1 Dear Piotr, 2

3 Please find our responses to reviewer comments and the revised paper and figures of our

4 manuscript "Extension and Inversion of Salt-Bearing Rift Systems", for inclusion in the special

5 volume "Inversion tectonics – 30 years later" in Solid Earth.

7 Let me first address the reviewers' comments.

9 Comments by Antonio Teixell:

10

6

8

11 This manuscript uses analog models to investigate the tectonic inversion of salt-bearing

12 extensional grabens. While models of tectonic inversion exist in the literature, some of them

13 including polymer (=salt) layers, the ms. by Dooley and Hudec has the novelty of incorporating a

14 subsalt deformable section, which aims to provide analogues for the compressional structure of

15 pre-salt basements, often a poorly resolved problem in compressed rift systems. In comparison to

16 other published models of compressional systems with multiple "salt" décollement levels (e.g.

17 Couzens et al. 2003 – a paper that should be referenced), Dooley and Hudec's models incorporate 18 early episodes of extensional deformation, which feature synkinematic sedimentation to produce

19 salt migration and diapiric structures (later submitted to compression). No surprise that in the

20 models there is a marked decoupling between the subsalt and suprasalt units, which puts a

21 warning on the subsurface interpretation of little exhumed, natural inverted rift systems, as the

22 High Atlas of Morocco that is taken as a reference field case. After the early cartoons by

23 Letouzey et al. in 1995, for moderately inverted salt-bearing rifts with no seismic information

24 very often we are tempted to keep in place the parent normal faults (even if reactivated) that we

25 infer as early triggers of observed salt diapirs. The analog models by Dooley and Hudec are

welcome in that they remind us that as shortening increases, the connection between the diapirs and the parent faults is likely to be lost. This is likely to be the case in the High Atlas (although

with the available data so far it is hard to tell), but also must happen in other basement-involved,

29 salt-detached thrust systems as the northern Pyrenees, where we argued for largely decoupled

30 and displaced salt walls in contrast to autochthonous diapir models (e.g. Labaume and Teixell,

31 Tectonophysics, accepted). The inversion models by Dooley and Hudec provide inspiring images

32 for such natural examples, if the model sand is accepted as a valid analog for crystalline or (non-

33 horizontal) slate basements. Further challenges to the application to natural cases may come, as

the authors explicitly recognize, from the tricky simulation of fault-inversion by faulted sand,which most commonly fails to reproduce fault weakening and reactivation. The ms. reads well

36 and is appropriately illustrated, and deserves publication in Solid Earth with minor revision.

37

38 When analyzing the cross-sectional views of model 1, I had some trouble understanding the

inversion features of the subsalt pile, as in Fig. 9 the inverted graben is not so evident (I mean, I
 did not get an appreciation of how subsalt faults were inverted). Not until I saw Fig. 10 that I got

41 a clear idea (Fig. 14 also helped). The authors may want to consider presenting the

42 uncompressed profiles before actually showing the compressed ones, which in fact represent one

43 step further of an evolution. I also wondered what would happen if there was no salt fringe out of

44 the modeled rift, as actually happens in many natural cases. Fringes cause the post-salt extension

45 to be more diffuse that the first- phase graben system. What happens in basement in this case?

46 On the other hand, Fig. 12 is a very nice polymer (=salt) volume illustration, which shows

similarities to those obtained from natural salt cases after 3D seismic data. Note that minibasins 47 are not always flanked by outward-vergent thrusts as written in line 367 (Fig. 9), which is 48 49 interesting. Another interesting result is that after shortening, fault footwalls remain broadly 50 inflated (beyond local diapirs). If applicable to nature, this suggests that, coun-terintuitively, some minibasins may be actually underlain by highest subsalt relief. The application of the 51 model results for the High Atlas cases is preliminary; certainly more analogies can be explored 52 by further work. A natural continuation of the models pre- sented could be including intervening 53 54 horsts without salt between salt-bearing grabens. I believe that this happens in parts of the High 55 Atlas, such as the Mouguer massif - would that impede major decoupling and translation? The Azag minibasin as drawn looks indeed tilted in a post-depositional stage (although the analog 56 models do not get that much rotation), but note that cases like that are lagged by the absence of 57 58 subsur- face data: there is little control about the stratal geometry at depth and one tends to complete sections in a conservative way. Again, analog models may help in showing the viability 59 60 of geometric interpretations that may be adopted. 61 62 Our reply to Antonio: 63 64 Many thanks for the positive review of our inversion paper. You had some specific and general 65 comments that I will address below. 66 "In comparison to other published models of compressional systems with multiple "salt" 67 décollement levels (e.g. Couzens et al. 2003 - a paper that should be referenced), Dooley and 68 Hudec's models incorporate early episodes of extensional deformation, which feature 69 70 synkinematic sedimentation to produce salt migration and diapiric structures (later submitted to compression)." 71 72 73 In reality in these models the lower decollement is simply that, a decollement to ensure that 74 shortening is transferred across the rift system. In models where by the thin lower decollement was not present across the entire system the result was a shortcut fault transferring minor 75 76 shortening up to the outer edges of the suprasalt sequence (Model 3). But I agree that Couzens et 77 al. should be referenced, along with selected other papers with multiple detachment levels, for 78 completeness. 79 80 "The inversion models by Dooley and Hudec provide inspiring images for such natural examples, if the model sand is accepted as a valid analog for crystalline or (non- horizontal) slate 81 basements. Further challenges to the application to natural cases may come, as the authors 82 83 explicitly recognize, from the tricky simulation of fault-inversion by faulted sand, which most commonly fails to reproduce fault weakening and reactivation." 84 85 86 Yes, I tried to temper the arguments in this manuscript as our model materials (sands) in the 87 subsalt section may not reflect the "strength" of basement rocks in these orogens. However, we 88 believe that, and as noted by you, that these models provide examples of possible basement

- 89 deformation scenarios in areas where there is generally little or no basement exposure nor
- 90 seismic data to aid interpretation.
- 91

92 "The authors may want to consider presenting the uncompressed profiles before actually 93 showing the compressed ones, which in fact represent one step further of an evolution. I also 94 wondered what would happen if there was no salt fringe out of the modeled rift, as actually 95 happens in many natural cases. Fringes cause the post-salt extension to be more diffuse that the 96 first-phase graben system. What happens in basement in this case?" 97 98 I pondered using a different order of presenting the 3 models when initially writing the 99 manuscript. But I found the text flowed better when Model 1 could be described fully before delving into the details of the deformation (both pre- and post-inversion) with the use of Models 100 2 and 3 in a more discussion-like section. Your point on the salt fringe is well taken. Yes, this is 101 102 likely to results in highly variable deformation styles across the inverted rift system – a mixture 103 of coupled and decoupled geometries further adding to the complexity. We have done some 104 work on this but more needs to be done, which could be applied to other areas in the High Atlas 105 as you mention toward the end of your comments. A sentence or two will be added on this topic 106 in the revised manuscript. One thing we noted is that without a significant salt fringe it was 107 difficult to produce diapirs on the flanks of the segmented graben systems. 108 109 "Note that minibasins are not always flanked by outward-vergent thrusts as written in line 367 (Fig. 9), which is interesting. Another interesting result is that after shortening, fault footwalls 110 111 remain broadly inflated (beyond local diapirs). If applicable to nature, this suggests that, counterintuitively, some minibasins may be actually underlain by highest subsalt relief." 112 113 114 For the most part minibasins are flanked by outward-vergent thrusts but you correct there are a few locations along the main rift system that are not. The text will be revised accordingly. Yes, 115 116 the highest subsalt structural topography lies below the minibasins which is fascinating. I think 117 the height-change maps showing the relief development during inversion quite spectacularly illustrate this with the minibasin system being ele- vated by this subsalt inversion, and with quite 118 119 a low degree of rotation of the minibasin strata - more on that below. 120 121 "The Azag minibasin as drawn looks indeed tilted in a post-depositional stage (although the 122 analog models do not get that much rotation), but note that cases like that are lagged by the 123 absence of subsurface data: there is little control about the stratal ge- ometry at depth and one tends to complete sections in a conservative way. Again, analog models may help in showing the 124

125 viability of geometric interpretations that may be adopted."

Yes, the models give possible answers to subsurface geometries and the processes that went into
making them the way they are. But, they are just that, models. But there are sections from Model
1 that do illustrate significant rotation and Figure 16 will be altered to include an example of this.
The original talk I gave on this model series had such a model example and you reminded me of
that. Thanks!

132

134

133 Comments by Oriol Ferrer:

- 135 Using an experimental approach based on physical models, this manuscript analyses the role of
- 136 syn-rift evaporites during extension and subsequent inversion of salt-bearing segmented rift
- 137 basins. Different authors have addressed this type of studies using rigid basement blocs to

simulate the basement with the consequent mechanical limitations that this methodology entails. 138

- The present manuscript has partly solved this limitation in an original way: a hybrid system that 139
- 140 combines a rubber sheet (classically used to constraint the location of extensional faults during
- 141 stretching) with polymer slabs (also used in physical modelling as "seeds" to constraint fault
- nucleation). This hybrid experimental setup allows to achieve a significant degree of inversion of 142
- 143 pre-salt grabens (an inherent issue of the models that use rigid blocks). In addition, the en-144
- echelon distribution of the different slabs allows to simulate a segmented rift system. Another
- 145 interesting point addressed in the manuscript is how syn-rift salt controls the structural style during extension and consequently, how the inherited salt structures at the end of the extension 146
- 147 constraints deformation during inversion.
- The manuscript reads well and the quality of figures is excellent, they perfectly illustrate the text. 148
- 149 The scaling of the experimental program is correct and the analog materials are the classical ones
- 150 used in physical modelling of salt tectonics. The experimental re- sults are compared with natural
- 151 examples from the Moroccan High Atlas but they would be perfectly applicable to other fold-
- and-thrust belts involving inverted salt-bearing rift basins such as the Pyrenees. I am sure this 152
- manuscript will be useful to the under- standing of inverted salt-bearing rift basins. For this 153
- reason, I recommend its publi- cation in Solid Earth journal after few minor revisions (please, 154
- 155 see below general and specific comments, suggestions and questions).
- 156 Best regards,
- 157 Oriol Ferrer
- 159 General comments:
- 160

- A point that I consider should be implemented in section "2.1. Model Design and Scaling" is as 161
- 162 far as syntectonic sedimentation is concerned. What is the sedimentation rate? Did you keep the pre-extensional regional fixed? How much did you raise it every new synkinematic layer of
- 163 sand? These are points that the reader should know. These points are addressed in the 164
- experimental results section, but they should be moved at section 2.1. 165
- 166
- Include a figure like figure 2 of Roma et al. (2018b) could help to understand the procedure 167 168 applied during model run. This is just a suggestion.
- 169
- 170 As far as setup is concerned, I don't understand why did you modify the extension of the basal
- 171 detachment layer in models 1 and 2/3 respectively. Why not to use the same for the 3 experiments? Can this modification influence the final results in any way?
- 172
- 173
- 174 The section 3 (Experimental results) is clearly described and well ordered. However, I disagree about the harpoon structure described in lines 28-287 (also in line 419, sec- tion 4.3. "Shortening 175
- 176 in the subsalt section"). According to McClay (1995), the inversion of the wedge shaped
- 177 synextensional strata produces typical "harpoon" or "arrowhead" geometries, the shape of which
- 178 depends upon the geometry of the underlying extensional faults. In these lines of the manuscript,
- 179 this geometry is wrongly applied to the inverted preextensional unit. Please, modify it.
- 180
- 181 Regarding this section, could the marginal grabens be related to edge effects of your
- 182 experimental setup?

As it has been pointed out in the manuscript, the contractional reactivation of graben-bounding 183 184 faults during inversion can be favored by the polymer infiltration into the granular material 185 (sand). This infiltration occurs either at the interphases between polymer and pre-/ suprapolymer sand during the setup of the experiments, and throughout the experiment when new 186 187 surfaces (faults) developed. This process occurs when the sand- polymer interphase is preserved for a long time, so can we interpret that the longer the contact, the wider the area affected by 188 polymer infiltration? If this is the case, the con- tractional reactivation of the sand-polymer 189 190 interphase in the fault will be more effective because it will "lubricate" in a more efficient way. Is this observation true? Other prompt questions regarding this topic are: What is the infiltration 191 192 rate? There is any control of this process during the construction/run of the experiments? What are the main factors that control it? I perfectly understand that these questions are out of the 193 194 scope of the manuscript, but as a modeler and after to notice similar processes, I consider that 195 this topic should be discussed in the manuscript. 196 197 Considering that model 2 was sliced at the end of the extensional stage, and model 1 is similar but with 25 cm of inversion, it would be interesting to include a section discussing the 198 contractional reactivation of primary welds and what is the role that they play during inversion. 199 200 Are they reactivated as thrust welds? What occurs with their surface? There is any 201 increasing/decreasing on their surface during inversion? Have you noticed the opening of the 202 primary welds during inversion in your 3D voxels? The paper by Roma et al. (2018b) includes 203 some discussion about this topic that could be compared with the models included in the present 204 manuscript. 205 206 Due to the few published works in analog modeling addressing the role of synrift evaporites 207 during extension and subsequent inversion, I consider that some additional references such Soto 208 et al. (2007); Ferrer et al. (2014); Roma et al. (2018b) should be included in the manuscript. 209 Ferrer et al. (2014). The role of salt layer in the hangingwall deformation of kinked- planar 210 extensional faults: Isights from 3D analogue models and comparison with the Parentis Basin. Tectonophysics, 636, 338-350. 211 212 Roma et al. (2018b). Weld kinematics of syn-rift salt during basement-involved exten- sion and 213 subsequent inversion: Results from analog models. Geologica Acta, 16 (4), 391-410. Soto et al. (2007). Geometry of half-grabens containing a mid-level viscous décolle- ment. Basin 214 215 Research, 19, 437-450. 216 217 Specific comments: 218 219 Line 50 "Calloway" should be "Callaway" Line 74 at the end of the line, modify "halo kinetic" for "halokinetic" Lines 109-110 Check the sentence Line 113 indicate the thick- ness of the basal 220

for "halokinetic" Lines 109-110 Check the sentence Line 113 indicate the thick- ness of the basal polymer Line 114 indicate the dimensions of the slabs Line 157 indicate the % of sand and ceramic microspheres that you used, and if this % is in weight or volume Line 508 modify "teh" for "the" at the end of the line

225 Figure 2 is difficult to understand. Is the rubber sheet transparent?

226

227 Figure 4 Why did you use green polymer? I did not found the explanation in the manuscript.

The word "stage" is used indistinctly in capital or lowercase to refer to the different evolutionary 228 229 stages of the models. Please, use uniform criteria. 230 231 There are some references that do not match those of the reference list. Among those I have 232 detected: Bonini et al. (2011); Moragas et al. (2016); and Martín-Martín et al. (2016). Please, check which one is correct and unify. Similarly, there are missing references in the reference list: 233 Adam et al., 2005 (line 180); Sibson, 1995 (line 430) and Anderson, 1951 (line 431). 234 235 236 Our reply to Oriol: 237 238 Oriol, 239 Many thanks for your thorough and positive review of our inversion paper. I will reply to your 240 comments below, pasting in your text in order to answer specific comments if needed. 241 General comments: 242 1. Agree, will add more specific information on sedimentation rates etc. in the modeling 243 methodology section. In general the height-change maps generated from the DIC system guided me here during all stages of the model runtimes. Base-level was raised just enough to clear any 244 245 rising diapirs resulting in sequences that markedly thinned across the rift flanks. 246 247 2. This would be more difficult to do for a 3D system that is being modeled here. I think the 248 figures as they stand give the readers a walk through of the model evolution and final 249 geometries. 250 251 3. Ah! Yes. These experiments were not run in the order they are presented in! Models 2 and 3 252 were run before Model 1, and it became obvious that the thin basal decollement (3-4 mm of 253 silicone polymer) needed to cover the entire base of the rig to facilitate inversion of the entire subsalt and supra salt sequence. The only difference this made to the pre-inversion geometries 254 255 was pushing the marginal graben systems further towards the periphery of the model. These 256 marginal graben are quite minor and the main focus is aimed at the main segmented rift system. 257 258 4. Yes, the "harpoon" reference is poor and will be removed. "Inverted subsalt graben" will be 259 used or something to that effect. 260 261 5. Marginal graben - see point 3 above. It's minor and not our focus. 262 6. This is a very interesting and modeling-focused point. In general the infiltration "depth" I 263 264 believe is governed by the grain size of the sediments, and thus by the mixture of sands/censopheres used in these strata. You have likely seen the same phenomena, and I keep 265 some of this material in my labs to show visitors that sand can fold if it has been "infiltrated" by 266 267 polymer, but still fail in a brittle fashionunder higher strain rates! I really can't answer all your

268 questions in this section. I'm sure you have seen that welds between sub- and suprasalt sand

269 layers appear to be very clean, unlike may between sand and a rigid, non-porous baseboard. But 270 you commonly see a slight change in color of the strata just above and below the weld for about

2-3 mm, again depending on grain size. I will try to add in a sentence or two to clarify this, but

for now it's a known unknown, but the best explanation I have for efficient reactivation of these

273 subsalt graben.

274 7. This is a great observation and something I will discuss. If you compare Model 1 (Figures 9

and 15b) with Model 2 (Figure 10) the primary welds are in different locations - much more

toward the minibasin centers in inverted models, but at the flanks of the minibasins in non-

277 inverted models. Yes, these have likely been "sheared off" during inversion as the entire

minibasin is pushed upwards above the rising hanging walls of the segmented graben systems.
And the length or extent of the welds becomes greater – e.g. see Section 33 in Figure 9. I'll add

And the length or extent of the welds becomes greater – e.g. see Section 33 in Figure 9. I'll a
in Roma et al. *2018b) and discuss in the relevant section. Thanks.

280

283

8. Yes, additional references will be added as per your suggestion. Makes it more complete.

284 Specific comments:

285

Will fix those and add reference to volumetric percentages of sand and ceonspheres whereappropriate.

Figure 2 – the stretching rubber sheet is black and is visible through the basal thin polymer layer.

But I have it as green in Figure 2a. I'll adjust this and fix the caption to clarify.

290 Figure 4 – I though I did mention it. I'll check. This is to track where our model salt in the

291 central graben flows to during extension and loading.

I will standardize on "Stage" to make it consistent.

294 Thanks for catching the references.

- 295 Again, many thanks for the comments and suggestions/discussions.
- 296

297 Paper revisions:

298

299 Again, many thanks to both Antonio and Oriol for their positive and comprehensive reviews of

300 the paper. All of their comments have been addressed above and with revisions to main text and

301 to some of the Figures. For example, the modeling setup figure was altered so the stretching

302 rubber sheet seen in the overhead photo of Figure 2b matches the color of its representation in

303 Figure 2a. In Figure 16 I added a detail of one cross section through Model 1 showing a

304 tectonically tilted minibasin with a hypothetical erosion level line. I also did some general

tightening of the text where I saw fit.

307 Also included in the revised text are clarifications to model setup and procedures such as the

308 addition of synkinematic sediments. Additionally text has been added in the discussion

309 addressing Antonio's comments on "connectivity" of salt in such basins. Indeed, there is plenty

310 of work that needs to be done to address this and compare and contrast inverted salt-bearing

311 basins with and without a salt fringe that, as noted, aids mobility. Oriol's comments on the

312 "polymer-sand rind" seen in the models was a very modeling-specific query but I have added a

313 short sentence in that section addressing this. In fact it led to a long discussion between Oriol and

314 I and he sent images of similar "polymer-sand rinds" in his modeling work. In addition, his 315 comments on the welds was great, as the position of primary welds between Model 1 and Model

2 are very different, due to primary welds formed in extension being shear off during inversion,

shifting the locations of the welds. This has been addressed in the revised version of the paper.

318 Most of these revisions were added in the Discussion section rather than in the Conclusions to

keep the final words the reader sees as being a summary of the model findings rather than a litany of problems with the models themselves.

I hope that the revised manuscript proves acceptable for publication in the special volume "Inversion tectonics – 30 years later".

Sincerely,

LDJ $\overline{}$

328 329 Tim Dooley 30th April 2020

550	Extension and inversion of Sait-Dearing Kitt Systems
337	
338	Tim P. Dooley & Michael R. Hudec
339	
340	Applied Geodynamics Laboratory, Bureau of Economic Geology, Jackson School of
341	Geosciences, University Station Box X, Austin Texas 78713, USA
342	
343	Abstract:
344	
345	We used physical models to investigate the structural evolution of segmented extensional rifts
346	containing syn-rift evaporites and their subsequent inversion. An early stage of extension
347	generated structural topography consisting of a series of en-échelon graben. Our salt analog
348	filled these graben and the surroundings before continued extension and, finally, inversion.
349	
350	During post-salt extension, deformation in the subsalt section remained focused on the graben-
351	bounding fault systems whereas deformation in suprasalt sediments was mostly detached,
352	forming a sigmoidal extensional minibasin system across the original segmented graben array.
353	Little brittle deformation was observed in the post-salt section. Sedimentary loading from the
354	minibasins drove salt up onto the footwalls of the subsalt faults, forming diapirs and salt-ridge
355	networks on the intra-rift high blocks. Salt remobilization and expulsion from beneath the
356	extensional minibasins was enhanced along and up the major relay/transfer zones that separated
357	the original sub-salt grabens, forming major diapirs in these locations.
358	

336 Extension and Inversion of Salt-Bearing Rift Systems

359	Inversion of this salt-bearing rift system produced strongly decoupled shortening belts in
360	basement and suprasalt sequences. Suprasalt deformation geometries and orientations are
361	strongly controlled by the salt diapir and ridge network produced during extension and
362	subsequent downbuilding. Thrusts are typically localized at minibasin margins where the
363	overburden was thinnest and salt had risen diapirically on the horst blocks. In the subsalt
364	section, shortening strongly inverted sub-salt grabens, which uplifted the suprasalt minibasins.
365	New popup structures also formed in the subsalt section. Primary welds formed as suprasalt
366	minibasins touched down onto inverted graben. Model geometries compare favorably to natural
367	examples such as those in the Moroccan High Atlas.
368	
369	1. Introduction
370	
371	As noted by Bonini et al. (2011), in their review paper, "basin inversion" is a commonly used
372	term to signify shortening of formerly extensional basins (cf. Buchanan and McClay, 1991;
373	Buchanan and Buchanan, 1995; Ziegler, 1987). Localization of shortening by extensional rifts,
374	and their subsequent inversion, is not surprising as these are long-lived crustal weak zones.
375	Inversion of graben and entire rift systems has been a significant focus of study since the early
376	1980s owing to its importance related to: (1) the role of pre-existing faults in focusing and
377	accommodating shortening of the upper, shallow crust; (2) the role of pre-inversion high-angle
378	faults as potential seismogenic sources and hazards, and; (3) their economic importance related
379	to focused fluid flow and associated ore deposit generation was well as influencing hydrocarbon
380	maturation, migration pathways, and trapping in inverted petroleum-bearing sedimentary basins
201	

382	systems, either as syn-rift deposits or immediately after rifting, can add complexity to the system
383	in many ways. For example salt may have significant variation in thickness across the rift
384	resulting in varying degrees of coupling between the basement and suprasalt sediments during
385	subsequent extension and inversion (e.g. Withjack and Calloway, 2000). Salt may also be
386	expelled from beneath depotroughs, during extension and/or loading to form diapir networks that
387	may later focus shortening as plate motions evolve (e.g. Dooley et al., 2005). These diapir
388	networks may be surrounded by patchy weld systems adding further complications to the system
389	(cf. Rowan and Krzywiec, 2014).
390	
391	Examples of basement-involved inverted salt-bearing rifts include the the Mid-Polish Trough
392	(e.g. Krzywiec, 2012; Rowan and Krzywiec, 2014), the southern North Sea (e.g. Stewart, 2007;
393	Stewart and Coward, 1995; Davison et al., 2000; Jackson and Stewart, 2017) and the High Atlas
393 394	Stewart and Coward, 1995; Davison et al., 2000; Jackson and Stewart, 2017) and the High Atlas of Morocco (e.g. Saura et al., 2014; <u>Domenech et al., 2016;</u> Martín-Martín et al., 2016; Moragas
393 394 395	Stewart and Coward, 1995; Davison et al., 2000; Jackson and Stewart, 2017) and the High Atlas of Morocco (e.g. Saura et al., 2014; <u>Domenech et al., 2016;</u> Martín-Martín et al., 2016; Moragas et al., 2017; Teixell et al., 2017; Verges et al., 2017; Figure 1). The central High Atlas range is a
393 394 395 396	Stewart and Coward, 1995; Davison et al., 2000; Jackson and Stewart, 2017) and the High Atlas of Morocco (e.g. Saura et al., 2014; <u>Domenech et al., 2016;</u> Martín-Martín et al., 2016; Moragas et al., 2017; Teixell et al., 2017; Verges et al., 2017; Figure 1). The central High Atlas range is a doubly-vergent fold-thrust belt that formed by inversion of a Triassic-Jurassic rift basin during

398 central part of the range outcrop is dominated by Lower-Middle Jurassic deposits that form brand

the Alpine orogeny (e.g. Teixell et al., 2003; Saura et al., 2014; Moragas et al., 2017). Within the

397

399 synclines or flat-topped plateaux, and separated by NE-SW oriented anticlines or thrust faults

400 (Figure 1; Moragas et al., 2017). These ridges have had a variety of explanations for their origin

401 such as transpressional deformation or the emplacement of Jurassic intrusions (see detailed

402 discussion in Moragas et al., 2017, for more details). A few studies of individual structures

403 proposed a diapiric origin for these ridges (e.g. Michard et al., 2011). However, more recent

404 studies have interpreted the entire Central High Atlas as a complex salt-bearing rift basin with

405	associated diapirism and minibasin formation, that was inverted in the Alpine orogeny. For	
406	example, Saura et al. (2014) documented more than ten elongated extensional minibasins that	
407	were originally separated by, now welded, salt walls. Thick evaporitic successions were	
408	deposited within the developing rift in the late Triassic (Verges et al., 2017). Extension	
409	continued into the Early Jurassic with coeval diapirism and minibasin formation, followed by a	
410	long post-rift stage where halokinetic processes continued to evolve (Moragas et al., 2017;	Deleted:
411	Martín-Martín et al., <u>2016</u>). Inversion began in the late Cretaceous (Domenech et al., <u>2016</u>),	Deleted: 2017
412	squeezing a complex diapir and minibasin province. Such a diapir and minibasin province is	Deleted: e.g. Verges et al., 2017
413	likely to exhibit extreme variations in overburden strength, and thus behavior, during shortening.	
414	It is this salt-tectonic scenario that formed the inspiration for our experimental study.	
415		
416	Many experimental studies of contractional tectonics utilize silicone polymer as a detachment,	
417	sometimes with spatially variable and multiple detachment levels, usually of uniform thickness,	
418	in thrust belt studies (e.g. Couzens-Schultz et al., 2003; and see the review by Graveleau et al.,	
419	2012). Some previous physical modeling studies of basement-involved extension and inversion	
420	of salt-bearing rifts include those of Dooley et al. (2005) with application to the North Sea, and	
421	Moragas et al. (2017) in their focused study on syn- and post-rift diapirism and inversion in the	Deleted: 2016
422	Moroccan High Atlas. Bonini et al. (2011) modeled detached extension and subsequent	
423	shortening of these graben, Soto et al. (2007) modeled the effects of high-level ductile	
424	detachments above a variety of listric fault geometries, and Roma et al. (2017, 2018a, b) as well	Deleted: 2019
425	as Ferrer et al. (2014, 2016) modeled extension and inversion above rigid planar and ramp-flat	
426	extensional master faults with high-level and variable-thickness salt layers. However, all the	
427	basement-involved inversion studies to date relied on non-deformable basement blocks to	Deleted: studies
1		

434	generate extension and subsequent inversion. An exception to this are the clay models of
435	Durcanin (2009), but these models could not be sectioned and thus sections shown in this study
436	are "hypothetical". A new series of experiments was designed to produce segmented rift systems
437	in deformable model materials, fill them with syn-rift evaporites and subject them to further
438	extension, loading and, finally, inversion. Our goals with these models was to test: (1) where and
439	why do diapirs form in a segmented extensional rift system?; (2) how much coupling is there
440	between basement and cover separated by a relatively thick salt body during extension and
441	contraction?; (3) what styles of shortening structures form in the suprasalt section during
442	inversion and what controls their location and style?, and; (4) what are the styles of shortening in
443	the subsalt section and can we get significant reactivation of extensional structures during
444	inversion?
445	
446	2. Modeling Methodology
447	
448	2.1 Model Design and Scaling
449	
450	
	Our goal with these models was to generate a series of en-echelon graben across a rift system in
451	Our goal with these models was to generate a series of en-echelon graben across a rift system in a similar fashion to models presented in Dooley et al. (2005). They achieved this by using non-
451 452	Our goal with these models was to generate a series of en-echelon graben across a rift system in a similar fashion to models presented in Dooley et al. (2005). They achieved this by using non- deformable wooden blocks with a series of steps, whereas we wished to generate segmented rifts
451 452 453	Our goal with these models was to generate a series of en-echelon graben across a rift system in a similar fashion to models presented in Dooley et al. (2005). They achieved this by using non- deformable wooden blocks with a series of steps, whereas we wished to generate segmented rifts using deformable materials that could be serially sectioned at the end of the model run. Previous
451 452 453 454	Our goal with these models was to generate a series of en-echelon graben across a rift system in a similar fashion to models presented in Dooley et al. (2005). They achieved this by using non- deformable wooden blocks with a series of steps, whereas we wished to generate segmented rifts using deformable materials that could be serially sectioned at the end of the model run. Previous models of segmented rifts systems used offset rubber sheets to do this (e.g. McClay et al., 2002;
 451 452 453 454 455 	Our goal with these models was to generate a series of en-echelon graben across a rift system in a similar fashion to models presented in Dooley et al. (2005). They achieved this by using non- deformable wooden blocks with a series of steps, whereas we wished to generate segmented rifts using deformable materials that could be serially sectioned at the end of the model run. Previous models of segmented rifts systems used offset rubber sheets to do this (e.g. McClay et al., 2002; Amilibia et al., 2005). However, these suffered from internal artifacts as the rubber is stretched

457	resulting in accommodation or transfer zones that are structural lows rather than highs in these
458	locations (e.g. see Sections 2 and 5 of Figure 8 in Amilibia et al., 2005). In order to mitigate
459	these effects we used a hybrid system comprising a single basal stretching sheet, a thin basal
460	silicone detachment and a series of polymer slabs to generate a segmented rift system in the
461	overburden (Figure 2). The stretching rubber sheet generated extension, whilst the basal polymer
462	layer acted as an efficient detachment (during extension and contraction). In contrast, the
463	polymer slabs served to focus extension at these sites, in much the same way that precursor
464	diapirs focus strain in contractional models (e.g. Dooley et al., 2009, 2015; Callot et al., 2007,
465	2012). Dooley and Schreurs (2012) employed a variety of polymer "crustal weak zones" to focus
466	extension in pull-apart basins and to concentrate and perturb deformation above basement strike-
467	slip zones. Le Calvez and Vendeville (2002), Zwaan et al. (2016) and Zwaan and Schreurs
468	(2017) also used polymer "ridges" to focus or "seed" extensional structures in their models, and
469	Marques et al. (2007) used wedge shaped polymer layers to investigate transform faulting
470	associated with ridge push. Dual motors generated the symmetric extension and contraction in
471	these models (Figure 2).
472	
473	Models are dynamically scaled such that 1 cm in the model approximates to 1 km in nature (see,
474	for example, Brun et al. 1994 and McClay 1990 for detailed discussions on scaling). Models
475	were conducted with combined horizontal velocities of 1.4 x 10^{-4} cm/s that yields a strain rate of

476 1.8 x 10⁻⁶ s⁻¹. This rate models an extensional fault system with a moderate displacement rate
477 (e.g. Withjack & Callaway 2000; Dooley et al., 2005). More importantly, post-salt extension was
478 pulsed in order to allow the model salt analog to react to the imposed strain and the differential

- 479 loads induced by spatially-variable thickness of the synkinematic sediments added after each

480	increment of extension. Models consist of 3 or 4 main evolutionary stages (Table 1): (1) pre-salt
481	extension followed by addition of model salt into the main structural topography addition of a
482	regional salt fringe and thin roof: (2) post-salt extension delivered in a series of pulses, as
483	described above; (3) post-salt loading and downbuilding stage, allowing diapirs that formed in
484	Stage 2 to continue to rise vertically, and; (4) inversion, where the moving endways are detached
485	from the baseplates, the baseplates are clamped in place, and motion is reversed. We focus
486	primarily on the results of one experiment (Model 1, Table 1) in the descriptive sections and use
487	some of the results from two other experiments (Models 2 and 3, Table 1) to discuss salt
488	tectonics styles and salt migration pathways in non-inverted and weakly inverted rifts in the
489	discussion section. The only difference between Model 1 and Models 2 and 3 is that the thin
490	basal detachment layer extended across the entire model base in Model 1, whereas it was limited
491	to just covering the rubber sheet in Models 2 and 3 (see Figure 2).
492	
493	2.2 Modeling Materials

495	As with other physical modeling studies of salt tectonics, we simulated rock salt using ductile
496	silicone and its siliciclastic overburden using brittle, dry, granular material. The silicone was a
497	near-Newtonian viscous polydimethylsiloxane. This polymer has a density of 950 to 980 kg $\mathrm{m^{\text{-}3}}$
498	and a dynamic shear viscosity of 2.5 \times 10 ⁴ Pa s at a strain rate of 3 \times 10 ⁻¹ s ⁻¹ (Weijermars, 1986;
499	Weijermars et al., 1993). In some of our models the salt analog was dyed with minute quantities
500	of powdered pigments in order to track salt flow paths in the completed model. The layered
501	brittle overburden comprised different colored mixtures of silica sand (bulk density of $\sim\!\!1,\!700~{\rm kg}$
502	m ⁻³ ; grain size of 300-600 μ m; internal friction coefficient, μ , = 0.55–0.65; McClay, 1990;

502		
503	Krantz, 1991; Schellart, 2000), and hollow ceramic microspheres ("glass beads") having a bulk	
504	density of 650 kg m ⁻³ , average grain size 90-150 μ m, and typical μ = 0.45 (e.g. Rossi and Storti,	
505	2003; Dooley et al., 2009).	
506		
507	The hollows spheres serve to lower bulk grain size, as well as allowing us to modify the density	
508	of the brittle overburden. Most physical models of salt tectonics have a layered brittle	Deleted:
509	overburden of pure quartz sand, which creates density ratios that are much higher than those of	
510	nature. Exaggerated density ratios erroneously magnify overburden foundering, rise of active	
511	diapirs, and expulsion and extrusion of salt (Dooley et al., 2007, 2009). In our models, the pre-	
512	rift overburden sediments had a density ratio of equal to that of our model salt by our varying the	
513	sand-bead ratio in the brittle section. In this case the ratio of sands to censopsheres in the mixture	
514	was equal. This was done to minimize any density- or buoyancy-driven rise of the basal slabs	
515	that are also made of the same materials as our salt analog. In Stages 2 and 3 of the model	Deleted: s
516	runtime the density of the sedimentary load was increased to 1.1-1.2 times that of our model salt,	
517	by increasing the proportion of sands in the mixture to 65%. This was done to encourage salt	
518	remobilization from beneath the extensional minibasins in Stage 2 and to keep salt structures	
519	(diapirs) growing in Stage 3. Synkinematic strata were added to the model after each 1 cm	
520	increment of extension in Stage 2, with aggradation rate governed by any rising diapirs.	
521	Similarly, during Stage 3, the height data discussed below governed the regional aggradation	
522	rate, to just crest rising diapir networks.	
523		
524	2.3. Data Capture, Visualization, and Interrogation	
525		

520	Computer-controlled cameras photographed the obliquery in upper surface of the models at set	
529	time intervals. A digital image correlation (DIC) system, consisting of a high-resolution stereo	
530	charge-coupled device (CCD) system and associated software, tracked the surface-strain history,	
531	subsidence, and uplift values, as well as displacement vectors of the top surface of the model.	
532	The speckled nature of the sand and cenosphere mixtures used in our models are ideal for this	
533	type of monitoring system (see Reber et al., 2020, for further details). Adding synkinematic	
534	layers means data is incremental for individual layers during Stages 2 and 3 of Model 1. For	Deleted: these
535	more details on DIC monitoring techniques, see Adam et al. (2005). After completion models	
536	were impregnated with a gelatin mixture, left to partially dry for 12 hours and then sliced into	
537	closely spaced slabs. Coregistered digital photographs of these closely spaced serial sections	
538	(≤3.5 mm apart) yielded a 3D voxel of the completed model. Dip sections are the sliced and	Deleted: model
539	photographed cross sections, whereas crosslines, arbitrary lines and depth slices are virtual	
540	sections constructed from the voxel model. As a result, the crossline, arbitrary line and depth	
541	slice images are interpolated and thus not as sharp as those derived directly from photographed	
542	dip sections. In addition the 3D salt volume can be extracted from this voxel by coloring the salt	
543	in each section with a known pixel value (e.g. white for a value of 255).	
544		
545	3. Experimental Results	
546		
547	3.1 Stage 1: Pre-Salt Extension	
548		
549	Stage 1 comprised 3 cm of uniform extension in order to generate structural topography that was	
550	infilled by our salt analog (Table 1). The basal weak slab array shown in Figure 2, was there to	

data

553	ensure a segmented rift system formed. Height-change data (ΔZ ; Figure 3a) generated from our	
554	stereo-DIC system reveals the main rift system in Model 1 comprising en-échelon graben that	
555	step to the right across the underlying basal slab array (Figure 2). Three main depotroughs are	
556	seen along the segmented rift system, separated by zones of higher intra-rift topography,	
557	accommodation zones (Figure 3). Strain data illustrate the focused extension along the fault	
558	network across the rift system (Figure 3b). On many faults maximum extensional strains, and	
559	maximum width of faults, are recorded along their centers, although some deviate from this trend	
560	(Figure 3b). Weaker extensional systems form at the margins of the model, far from the central	
561	rift system (Figure 3). The accommodation zones are clearly seen in the strain data, and	
562	consisted of interlocking arrays of mostly soft linked extension faults with some rotation seen at	
563	fault tips (Figure 3b). Between the southern and central and between the central and northern	
564	subbasins, clear fault-tip rotation is seen with breaching of the major relay systems separating the	
565	subbasins (Figure 3b).	
566		
567	After <u>Stage 1 extension</u> , our salt analog was placed into the three subbasins and allowed to settle	
568	(Figure 4a). Once this had settled and filled the structural relief a 12-mm-thick regional layer of	
569	our salt analog was emplaced across the model as a series of tiles (Figure 4b), and allowed to	
570	degas prior to Stage 2.	

571

572 3.2 Stage 2: Post-Salt Extension

573

574 Our salt analog in Model 1 was buried under a thin (4 mm) sedimentary roof before undergoing a
575 further 6 cm of extension during Stage 2 (Table 1). Figure 5 shows height-change data and strain

Deleted: this stage

577	from Model 1 after applying total of 4 cm of post-salt extension. Synkinematic sediments were	
578	added after each 1 cm of basement extension and the values shown in Figure 6 are incremental	
579	for that phase of extension, i.e. 3-4 cm post-salt extension. During this period the main	
580	depotrough comprised a sigmoidal extensional minibasin located above the original offset graben	
581	system (Figure 5a). A series of curvilinear fabrics define relatively minor surface faulting (Figure	
582	5a). Strains seen on the upper surface were much more diffuse and spread across the rift system	
583	than those seen in the pre-salt extension, Stage 1 (Figure 3). The strain fields formed curvilinear	Deleted: s
584	systems of extension that, for the most part, defined minor graben above reactive diapirs, and	
585	appear to be diagnostic of detached suprasalt extension (cf. Dooley et al., 2005; Figure 5b).	
586	Maximum extensional strains were seen adjacent to the sigmoidal depocenter, as expected,	
587	delineating the margins of the main depotrough, and in locations that were accommodation zones	
588	during the pre-salt extension phase as the cover collapsed into the developing trough (Figures 3	
589	and 5). Minor shortening strains are seen within the extensional minibasin/depotrough due to	
590	inner-arc contraction as it subsided into, and expelled, the salt (Figure 5b). The marginal graben	
591	at the ends of the model continued to subside during <u>Stage 2</u> (Figure 5).	Deleted: this stage
592		
593	3.3 Stage 3: Post-Extension Loading	
594		
595	Model 1 underwent 9 cm total extension prior to moving on to a downbuilding or post-extension	
596	loading phase in Stage 3. Stage 3 lasted for 5 days and synkinematic sediments were added daily,	
597	keeping apace and gently covering any positive topography that developed whilst continuing to	
598	load negative topography.	
599		

602	Height change maps of the model surface of Layers 1 and 4 are shown in Figure 6. Clearly	
603	illustrated in Figure 6a are the rising diapir networks as salt was expelled from beneath the	
604	composite minibasin in the model center. Comparing Figure 6a to the strain map in Figure 5b	
605	one can immediately see that the diapir networks closely conform to the strain patterns seen	
606	during Stage 2, evolving from reactive to passive features in <u>Stage 3</u> . Diapirs labelled 1-3 are all	Deleted: this post-extension st
607	located on the footwalls of the main extensional minibasin, and, more importantly, in locations	
608	that lie above, and along, what were the original accommodation zones between the original	
609	subbasins (see Figures 3, 5 and 6). More linear salt walls are seen rising adjacent to the marginal	
610	graben systems and the extensional minibasins is flanked by upwellings along most of its length	
611	(Figure 3). Figure 6b illustrates the height change map after 4 days into Stage 3. Activity waned	
612	in these systems over time except for the more active and emergent diapirs (1 & 2 in Figure 6b).	
613	Smaller amounts of salt rise are seen flanking the central region of subsidence.	
614		
615	3.4 Stage 4: Inversion	
616		
617	In Stage 4 Model 1 was covered with a thin roof sequence and subjected to 25 cm of lateral	
618	shortening (Table 1). Height-change maps reveal the evolution of the model during inversion	
619	(Figure 7). As expected from previous studies (e.g. Dooley et al., 2009, 2015; Callot et al., 2007,	
620	2012; Duffy et al., 2018), initial shortening resulted in rejuvenation of the two main diapirs	
621	formed during Stages 2 and 3 (1 and 2 on Figure 7a). This was followed by uplift of the	Deleted: the extension and loading stages
622	composite minibasin system and the formation of a series of linear and curvilinear uplifts (Figure	
623	7b). These uplift patterns are very similar to the ridge networks seen during Stage 3 (compare	
624	Figures 6a with 7b). With continued shortening the minibasin system continued to rise and salt	

emerged from Diapir 2 (Figure 7c). The network of curvilinear flanking uplifts continued to rise
and become more prominent, and intervening lows shrank in area as they were overthrust (Figure
7c). At the end of the experiment Model 1 consisted of a central plateau cored by the inverted
minibasin system, and flanked by linear and curvilinear thrust ridges with narrow intervening
lows (Figure 7d). Salt sheets emerged from Diapirs 1 and 2 and flowed down into the flanking
topographic lows (Figure 7d).

633

634 The final overhead view of Model 1 is shown in Figure 8. In this we see the central uplifted 635 minibasin system forming an oblique plateau across the model, and flanked by the linear and 636 curvilinear faulted ridge network. Flow directions of the salt sheets emanating from Diapirs 1 637 and 2 are indicated by red arrows (Figure 8). Major fault scarps were partially degraded exposing 638 older strata, and some scarps abut, or override scarps with opposite sense of dip (Figure 8). On 639 the right side of the model two fault scarps abut in the south and then coalesce forming a very 640 narrow fault zone (Figure 8). These geometries and relationships are revealed by a series of four 641 sections through Model 1 (Figure 9). The four sections illustrate the decoupled nature of 642 deformation between sub- and suprasalt strata (Figure 9). The main feature is the structurally 643 elevated extensional minibasin system that trended obliquely across the model (Figures 8 and 9). 644 For much of the strike length this feature is flatted topped, and bounded on either side by 645 detached suprasalt thrusts or secondary thrust welds as Diapirs 1 and 2 were squeezed shut 646 (Figures 8 and sections 33 and 55 in Figure 9). Structural elevation of this minibasin system was 647 partly aided by the inversion of subsalt graben that form inversion anticlines in the subsalt strata Deleted: and harpoon structures 648 (Figure 9; see the next section for further discussion). Primary welds denote where the 649 minibasins have touched down on the inverted subsalt strata. Also of interest in the suprasalt

Deleted: that was

652	strata are emergent sheets and isolated salt bodies sourced from the squeezed and welded diapirs		
653	(e.g. section 33 and 55 in Figure 9), salt-cored thrusts and related secondary welding of portions		
654	of these as salt was ejected and hangingwall touched down onto footwall (e.g. Sections 33, 86		
655	and 106, Figure 9). Other structures in the suprasalt section include highly overthrust popdowns,		
656	and narrow upright fault zones as hangingwalls collided during shortening (Section 86, Figure		
657	9). A curious structured is observed in many sections, termed an "S" structure due to its shape		
658	(see Sections 55 and 86 in Figure 9). We will discuss the origins of this structure in the		
659	discussion section. In the subsalt strata structures are very different, consisting of inverted and		
660	heavily deformed graben systems in both the center and margins of the model as well as new		
661	popup structures (Figure 9).		
662			
002			
663	4. Discussion		
663 664	4. Discussion		
663664665	4. Discussion In this section we focus on: the formation and location of diapirs during extension and post-		
662663664665666	4. Discussion In this section we focus on: the formation and location of diapirs during extension and post-extension loading; shortening styles and location in the suprasalt section during inversion;		
 663 664 665 666 667 	4. Discussion In this section we focus on: the formation and location of diapirs during extension and post-extension loading; shortening styles and location in the suprasalt section during inversion; shortening styles and locations in the subsalt section, and; comparison of model results to		
 663 664 665 666 667 668 	4. Discussion In this section we focus on: the formation and location of diapirs during extension and post- extension loading; shortening styles and location in the suprasalt section during inversion; shortening styles and locations in the subsalt section, and; comparison of model results to examples from the High Atlas in Morocco.		
 663 664 665 666 667 668 669 	4. Discussion In this section we focus on: the formation and location of diapirs during extension and post- extension loading; shortening styles and location in the suprasalt section during inversion; shortening styles and locations in the subsalt section, and; comparison of model results to examples from the High Atlas in Morocco.		
 663 664 665 666 667 668 669 670 	4. Discussion In this section we focus on: the formation and location of diapirs during extension and postextension loading; shortening styles and location in the suprasalt section during inversion; shortening styles and locations in the subsalt section, and; comparison of model results to examples from the High Atlas in Morocco. 4.1 Diapir Formation and Location During Extension		
 663 664 665 666 667 668 669 670 671 	4. Discussion In this section we focus on: the formation and location of diapirs during extension and post-extension loading; shortening styles and location in the suprasalt section during inversion; shortening styles and locations in the subsalt section, and; comparison of model results to examples from the High Atlas in Morocco. 4.1 Diapir Formation and Location During Extension		
 663 664 665 666 667 668 669 670 671 672 	 A. Discussion In this section we focus on: the formation and location of diapirs during extension and postextension loading; shortening styles and location in the suprasalt section during inversion; shortening styles and locations in the subsalt section, and; comparison of model results to examples from the High Atlas in Morocco. <i>A.1 Diapir Formation and Location During Extension</i> In Model 1 the main diapirs (diapirs 1 and 2, Figure 6), and associated salt wall or ridge 		

- 673 networks formed in the footwall of the main extensional systems that flanked the composite
- 674 extensional minibasin. More specifically the most active diapirs formed in locations spatially

6/5	associated with the interlocking accommodation zones that originally separated the subbasins
676	(Figures 3, 5 and 6). These locations are similar to those documented in Dooley et al. (2005),
677	although the transfer zones in those models were vertical and rigid. Model 2 was run with almost
678	identical parameters as Model 1, but was not inverted, preserving the diapir geometries and
679	locations (Table 1 and Figure 10). Figure 10a shows the height-change map that evolved during
680	Stage 1 of this model (see Table 1), consisting of an en-échelon series of three graben that run
681	obliquely across the model, similar to that seen in Model 1 (see Figure 3a). The only difference
682	Model 2 showed was the presence of marginal graben that formed closer to the main rift system
683	than that seen in Model 1. This was attributed to the narrower basal silicone detachment used in
684	Model 2 (Figure 2 and Table 1). Likewise, the continued evolution of Model 2 through Stages 2
685	and 3 was very similar to that seen in Model 1 (compare Figures 10b, c with Figures 5a and 6a).
686	The diapir network geometries and most active diapirs in Model 2 were <u>also</u> very similar to those
687	seen in Model 1.
688	

. .

689 A section from Model 2 illustrates the extensional minibasins formed above the main graben and 690 diapirs located in the footwalls of these graben (Figure 10d). As we saw in the strain maps for 691 Model 1 there was only minor discrete extension in the suprasalt strata and these are cored by 692 reactive diapirs (Figure 10d). The main diapir in this section is located in the footwall of the 693 main graben system, and just along strike from the accommodation zone that separated the 694 southern and central subbasins (Figure 10a, d). Salt expelled from beneath the subsiding 695 minibasin flowed up onto the footwall and helped feed this growing salt diapir. We believe that 696 salt was also preferentially expelled up and along the accommodation zones that separated the original subbasins and into these growing diapirs, as these accommodation zones have more 697

Deleted: Likewise

gentle relief compared to the steep faults that bounded the minibasins, thus offering a moreefficient conduit for salt flow.

701

702 In order to corroborate this concept of preferred flow up and along transfer or accommodation 703 zones, images from a third model, Model 3, are shown in Figure 11. Model 3 was subjected to 704 the same amount of extension as Model 1, but a very limited amount of inversion (Table 1). In 705 addition, the lack of a basal detachment across the entirety of the model base meant that 706 shortening in the subsalt section was limited to shortcut thrusts close to the margins of the 707 deformation rig that transferred shortening up to the weaker suprasalt section, with minimal 708 shortening seen in subsalt strata in the central portion of the rift system (Figure 11a-e; Table 1). 709 The lack of deformation in the subsalt strata means that primary welds seen in the sections in 710 Figure 11c-e, occurred during extension rather than during shortening. Depth slices from Model 711 3 illustrate the composite, stepped, minibasin that formed above the en-échelon rift system 712 (Figure 11a-b). The yellow marker salt that initially occupied the central graben of the rift 713 (Figure 11f) is seen to be expelled up and out of this graben system into the footwall, where it 714 helped inflate reactive diapirs that initially formed along these locations (Figure 11a-c; see 715 reactive diapir on the right side Figure 10d for a non-inverted example). Model 3 also had 716 substantial diapirs that flanked the rift in similar positions to those of Models 1 and 2, and yellow 717 marker salt is seen to flow along and up the, now faulted, lower-relief accommodation or transfer 718 zones and into these diapirs (Figure 11d-e). Thus, salt flow during extension and post-719 extensional loading in Model 3 was multidirectional, being driven by differential loading out and 720 up onto the intra-rift horst blocks both up the main subsalt faults and along lower-relief pathways

721	such as the transfer zones that separated the subbasins in this rift system. Flow up and along
722	these conduits was eventually curtailed or stopped by primary welding (Figure 11c-e).
723	
724	4.2 Shortening in the Suprasalt Section
725	
726	Figure 12 shows the salt volume that was extracted from the serial sections and exported as a
727	point cloud. This image beautifully illustrates the structural style in the shallow section. The
728	central part of the model is dominated by the inverted extensional minibasin system that forms
729	an oblique structural low. Primary thrust welds are denoted by gaps in the data, as the subsalt
730	graben were inverted, welded against the base of the suprasalt strata, and structurally elevated the
731	minibasin system (Figure 12). Note that the position of the primary welds in Model 1 (Figures 9
732	and 12) differs to those seen in our non-shortened or mildy-shortened Models 2 and 3 (Figures
733	10 and 11). In Models 2 and 3 the primary welds are located at the minibasin margins where the
734	it welded down onto, or adjacent to, the crest of the footwall block (Figures 10 and 11). In Model
735	1 primary welds are located more toward the center of the minibasin and are related to the
736	inversion of the subsalt graben system. Any welds that formed at the minibasin margins during
737	Stage 2 extension and Stage 3 downbuilding in Model 1 were sheared off during inversion in a
738	similar fashion to that documented by Roma et al. (2018b). The minibasin system is typically
739	flanked by outward-vergent salt-cored thrusts, secondary thrust welds and remnant high-level
740	salt bodies or sheets (diapirs 1 and 2, Figure 12). Thrust vergence reverses toward the margins of
741	the model, and structures vary from salt-cored thrusts to box-like thrusted folds (Figure 12).
742	

Commented [DTP1]: Add sentences here on location of primary welds and sheared welds that likely formed during extension and downbuilding – refer to Maria's work Roma et al. 2018b

/43	Shortening in the suprasalt section is primarily controlled by the diapir and ridge network that
744	formed during extension and post-extensional loading. This is clearly illustrated in Figure 13,
745	which shows a height-change map, depth slice and dip section from Model 1. The diapir-ridge
746	networks, labelled a-e on Figure 13, localized shortening structures because these are where the
747	overburden was thinnest and thus weakest, and the diapir networks helped to focus deformation.
748	Deformation in the shallow section is clearly detached from the subsalt structures, except where
749	the minibasin system welded onto inverted subsalt graben (Figures 9, 12 and 13c). Height-
750	change maps from the inversion phase also illustrate this reactivation of the pre-inversion diapir-
751	ridge network (compare Figure 7 and 13). Minibasin subsidence patterns in Model 1 were
752	primarily symmetric during extension and post-extensional loading, as evidenced by height-
753	change maps (Figures 5 and 6), and by the stratal geometries seen in cross sections (Figure 9).
754	During inversion the main minibasin system was structurally uplifted by the inverting subsalt
755	graben (Figures 7), with little or no internal deformation except at the minibasin margins where
756	suprasalt thrusts developed (Figures 9 & 13c). Only minor tilting caused by shortening of the
757	main minibasin system is seen in the northern part of the model (section 106, Figure 9). Smaller
758	minibasins developed above the marginal graben systems exhibit more severe tilting as they
759	were carried up in the hangingwalls of major suprasalt thrusts (sections 33 and 55, Figure 9).
760	
761	As mentioned in Section 3.4, there is a curious structure observed in suprasalt strata in some
762	sections through Model 1 that is termed an "S" structure due to its shape (sections 55 and 86,
763	Figure 9). This structure is found in a deformed salt-cored box fold in the southern part of the
764	model (Figures 9 and 12). A series of sections through this structure give a pseudo-temporal
765	evolution of this structure (Figure 14). The structure started as a faulted box fold, localized along

• •

11 1 1

Deleted: down

Deleted: stages

768	a salt wall (e in Figure 13), that initially formed during extension and post-extension loading.
769	One of the hinges began to fail on one side of this box fold and eventually limb failure occurred,
770	forming a small weld as the core began to narrow (Figure 14a-b). Eventually salt in the core was
771	expelled and the limbs welded, leading to the "S" geometry (Figure 14c).
772	

773 4.3 Shortening in the Subsalt Section

775	We noted briefly in Section 3.4 that deformation in the subsalt strata is very distinct from that
776	seen in suprasalt strata (Figure 9). In subsalt strata the most obvious structures are the popup
777	structures in cross-section views, and none of these are linked to structures in the shallow section
778	(Figure 9). However the most interesting structures are found along the central portions of the
779	model where the pre-salt graben have been strongly deformed and inverted (Figure 9). Some of
780	these structures form the highest subsalt relief seen in Model 1 (e.g. section 33, Figure 9).
781	Height-change maps from Stage 4 of Model 1 clearly illustrate that the main minibasin system
782	was preferentially uplifted as an intact block during shortening (Figure 7). This uplift was thus a
783	result of preferential inversion of the subsalt graben system. This is borne out in cross-section
784	views through Model 1 that clearly show uplift of the main minibasin system as a coherent block
785	forming an almost flat plateau along the length of the center of Model 1 (Figures 7, 8 and 9).
786	Figure 15 shows detailed views of a non-inverted graben from Model 2 and an inverted graben
787	from Model 1. In Model 2 the non-inverted section the structure consists of a mildly asymmetric
788	graben with a smaller keystone graben formed against the more dominant right-side boundary
789	fault (Figure 15a). Figure 15b shows a portion of Section 33 from Model 1 (Figure 9). In it we
790	see a highly inverted basement graben system with a keystone graben system on the right margin

791 as in Model 1 (Figure 15a-b). Inversion of this graben was asymmetric with greater uplift of the 792 left side forming an inversion anticline that structurally elevated the suprasalt minibasin (Figure 793 15b). Based on the geometry of the non-inverted model the right side of the graben also saw 794 significant inversion before being overthrust by a new subsalt thrust (Figure 15b). More minor 795 new thrusts are seen to the left of the graben system. Only a minor amount of structurally-796 induced tilting is seen in the suprasalt sequence (2.5°, Figure 15b), attributed to the primary weld 797 being slightly off the mid-point of the minibasin. Detached outward-vergent thrusts are located 798 at the minibasin margins (Figure 15b). 799 800 As noted by Amilibia et al. (2005), amongst others, inversion of normal faults in laboratory 801 models using sand is quite limited, sometimes being seen at shallow fault tips but bypass or 802 shortcut faults are far more common. Fault reactivation in nature can occur under stress levels 803 lower than that required to initiate new faults (e.g. Sibson, 1995), due to preexisting faults having 804 a lower cohesive strength and friction coefficient than that of intact rock (Anderson, 1951). The 805 lack of significant reactivation in sandbox models can be explained by the relative lack of 806 difference between the strengths of faulted and unfaulted sands, favoring the formation of new 807 shortcut faults in more favorable orientations (see Amilibia et al., 2005, and Bonini et al., 2011, 808 for more details). Significant reactivation of graben-bounding faults in our models (see Sections 809 33 and 106 in Figure 9; Figure 15b) are attributed to two factors. The first is the presence of the 810 weak basal slabs that initially focused extension. Figure 15a shows remnant 'horns' of the 811 polymer on either side of the graben, and during shortening these would help to focus initial 812 shortening onto the graben system in the central part of the model, much like the way that 813 precursor diapirs focus shortening in purely contractional experiments (e.g. Callot et al., 2007;

Deleted: a harpoon-like

815	Dooley et al., 2009, 2015; Duffy et al., 2018). The second, and likely more important, reason is	
816	interstitial infiltration of polymer into a narrow zone of the brittle section forming a hybrid	
817	rheology along the pre-existing faults. This results in a slight change in color of the granular	
818	materials at the sand-silicone interface, which is just visible in Figure 15. Prior to inversion the	
819	base and sides of the graben were in contact with silicone, resulting in interstitial infiltration	
820	(Figure 15a). The upper portions of the graben-bounding faults were also in contact with silicone	
821	again allowing for interstitial infiltration (Figure 15a). During shortening this interstitial	
822	infiltration acted as a "lubricant" allowing reactivation and inversion of these faults (Figure 15b).	Commented [DTP2]: Add in a couple of sentences about this polymer infused "rind".
823	This phenomena of interstitial infiltration has been observed in other laboratories that model salt	
824	tectonics with the same materials (O. Ferrer, pers comm, 2020), and is likely strongly dependent	Formatted: Font: Italic
825	on the grain size of the strata adjacent to the salt analog. Faults in the granular materials used in	
826	physical models are generally dilatant which would enhance this infiltration phenomena.	
827		
828	4.4 Comparison to Examples from the Moroccan High Atlas,	Deleted: ¶
829		
830	Saura et al. (2014) documented that inversion-related deformation in the central High Atlas of	
831	Morocco is mainly focused on minibasin margins with little internal deformation of these	
832	minibasins, with diapirs that originally separated these extensional minibasins soaking up much	
833	of the deformation, as is seen in our Model 1 (Figure 9). One such example is the Amezraï	
834	minibasin (Figure 16a; Saura et al., 2014; Moragas et al., 2017; see location on Figure 1). As in	
835	our Model 1, the Amezraï minibasin formed above a basement graben system and was flanked	
836	by complex diapirs located in the footwall of this graben system (Figure 16a-b). After inversion	
837	these flanks are the sites of significant upturn of flanking strata, thrusts welds and remnant	

839	pedestals, similar to structures found in Model 1 (Figure 16a-b). Similar geometries have just	
840	been described from the Maestrat Basin in Spain (Verges et al., 2020). The Azag minibasin lies	
841	further to the ENE along the central High Atlas (Figures 1 and 16c; Teixell et al., 2017). Again,	
842	this minibasin formed above a basement graben or half-graben system before being it was caught	
843	up in Alpine shortening resulting in the welding of adjacent diapirs (thrust or secondary welds;	
844	Figure 16c; Teixell et al., 2017), as seen in Model 1. The Azag minibasin also displays	
845	significant tilting in the E-W cross section of Figure 16c. Minibasins can tilt during subsidence	
846	either before or after welding (Rowan and Weimer, 1998; see Jackson et al., 2019, for more	
847	details), but the stratigraphic architecture of the Azag minibasin consists primarily of bowl- and	
848	tabular-shaped units indicating relatively symmetric subsidence during minibasin growth.	
849	Significant tilting of minibasins caused by shortening is seen in some locations in our Model 1	
850	(Figure 16d), and thus, by analogy, the tilting and welding seen in the Azag minibasin is	(
851	attributed to Alpine shortening and basement uplift.	
852		
853	One notable difference between our model results (Figures 9 and 16b) and the example sections	
854	shown in Figure 16a, c is the amount of deformation seen in the basement or subsalt strata	
855	(Figures 9 and 16b). Basement geometries shown in Saura et al. (2014) and Teixell et al. (2017)	
856	are inferred due to lack of exposure. The geometry of the basement graben system beneath the	
857	Amezraï minibasin shown in Saura et al. (2014) was actually modified by Moragas et al. (2017)	
858	based on the results of their physical modeling study. In these natural examples the basement is	
859	shown as flat-topped as sub-salt shortening was taken up by simple fault reactivation and vertical	
860	uplift of hanging wall blocks (Figure 16a, c). If our physical models are indicative of the	
861	deformation intensity one would expect to see in the subsalt basement, then these more pervasive	

Commented [DTP3]: Add in Spanish reference here – Verges et al., 2020

Deleted: e.g. Section 106 of Figure 9

863	damage zones could have significant implications for fluid flow and for structural topography at	
864	the base of salt. However, our model basement consisted of essentially cohesionless materials,	
865	and likely does not accurately represent the strength of basement rocks in the High Atlas or	
866	crystalline basement in general. An alternative explanation is that the amount of shortening in	
867	Model 1 was simply far more than that experienced in the Central High Atlas. More work is	
868	required on this topic. Another topic that requires more study is the geometry of the salt isopach	
869	across a basin. In our Model 1 the decoupling between basement and suprasalt strata during both	
870	extension and inversion was enhanced by the presence of a salt fringe that covered our entire rift	
871	basin. In nature this is unlikely to be the case and many natural examples of syn-rift-salt-bearing	
872	basins illustrate the absence of salt across intra-basin horst blocks (e.g. the Scotian margin,	
873	Kendell, 2012), or where the salt has variable depositional thickness and influences the degree of	
874	coupling between basement and suprasalt strata (e.g. Coleman et al., 2017). The degree of	
875	coupling between basement and suprasalt cover is not only dependent on thickness variations of	
876	the evaporite sequence but also the composition, or mobility, of the evaporites (e.g. Jackson et	
877	<u>al., 2019).</u>	Formatted: Font:
878		
879		
880	5. Concluding Remarks	
881		
882	Our physical models successfully generated segmented rift systems in a deformable basement	
883	that were subsequently infilled with a salt analog and subjected to further extension and finally	
884	inversion. During extension and subsequent downbuilding diapir and ridge networks formed that	
885	exerted a strong control on deformation styles and patterns during subsequent inversion. Diapir	

886	networks formed primarily in the footwalls of the basement fault system, similar to that		
887	described by Dooley et al. (2005) and Moragas et al. (2017). Diapiric growth was encouraged by		
888	salt expulsion from beneath the subsiding extensional minibasin systems that formed above the		
889	original basement graben, with major diapirs forming consistently in the locations of major relay		
890	systems or interlocking transfer zones that originally separated the en-échelon basement graben,	(Deleted: systems
891	These more gently dipping structures facilitated more efficient salt expulsion driving diapiric		
892	growth at these locations. Extensional deformation in suprasalt strata was strongly decoupled.		
893			
894	Inversion of these salt-bearing rifts produced strongly decoupled shortening belts in basement		
895	and suprasalt sequences. In the suprasalt section deformation geometries and locations were		
896	primarily controlled by the salt diapir network produced doing extension and subsequent		
897	downbuilding with thrusts formed minibasin margins where the overburden was thinnest and		
898	weakest. Extensional minibasins display little or no internal deformation as deformation was		
899	soaked up by diapirs and by these marginal thrusts, in a similar fashion to observations from the	< (Deleted: that observed
900	Central High Atlas of Morocco and other inverted basins. Complex structures form where salt-	(Deleted: tch
901	cored box folds weld shut by hinge and limb failure. In the subsalt section the structural style is		
902	very different consisting of strongly inverted and pervasively deformed graben systems along		
903	with the formation of new popup structures, Inversion of these graben uplifted and welded the	(Deleted: as these inverted graben locked up
904	composite extensional minibasin system forming an almost flat-topped plateau across the center		
905	of the model. Significant reactivation of graben-bounding faults during inversion was aided by		
906	interstitial infiltration of our salt analog that helped "lubricate" the precursor faults.		
907			

912 6 Acknowledgements

912	o. Acknowledgements
913	
914	This study was funded by the Applied Geodynamics Laboratory consortium consisting of the
915	following companies: Anadarko, BHP Billiton, BP, Chevron, Ecopetrol, EMGS, Eni,
916	ExxonMobil, Fieldwood, Hess, ION Geophysical, Midland Valley, Murphy, Noble Energy,
917	NOOC, Petrobras, Petronas, PGS, Repsol, Rockfield, Talos, Shell, Spectrum Geo, Stone, Talos,
918	TGS, Total, WesternGeco, and Woodside. Additional funding for the authors came from the
919	Jackson School of Geosciences. TD thanks James Donnelly, Nathan Ivivic, Brandon Williamson
920	and Rudy Lucero for logistical support in the modeling laboratories. Nancy Cottington is thanked
921	for colorizing the salt in each dip section from Model 1. The authors thank Jaume Vergés (CSIC,
922	Barcelona) and Grégoire Messager (Equinor, Norway) for initially introducing them to the salt
923	tectonics of the Moroccan High Atlas. Antonio Teixell and Oriol Ferrer are thanked for their
924	kind and thorough reviews of an earlier version of this manuscript. Publication was authorized
925	by the director of the Bureau of Economic Geology, Jackson School of Geosciences, The
926	University of Texas at Austin.
927	
928	
929	7. References
930	
931	Adam, J., Urai, J., Wieneke, B., Oncken, O., Pfeiffer, K., and Kukowski, N.: Shear localisation
932	and strain distribution during tectonic faulting - new insights from granular-flow experiments

283-301. http://doi.org/10.1016/j.jsg.2004.08.008, 2005.

and high-resolution optical image correlation techniques. Journal of Structural Geology, 27(2),

933

934

935	
936	Amilibia, A., McClay, K. R., Sabat, F., Muñoz, J. A., and Roca, E.: Analogue modelling of
937	inverted oblique rift systems. Geologica Acta, 3(3), 251-271, 2005.
938	
939	Anderson, E.M.: The dynamics of faulting and dyke for- mation with applications to Britain.
940	Olivier and Boyd (eds.). Edinburgh, 203pp., 1951.
941	
942	Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional reactivation of
943	inherited normal faults: A review based on previous and new experimental models.
944	Tectonophysics, 522-523(C), 55–88. <u>http://doi.org/10.1016/j.tecto.2011.11.014</u> , <u>2011</u> .
945	
946	Brun, J., Sokoutis, D. and Van Den Driessche, J.: Analogue modelling of detachment fault
947	systems and core complexes. Geology, 22, 319 – 322, 1994.
948	
949	Buchanan, J.G., and Buchanan, P.G. (Eds.).: Basin Inversion, Geological Society
950	Special Publication, 88. 596 pp, 1995.
951	
952	Buchanan, P.G., and McClay, K.R.: Sandbox experiments of inverted listric and planar
953	fault systems. In: Cobbold, P.R. (Ed.), Experimental and Numerical Modelling of
954	Continental Deformation: Tectonophysics, 188, pp. 97–115, 1991.
955	
956	Callot, J. P., Jahani, S., and Letouzey, J.: The role of pre-existing diapirs in fold and thrust belt
957	development. Thrust Belts and Foreland Basins, 309-325, 2007.

959			
960	Callot, J. P., Trocme, V., Letouzey, J., Albouy, E., Jahani, S., and Sherkati, S.: Pre-existing salt		
961	structures and the folding of the Zagros Mountains. Geological Society London Special		
962	Publications, 363(1), 545-561. http://doi.org/10.1144/SP363.27, 2012.		
963			
964	Coleman, A. J., Jackson, C. A. L., & Duffy, O. B.: Balancing sub- and supra-salt strain in salt-		
965	influenced rifts: Implications for extension estimates. Journal of Structural Geology, 102, 208-	Formatted: Font: Not Italic	
966	225. http://doi.org/10.1016/j.jsg.2017.08.006, 2017.	Formatted: Font: Not Italic	
967			
968	Couzens-Schultz, B. A., Vendeville, B. C., and Wiltschko, D. V.: Duplex style and triangle zone		
969	formation: insights from physical modeling. Journal of Structural Geology, 25(10), 1623-1644.	Formatted: Font: Not Italic	
970	http://doi.org/10.1016/S0191-8141(03)00004-X, 2003.	Formatted: Font: Not Italic	
971			
972	Davison, I., Alsop, I., Birch, P., Elders, C., and Evans, N.: Geometry and late-stage structural		
973	evolution of Central Graben salt diapirs, North Sea. Marine and Petroleum Geology, 17, 499-		
974	522, 2000.		
975			
976	Dooley, T., McClay, K., Hempton, M., and Smit, D. (2005). Salt tectonics above complex		
977	basement extensional fault systems: results from analogue modelling. In: Doré , A. G. & Vining,		
978	B. A. (eds) Petroleum Geology: North-West Europe and Global Perspectives-Proceedings of		
979	the 6th Petroleum Geology Conference, Geological Society, London, Petroleum Geology		
980	Conference Series, 6, 1631-1648, 2005.		
981			

982	Dooley, T. P., Jackson, M. P. A., and Hudec, M. R.: Initiation and growth of salt-based thrust	
983	belts on passive margins: results from physical models. Basin Research, 19(1), 165-177.	
984	http://doi.org/10.1111/j.1365-2117.2007.00317.x, 2007.	
985		
986	Dooley, T. P., Jackson, M. P. A., and Hudec, M. R.: Inflation and deflation of deeply buried salt	
987	stocks during lateral shortening. Journal of Structural Geology, 31(6), 582-600.	
988	http://doi.org/10.1016/j.jsg.2009.03.013, 2009.	
989		
990	Dooley, T. P., and Schreurs, G.: Analogue modelling of intraplate strike-slip tectonics: A review	
991	and new experimental results. Tectonophysics, 574-575, 1-71, 2012.	
992		
993	Dooley, T. P., Jackson, M. P. A., and Hudec, M. R.: Breakout of squeezed stocks: dispersal of	
994	roof fragments, source of extrusive salt and interaction with regional thrust faults. Basin	
995	Research, 27(1), 3–25. http://doi.org/10.1111/bre.12056, 2015.	
996		
997	Duffy, O. B., Dooley, T. P., Hudec, M. R., Jackson, M. P. A., Fernandez, N., Jackson, C. AL.,	
998	and Soto, J. I.: Structural evolution of salt-influenced fold-and-thrust belts_ A synthesis and new	
999	insights from basins containing isolated salt diapirs. Journal of Structural Geology, 114, 206-	
1000	221. http://doi.org/10.1016/j.jsg.2018.06.024, 2018.	
1001		
1002	Domènech, M., Teixell, A., & Stockli, D. F.: Magnitude of rift-related burial and orogenic	
1003	contraction in the Marrakech High Atlas revealed by zircon (U-Th)/He thermochronology and	
1004	thermal modeling. Tectonics, 25(11), 2609–2635. http://doi.org/10.1002/2016TC004283, 2016.	For
1		Forn

Formatted: Font: Not Italic Formatted: Font: Not Italic

1005		
1006	Durcanin, M. A.: Influence of synrift salt on rift-basin development: Application to the Orpheus	
1007	Basin, off- shore Canada: M.S. thesis, The State University of New Jersey, 2009.	
1008		
1009	Ferrer, O., Roca, E., Vendeville, B. C.; The role of salt layers in the hangingwall deformation of kinked-	Formatted: Font: (Default) Times New Roman, Not Bold
1010	planar extensional faults: Insights from 3D analogue models and comparison with the Parentis Basin.	Formatted: Font: (Default) Times New Roman
1011	Tectonophysics, 636, 338-350, 2014	Formatted: Font: 11 pt
1012		
1013	Ferrer, O., McClay, K.R., and Sellier, N. C.: Influence of fault geometries and mechanical	
1014	anisotropies on the growth and inversion of hangingwall synclinal basins: Insights from sandbox	
1015	models and natural examples, in C. Child, R. E. Holdsworth, C. A. L. Jackson, T. Manzocchi, J.	
1016	J. Walsh, and G. Yieldings, eds., The geometry and growth of normal faults: Geological Society	
1017	of London, Special Publications, 439, doi: 10.1144/ SP439.8., 2016.	
1018		
1019	Graveleau, F., Malavieille, J., and Dominguez, S.: Experimental modelling of orogenic wedges:	
1020	A review. Tectonophysics, 538-540(C), 1-66. http://doi.org/10.1016/j.tecto.2012.01.027, 2012.	Formatted: Font: Not Italic
1021		Formatted: Font: Not Italic
1022	Jackson, C. AL., & Stewart, S. A.: Composition, Tectonics, and Hydrocarbon Significance of	
1023	Zechstein Supergroup Salt on the United Kingdom and Norwegian Continental Shelves: A	
1024	Review. Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins:	
1025	Tectonics and Hydrocarbon Potential (pp. 175–201). Elsevier Inc. http://doi.org/10.1016/B978-	
1026	0-12-809417-4.00009-4, 2017.	
1027		

1028	Jackson, C. A. L., Duffy, O. B., Fernandez, N., Dooley, T. P., Hudec, M. R., Jackson, M. P. A.,	
1029	and Burg, G.: The stratigraphic record of minibasin subsidence, Precaspian Basin, Kazakhstan.	
1030	Basin Research, 61(1), 570-25. <u>http://doi.org/10.1111/bre.12393</u> , 2019.	
1031		
1032	Jackson, C. A. L., Elliott, G. M., Royce Rogers, E., Gawthorpe, R. L., & Aas, T. E. (2019). Salt	
1033	thickness and composition influence rift structural style, northern North Sea, offshore Norway.	
1034	Basin Research, 31(3), 514–538. http://doi.org/10.1111/bre.12332, 2019.	Formatted: Font: Not Italic
1035		Formatted: Font: Not Italic
1036	Kendell, K. L.: Variations in salt expulsion style within the Sable Canopy Complex, central	
1037	Scotian margin 1This article is one of a series of papers published in this CJES Special Issue on	
1038	the theme of Mesozoic-Cenozoic geology of the Scotian Basin. Canadian Journal of Earth	
1039	Sciences, 49(12), 1504-1522. http://doi.org/10.1139/e2012-069, 2012.	
1040		
1041	Krantz, R.: Measurements of friction coefficients and cohesion for faulting and fault reactivation	
1042	in laboratory models using sand and sand mixtures. Tectonophysics, 188, 203-207, 1991.	
1043		
1044	Krzywiec, P., Mesozoic and Cenozoic evolution of salt structures within the Polish Basin — An	
1045	overview, Geological Society, London, Special Publications, 363, 381-394, doi:	
1046	10.1144/SP363.17, 2012.	
1047		
1048	Le Calvez, J. H., and Vendeville, B. C.: Experimental designs to model along-strike fault	
1049	interaction. Journal of the Virtual Explorer, 7, 1-19, 2002.	
1050		

1051	Marques, F., Cobbold, P., and Lourenço, N.: Physical models of rifting and transform faulting,
1052	due to ridge push in a wedge-shaped oceanic lithosphere. Tectonophysics, 443, 37-52, 2007.
1053	
1054	Martin-Martin, J. D., Vergés, J., Saura, E., Moragas, M., Messager, G., and Baqués, V.: Diapiric
1055	growth within an Early Jurassic rift basin: The Tazoult salt wall (central High Atlas, Morocco),
1056 1057	36(1), 2–32. <u>http://doi.org/10.1002/2016TC004300</u> , 2016
1058	Michard, A., Ibouh, H., and Charriere, A.: Syncline-topped anticlinal ridges from the high Atlas:
1059	a Moroccan conundrum, and inspiring structures from the Syrian arc, Israel. Terra Nova 23, 314-
1060	323, 2011.
1061	
1062	McClay, K. R.: Extensional fault systems in sedimentary basins. A review of analogue model
1063	studies. Marine and Petroleum Geology, 7, 206–233, 1990.
1064	
1065	McClay, K. R., Dooley, T., Whitehouse, P., and Mills, M.: 4-D evolution of rift systems: Insights
1066	from scaled physical models. AAPG Bulletin, 86(6), 935-960, 2002.
1067	
1068	Moragas, M., Vergés, J., Nalpas, T., Saura, E., Martín-Martín, JD., Messager, G., and Hunt, D.
1069	W.: The impact of syn- and post-extension prograding sedimentation on the development of salt-
1070	related rift basins and their inversion: Clues from analogue modelling. Marine and Petroleum
1071	Geology, 88, 985–1003. http://doi.org/10.1016/j.marpetgeo.2017.10.001, 2017.
1072	
1	

1074	Reber, J. E., Cooke, M. L., and Dooley, T. P.: What model material to use? A Review on rock	
1075	analogs for structural geology and tectonics. Earth-Science Reviews, 202, 103107.	Formatted: Font: Not Italic
1076	http://doi.org/10.1016/j.earscirev.2020.103107, 2020.	Formatted: Font: Not Italic
1077		
1078	Roma, M., Vidal-Royo, O., McClay, K., Ferrer, O., and Muñoz, JA.: Tectonic inversion of salt-	
1079	detached ramp-syncline basins as illustrated by analog modeling and kinematic restoration.	
1080	Interpretation, 6(1), T127–T144. <u>http://doi.org/10.1190/INT-2017-0073.1</u> , 2017.	
1081		
1082	Roma, M., Ferrer, O., Roca, E., Pla, O., Escosa, F. O., and Butillé, M.: Formation and inversion	
1083	of salt-detached ramp-syncline basins. Results from analog modeling and application to the	
1084	Columbrets Basin (Western Mediterranean). Tectonophysics, 745, 214–228.	
1085	http://doi.org/10.1016/j.tecto.2018.08.012, 2018a.	
1086		
1087	Roma, M., Ferrer, O., McClay, K. R., Munoz, J. A., Roca, E., Graticos, O., and Cabello, P.:	
1088	Weld kinematics of syn-rift salt during basement-involved extension and subsequent inversion:	
1089	Results from analog models. Geologica Acta, 16(4), 391–410.	Formatted: Font: Not Italic
1090	http://doi.org/10.1344/GeologicaActa2018.16.4.4, 2018b	Deleted: ¶
1091		
1092	Rossi, D., and Storti, F.: New artificial granular materials for analogue laboratory experiments:	
1093	aluminium and siliceous microspheres. Journal of Structural Geology, 25, 1893-1899, 2003.	
1094		

- 1095 Rowan, M., and Weimer, P.: Salt-sediment interaction, northern Green Canyon and Ewing Bank
- 1096 (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82(5), 1055–1082, 1998.

1098	
1099	Rowan, M. G. and Krzywiec, P.: The Szamotuły salt diapir and Mid-Polish Trough: Decoupling
1100	during both Triassic-Jurassic rifting and Alpine inversion. Interpretation, 2(4), SM1–SM18.
1101	http://doi.org/10.1190/INT-2014-0028.1, 2014.
1102	
1103	Saura, E., Vergés, J., Martin-Martin, J. D., Messager, G., Moragas, M., and Razin, P.: Syn- to
1104	post-rift diapirism and minibasins of the Central High Atlas (Morocco): the changing face of a
1105	mountain belt. Journal of the Geological Society, 171(1), 97-105.
1106	http://doi.org/10.1144/jgs2013-079, 2014.
1107	
1108	Schellart, W. P. (2000). Shear test results for cohesion and friction coefficients for different
1109	granular materials: scaling implications for their usage in analogue modelling. Tectonophysics,
1110	324, 1–16, 2000.
1111	
1112	Sibson, R.H.: Selective fault reactivation during basin inversion: potential for fluid
1113	redistribution through fault-valve action. In: Buchanan, J.G., Buchanan, P.G. (Eds.),
1114	Basin inversion, Geological Society of London Special Publication 88, pp. 3-19. 1995.
1115	
1116	Stewart, S.: Salt tectonics in the North Sea Basin: a structural style template for seismic
1117	interpreters. In: Ries, A. C., Butler, R. W. H. & Graham, R. H. (eds). Deformation of the
1118	ContinentalCrust: The Legacy of Mike Coward. Geological Society, London, Special
1119	Publications, 272, 361-396, 2007.

1121	Stewart, S., and Coward, M.: Synthesis of salt tectonics in the southern North Sea, UK. Marine	
1122	and Petroleum Geology, 12, 457-475, 1995.	
1123		
1124	Teixell, A., Arboleya, M., Julivert, M., and Charroud, M.: Tectonic shortening and topography in	
1125	the central High Atlas (Morocco). Tectonics, 22(5), 1051, <u>http://doi.org/10.1029/2002TC001460</u> ,	
1126	2003.	
1127		
1128	Teixell, A., Barnolas, A., Rosales, I., and Arboleya, ML.: Structural and facies architecture of a	
1129	diapir-related carbonate minibasin (lower and middle Jurassic, High Atlas, Morocco). Marine	
1130	and Petroleum Geology, 81, 334–360. http://doi.org/10.1016/j.marpetgeo.2017.01.003, 2017.	
1131		
1132	Verges, J., Moragas, M., Martín-Martín, J.D., Saura, E., Razin, P., Grelaud, C., Malaval, M.,	
1133	Joussiaume, R., Messager, G., Sharp, I., and Hunt, D.W.: Salt tectonics in the Atlas mountains of	
1134	Morocco. In: Soto, J.I., Tari, G., Flinch, J. (Eds.), Permo-triassic Salt Provinces of Europe, North	
1135	Africa and the Atlantic Margins. Tectonics and hydrocarbon potential. 563-576, Elsevier, 2017	Deleted:
1136		
1137	Vergés, J., Poprawski, Y., Almar, Y., Drzewiecki, P. A., Moragas, M., Bover-Arnal, T.,	
1138	Macchiavelli, C., Wright, W., Messager, G., Embry, J-C. and Hunt, D.: Tectono-Sedimentary	
1139	Evolution of Jurassic-Cretaceous diapiric structures: Miravete anticline, Maestrat Basin, Spain.	
1140	Basin Research, 1-55. http://doi.org/10.1111/bre.12447, 2020.	
1141		
1142	Weijermars, R.: Polydimethylsiloxane flow defined for experiments in fluid dynamics. Applied	
1143	Physics Letters, 48(2), 109–111. http://doi.org/10.1063/1.97008, 1986.	

11	45
----	----

1146	Weijermars, R., Jackson, M. P. A., and	Vendeville, B. C.: Rheological and	tectonic modeling of
------	--	------------------------------------	----------------------

- 1147 salt provinces. Tectonophysics, 217, 143–174, 1993.
- 1148

1149	Withjack, M., and	Callaway, S.: Active	Normal Faulting Beneath	a Salt Layer: An Experimental
------	-------------------	----------------------	-------------------------	-------------------------------

- 1150 Study of Deformation Patterns in the Cover Sequence. AAPG Bulletin, 84, 627-651, 2000.
- 1151
- 1152 Ziegler, P.A. (Ed.).: Compressional intra-plate deformations in the Alpine Foreland:

1153 Tectonophysics, 137. 420 pp, 1987.

- 1154
- 1155 Zwaan, F., Schreurs, G, Naliboff, J., and S. J. H. Buiter, S. J. H.: Insights into the effects of
- 1156 oblique extension on continental rift interaction from 3D analogue and numerical
- 1157 models: Tectonophysics, 693 Part B, 239–260, doi: 10.1016/j.tecto.2016.02.036, 2016.
- 1158
- 1159 Zwaan, F., and Schreurs, G. (2017). How oblique extension and structural inheritance influence
- 1160 rift segment interaction: Insights from 4D analog models. Interpretation, 5(1), SD119–SD138.
- 1161 <u>http://doi.org/10.1190/INT-2016-0063.1</u>, 2017.
- 1162
- 1163

1164 Figure Captions

1165

1166	Figure 1. Summary geological map of the central High Atlas of Morocco. Jurassic intrusive
1167	massifs containing upper Triassic shale, basalt and evaporite inliers have been interpreted as
1168	former diapiric ridge that separated extensional minibasins formed during Permian to Early
1169	Jurassic punctuated rifting. AmMB, Amezraï minibasin. AzMB, Azag minibasin. Map redrawn
1170	and modified from Teixell et al., 2017.
1171	
1172	Figure 2. Summary of experimental setup used in models shown in this study. (a) Cross section
1173	view of the pre-rift setup. Models consist of a stretching rubber sheet overlain by a thin basal
1174	detachment and polymer 'slabs' covered by a layered sandpack. (b) Overhead view of
1175	deformation rig prior to emplacement of the layered pre-rift overburden. See text for further
1176	details.
1177	
1178	Figure 3. (a) Height-change map of Model 1 after pre-salt extension. Three en-échelon graben in
1179	model center are separated by accommodation zones with relays. Marginal graben formed at the
1180	model periphery (b) Strain map of Model 1 during pre-salt extension. Accommodation zones
	model perphory. (o) Stam map of Model 1 during pre suit extension. Accommodation Zones
1181	consist of interlocking extensional faults. Note that some relays are breached. See text for further
1181 1182	consist of interlocking extensional faults. Note that some relays are breached. See text for further details.
1181 1182 1183	consist of interlocking extensional faults. Note that some relays are breached. See text for further details.
1181 1182 1183 1184	consist of interlocking extensional faults. Note that some relays are breached. See text for further details. Figure 4. Emplacement of syn-rift salt in Model 1. (a) Pre-salt graben are infilled with our salt

1186 <u>final cross-section views.</u> (b) A regional salt fringe is then emplaced across the entire model.

1188	Figure 5. (a) Height-change map during post-salt extension in Model 1. Post-salt extension was
1189	now 4 cm. Note the composite minibasin extending across the model center, above the original
1190	graben system. (b) Strain map of the same increment of post-salt extension. Note the diffuse
1191	strains in the suprasalt cover. Most extensional strains mark outer-arc extension above reactive
1192	diapirs. Note the minor shortening strains within the minibasin due to inner-arc contraction
1193	within the subsiding minibasin.
1194	
1195	Figure 6. Height-change maps of Model 1 after 16 (a) and 48 (b) hours of post-extension loading.
1196	In (a) we see the major diapir networks, formed during extension, continuing to rise as salt is
1197	expelled from beneath adjacent minibasins. After 48h loading (b) activity is now focused on two
1198	major diapirs. See main text for more details.
1199	
1200	Figure 7. Height-change maps (a-d) reveal the evolution of Model 1 during inversion. Initial
1201	shortening and uplift was focused on the diapirs formed during extension and loading (a),
1202	followed by uplift of the composite minibasin above the model center and rejuvenation of the
1203	diapir and ridge networks (b-d).
1204	
1205	Figure 8. Overhead view of Model 1 after 25 cm shortening. Diapirs 1 and 2 are clearly visible in
1206	this view as emergent salt sheets. Section lines are those shown in Figure 9. See text for further
1207	details.

1208

1210	shows the model stratigraphy.
1211	
1212	Figure 10. Details from Model 2 (see Table 1). (a) Height-change map that evolved during Stage
1213	1 of Model 2. (b) Height-change map of Model 2 during post-salt extension. (c) Height-change
1214	map of Model 2 during post-extension loading. (d) Cross section from Model 2 illustrating
1215	extensional minibasins and diapirs of varying heights formed in the footwalls of the subsalt
1216	graben. See text for further details.
1217	
1218	Figure 11. Details of Model 3. (a-b) Depth slices through Model 3. (c-e) Arbitrary lines through
1219	a portion of Model 3. (f) Original location of yellow marker 'salt' in the central graben of Model
1220	3. See text for further details.
1221	
1222	Figure 12. 3D reconstruction of the salt volume from Model 1. See main text for details.
1223	
1224	Figure 13. (a) Height-change map from Stage 3 of Model 1 illustrating the diapir and ridge
1225	networks that formed during extension rising during post-extension loading. (b-c) Depth slice
1226	and dip section through Model 1 illustrating the five (a-e) main diapir networks.
1227	
1228	Figure 14. Detailed views (a-c) of sections through Model 1 illustrating the evolution of an "S"
1229	structure.
1230	

Figure 9. Representative sections through Model 1. Locations are shown on Figure 8. Inset

1231	Figure 15. (a) Detailed view of a non-inverted subsalt graben from Model 2. Note the
1232	asymmetric geometry and the formation of a keystone structure. (b) Detailed view of an inverted
1233	subsalt graben from Model 1. Inversion of this graben uplifted and welded the overlying
1234	extensional minibasin.
1235	
1236	Figure 16. (a) Cross section through the Amezraï minibasin, Moroccan High Atlas. Note the
1237	uptilted minibasin margins, lack of internal deformation within the minibasin and the complex
1238	flanking diapirs and thrust welds. Redrawn from Moragas et al. (2017). (b) Detailed views of
1239	minibasin margins and associated secondary thrust welds from Model 1. (c) E-W cross section
1240	through the Azag minibasin. Note the thrust welds and tilted nature of the minibasin. Redrawn
1241	from Teixell et al. (2017). (d) Detail of a section from Model 1 illustrating a tilted minibasin,
1242	primary weld on top of an inverted subsalt graben, and secondary thrust welds on either side of
1243	the minibasin.
1244	
1245	
1246	
1247	Table 1. Model names and values for extension and inversion for experiments described in the
1248	main text. *denotes basal detachment was limited to the central region of the model.
1249	
1250	
1251	
1231	