural conditions (Mancktelow

and Pennacchioni, 2010; Idrissi et al., 2020). Serpentinite plays a crucial role in subduction zones and, ultimately, in the forma-335

tion of Alpine-type collisional orogens (Hess, 1955; Raleigh and Paterson, 1965; Hacker et al., 2003; McCarthy et al., 2020).

Despite its importance, the rheology of serpentinite at lithospheric-scale pressure and temperature (PT) conditions remains elu-

sive (David et al., 2018; Hirauchi et al., 2020, & reference therein). Several deformation mechanisms for serpentinite material,

often based on experiments with antigorite, have been discussed in the literature including: dislocation creep (Hilairet et al.,

2007), semi-brittle or plastic deformation behaviour (Chernak and Hirth, 2010; Hirth and Guillot, 2013), grain boundary sliding340

(Idrissi et al., 2020), and sliding on shear cracks (Hansen et al., 2020). Numerical models are useful to test different end-member

rock rheologies and to investigate the impact of rock strength on subduction and formation of collisional orogens. To first or-

der, weak serpentinite material may indeed form a subduction channel and lubricate the subduction interface. The subduction

channel in model AC1 has formed self-consistently, because subduction was initiated without a prescribed major weak zone in

the lithosphere. Deep subduction and exhumation to the surface of crustal material is feasible in these models. Instead
:::
this

::::
kind345

::
of

:::::::
models.

::
In

:::::::
contrast, strong serpentinite material leads to detaching and thrusting of crustal material escaping subduction

already at shallow depths. In natural settings, the effective strength of serpentinites may vary along the upper regions of the

subduction
:::::::::
subducting plate in direction parallel and/or orthogonal (along-trench) to the subduction direction, for example due
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to varying degrees of serpentinization. Such spatial strength variation may cause temporal and/or along-trench alternations

between channel mode and thrust-diapir mode when serpentinites of different strength enter the subduction zone. The shear re-350

sistance of the upper crust resulting from the rheological flow laws employed here, wet anorthite Rybacki and Dresen (2004)

and westerly granite (Hansen et al., 1983))
:::::::::::::::::::::::
(Rybacki and Dresen, 2004)

:::
and

:::::::
Westerly

:::::::
granite

:::::::::::::::::
(Hansen et al., 1983), is similar

and neither extremely low, nor extremely high (see also Fig. 1 in Bürgmann and Dresen (2008)). However, employing these

two different flow laws for the upper crust changes the mode of orogenic wedge formation significantly. Similar to the strength

of serpentinites, in natural settings also the effective strength of the upper crust may vary and cause temporal and along-trench355

variations of the orogenic wedge modes during the evolution of continental collision.

Magnitudes of buoyancy forces in our models are enhanced by large density contrasts between the subducted material and

the surrounding mantle. We tested end-member models of simple and complex density calculations. The precomputed density

tables are based on calculated equilibrium phase diagrams.
::::::
diagram

:::::::
sections

::::
(Fig.

:::
3). In our calculations we have assumed H2O

saturation and therefore our system is open with respect to its H2O content, but closed with respect to other elements. This is360

a valid approximation for the km-scale that we are considering. However, the preservation of high-grade metamorphic rocks

at the near-surface environment indicates that the crustal metamorphic rocks are not always at thermodynamic equilibrium

as it is assumed here. The rate of metamorphic re-equilibration is strongly affected by temperature and by the availability of

fluids (Rubie, 1986; Austrheim, 1987; Malvoisin et al., 2020). Coupling mineral scale phase equilibria modelling to large scale

geodynamic models remains challenging. Although coupling of petrological and thermo-mechanical modelling via CD-models365

as presented here is simplified, this approach has proven useful to explain observations that cannot be predicted by the com-

monly used LEOS-models. These observations include (i) varying sediment thickness accumulated during basin subsidence

(Kaus et al., 2005), (ii) evolution of subducting slab dynamics (van Hunen et al., 2001; Toussaint et al., 2004) and (iii) the

exhumation of (U)HP rocks (Yamato et al., 2007; Warren et al., 2008). In addition, our results demonstrate that CD-models

avoid unrealistically high topographic elevation during orogen formation.370

Varying mechanical strength of (i) serpentinites and (ii) the upper crust in combination with varying buoyancy contrasts

changes the mode of orogenic wedge formation modelled here (Fig. 12). Hence, it is important
:::::::
essential to (1) better constrain

:::::
further

:::::
refine

::::
our

:::::::::
knowledge

::
on

:
the mechanical strength of crustal rocks and serpentinites under natural deformation conditions

and (2) to proceed towards more
::::::
account

:::
for realistic density structures including metamorphic reactions in numerical models

of collisional orogen formation.375

4.2 Subduction initiation

We follow here the modelling approach by Candioti et al. (2020). The margin geometry and thermal structure, prior to

convergence, is generated during a modelled rifting and cooling period. This way, the generated passive marginand ,
::::

the

marine basin system is modelled internally-consistent with respect to
:::
and

:
the subsequent convergence

:::
are

::::::::
modelled

::
in

:::
an

::::::::::::::::
internally-consistent

:::::::
manner. Subduction initiation is horizontally forced (Stern, 2004; Stern and Gerya, 2018; Crameri et al.,380

2020) and a major lithosphere
:::::::::
lithospheric

:
shear zone forms around the transition from the distal to the proximal margin (see

also discussion Candioti et al. (2020)). The ad hoc parameterized layer of serpentinite is not relevant for subduction initiation,
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as subduction is initiated also in the reference model without serpentinite (see Fig.4f). Instead, geometrical focusing of stresses

below the margin together with thermal softening and a temperature-dependent viscosity leads to spontaneous formation of a

shear zone transecting the lithosphere (Thielmann and Kaus, 2012; Jaquet and Schmalholz, 2018; Kiss et al., 2020; Candioti385

et al., 2020; Auzemery et al., 2020). In our models, magnitudes of FD between 18 and 22 TN m−1 are necessary to initiate

subduction for quartz- and feldspar-dominated upper crust, respectively. These magnitudes are significantly lower compared

to FD ≈ 37 TN m−1 obtained by Kiss et al. (2020). They studied subduction initiation at an idealised, ad hoc constructed

passive margin without mechanical heterogeneities in the form of a multi-layer or elliptical geometry (see also Candioti et al.

(2020) for a detailed comparison). The Peierls flow law parameters describing the rheology of olivine used here have been390

elaborated by Goetze and Evans (1979). Recent studies suggest that the olivine strength resulting from this parameterisation

is likely overestimated (Idrissi et al., 2016). If true, stresses in the mantle lithosphere would be lower than predicted by our

models, which could further reduce the magnitude of shear forces necessary for subduction initiation. However, the minimum

value of FD required for subduction initiation in our models should be determined in future studies.

4.3 Potential applications to natural collisional orogens395

4.3.1 Implications for the Pyrenean orogeny

:::
The

:::::::
opening

:::
of

:::
the

::::
Bay

::
of

::::::
Biscay

::::::::::::::::::::::::::::
(110–105 Ma, Henry et al., 1998)

::::
lead

::
to

:::
the

:::::::::
formation

::
of

::
a

::::::
narrow

::::::
marine

:::::
basin

::::::
which

:::
was

::::::
floored

:::
by

::::::::
exhumed

::::::
mantle

::
in

:::
the

::::::::::
present-day

::::::::
Pyrenean

:::::::
domain.

:::::::::::
Convergence

:::::::
between

:::
the

:::::::
Iberian

:::
and

::::::::
European

::::::
plates

:::::::
initiated

:
at
:::
ca.

:::
85 Ma

::
and

::::::::::
culminated

::
in

:::
the

::::::::
formation

::
of

:::
the

::::::::
Pyrenean

:::::::::
collisional

::::::
orogen

::
in

:::
the

:::::::
Eocene

:::::::::::::::::
(Jammes et al., 2009)

:
.

Orogenic wedge formation in the Pyrenees involved mainly the upper 20 km of the upper crust (see Fig. 1a, Teixell et al., 2018,400

& references therein). The absence of subduction related high-pressure metamorphism (Muñoz, 1992) indicates , that only

insignificant
:::
that

:::
no

::::::::
significant

:
volumes of upper crust have been involved in subduction

::::::::
subducted

::
to

::::
great

:::::
depth

:::::
(>50 km). In-

stead, the majority of the upper crust has been presumably sheared-off
::::::
sheared

:::
off the subducting lower crust and formed thrust

sheets at mid to upper crustal level (Muñoz, 1992; Teixell et al., 2018, & references therein). Rifting-related inheritances are

likely important for the formation of crustal thrust sheets during the Pyrenean orogeny (Jammes et al., 2014; Erdős et al., 2014)405

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jammes and Huismans, 2012; Jammes et al., 2014; Erdős et al., 2014). In our models, a ca. 360–400 km wide basin

::::
(see

:::
f.e.

:::
Fig.

:::
4b)

:
with exhumed serpentinized mantle is generated during a rifting period modelled prior to convergence. The model

geometry before the onset of convergence is, thus, not directly applicable to the pre-orogen geodynamic setting in the Pyre-

nees, because the basin resulting from the opening of the Bay of Biscay was most likely considerably narrower (Jammes et al.,

2009; McCarthy et al., 2020, & references therein). However, during the collisional stage, our thrust-mode models
:::
(f.e.

::::::
model410

:::::
GC18,

:::::::::
Fig.10e-h)

:
seem to reproduce some of the first order features observed in the Pyrenees. We therefore suggest, that the

buoyancy push of subducted crust was insignificant during the Pyrenean orogeny. Instead, convergence between Iberia and Eu-

rope induced shear force driven crustal wedging without deep (>80 km) subduction of continental upper crust, as for example

modelled by
:::::::::::::::::::::::::
Jammes and Huismans (2012)

:::
and Grool et al. (2019).
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4.3.2 Model implications
:::::::::::
Implications for the Alpine orogeny415

In the Western Alps, a rifting phase prior to subduction lead to the formation of a ca. 300–400 km wide basin floored by

exhumed mantle, and presumably only minor volumes of mature oceanic crust have been produced (?)
:::::::::::::::::::
(Le Breton et al., 2021)

. Instead, ophiolites preserved in the Western Alps indicate serpentinisation of the mantle exhumed in the basin (McCarthy

et al., 2020, & reference therein). The serpentinized material likely formed a relatively weak subduction interface (Zhao et al.,

2020) and inhibited subduction of hydrous sediments explaining the sparse arc-magmatism in the European Alps (McCarthy420

et al., 2018, 2020; Yang et al., 2020). Field evidence of (ultra)high-pressure units (Chopin, 1984) in the Western Alps indicate

either deep subduction of upper continental crust (Berger and Bousquet, 2008) at close to lithostatic stress state, or significant

deviation from the lithostatic stress state (Schenker et al., 2015) (Fig. 1b). Tomographic images (Zhao et al., 2015; Schmid

et al., 2017) indicate that major volumes of upper continental crust have been involved in subduction. While the crustal wedge

model may be applicable to the deformation during the post-collisional (. 30 Ma) stage of the Alpine orogeny (e.g. Erdos425

et al., 2019), it does not predict the exhumation of subduction related (ultra)high-pressure continental and oceanic crustal rocks

prior to collision. Instead, a subduction channel model has been proposed to explain deep subduction of continental upper crust

and subsequent exhumation of (ultra)high-pressure units along the subduction interface (Gerya et al., 2002; Raimbourg et al.,

2007; Butler et al., 2014). The subduction channel model, as proposed by Butler et al. (2014), has been criticised mainly for

two reasons: (1) exhumation relies on significant removal, or erosion, of major crustal volumes, which is not in agreement with430

the sediment volume recorded in the Eocene-Oligocene basins (Malusà et al., 2015). (2) The exhuming units are strongly mixed

(tectonic mélange) and significant volumes of lower crust are also exhumed, which is at odds with interpretations from seismic

tomography showing no significant exhumation of lower crust (Schmid et al., 2017). In our models, significant synconvergent

exhumation of upper crust can occur by either diapirism or channel-flow and is enabled by spatially localized upper plate

extension (Fig. 12) and not by significant erosion. Exhumation of
::
the

::::::
strong lower crust does not occur in our model, which435

::::::
because

::
it
:::::::
remains

:::::::
coupled

::
to
::::

the
:::::::::
subducting

::::::
mantle

::::::::::
lithosphere.

:::::::
Instead,

:::::
weak

:::::
zones

:::
in

:::
the

:::::
upper

:::::
crust

:::::::
connect

:::
and

:::::
form

:
a
:::::::::
decoupling

:::::::
horizon

::::::
within

:::
the

:::::
upper

:::::
crust

:::::
above

:::
the

::::::
Moho

::::
(see

::::::
region

::
of

:::::::
reduced

::::::::
viscosity

::
in

::::
Fig.

::::
7b).

::::
This

::::::::::
observation

is in agreement with interpretations from tomographic images. We focused here on the general evolution of different modes

of orogenic wedges. We will present a detailed analysis of (i) the mechanisms causing local upper plate extension, (ii) the

exhumation mechanisms of (ultra)high-pressure rocks and (iii) the pressure and temperatures paths and associated exhumation440

velocities in a subsequent study and we will not further discuss these issues here.

Our models are restricted to two dimensions and driven by far-field kinematic boundary conditions. Therefore, we can

only capture first order fundamental features of natural orogens. During model evolution, more and more crustal material is

forced into subduction (Fig. 11d). In fact, in our models plate driving forces eventually reach again the magnitude necessary for

subduction initiation after basin closure (see grey area in Fig. 11b). From this point on, the model probably becomes unrealistic,445

because in nature a new subduction zone would
::::
may

:
form at a different location and the active subduction zone would

::::
may

cease or slow down significantly. Plate reconstructions from the Western Alps indicate that European subduction below Adria

was presumably slowed down significantly ("choked") between ca. 35–25 Ma (Malusà et al. (2015); Schmid et al. (2017),
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see Fig. 13). Estimating subduction initiation at the Adriatic margin between ca. 90 and 85 Ma (Manzotti et al., 2014), there

has been ca. 50–65 Myr of convergence before European subduction was "choked". This duration approximately coincides450

with the time span (ca. 55–60 Myr of convergence) in our models necessary to build up plate driving forces exceeding the

magnitude for subduction initiation (at ca. 167 Myr, see 5 in Fig. 11b) in
:::
our

:
model GC1. Hence, we suggest that increase of

driving forcesduring the Alpine orogeny
:::
the

::::::::
horizontal

::::::
forces,

:::::::
required

::
to

::::
drive

:::
the

::::::::
collision,

::::::
became

:::::::::::
continuously

:::::
larger

::::::
during

::
the

::::::::
evolving

::::::
Alpine

:::::::
orogeny

::::
and

:::::::::
ultimately exceeded a critical value leading to: (1) significant slow-down of the European

subduction and (2) plate boundary reorganization leading to subduction initiation of the remaining Adriatic oceanic lithosphere455

below Iberia .
:::
(Fig.

::::
13).

:

4.3.3 Challenges in applying wedge models to the Alpine orogeny

The "classical" crustal wedge models (Platt, 1986; Dahlen, 1990; Malavieille, 2010; Dal Zilio et al., 2020b) focus mainly

on upper-crustal levels (see grey framed area in Fig. 1b
:::
and

:::::::::::
explanations

::
in
::::

the
::::::::::
introduction). The evolution of the Alpine

orogeny, however, involves the entire lithosphere in wedging (Nicolas et al., 1990). Some studies extended
::::::
applied

:
the "classi-460

cal"
:::::
crustal wedge model to the lithospheric scale Platt (1986); Vanderhaeghe et al. (2003); Beaumont et al. (2010)

::::::::::
lithospheric

::::
scale

:::::::
orogens

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Platt, 1986; Vanderhaeghe et al., 2003; Beaumont et al., 2010). Vanderhaeghe et al. (2003) concluded that tem-

perature dependence of material parameters indeed modulates wedge geometries, impacts on the transition between wedge and

plateau behaviour and controls the topographic evolution. In crustal wedge models, deformation is usually driven by an inter-

nal kinematic boundary condition at the base of the continental crust pulling the material towards a rigid backstop. Of course,465

subduction and collision in our models are also controlled by the kinematic boundary conditions. However, in our models

boundary conditions are imposed far away from the evolving wedge, and not directly at the base of the continental crust ,

which
:::::::
avoiding

:::::::::
kinematic

:::::::::
singularity

:::::
points

:::
and

::::::::
allowing

:::
for

:::::::::
continental

::::::::::
subduction.

::::
This is likely important when the mantle

lithosphere is involved in wedging (Beaumont et al., 2010). The first-order dynamics within the evolving wedge are controlled

by the interaction of buoyancy and shear forces according to shear resistance and density structure of material. Our models,470

therefore, presumably provide a more realistic insight into orogen dynamics compared to orogenic wedge models considering

only crustal deformation
:::::
crustal

:::::::::::
deformation

::::
only.

As mentioned in Section 4.1, the density structure impacts on the force balance and reduces the mean topographic elevation.

This is important, because orogenic wedge models applied to the Western Alps have been criticised for overestimating the

mean topographic elevation (Kissling, 1993; Dal Zilio et al., 2020a). Certainly, the average topography in our models is still475

higher compared to the average topography of the Alps. However, we suggest that employing more realistic density models is

an important step to avoid exaggerated mean topographic elevation in orogenic wedge models. Furthermore, the topography in

our models would likely decreaseif we would reduce significantly
:
,
:
if
:::
we

::::::::::
significantly

::::::
reduce

:
the convergence velocities at the

mature stage of orogenic wedge formation, so that delamination
:::::::
rollback of the subducted mantle lithosphere would become

important. Such delamination, or
::::
more

:::::::::
important.

::::
The so-called rollback orogeny (Kissling and Schlunegger, 2018; Dal Zilio480

et al., 2020a) , applies to the latest Alpine evolution in the post-collisional stage (younger than ca. 30 Ma), but does not apply
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to the formation of the major (ultra)high-pressure regions (including oceanic, e.g. Zermatt-Saas, and Adriatic, e.g. Sesia and

Dent Blanche, domains) of the Alps.

Absolute values for shear and buoyancy forces reported here strongly depend on the amount and strength of crustal material

carried into the subduction zone. How much crustal material has been involved in Alpine subduction depends on the pre-485

orogenic crustal thickness (Mohn et al., 2014) and is still contentious (Butler, 2013; Schmid et al., 2017). The orogenic wedges

modelled here are wider and deeper than the natural Alpine orogenic wedge. The size of the mechanical heterogeneities

employed here is chosen based on the numerical resolution (1
::::
1× 1

:
km) and probably strongly impacts on the size of the

modelled wedge. At higher numerical resolution, the size of the mechanical heterogeneities could be reduced and the modelled

rifted margins might be thinner, leading to a more realistic pre-orogenic crustal thickness generated during the rifting period.490

In consequence, less material would be involved in subduction and the absolute magnitude of forces would change. However,

the general model evolution, i.e. the relative increase of buoyancy forces with continuous subduction, would be most likely

unchanged. Therefore, our models likely provide a representative model for the relative evolution of shear and buoyancy forces

building orogenic wedges.

5 Conclusions495

Our models show that upward-directed buoyancy forces,
:::
FB, caused by subduction of continental crust, can be as high as the

shear forces
::::::::
horizontal

::::::
driving

:::::
shear

::::::
forces,

:::
FD,

:
induced by far-field plate convergenceand should, therefore,

:
.
:::::::::
Therefore,

::::
such

::::::::
buoyancy

:::::
forces

::::::
should

:
be considered in models of continent collision and associated orogenic wedge formation. Parameters

controlling the force balance and the mode of deformation and exhumation within the evolving orogenic wedge are

:::
We

::::::::::
investigated

::::
three

::::::::::
parameters

:::
that

:::::::
control

:::::::
orogenic

::::::
wedge

:::::::::
formation: (1) The shear resistance

:
,
::
or

::::::::
strength,

:
of serpen-500

tinites, controlling the shear resistance
:::::::
strength of the subduction interface, and .

:::
(2)

::::
The

:::::::
strength

:
of the continental upper

crust, controlling the maximal depth of crustal subduction. (2
:
3) The density structure of the subducted material. The density

structure ,
::::::
which

:::::::
controls

::::::::
buoyancy

:::::
forces

::::
and significantly impacts on the mean topographic elevationand leads ,

:::::::
leading to

more realistic topography evolution.

The strength of serpentinites and of the upper crust, as well as the density structure exert a first-order control on the formation505

of orogenic wedges. Varying these three parameters only in our models generates a wide spectrum of different orogenic wedge

modes, including
:::::
These

::::
three

::::::::::
parameters

::::::
control

:::
the

::::::::
evolution

::
of

:::
the

::::
ratio

:::::
FB/FD::

=
::::
ArF.

::::
The

::::
value

::
of

::::
ArF :::::::

controls
:::
the

:::::
mode

::
of

:::::::
orogenic

::::::
wedge

:::::::::
formation:

::::::::
ArF ≈ 0.5

::::::
causes thrust-sheet dominated wedges, buoyancy flow dominated wedges, and

::::::
similar

::
to

:::::
crustal

::::::
wedge

::::::
models

:::::::
without

:::::::::
buoyancy,

::::
with

::::::
thrusts

::::::::::
propagating

:::::::
towards

:::
the

::::::::
foreland;

:::::::::
ArF ≈ 0.75

::::::
causes

:
minor wedge for-

mation due to significant relamination of subducted crust below the upper plate. The spatial variation of these three parameters510

may explain many differences in
:
;
:::::::
ArF ≈ 1

:::::
causes

:::::::::
buoyancy

::::
flow,

::
or

::::::
diapir,

::::::::
dominated

:::::::
wedges

::::::::
involving

::::::::::
exhumation

::
of

::::::
crustal

:::::::
material

::::
from

::::
large

:::::
depth

:::
(>

::
80km

:
).
:

:::
The

::::::
spatial

:::
and

::::::::
temporal

:::::::
variation

::
of

:::
the

:::::
three

:::::::::
parameters

:::::::::
mentioned

:::::
above,

::::
and

::
the

:::::::::
associated

::::::::
variation

::
of

::::
ArF,

:::
may

:::::::
explain

::
the

::::::::
variation

::
of

:
deformation style observed in

:::::::
between

:::
and

::::::
within natural collisional orogens.
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The increase of upward-directed buoyancy forces
:::
We

::::::
suggest

::::
that

::::::
during

:::
the

:::::::::
formation

::
of

:::
the

::::::::
Pyrenees

::::::::::
ArF <≈ 0.5

::::
due515

::
to

:::
the

:::::::
absence

::
of

:::::::::
high-grade

:::::::::::
metamorphic

::::::
rocks,

:::::::
whereas

:::
for

:::
the

:::::
Alps

:::::::
ArF ≈ 1

::::::
during

::::::::::
exhumation

::
of

:::::::::
high-grade

:::::
rocks

::::
and

::::::::::
ArF <≈ 0.5

::::::
during

:::
the

:::::::::::::
post-collisional

:::::
stage.

:::
In

:::
the

:::::::
models,

:::
the

:::::::
increase

:::
of

:::
FB:

during orogenic wedge growth causes an

increase of the required horizontal driving forces , which
::
FD::::::::

required
::
to

:::::
drive

::::::
wedge

::::::
growth

:::
and

::::::::::
subduction.

:::
In

::::::
nature,

:::
the

::::::::::
requirement

::
of

:::::
larger

:::::::
driving

:::::
forces

:
may cause a slow down, or "choking" of the associated subduction . This increase of

horizontal driving forces may cause horizontally-forced
:::
and

::::
may

::::
even

:::::
cause

::::::::::
horizontally

::::::
forced subduction initiation in other

:
,520

:::::
nearby

:
regions. Therefore, quantifying the magnitudes of buoyancy and shear forces during orogenic wedge formation may

prove useful to unravel changes in relative plate motion and subduction initiation during the Alpine orogeny
:
,
:::
and

::::::
during

:::::
other

::::::::
collisional

:::::::::
orogenies

:::::::::
worldwide.

Data availability. The data presented in this study are available on request from Lorenzo G. Candioti.

Video supplement. We provide videos showing the entire evolution of the numerical simulation REF (Candioti, 2020a) and the subduction525

and collision stage of the numerical simulation GC1 (Candioti, 2020b).

Appendix A: Algorithm description

We employ the extended Boussinesq approximation (e.g., Candioti et al., 2020) for buoyancy–driven flow. The applied numer-

ical algorithm solves the continuity and momentum equations defined as

∂vi

∂xi
= 0 (A1)530

∂σij

∂xj
=−ρ gi , (A2)

where i and j are spatial indices and repeated inidices are summed, v is velocity and x is the spatial coordinate, σ is the

total stress tensor, ρ is density and g = [0;−9.81] is the gravitational acceleration. Effective density can be (1) computed as a

linearized equation of state (LEOS) like

ρ(P,T) = ρ0 (1−α∆T) (1 +β∆P) , (A3)535

where P (negative mean stress) is pressure, T is temperature, ρ0 is the material density at reference temperature (T0) and

pressure (P0), α and β are material parameters accounting for density changes due to thermal expansion and isothermal com-

pression, respectively, ∆T = T−T0 and ∆P = P−P0. Alternatively, effective density can be (2) pre-computed using the Gibbs

free energy minimization software package Perple_X (Connolly, 2005) for given bulk rock compositions. The density field
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predicted by these phase equilibria models is stored in look-up tables and density values are read in by the applied algorithm540

during simulation runtime according to local pressure and temperature conditions at each grid cell centre.

We employ a backward-Euler scheme (e.g., Schmalholz et al., 2001) to define the viscoelastic stress tensor components as

σij =−Pδij + 2 ηeff ε̇eff
ij , (A4)

δij =

0 , i 6= j

1 , i = j ,
(A5)545

where δij is the Kronecker-Delta, ηeff is the effective viscosity, ε̇eff
ij are the effective deviatoric strain rate tensor components,

ε̇eff
ij =

(
ε̇ij +

τ o
ij

2G∆t

)
, (A6)

where G is shear modulus, ∆t is the time step, τ o
ij are the deviatoric stress tensor components of the preceding time step. We

consider Maxwell materials and additively decompose the total deviatoric strain rate tensor ε̇ij into contributions from viscous

(dislocation, diffusion and Peierls creep), elastic and plastic deformation like550

ε̇ij = ε̇ela
ij + ε̇pla

ij + ε̇dis
ij + ε̇dif

ij + ε̇pei
ij ,. (A7)

Furthermore, we perform an iteration cycle locally on each grid cell until Eq. A7 is satisfied (e.g., Popov and Sobolev, 2008).

The viscosity for the dislocation and Peierls creep flow laws is a function of the second invariant of the respective strain rate

components and the dislocation creep viscosity takes the following form:

ηdis =
2

1−n
n

3
1+n
2n

ζ A− 1
n
(
ε̇dis

II

) 1
n −1

exp

(
Q + PV

nRT

) (
fH2O

)− r
n , (A8)555

where the ratio in front of the prefactor ζ results from tensor conversion of the experimentally derived flow law (e.g.,

Schmalholz and Fletcher, 2011). A, n, Q, V, f H2O and r are material parameters. The diffusion creep viscosity is calculated as

ηdif =
1

3
A−1 dm exp

(
Q + PV

RT

) (
fH2O

)−r
, (A9)

where d is grain size and m is a grain size exponent. Effective Peierls viscosity is calculated based on the experimentally

derived flow law by Goetze and Evans (1979) expressed in the regularised form of Kameyama et al. (1999) as560

ηpei =
2

1−s
s

3
1+s
2s

Â
(
ε̇pei

II

) 1
s −1

, (A10)
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where s is an effective stress exponent:

s = 2 γ
Q
RT

(
1− γ

)
. (A11)

Â in Eq. (A10) is

Â =

[
AP exp

(
−

Q
(
1− γ

)2
RT

)]− 1
s

γσP , (A12)565

where AP, γ and σP a flow law parameters. Brittle-plastic material failure is controlled by the Drucker-Prager yield function

F = τII−P sinφ−C cosφ , (A13)

that depends on the internal friction angle, φ, and the cohesion, C. In case of failure (F≥ 0), the plastic viscosity at the yield

stress is calculated as

ηpla =
P sinφ+ C cosφ

2ε̇eff
II

(A14)570

and ε̇eff
II =

√
ε̇eff

ij ε̇
eff
ij ::

and
::::::::::::::
ε̇eff

II =
√

1
2 ε̇

eff
ij ε̇

eff
ij . In Eq. A4, the effective viscosity is computed either the quasi-harmonic average

of the visco-elastic contributions as

ηeff =


(

1
G∆t + 1

ηdis + 1
ηdif + 1

ηpei

)−1
, F< 0

ηpla , F≥ 0
(A15)

or is equal to the viscosity ηpla calculated according to Eq. A14. Rigid body rotation is computed analytically:

τij = Rᵀ τij R , (A16)575

R =

[
cosθ −sinθ

sinθ cosθ

]
, (A17)

θ = ∆t ωij , (A18)

ωij =
1

2

(
∂vj

∂xi
− ∂vi

∂xj

)
, (A19)

(A20)

where ᵀ denotes matrix transposition, R is the rotation matrix, θ is the rotation angle and ωij denote vorticity tensor compo-580

nents. Heat transfer is included into the model by expressing the energy balance equation w.r.t. temperature as

ρ cP
DT
Dt

=
∂

∂xi

(
k
∂T
∂xi

)
+ HA + HD + HR , (A21)
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where cP is the specific heat capacity, D/Dt is the material derivative, k is thermal conductivity, HA = Tαvzgρ includes

contributions from adiabatic processes assuming lithostatic pressure conditions, HD = τ2
ij /
(
2ηeff

)
includes contributions from

dissipative processes and HR includes heat production from radiogenic elements.585

Appendix B: Emplacement of elliptical heterogeneous inclusions

The semi major axis
:
is

:
a = 30 km and the semi minor axis

::
is b = 2.5 km for all elliptical inclusions. The inclusions are

emplaced between −400 km< x< 400 km at two different vertical levels. The x-coordinate of the 1st elliptical inclusion’s

center xC
n :::

xC,L
n ::::::::::

(superscript
::
C

:
=
:::::
crust,

::
L

::
=

::::::::::
lithosphere) at each vertical level is calculated as

xn
CC,L
::

=
(
RE

E−RS
S)× A+ RS

S ,
:

(B1)590

RS
S =

(
d− c

)
× A− d ,

:
(B2)

RE
E =

(
f− h

)
× A− f ,

:
(B3)

where RS :::::
where

:::
RS

:
is a random starting x-coordinate, RE :::

RE is a random ending x-coordinate, d = 400 km, c = 350 km,

0< A< 1 is a random amplitude, f = 300 km and h = 250 km. The starting coordinate of the next horizontally emplaced

inclusion xC
n+1 ::::

xC,L
n+1 is then calculated as595

xn+1
CC,L
::

= xn
CC,L
::

+ Rdx
dx ,
::

(B4)

Rdx
dx
:

= a×
(
1.75 + A

)
,
:

(B5)

where Rdx :::::
where

:::
Rdx

:
is a random spacing ensuring that the ellipses do not overlap each other. The z-coordinate of the

elliptical inclusion’s center zC
m at the vertical level m is calculated as

zC
1 =

(
1

3
zMoho− 3b×

)
A− 1

3
zMoho + b ,

:
(B6)600

zC
2 =

(
1

3
zMoho− 2b×

)
A− 2

3
zMoho + b , (B7)

where zMoho = 33 km is the initial depth of the Moho.
::::::::
Similarly,

:::
the

::::::
central

::::::::::
coordinates

::
of

:::
the

::::::::
elliptical

::::::::
inclusions

:::
in

:::
the

:::::
mantle

:::
are

:::::::::
calculated

:::::
using

:::
the

::::::::
following

:::::::::
parameters

:::
for

:::
the

::::
first

:::::
level:
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RS =
(
d− c

)
A− d ,

::::::::::::::::
(B8)

RE =
(
f− h

)
A− f ,

::::::::::::::::
(B9)605

Rdx = a
(
4 + A

)
,

:::::::::::::
(B10)

zL
1 =

1

3

(
zLith− zMoho− 9b

)
A− 1

3

(
zLith− zMoho

)
− zMoho + b

::::::::::::::::::::::::::::::::::::::::::::::::::

(B11)

:::
and

:::
for

:::
the

::::::
second

:::::
level:

RS =
(
d− c

)
A− d− 5a ,

::::::::::::::::::::
(B12)

RE =
(
f− h

)
A− f ,

::::::::::::::::
(B13)610

Rdx = a
(
4 + A

)
,

:::::::::::::
(B14)

zL
2 =

1

3

(
zLith− zMoho

)
A− zLith ,

::::::::::::::::::::::::::

(B15)

:::::
where

::::::::::::
zLith = 60 km.

:
Finally, all particles

::::::
markers

:
within the circumference of the elliptical inclusion are assigned with a

random phase, i.e. either mechanically weak or strong material, according to the condition

(
xM− xC

n

)2
a2

(
xM− xC,L

n

)2
a2

::::::::::

+

(
zM− zC

m

)2
b2

(
zM− zC,L

m

)2
b2

::::::::::

< 1 , (B16)615

where xM and zM are the horizontal and vertical coordinate of the marker, respectively. All random numbers used here are

seeded at a value of 197 using the C-function srand
::::
(Intel

::::::::
compiler

::::::
version

:::::::
13.1.3). Choosing the above mentioned values

yields an increased number of weak elliptical inclusions in the center of the domain. This yields localisation of deformation

without an additional perturbation of the marker field in the center of the domain.

Appendix C: Buoyancy and driving forces620

In this study we use FD = 2× τ̄ avg
II (x)

::::::::::D = 2× τ̄ avg
II as a representative for

::::
value

:::
for

:::
the

:::::::::
horizontal

::::::
driving

:::::
force

:::
per

:::
unit

::::::
length

::::::
causing

:::
the

:::::::
far-field

:::::::::::
convergence.

::::
This

:::::::::
horizontal

::::::
driving

:::::
force

:::::::::
calculation

::
is

::::::
correct

::
if

:::
the

:::::::
smallest

:::::::
principal

:::::
stress

::
is
:::::::
vertical

:::
and

::::::::::
corresponds

::
to

:::
the

::::::::
lithostatic

:::::::
pressure

::::
and

:
if
:::
the

::::::::
maximal

:::::::
principal

:::::
stress

::
is

:::::::::
horizontal

:::::::::::::::::::::::::::::
(e.g. Schmalholz et al., 2014, 2019)

:
,
:::::
which

::
is

:::
the

::::
case

::::::
around

:::
the

:::::
lateral

::::::
model

:::::::::
boundaries

::::::
where

:
F
:D::

is
:::::::::
calculated.

:::
To

::::::::
calculate

::::
τ̄ avg

II ,
:::
first

:
the driving force acting
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on the deforming system, where τ̄ avg
II (x) is calculatedaveraging the vertical integral of the second invariant of the deviatoric625

stress tensor
::::::
τII(x,y)

::
is
:::::::::
calculated

::
at

:::
the

:::::::
different

:::::::::
horizontal

:::::::
positions

:::
of

::
the

:::::::::
numerical

::::
grid:

:

τ̄II(x) =

St(x)∫
Sb

τII(x,z) dz ., (C1)

The
:::
The

:::::
values

::
of

:::::
τ̄II(x)

:::
are

::::
then

::::::::
averaged

::::::::::
horizontally

:::::
inside

::::
two

::::::
regions

::
of

::::
100 km

::::
width

::::::
located

::
at
:::
the

::::
two

:::::
lateral

::::::
model

::::
sides.

:::::
This

::::::::::
horizontally

:::::::::
averaged,

::::::::
vertically

:::::::::
integrated

:::::
stress

::
is

::::::
termed

:::::
τ̄ avg

II .
::
St

:
(
:
x)
:::

is
:::
the

::::::
height

::
of

:::
the

::::::::::
topography

::
at
:::::

each

::::::::
horizontal

::::
grid

::::
point

::::
and

:::::::::
Sb =−660

:
km

:
is

:::
the

::::::
bottom

::
of

:::
the

:::::::
domain.

::::
The reader is referred to Candioti et al. (2020) for further630

detail.

For calculation of the
::::
The buoyancy force per unit length

:
is

:::::::::
calculated

::::
with

:::
the

::::::::
difference

:::::::
between

::::::::
densities

::
of

::
all

:::::::::
subducted

:::::::
material

:::
not

:::::
being

::::::
mantle

:::
(i.e.

:::::
upper

::::
and

:::::
lower

:::::
crust,

::::::::::
serpentinite

:::
and

:::::::::
sediments)

::::
and

:
a
::::::::::::
representative

::::::
mantle

::::::
density

::
of

:::::
3350

kgm
::

−3.
::::
This

::::::
mantle

:::::::
density

::
is

:::::::::::
representative

:::
for

::::::
mantle

:::::
rocks

:::::
down

::
to

::::::
depths

::
of

::::::
≈ 150 km

:::::::::::::::::
(Candioti et al., 2020)

:
,
:::::
which

:::
is,

::
in

:::
our

::::::
models,

::
a
::::::::::::
representative

:::::::
maximal

:::::
depth

::
of

:::::::::
subduction

:::
of

:::::::::
non-mantle

::::::::
material.

:::
The

:::::::::
buoyancy

::::
force

::
is

:::::::::
calculated

::
by

:
635

FB =

∫
Ω

∆ρg dΩ , (C2)

the density difference ,
:::::
where

:
∆ρ , between the subducted material and the surrounding mantle is

:
is
:::
the

::::::
above

:::::::::
mentioned

::::::
density

::::::::
difference

::::::
which

::
is

:
integrated over the area Ω of

:::::::
occupied

:::
by

::::::::::
non-mantle material subducted below z=-40

:::::::
z =−40

km. To obtain a significant
:::::::::
reasonable value for the negative (upward-directed ) buoyancy force of subducted material, which

is not isostatically balanced by high topography, we subtract the force contributing to the build-up of topography. As an640

approximation for this topographic contribution, the density of material lifted above z=1.5
::::::
z = 1.5

:
km is integrated over its

area and then subtracte
::::::::
subtracted

:
from FB. As a measure for buoyancy or shear forces dominating

:::
the

::::::
relative

::::::::::
importance

::
of

::::::::
buoyancy

:::
and

:::::
shear

:::::
forces

::
in

:
orogen dynamics, we here define ArF = FB/FD which is

:
a
::::::::::::
dimensionless

:::::::
number comparable to

the Argand number (England and McKenzie, 1982).
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Table A1. Physical parameters used in the numerical simulations M1-6
:::::::
presented

::::
here.

Model unit Rheology (Reference) k [W m−1 K−1] HR [W m−3] C [Pa] ϕ [°]

Crustal matrix 1∗,a Wet Anorthite
::::::
anorthite

:
(Rybacki and Dresen, 2004) 2.25 1.0200×10−6 1×107 30

Crustal matrix 2∗,a Westerly Granite
:::::
granite

:
(Hansen et al., 1983) 2.25 1.0200×10−6 1×107 30

Weak inclusion∗,a Wet Quartzite
::::::

quartzite (Ranalli, 1995) 2.25 1.0200×10−6 1×106 5

Strong inclusion∗,a Maryland Diabase
:::::
diabase (Mackwell et al., 1998) 2.25 1.0200×10−6 1×107 30

Calcite∗,a Calcite (Schmid et al., 1977) 2.37 0.5600×10−6 1×107 30

Mica∗,a Mica (Kronenberg et al., 1990) 2.55 2.9000×10−6 1×107 15

Lower crust∗,b Wet Anorthite
::::::
anorthite

:
(Rybacki and Dresen, 2004) 2.25 0.2600×10−6 1×107 30

Strong mantle∗,c Dry Olivine
:::::
olivine (Hirth and Kohlstedt, 2003) 2.75 2.1139×10−8 1×107 30

Weak mantle∗,c Wet Olivine
:::::
olivine (Hirth and Kohlstedt, 2003) 2.75 2.1139×10−8 1×107 30

Serpentinite∗,d Antigorite (Hilairet et al., 2007) 2.75 2.1139×10−8 1×107 25

Dislocation creep A [Pa−n−r s−1] ζ [ ] n [ ] Q [J mol−1] V [m3 mol−1] r [ ]

Crustal matrix 1 3.9811×10−16 0.3 3.0 356×103 0.00×10−6 0.0

Crustal matrix 2 3.1623×10−26 1.0 3.3 186.5×103 0.00×10−6 0.0

Weak inclusion 5.0717×10−18 1.0 2.3 154×103 0.00×10−6 0.0

Strong inclusion 5.0477×10−28 1.0 4.7 485×103 0.00×10−6 0.0

Calcite 1.5849×10−25 1.0 4.7 297×103 0.00×10−6 0.0

Mica 1.0000×10−138 1.0 18.0 51.0×103 0.00×10−6 0.0

Lower crust 3.9811×10−16 1.0 3.0 356×103 0.00×10−6 0.0

Strong mantle 1.1000×10−16 1.0 3.5 530×103 14.0×10−6 0.0

Weak mantle† 5.6786×10−27 1.0 3.5 480×103 11.0×10−6 1.2

Serpentinite 4.4738×10−38 see tab. 1 3.8 8.90×103 3.20×10−6 0.0

Diffusion creep‡ A [Pa−n−r mm s−1] m [ ] n [ ] Q [J mol−1] V [m3 mol−1] r [ ]

Strong mantle 1.5000×10−15 3.0 1.0 370×103 7.5×10−6 0.0

Weak mantle† 2.5000×10−23 3.0 1.0 375×103 9.0×10−6 1.0

Peierls creep AP [s−1] Q [J mol−1] V [m3 mol−1] σP [Pa] γ [ ]

Mantle$ 5.7000×1011 540×103 0.0×10−6 8.5×109 0.1

Constant parameters: ∗A heat capacity cP = 1050 [J kg−1 K−1] is employed in Eq. A21 for all phases.
a,b,cA constant shear modulus G = 2×1010 [Pa] is used in Eq. A4. dA constant shear modulus G = 1.81×1010 [Pa] is used in Eq. A4.
aρ0 = 2800 [kg m−3], bρ0 = 2900 [kg m−3] and dρ0 = 2585 [kg m−3], a,bα= 3.5× 10−5 [K−1] and dα= 4.7× 10−5 [K−1] and a,b,dβ = 1× 10−11 [Pa−1] are used for density

calculations using a simplified equation of state according to Eq. A4.
†A water fugacity fH2O = 1.0×109 [Pa] is used in equation Eq. A8. For all other phases fH2O= 0.0 [Pa].
‡A constant grain size d = 1×10−3 [m] is used in Eq. A9.
$Reference: Goetze and Evans (1979) regularized by Kameyama et al. (1999). These parameters are used for both strong and weak mantle rheology.
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tectonic
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cross

:
sections: (a) Across the Central Pyrenees, modified after Teixell et al. (2018) and (b) across

the Western Alps, modified after Zhao et al. (2015) and Schmid et al. (2017). Light violet represents the upper crust, dark violet represents

the lower crust and green represents the mantle lithosphere. The region of mixed violet and green in
:
(a)
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represents an unit of lower crust

or mantle thrust slices. Black lines indicate unit boundaries and the grey line in (b) indicates the domain captured by most
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Figure 2. Model configuration and boundary conditions. (a) Profile of horizontal velocity for material inflow and outflow along the western

model boundary. Blue line indicates the profile for the extension, purple line indicates the profile for the cooling and the yellow line indicates

the profile for the convergence. (b) Entire model domain. Crustal phases: yellow represents the crustal matrix, dark orange represents strong

elliptical inclusions and light orange represents weak elliptical inclusions. White to red shows the effective viscosity field as calculated by

the numerical algorithm. All colour maps used to visualise physical fields in this study are provided by Crameri (2018). Black line shows

the vertical temperature profile. (c) Enlargement of the central region of the domain. (d) Same profile as shown in (a), but along the eastern

model boundary.
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Figure 3. Density structures employed in the models presented here. (a)-(e) And
:::
and

:
(g)-(h): Phase diagram density fields calculated with

Perple_X for the bulk rock compositions given in tab. 2. (f) And
::

and
:
(i): Density fields calculated using a linearized equation of state (Eq.

A3) for an upper crustal reference density of 2800 kg m−3 and a serpentinite reference density of 2585 kg m−3, respectively.

37



Legend

Upper crustal matrix

Weak inclusion

Strong inclusion

Lower crust

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1018 1020 1022 1024

(a) 19 Myrs 

(b) 109 Myrs 

(c) 112 Myrs 

(d) 19 Myrs 

(e) 109 Myrs 

(f) 112 Myrs 

550

550

300

1000

1000
1300

1300

Sediments

Flow field - not to scale 

700
500

Temperature [°C]

Figure 4. Evolution of the reference run REF during rifting, cooling and subduction initiation. Left column shows the entire domain and
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of
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the
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mantle

:::::::
material calculated by the

algorithm, yellow to orange indicates the crustal matrix and the weak and strong inclusions of the overriding plate, light to dark blue

indicates the corresponding crustal units of the subducting plate. The material parameters used for the upper crustal phase of the overriding

and the subducting plates are identical. Green indicates the lower crust of both plates and salmon and brown indicates the sedimentary units.

White lines show different isotherms and the arrows indicate the velocity field calculated by the numerical algorithm.
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and strong inclusions of the overriding plate, light to dark blue indicates the corresponding crustal units of the subducting plate. The material

parameters used for the upper crustal phases of the overriding and the subducting plates are identical. Green indicates the lower crust of both

plates and salmon and brown indicates the sedimentary units. White lines are different isotherms and the arrows indicate the velocity field.
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Figure 6. Convergence and collisional stage of AS1 and AS18 (low and high shear resistance of serpentinite, LEOS density model, feldspar-

dominated upper crust). White to
:::
dark

:
red indicates the effective viscosity field

::
of

::
the

::::::
mantle

::::::
material

:
calculated by the algorithm, yellow to

orange indicates the crustal matrix and the weak and strong inclusions of the overriding plate, light to dark blue indicates the corresponding

crustal units of the subducting plate. The material parameters used for the upper crustal phases of the overriding and the subducting plates

are identical. Green indicates the lower crust of both plates and salmon and brown indicates the sedimentary units. White lines are different

isotherms and the arrows indicate the velocity field calculated by the numerical algorithm.
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Figure 7.
:::::::::::
Plate-interface

:::
and

::::
upper

::::::::::
crustal-matrix

:::::::
strength

::
for

::::::
models

::::
AC1,

:::::
AC18,

::::
GC1

:::
and

:::::
GC18.

::::
White

::
to

::::
dark

::
red

::
is

::
the

:::::::
effective

:::::::
viscosity

:::
field

::::::::
calculated

::
by

:::
the

:::::::
numerical

::::::::
algorithm.

:::
Left

:::::::
column:

::::
weak

:::::::
interface

::::
(AC1

:::
and

:::::
GC1),

::::
right

::::::
column:

:::::
strong

::::::
interface

::::::
(AC18,

::::::
GC18).

::::
Grey

:::::
dashed

::::
lines

:::
are

:::::
several

::::::::
isotherms,

::::
cyan

::::
solid

::::
lines

::
are

:::::::
material

::::
phase

:::::::::
boundaries.

:::::::::::
Abbreviations:

:::
UC

::
=

::::
upper

::::
crust,

:::
LC

::
=

::::
lower

::::
crust

:::
and

::
S

:
=
::::::::::
serpentinites.

::::
Low

::::::
viscosity

::
of
::::::::::
serpentinites

:::::::
indicates

::::
weak

::::
plate

::::::
interface

::::
(left

:::::::
column).

:::
For

:::
high

:::::::
viscosity

:::
the

:::::::::
serpentinites

:::
are

::::::
coupled

::
to

::
the

:::::
lower

::::
plate

:::
and

::::::::
subducted

:::
into

::
the

::::::
mantle

::::
(right

:::::::
column).

:::
For

:
a
:::
wet

:::::::
anorthite

:::::
upper

:::::
crustal

:::::
matrix

::::
(top

::::
row)

::
the

::::::::::
brittle-ductile

::::::::
transition

:::::
(depth

::
of

:::::
plastic

::::
shear

:::::
bands)

::
in

:::
the

::::
upper

::::
crust

::
is

::
at

:::::
greater

::::
depth

::::::::
compared

::
to

:
a
:::::::
Westerly

:::::
granite

:::::
upper

:::::
crustal

:::::
matrix

::::::
(bottom

:::::
row).
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Figure 8. Convergence and collisional stage of AC1 and AC18 (low and high shear resistance of serpentinite, complex density model,

feldspar-dominated upper crust). White to
:::
dark

:
red indicates the effective viscosity field

::
of

::
the

::::::
mantle

::::::
material

:
calculated by the algorithm,

yellow to orange indicates the crustal matrix and the weak and strong inclusions of the overriding plate, light to dark blue indicates the

corresponding crustal units of the subducting plate. The material parameters used for the upper crustal phases of the overriding and the

subducting plates are identical. Green indicates the lower crust of both plates and salmon and brown indicates the sedimentary units. White

lines are different isotherms and the arrows indicate the velocity field calculated by the numerical algorithm.
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Figure 9. Wedge geometry at 170 Myr in model history. Blue to red is the density field calculated by the algorithm for (a) AS1 (LEOS) and

(b) AC1 (CD-model). White lines are several isotherms. (c) Topographic elevation of AS1 (red line) and AC1 (blue line).
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Legend
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Figure 10. Convergence and collisional stage of GC1 and GC18 (low and high shear resistance of serpentinite, CD-model, quartz-dominated

upper crust). White to
:::
dark

:
red indicates the effective viscosity field

:
of

:::
the

:::::
mantle

:::::::
material calculated by the algorithm, yellow to orange

indicates the crustal matrix and the weak and strong inclusions of the overriding plate, light to dark blue indicates the corresponding crustal

units of the subducting plate. The material parameters used for the upper crustal phases of the overriding and the subducting plates are

identical. Green indicates the lower crust of both plates and salmon and brown indicates the sedimentary units. White lines are different

isotherms and the arrows indicate the velocity field calculated by the numerical algorithm.
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Figure 11. Force evolution. (a) Ratio
::
of

:
buoyancy and

::::
force

::
to
:
shear forces

:::
force, ArF, (b) Shear

::::
shear forces, (c) buoyancy forces, (d)

average area of subducted material and (e) maximum depth of the orogenic wedge
::::::::
subducted

::::
crust. Detailed explanation on calculation of

quantities see appendix C.
::::::::
Numbering

::
in
::
a

:::::
panels

::::::::
exemplified

:::
for

:::::
model

::::
GC1:

::
1

:
=
::::
onset

::
of

::::::::
subduction

::::::::
initiation,

:
2
::
=

::::
basin

:::::
closure

:::
and

:::::
onset

:
of
:::::::::

continental
:::::::::
subduction,

:
3
::
=

::::
onset

::
of

:::::::::
continental

:::::
crustal

:::::::::
exhumation

:::
and

:::
first

::::
slab

:::::::::
detachment,

:
4
::
=
::::
onset

::
of

:::
the

:::::
second

:::::::::
exhumation

:::::
event

:::
and

:
5
:
=
:::::
onset

::
of

::
the

::::::
second

:::
slab

:::::::::
detachment.
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Figure 12. Orogen dynamics observed in the models presented here. Light blue and orange indicates the upper crustal phases, dark blue and

merlot red indicates the lower crustal phases of the subducting and upper plates, respectively. Dark grey and magenta represent the sediments

and the serpentinite unit, respectively. Arrows indicate the velocity field calculated by the numerical algorithm.
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Figure 13. Plate
::::::::
Simplified

::::
plate reconstruction of Europe, Iberia and Adria at (a) 35 Ma and (b) 25 Ma. Europe and Iberia are fixed, Adria

is moving northward. Thick black and grey solid lines indicate active subduction zones, dashed lines indicate inactive subduction zones.

Sketches modified after Schmid et al. (2017) & Malusà et al. (2015).
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