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Abstract. Previous studies show that organic-rich fault patches may play an important role in promoting unstable fault slip. 

However, the frictional properties of rock materials with near 100 % organic content, e.g. coal, and the controlling 10 

microscale mechanisms, remain unclear. Here, we report seven velocity stepping (VS) and one slide-hold-slide (SHS) 

friction experiments performed on simulated fault gouges prepared from bituminous coal, collected from the upper Silesian 

Basin of Poland. These experiments were performed at 25–45 MPa effective normal stress and 100 ℃, employing sliding 

velocities of 0.1–100 μm s-1, using a conventional triaxial apparatus plus direct shear assembly. All samples showed marked 

slip weakening behaviour at shear displacements beyond ~1–2 mm, from a peak friction coefficient approaching ~0.5 to 15 

(near) steady state values of ~0.3, regardless of effective normal stress or whether vacuum dry flooded with distilled (DI) 

water at 15 MPa pore fluid pressure. Analysis of both unsheared and sheared samples by means of microstructural 

observation, micro-area X-ray diffraction (XRD) and Raman spectroscopy suggests that the marked slip weakening 

behaviour can be attributed to the development of R-, B- and Y- shear bands, with internal shear-enhanced coal crystallinity 

development. The SHS experiment performed showed a transient peak healing (restrengthening) effect that increased with 20 

the logarithm of hold time at a linearized rate of ~0.006. We also determined the rate-dependence of steady state friction for 

all VS samples using a full rate and state friction approach. This showed a transition from velocity strengthening to velocity 

weakening at slip velocities >1 μm s-1 in the coal sample under vacuum dry conditions, but at >10 μm s-1 in coal samples 

exposed to DI water at 15 MPa pore pressure. This may be controlled by competition between dilatant granular flow and 

compaction enhanced by presence of water. Together with our previous work on frictional properties of coal-shale mixtures, 25 

our results imply that the presence of a weak, coal-dominated patch on faults that cut or smear-out coal seams may promote 

unstable, seismogenic slip behaviour, though the importance of this in enhancing either induced or natural seismicity 

depends on local conditions.   
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1 Introduction 

Carbonaceous materials (e.g. amorphous carbon, graphite, organic matters) are widely present in the lithosphere, including in 

several large fault zones over the world (Kaneki and Hirono, 2019), such as Longmenshan thrust belt in China (Kuo et al., 

2014), Atotsugawa fault zone in Japan (Oohashi et al., 2012) and Alpine fault zone (Kirilova et al., 2017). As is well known 

that graphite has very low friction strength, and that amorphous carbon or organic matters can be transformed into graphite at 35 

a seismic slip due to so-called graphitization process, the presence of carbonaceous materials may therefore act as a lubricant 

to play a key role in frictional properties and accordingly in promoting instability of the fault (Oohashi et al., 2011, 2013; 

Kuo et al., 2014). In the meanwhile, organic-rich rocks (such as coal, shale and clay), as main source rocks for 

(un)conventional natural gas, may also play a role in induced seismicity upon gas production (e.g. Kohli and Zoback, 2013; 

Liu et al., submitted), water injection (e.g. Ellsworth, 2013) and coal mining (e.g. Westbrook et al., 1980). Compared to 40 

graphite, however, limited experimental data on frictional properties of organic-rich rocks, particular on coal, under in situ 

PT conditions is reported. Although coal has been widely investigated because of its importance in fuel energy and industry, 

its frictional properties are not yet well determined and understood. This contribution address frictional properties of coal 

and the likely mechanisms.  

 45 

We first focus on coal structure and graphitization process seen in experiments. Many techniques, such as transmission 

electron microscope (TEM), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Raman spectroscopy, and 

Fourier Transform Infrared spectroscopy (FTIR), have been applied to determine coal structure, because of its complexity 

and heterogeneity (Li et al., 2015a, 2015b; Baysal et al., 2016; Song et al., 2019). From a chemical point view, coal, in 

general, mainly consists of aromatic layers where aromatic nucleus are surrounded by peripheral aliphatic chains and oxygen 50 

functional groups (Mathews and Chaffee, 2012; Ahamed et al., 2019). Lu et al. (2001), based on XRD analysis of Australian 

coals ranging in rank from high volatile bituminous to semi-anthracite, proposed a simplified model for describing coal 

molecular structure. This model suggests coal consists of both amorphous (non-aromatic structures) and crystalline (a 

condensed, layered aromatic structure) forms of carbon. The aromatic layers in coal may become more ordered or more 

uniform packing during deformation to form graphite under experimental conditions of a constant high confining pressure of 55 

500 MPa, deviatoric stresses, variable temperatures of 300–600 °C and strains to 33 % (Ross and Bustin, 1990; Ross et al., 

1991). Ross and the co-authors (1990; 1991), according to their experiments, reported that the shear strains associated with 

strain energy can drastically lower the activation energy and accordingly facilitate the graphitization process. Similarly, 

molecular dynamics simulations of sliding at the interface between amorphous carbon and diamond films, at a rate of 10 m s-

1, performed by Ma et al. (2014), show that covalent bond reorientation, phase transformation and structural ordering 60 

preferentially occur in localized bands in amorphous carbon film, and that this shear localization causes weakening. Apart 

from high pressure and temperature experiments, graphitization process has also seen in high-velocity friction experiments. 

Oohashi et al. (2011), for example, performed friction experiments on both amorphous carbon and graphite using a rotary 
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shear apparatus under conditions of normal stress of 0.5–2.8 MPa and slip rates of 50 µm s-1 – 1.3 m s-1 in atmospheres of air 

and nitrogen. Their experiments showed a) a steady-state friction coefficient of 0.54 for amorphous carbon at slow slip rates 65 

versus 0.1 for graphite at all slip rates, b) major slip-weakening of the amorphous phase, at slip rates >10 mm s-1, to a steady-

state µ-value of 0.1, and c) XRD and TEM evidence of graphitization of the amorphous carbon during shear at high slip rates. 

The authors suggested that large shear strains, short-lived flash heating, and/or stress concentrations at asperity contact 

points may cause graphitization of amorphous carbon, even at low temperatures and pressures under anoxic environments. 

Similar friction experiments, performed by Kuo et al. (2014) on natural samples collected from the 2018 Wenchuan 70 

earthquake slip zone, also showed graphitization of carbonaceous minerals due to frictional heating at seismic slip rates.  

 

We now return to frictional properties of coal. Recent research reported by Kaneki and Hirono (2019) investigated the 

friction strength of lignite, bituminous coal, anthracite and graphite by performing high-velocity (1 m s-1) rotary-shear 

friction experiments at room temperature. They found that the peak friction strength, for all samples, decreased with 75 

increasing maturity from 0.5 to 0.2, and the marked dynamic weakening was observed for lignite, bituminous coal and 

anthracite, from peak values of ~0.3–0.5 to dynamic friction of ~0.1–0.2. TEM, IR and Raman spectra observations 

performed on the samples before and after the friction experiments suggest that the marked dynamic weakening behaviour 

observed in lignite, bituminous coal and anthracite was likely caused by shear-induced graphitization process which may be 

dominated by flash heating (Kaneki and Hirono, 2019). On the other hand, in low-velocity friction experiments, our recent 80 

research also found significant slip-weakening on simulated coal-rich fault gouge (Liu et al., submitted). We performed low-

velocity (i.e. 0.1–100 µm s-1) direct shear experiments to investigate fictional properties of simulated fault gouges prepared 

from coal-shale mixtures under (near) in situ PT conditions. We found that only the samples with coal volume fraction 

≥50 %, including pure coal, showed marked slip-weakening behaviour, from peak value of ~0.47 to (near) steady-state value 

of ~0.30, regardless of the employed experimental conditions. Interestingly, such slip-weakening is limited to small initial 85 

displacements (2–3 mm), and does not occur during slip reactivation. We, based on the limited microstructure observation, 

inferred this slip-weakening was caused by strain localization in coal-rich shear bands, accompanied by change in coal 

molecular structure, as opposed to the graphitization effects seen in high-velocity friction experiments. As the main aim of 

our recent research (Liu et al., submitted) was to investigate the effects of coal content on frictional properties of 

Carboniferous shale in the context of induced seismicity in Carboniferous source rocks below Europe’s largest gas field, we 90 

only reported one velocity stepping friction experiments on pure coal. As a result, more experimental research is apparently 

needed to better understand frictional properties (such as friction strength, rate-dependent friction and frictional healing) of 

coal, sheared at subseismic slip rates under in situ PT conditions, accompanied by the development of coal molecular 

structure upon shear deformation.  

 95 

In this paper, we investigate the frictional behaviour of deep natural coal (as a source rock for (un)conventional natural gas) 

under near in situ conditions. This was achieved by performing the friction experiments on simulated fault gouges prepared 
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from bituminous coal collected from the upper Silesian Basin of Poland. We performed velocity stepping and slid-hold-slide 

experiments under both vacuum dry and wet conditions, at a constant temperature of 100 °C, employing sliding velocities 

0.1–100 μm s-1 and effective normal stresses ranging from 25 to 45 MPa. Data on the frictional strength and rate-dependence 100 

of friction are documented and a full Rate and State Friction (RSF) description is derived. In an attempt to understand the 

likely mechanisms determining frictional behaviour, post analysis was performed on both unsheared and sheared samples by 

means of microstructural observation, micro-area X-ray diffraction and Raman spectroscopy. Data on crystal structure 

parameters and Raman parameters are also obtained. Finally, we discuss the implications of our findings for understanding 

friction strength and seismic potential of coal-rich faults. 105 

2 Experimental methods 

2.1 Approach 

Following Hunfeld et al. (2017) and Liu et al. (submitted), we performed direct shear experiments to measure the frictional 

sliding strength and rate-dependent friction of simulated coal fault gouges at near in situ PT conditions for deep coal seams. 

Post analysis by means of microstructural observation, micro-area XRD and Raman spectroscopy were performed on the 110 

deformed gouge samples, in an attempt to understand the observed frictional behaviour. In addition, we apply the rate and 

state friction (RSF) approach to determine the rate dependence of friction. From an RSF point view, if fault rocks exhibit an 

increase in frictional strength upon increased sliding rate, i.e. velocity strengthening behaviour, they are not prone to 

generating accelerating slip and are termed conditionally stable (Scholz, 2019). On the other hand, when the frictional 

strength of a fault rock decreases upon increased sliding rate, the fault rock exhibits velocity weakening behaviour. This may 115 

result in repetitive slip instabilities, or stick-slip events, which are viewed as the laboratory equivalent of earthquakes (Brace 

and Byerlee, 1966; Marone, 1998; Scholz, 1998). 

2.2 Sample Materials 

The coal samples used in this study were prepared from natural high volatile bituminous coal with total organic carbon (TOC) 

of 69.6 wt%, collected from Brzeszcze Mine (Seam 364) in the upper Silesian Basin of Poland (Hol et al., 2011; Liu et al., 120 

submitted). Petrological and chemical analyses reported by Hol et al. (2011) showed that the bituminous coal has a vitrinite 

reflectance of 0.77 ± 0.05 % and has a vitrinite content of 60.1 wt%, alongside liptinite 9.8 wt%, and inertinite 30.1 wt%. 

Furthermore, it contains 74.1 wt% carbon, 5.3 wt% hydrogen, 1.4 wt% nitrogen, 0.7 wt% Sulphur, 18.5 wt% oxygen, as well 

as 2.9 wt% moisture and 5.2 wt% ash (mineral) content. Raw coal sample was crushed to obtain powder with a grain size of 

<50 μm. For each experiment, a gouge layer with a thickness of ~1 mm (see details in Table 1) was prepared by compacting 125 

coal powders in a purpose-made die, at ~20 MPa for ~2 minutes. The gouge layer was then assembled into a “direct shear” 

assembly, comprising two opposing L-shape pistons, designed for direct shear testing in a triaxial deformation apparatus 

(following Samuelson and Spiers, 2012). Note that we marked starting, loose coal powders and one coal gouge sample 
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without shear deformation as S* and S0, respectively (see Table 1). They are used as the control samples for XRD and 

Raman tests, in an attempt to determine the effects of shear/friction process on molecular structure of carbon in coal. Note 130 

that the gouge sample S0 was prepared by compacting at ~20 MPa for ~15 h at 100 ℃. 

2.3 Direct shear experiments and post-test sample treatment 

We performed 8 direct shear experiments at a constant temperature of 100 ℃ using a conventional triaxial testing machine 

(referred to as the Shuttle Machine, see Verberne et al., 2014a), equipped with the direct shear assembly described above. An 

independent ISCO 65 volumetric (syringe) pump was used to control pore fluid pressure. A detailed description of the 135 

machine was given by Verberne et al. (2014a) and Hunfeld et al. (2017). The experiments employed confining pressures (σn) 

of 40, 50, 55 and 60 MPa, and a constant pore fluid pressure of Pf =15 MPa or under vacuum (i.e. Pf =0). Distilled (DI) water 

was used as pore fluid for experiments S3–S8, while the experiments S1 and S2 were tested under vacuum dry (see Table 1 

for details of experimental conditions). In each experiment, the sample assembly, initially drained to the lab air, was first 

heated to ~100 ℃ at a confining pressure of ~20 MPa, and left to equilibrate for ~15 h (overnight). Then the pore fluid was 140 

introduced into the sample and pressurized to 15 MPa at a confining pressure of ~20 MPa. The confining pressure was 

subsequently increased to a certain value and left the system for ~3 h to equilibrate before shearing. Seven velocity-stepping 

(VS) and one slide-hold-slide (SHS) experiments were conducted in this study (see Table 1). In the VS experiments, samples 

were sheared at a constant velocity (V) of 1 μm s-1 for ~2.5 mm shear displacement, after which the loading rate was 

instantaneously stepped in the range 0.1–100 μm s-1 over total displacement up to almost 6 mm. SHS experiment was also 145 

performed at a constant velocity (V) of 1 μm s-1 interrupted by hold intervals in the range 300 to 30000 s, in attempt to 

determine the healing effects of coal. 

 

After each experiment, the direct shear setup was dismantled, and intact fragments of the sheared gouge layers were 

recovered and oven-dried for several days. Note that, for SEM observation, to avoid the potential problem caused by use of 150 

carbon-bearing epoxy, no special treatment was performed on the samples. Microstructure of the sheared samples S1–S8 

were observed using optical microscope and SEM. For each sample, we chose the fragments that have clear, clean slip 

surface, and the fragments that have relatively flat cross-section in an orientation parallel to the shear direction and 

perpendicular to the shear plane (e.g. Fig. 1a). Micro-area XRD and Raman spectroscopy analysis were performed on 

principal slip zone (PSZ) and weakly deformed zone (WDZ, terminology following Oohashi et al., 2011) of the samples S1–155 

S8 (e.g. Fig. 1c). Note that the surface of WDZ in Fig. 1c was exposed by scraping PSZ using abrasive paper. Recall that the 

samples S* and S0 (i.e. without shear deformation), as control experiments, were also tested using XRD and Raman 

spectroscopy. The location of the micro-area was selected randomly in PSZ, WDZ or unsheared surface, and was 

schematically marked in Fig. 1b, c (blue circles). 
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2.4 Post analysis 160 

2.4.1 Microstructural observation 

A Leica EZ4w optical stereomicroscope and a table-top SEM fitted with an Energy Disperse Spectroscopy (EDS) were used 

to investigate the microstructure of the fragments retrieved from the deformed samples. Note that the fragments were not 

coated because coal samples have sufficient electroconductivity. The samples were imaged in the secondary electron mode, 

using an acceleration voltage of 15–20 kV. In addition, EDS was used to determine whether the observed grains are coal or 165 

other minerals.  

2.4.2 Micro-area XRD 

We performed the micro-area XRD experiments on samples S0–S8 (except S2 and S6), in an attempt to determine the crystal 

structure of coal samples. Sample S* was tested by X-ray powder diffraction in a conventional mode. These were achieved 

using the Smartlab 9 kW X-ray diffractometer with a Cu target at ambient temperature. Samples were scanned in 2θ range 170 

from 10 to 65° at a rate of 1° min-1. The micro-area (~300 μm in diameter) in the PSZ and WDZ was measured for each 

sheared sample (see Fig. 1c). Note that the sample S*, S0 and S5 were measured twice for examining data reproducibility. 

For those samples, we took the average values as the parameters and the standard deviation as error bars. 

2.4.3 Raman spectroscopy 

We performed Raman measurements on samples S*–S8 to determine the development of coal maturity upon the 175 

shear/friction experiments. This was done using a Renishaw inVia™ laser Raman instrument (with a spectra resolution of 1 

cm-1) that was connected to a Leica DMLM microscope. The 514.5 nm argon-ion green laser was used for all experiments. 

The laser was focused through a ×50 objective, with a laser spot size of ~c.2 μm. We used a laser power of 0.2–1.0 mW (1 % 

– 5 % of ~17 mW full power) to avoid thermal damage on the targeted surface of coal samples. The scan range was limited 

to 50–3000 cm−1, in order to assess the first-order region and part of the second-order region. For each scan, we set the 180 

acquisition time of 10 s and the cumulative times of 3–5. For the unsheared and sheared samples (S0–S8), we measured three 

points randomly distributed in the unsheared or principal slip surface for each sample. Note that for the sample S4 only, we 

also measured 3 points in the weakly deformed zone. We accordingly took the mean values as the representative Raman 

parameters and the standard deviations as error bars for each sample. Note that we measured only one point in the powdered 

sample S*. 185 
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2.5 Data acquisition, processing and analysis 

2.5.1 Mechanical data 

Internal axial force, confining pressure, pore fluid pressure, sample temperature and loading piston displacement were 

measured in each experiment and the signals logged using a 16-bit National Instruments AD converter and logging system 

(for details, see Hunfeld et al., 2017). Following Liu et al. (submitted) and Hunfeld et al. (2017), the data were processed to 190 

yield sample shear stress versus shear displacement data corrected for machine stiffness (see details in Liu and Hunfeld, 

2020). The frictional strength of the samples was characterised by defining the apparent coefficient of sliding friction (μ) as 

the ratio of sample shear stress (τ) over the effective normal stress (𝜎𝜎𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒), assuming zero cohesion. 

𝜇𝜇 = 𝜏𝜏

𝜎𝜎𝑛𝑛
𝑒𝑒𝑓𝑓𝑓𝑓             (1) 

where 𝜎𝜎𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑛𝑛 − 𝑃𝑃𝑒𝑒 . Here 𝜎𝜎𝑛𝑛  represents the normal stress or confining pressure employed in the experiments, and 𝑃𝑃𝑒𝑒 195 

represents the pore fluid pressure. 

The rate-dependence of friction was quantified using the RSF theory (Dieterich, 1979; Ruina, 1983), coupled with the 

empirical Dieterich-type “aging law” (e.g. Marone, 1998): 

𝜇𝜇 = 𝜇𝜇0 + 𝑎𝑎ln �𝑉𝑉
𝑉𝑉0
� + 𝑏𝑏ln �𝑉𝑉0𝜃𝜃

𝐷𝐷𝑐𝑐
�           (2)  

𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑

= 1 − 𝑉𝑉𝜃𝜃
𝐷𝐷𝑐𝑐

             (3) 200 

which describes the evolution of friction coefficient μ from a reference steady state value (𝜇𝜇0) towards a new steady state 

value, over a critical slip distance (𝐷𝐷𝑐𝑐), in response to an instantaneous change in sliding velocity from an initial sliding 

velocity (𝑉𝑉0) to a new sliding velocity (V). 𝜃𝜃 is a state variable, commonly viewed as the average lifespan of a population of 

grain-to-grain contacts (Marone, 1998). At steady state, i.e. when d𝜃𝜃/dt = 0, Eq. (2) reduces to: 

(𝑎𝑎 − 𝑏𝑏) = 𝜇𝜇−𝜇𝜇0
ln�𝑉𝑉 𝑉𝑉0� �

            (4) 205 

where the parameter (a-b) reflects the rate-sensitivity of friction coefficient. A positive (a-b) value indicates velocity 

strengthening behaviour, while a negative (a-b) value indicates velocity weakening behaviour, which is potentially unstable 

(Marone, 1998; Scholz, 1998). Here, we solve Eq. (2) simultaneously with an equation describing the elastic interaction with 

the testing machine via the stiffness, using Eq. (1) as a constraint. The values for a, b and Dc can then be obtained as the 

solutions of a nonlinear inverse problem using an iterative least-squares minimization method (Ikari et al., 2009), thereby 210 

obtaining a full RSF description of the material from our experiments. In performing RSF inversion, departures from steady 

state frictional sliding were corrected for by means of linear detrending of hardening or softening behaviour (see Fig. 4a). A 

detailed description was also given by Blanpied et al. (1998). 
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2.5.2 Determining crystal structure parameters from XRD data 

We first corrected for the background noise of the resulting diffractograms using a spline curve (see Fig. 2), obtaining an 215 

approximative profile of crystalline carbon (i.e. the background-subtracted intensity profile shown in Fig. 2). The obtained 

profile was further deconvoluted using Lorentzian and Gaussian function to determine the crystal structure parameters of 

coal. Specifically, Lorentzian peaks were first employed to determine minerals in 2θ range of ~16–30° (10–30° for powdered 

sample S*) and of ~35°–58°, in an attempt to remove the mineral peaks from the background-subtracted curve. We then 

employed three Gaussian peaks to fit the background-subtracted, mineral-free profile at around 20°, 26° and 43°, obtaining 220 

γ-band, 002-band and 10-band, respectively (see Fig. 2). The fitting parameters, such as peak position (θ), full width at half 

maximum (β) and area (A), were obtained. Recall that here the crystalline carbon in coal means stacked aromatic layers or 

graphite-like structure. This is inferred from the presence of (002) band and broad (10) band in coal, which is similar to the 

(002) peak, (100) peak and (101) peak in graphite (Lu et al., 2001). On this basis, the crystal parameters of carbon crystallite 

in coal, such as inter-layer spacing (d002), crystallite stacking height (Lc), crystallite diameter (La), were determined using the 225 

empirical Braggs and Scherrer equations (Eqs. 5–7). Note that we took the mean values as the parameter for samples S*, S0 

and S5. 

d002 = 𝜆𝜆
2sin𝜃𝜃002

             (5) 

L𝑐𝑐 = 0.89𝜆𝜆
𝛽𝛽002cos𝜃𝜃002

             (6) 

L𝑎𝑎 = 1.84𝜆𝜆
𝛽𝛽10cos𝜃𝜃10

             (7) 230 

where λ is the wavelength of the applied X-ray (0.154056 nm for Cu Kα radiation); θ002, β002, θ10 and β10 represent the peak 

position of and full width at half maximum of bands (002) and (10) respectively. Theoretically, the areas of the bands (002) 

and (γ) (A002 and Aγ) are believed to be equal to the number of aromatic and aliphatic carbon atoms respectively (Yen et al., 

1961), so that the aromaticity (fa) of the samples can be estimated using Eq. (8). Coal rank can also be assessed using the 

ratio of maximum intensity of (002) over that of (γ) band (I002/Iγ, as seen in Eq. (9)). 235 

𝑓𝑓𝑎𝑎 = 𝐴𝐴002
𝐴𝐴002+𝐴𝐴γ

             (8) 

Coal rank = I002
Iγ

             (9) 

2.5.3 Determining Raman parameters 

Raman spectroscopy is a powerful tool for analyzing the information of molecular structure of organic matters (Ulyanova et 

al., 2014). It is well known that G band, which is located around 1580 cm-1 in Raman spectra, is the only peak in first-order 240 

region (i.e. 900–2000 cm-1) for pure single graphite crystal. D band is another peak located around 1350 cm-1 in Raman 

spectra, which is generally present along with G band for other carbon materials such as graphite with defective lattice, 

activated carbon and coal (Tuinstra and Koenig, 1970; Potgieter-Vermaak et al., 2011; Childres et al., 2013). The Raman 
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parameters for coal include the peak position, full width at half maximum (FWHM) and intensity of G and D band, the 

Raman band separation (RBS = G-position - D-position), the intensity ratio of D-band over G-band (ID/IG) and the saddle 245 

index (SI = the intensity of G-band divided by that of the saddle). These parameters can be obtained by several processing 

methods (Beyssac et al., 2003; Sadezky et al., 2005; Wilkins et al., 2014; Henry et al., 2018; Khatibi et al., 2018). In this 

paper, we use the method proposed by Henry et al. (2018) to determine the Raman parameters, as it has been well tested for 

Carboniferous organic-rich mudstones and coals (Henry et al., 2019). In general, Henry’s method include: a) The raw Raman 

spectra was first smoothed using a Savitzky-Golay filter, i.e. a 21-point quadratic polynomial algorithm; b) A 3rd-order 250 

polynomial function was then used to correct for baseline; c) The smooth, baseline-removed spectra was finally normalized 

to a common G-band height of 2000 arb. units. Specifically, we used the automated Microsoft Excel® spreadsheet proposed 

by Henry et al. (2018) to process our spectra data obtained at 900–2000 cm-1.  

3 Results 

3.1 Mechanical data 255 

Key data obtained from 8 direct shear experiments are listed in Table 1. All friction strength data are summarized, including 

μpeak, μss1 and μss2. Here, μpeak represents the peak friction coefficient obtained at 0.5–0.75 mm shear displacement, μss1 and 

μss2 represent the near steady-state friction coefficient obtained at ~2.2 mm and ~5.7 mm shear displacement respectively. 

The individual RSF parameters a, b and Dc, and the rate-sensitivity parameter (a-b), obtained in all velocity-stepping 

experiments are summarized in Table 2. 260 

3.1.1 Friction strength of simulated coal fault gouges 

Typical apparent friction coefficients (μ) obtained in velocity stepping experiments (Exp. S1–S7) versus displacement are 

plotted in Fig. 3. All experiments in Fig. 3a showed rapid, near-linear initial loading up to a peak friction coefficient, 

subsequently followed by sharp, post-peak slip weakening from peak friction values (μpeak) of ~0.48 to a near steady state 

value ~0.3. The friction strength (μpeak and μss1) decreases with increasing effective normal stress, though this trend is not 265 

significant (see Fig. 3b). The largest values for μpeak (0.524) and μss1 (0.338) were obtained for the experiment S3, which was 

performed at a confining pressure of 40 MPa and a pore water pressure of 15 MPa (i.e. at effective normal stress of 25 MPa). 

Note that the values of μpeak and μss1 obtained at vacuum dry condition (i.e. μpeak of ~0.48 and μss1 of ~0.30 for experiments S1 

and S2) are similar to (or slightly higher than) those (μpeak = ~0.46 and μss1 = ~0.28) obtained for the samples S5 and S6 that 

were exposed to DI water at the same effective normal stress of 40 MPa. 270 
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3.1.2 Rate dependence of friction 

The (a-b) data obtained from the velocity stepping experiments S2–S7 represented in Fig. 3a, using a full RSF approach, are 

plotted in Fig. 4b as a function of applied stress states (𝜎𝜎𝑛𝑛,𝑃𝑃𝑒𝑒). We here plot upward stepping data only, as it is these that are 

most relevant to rupture nucleation (Marone, 1998). Almost all (a-b) values are in the range of -0.006 to +0.002, and 

systematically become smaller at higher velocity steps for all samples (see Fig. 4b). It is also seen from Fig. 4b that (a-b) 275 

values may not be sensitive to effective normal stress, but to velocity steps and pore fluids. Specifically, all samples behave 

velocity strengthening at velocity stepped from 0.1 to 1 μm s-1 (where a-b>0), but velocity weakening at the velocity stepped 

from 10 to 100 μm s-1 (where a-b<0). For the velocity stepped from 1 to 10 μm s-1, the sample S2 tested under vacuum dry 

shows velocity weakening (i.e. a-b<0), while other samples tested with DI pore water at a pressure of 15 MPa show velocity 

strengthening. 280 

3.1.3 The frictional healing effects of coal 

The slide-hold-slide loading path data (Exp. S8) shown in Fig. 5 indicates a clear but minor strength recovery or healing 

effect (Δμ) upon re-shear, followed by slip-weakening to achieve a new quasi steady state. The magnitude of restrengthening 

(Δμ) increases with the logarithm of hold time (t), and is well described by the equation Δμ = βlog(1+t/tc) (e.g. Marone, 

1998), where β = 0.006 ± 0.001 and tc = 9 ± 9 s (Fig. 5b). 285 

3.2 Microstructure of the deformed coal gouge  

The representative microstructure for a sliding surface of sample S6 obtained using optical microscope in a reflected light 

mode is shown in Fig. 6a, indicating a highly reflective (mirrorlike) area located in the onset of the slip surface. This may be 

similar to the reported mirror slip surface (Siman-Tov et al., 2013; Fondriest et al., 2013; Verberne et al., 2014b). Besides, a 

principal boundary slip zone (PSZ, of ~15–25 μm thick) accompanied with weakly deformed zone (WDZ) was observed in 290 

all deformed coal gouges (see Fig. 6b for a representative reflected light micrograph of the sample S1 in an orientation 

parallel to shear direction). Note that unlike boundary shear bands that were observed in all samples, R- and Y- shear bands 

were only observed in the sample S5 (see Fig. 6c). This may be because the surface of the fragments chosen from other 

samples were not flat enough to capture R- and Y- shear bands. In addition, SEM secondary electron images shown in Fig. 

7a–e, may indicate the development of first microfractures inside the starting coal grains (~50 µm), then failure to form 295 

small grains (<10 µm) and finally shear bands. This likely reflects the process of cataclasis or granular flow during shear 

deformation in coal gouge (Niemeijer and Spiers, 2007; Verberne et al., 2014b; Hadizadeh et al., 2015). More importantly, a 

marked stack-layer structure was clearly observed at the margin of PSZ (see Fig. 7f), likely reflecting an interaction between 

PSZ and WDZ and the role of PSZ during friction process. This all indicates the development of first R shear, and then 

boundary and Y shear bands, suggesting strain localization in the shear bands of coal gouge (terminology following Logan et 300 

al., 1992; Marone, 1998; Verberne et al., 2013). 
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3.3 Development of coal crystal structure 

The raw X-ray diffractograms of the coal samples S*–S8 are presented in Fig. 8. Note that the diffractogram for coal 

powdered sample (S*) was scaled to a comparable size with other samples. Note also that the minor peaks observed in Fig. 8 

represent minerals (such as kaolinite and dolomite) in coal samples. It is seen from Fig. 8 that a) high background intensity 305 

observed in all samples indicates a significant proportion of amorphous carbon (i.e. non aromatic system) in coal samples 

(Dun et al., 2013); b) The (002), (10) and γ-side bands of coal were also observed in all samples (see Fig. 8, following Hirsch, 

1954 and Lu et al., 2001). Importantly, Fig. 8 demonstrates an apparent difference between unsheared (S* and S0) and 

sheared (S1–S8) samples, compared to that minor or little difference was observed between the sheared samples. This 

strongly suggests the effects of shear/friction on development of molecular structure in coal. We also note that no graphite 310 

was formed after shear/friction processes. 

 

Note that in this study we assume the crystalline carbon in coal, in general, consists of graphite-like layered aromatic 

structures plus marginal aliphatic structure (Lu et al., 2001). All structural parameters for carbon crystallite obtained using 

the methods described in Sect.2.5.2 are listed in Table 3, and the representative structural parameters obtained from the 315 

samples S*–S8 were also plotted as a function of apparent steady-state shear stress associated with shear strain measured at 

shear displacement of ~5.7 mm in the direct shear experiments, as shown in Fig. 9. Specifically, the interlayer spacing (d002) 

of the layered graphite-like structure in the sheared coal gouges yields 3.47–3.53 Å, including PSZ and WDZ, which is lower 

than (d002) of 3.56–3.58 Å obtained for the unsheared samples S* and S0, as seen in Table 3 and Fig. 9a. This suggests the 

layered graphite-like structures in coal, i.e. condensed aromatic system, became more condensed after shear/friction 320 

experiments. Careful inspection of Fig. 9a also indicates a thinner interlayer spacing (d002) measured in PSZ compared to that 

measured in WDZ for most samples, suggesting the development of the layered graphite-like structures in boundary shear 

band during shear/friction processes. Similarly, the aromaticity (fa), i.e. the ratio/fraction of aromatic carbon atoms, yields 

0.44–0.49, 0.43–0.64 and 0.53–0.67 for the unsheared samples, WDZ and PSZ of the sheared samples, respectively (see 

Table 3 and Fig. 9c). This also clearly indicates the development of the condensed aromatic system in coal upon 325 

shear/friction processes. The parameter (I26/I20), representative of coal rank, accordingly increased from 1.21–1.29 to 1.33–

2.29 after the shear/friction experiments. We also note that the stacked height of crystalline carbon (i.e. Lc) in coal, as seen in 

Table 3 and Fig. 9b, clearly increased from ~13 Å to ~20 Å after the shear/friction experiments. By contrast, the diameter of 

crystalline carbon (i.e. La) decreased from 20–21 to 15–19 Å after the shear/friction experiments (see Fig. 9b). We also note 

that, for most samples, the values of Lc and La measured in WDZ lie in between that measured in the unsheared samples and 330 

PSZ of the sheared samples. In addition, it is seen from Fig. 9 that the structural parameters measured in the sheared samples, 

including PSZ and WDZ, seem to be insensitive to the applied effective normal stresses, the apparent steady-state shear 

stress and shear strain measured at shear displacement of ~5.7 mm. 
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3.4 Results of Raman spectra 

The averaged normalized spectra of all samples after smoothing and background correction is plotted in Fig. 10. The D and 335 

G bands were observed at ~1360 cm-1 and ~1600 cm-1 for all samples, respectively. Both D and G band observed in the 

sheared samples are more narrow than those observed in the unsheared samples. In addition, the D band observed in the 

sheared samples slightly shifted to the left, while the G band slightly shifted to the right, compared to those observed in the 

unsheared samples. This likely reflects an increase in maturity of coal after the shear/friction experiments. The Raman 

parameters described in Sect.2.5.3 were obtained from Fig. 10 and listed in Table 4. The Raman parameters for the samples 340 

S0 and PSZ of S1–S8 were also plotted as a function of apparent steady-state shear stress associated with shear strain 

measured at shear displacement of ~5.7 mm in the direct shear experiments, as shown in Fig. 11 a and b. It shows, in general, 

an apparent difference in the Raman parameters between the sheared coal samples (S1–S8) and the unsheared sample S0, 

suggesting the role of shear/friction. Particularly, G-FWHM values decrease from 91.3 cm-1 measured in the unsheared 

sample to 71.7–79.7 cm-1 measured in the sheared samples. RBS and SI values increase from 227.7 cm-1 and 3.27 measured 345 

in the unsheared samples to 239.3–256.7 cm-1 and 3.65–4.26 measured in the sheared samples. By contrast, we found similar 

parameter values of ID/IG for all samples, yielding 0.543–0.561, which is not sensitive to the shear deformation. It is also 

seen from Fig. 11 a and b that all Raman parameters measured in the sheared samples are not sensitive to the applied 

effective normal stress, and apparent steady-state shear stress and shear strain. Recall that we measured Raman spectra in 

WDZ only for the sample S4. We plotted the Raman parameters measured in samples S*, S0 and S4 in Fig. 11 c and d, 350 

indicating slight difference between WDZ and PSZ, as well as the difference between S* and S0. 

4 Discussion 

We have documented 8 direct shear experiments performed on simulated gouge samples prepared from natural bituminous 

coal. The experiments were conducted at a constant temperature of 100 ℃ to investigate frictional properties of coal exposed 

to DI water and vacuum dry at effective normal stress of 25–45 MPa. The experimental conditions, frictional strength and 355 

rate-dependent friction of all experiments are listed in Tables 1 and 2. All experiments show significant slip-weakening 

behaviour, from a peak friction coefficient of ~0.5 to a near steady state value of ~0.3. Post microstructure observation 

indicated the development of shear bands. In addition, XRD and Raman analysis suggest the shear deformation may change 

the molecular structure and maturity of coal in the shear bands. Furthermore, the VS experiments showed that a) little effect 

of effective normal stress on friction strength and (a-b) values were found; b) (a-b) values systemically become smaller at 360 

higher velocity steps; c) the samples exposed to DI water at a pore pressure of 15 MPa exhibited velocity strengthening 

behaviour at velocity steps of 0.1–10 µm s-1, but velocity weakening behaviour at velocity steps of 10–100 µm s-1, as 

opposed to the sample under vacuum dry that showed velocity weakening behaviour at almost all velocity steps employed in 

this study. The SHS experiment demonstrated minor frictional healing (β=0.006 ± 0.001) in a water-saturated coal gouge 

sample. In the following, we first attempt to elucidate the development of molecular structure of coal upon shear deformation. 365 
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We then discuss whether the shear-induced molecular structure change dominated the marked slip-weakening behaviour 

observed in coal gouges. We also discuss the velocity or rate dependent friction of coal. Finally, we consider, in a broad way, 

the implications of our findings for the frictional strength and (induced) seismic potential of coal-rich or organic-rich faults. 

4.1 Development of molecular structure and maturity of coal in the shear bands and its cause 

Following Lu et al. (2001), we assume our bituminous coal consists of graphite-like crystalline (i.e. a condensed aromatic 370 

system) and amorphous (i.e. non-aromatic system) forms of carbon. Our XRD results on the unsheared samples (S* and S0) 

show the structure of the graphite-like crystalline carbon in bituminous coal, yielding the interlayer spacing (d002) of ~3.56 Å, 

the crystallite diameter (Lc) of ~13.5 Å, the stacked height (La) of ~19 Å, and aromaticity (fa) of ~0.47. These parameter 

values are consistent with those of the similar bituminous coal reported by K. Li et al. (2015a), Okolo et al. (2015) and 

Zhang et al. (2015). Note that the parameter values of d002, Lc and La that were calculated using Scherrer’s equation may be 375 

larger than the real size (Lu et al. 2001), and that the presence of mineral peaks particularly in the 2θ range of 27–50° may 

also influence the fitting process (i.e. fitting Gaussian peak to (002), (γ) and (10) band), and may accordingly influence the 

accuracy of the structural parameter values. However, these influences should be consistent for all samples. We therefore 

believe the values of the structural parameters shown in Table 3 and Fig. 9 could be influenced by these factors as a systemic 

error and accordingly would not change the trend or results that we observed in Fig. 9. Furthermore, the minor standard 380 

deviations shown in the measurements on samples S*, S0 and S5 indicate a good reproduction of our XRD measurements. 

As a result, we believe that our XRD results on both unsheared and sheared samples, particularly on PSZ, indeed 

demonstrate the structure of graphite-like crystalline carbon became more uniform after the shear/friction experiments, i.e. 

d002 became smaller, while Lc, fa and I26/I20 became larger (see Fig. 9 and Table 3). This development of molecular structure 

likely reflects an increase in maturity of the coal samples after the shear/friction experiments, which is in good agreement 385 

with our observations from Raman spectra. As is known that many Raman parameters are correlated with maturity index 

(such as vitrinite reflectance (VR) and total fixed carbon), and the correlations are widely reported (Wilkins et al., 2014; 

Schito et al., 2017; Henry et al., 2018, 2019; Zhang and Li, 2019). Generally, G-FWHM, D-FWHM and ID/IG are negatively 

related to measured %VR, while RBS and saddle index are opposite. To better illustrate the change in coal maturity upon 

shear/friction experiments from our Raman spectra, we plotted two representative correlations between Raman parameters 390 

and maturity reported by Henry et al. (2019b) in Fig. 11a, i.e. G-FWHM vs. VR and RBS vs. VR. It is clearly seen in Fig. 

11a that the apparent differences in Raman parameters (G-FWHM and RBS) between the sheared and unsheared samples 

show that the coal maturity was improved after the shear/friction experiments. We also note that the petrological and 

chemical analyses showed our coal sample has a vitrinite reflectance of 0.77 ± 0.05 %, which is larger than the values of VR 

of the unsheared sample S* (~0.6) and S0 (~0.4–0.5) obtained from the correlations shown in Fig. 11a. This suggests it 395 

would be difficult to quantitively determine the maturity increase upon the shear/friction process using these correlations 

between Raman parameters and VR. Nonetheless, these correlations shown in Fig. 11a, we believe, have demonstrated that 
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the Raman parameters can reflect coal maturity change, and once again, the change in Raman parameters accordingly 

indicates an increase in coal maturity upon shear/friction experiments.  

 400 

We now attempt to elucidate the likely mechanisms responsible for the development of molecular structure and maturity of 

coal during the shear/friction process. It is well known that molecular structure and maturity of coal would be changed under 

conditions of high temperature and pressures at a geological timescale during metamorphism (Bonijoly et al., 1982; Oberlin, 

1984; Buseck and Huang, 1985; Buseck and Beyssac, 2014). Research on pyrolysis of bituminous coal showed that, when 

temperature is below ~200 ℃, volatilization of small molecules and slight breaking of aliphatic chains would occur to 405 

produce only trace amounts of gas (e.g. CO and/or CH4), while above ~300–400 ℃, the amount of most functional groups 

would decrease rapidly with the cracking of C-H bonds and C-C bonds, generating much gas (Öztaş and Yürüm, 2000; Zhao 

et al., 2007; Niu et al., 2016; Kaneki et al., 2018). Besides, high resolution TEM, Raman spectroscopy and FTIR analysis 

performed on the tectonically deformed coals, which often accumulate many shear strains associated with strain energy, 

suggest that tectonic deformation can improve the ordering of aromatic structure and reduce the content of hydrogen and 410 

oxygen (Ju et al., 2005; Cao et al., 2007; Xu et al., 2014; Pan et al., 2017; Song et al., 2018). Therefore, returning to our 

experiments, under the PT conditions employed (i.e. 25–45 MPa effective normal stress and 100 ℃), we believe, the 

molecular structure of bituminous coal is very unlikely to be changed over hours without the shear/friction process (Hou et 

al., 2014; Xu et al., 2014). Moreover, the slip rates (0.1–100 µm s-1) employed in our experiments means the development of 

molecular structure and maturity due to sample-scale frictional heating effects seen in high-velocity friction experiments can 415 

be eliminated (Rice, 2006; Di Toro et al., 2011; Aharonov and Scholz, 2018). In addition, we infer that flash heating 

mechanisms reported by Kaneki and Hirono (2019) may play little or minor role, as the structural and Raman parameters are 

both insensitive to applied effective normal stress. As a result, we infer that the improvement of molecular structure and 

maturity observed in our experiments is caused by shear deformation (i.e. strain localization in the shear bands) associated 

with strain energy (Hou et al., 2017). Similarly, an improvement of molecular structure of anthracite coal was also observed 420 

in the creep compaction experiments at axial strain rates of 1.3×10-6–1.3×10-4 s-1, performed at a confining pressure of 500 

MPa and at temperatures of 300–600 ℃ (Ross et al. (1990; 1991). Ross and co-authors (1990; 1991), based on TEM 

observations on the deformed samples, found that stacks of aromatic layers in coal became more ordered and was 

progressively aligned in the plane of flattening during deformation, i.e. the organization of crystalline carbon was 

significantly improved during the deformation, but not enough to form graphite. Aside from creep compaction experiments, 425 

Bustin et al. (1995a, 1995b) also performed simple shear experiments at a confining pressure of 0.8 or 1 GPa on bituminous 

and anthracite coal at temperatures of 400–900 ℃ employing shear strain rates of 1×10-5–1×10-6 s-1, as opposed to our shear 

strain rates of ~1×10-4–1×10-1 s-1 and PT conditions. They found, only for the sheared samples, graphite was formed from 

bituminous coal initially at 800 ℃ and commonly at 900 ℃ while from anthracite coal initially at 600 ℃ and commonly at 

900 ℃. Similar findings were also reported by Wilks et al. (1993). They all suggest that the improvement of molecular 430 

structural in coal observed at relative low PT conditions and at lab time scales was caused by the shear strain that can largely 
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lower the activation energy for graphitization process of coal (Ross and Bustin, 1990; Ross et al., 1991; Wilks et al., 1993; 

Bustin et al., 1995a, 1995b). This shear-induced (or strain-induced) graphitization process as a mechanism, from a point 

view of microstructure, may mainly consist of a) promoting preferred orientation and the rearrangement of aromatic 

structure systems; b) favoring the motion and modulation of structural defects in order to produce a highly ordered graphite 435 

structure (e.g. Beyssac et al., 2002; Wang et al., 2019). 

4.2 Mechanisms causing slip weakening 

All of our experiments have shown a marked slip weakening behaviour of coal at initial displacement of ~1–2 mm (Fig. 3), 

i.e. friction coefficient decreased from a peak value approaching ~0.5 to a near steady state value around only 0.3. Similar 

slip weakening behaviour was also observed on simulated coal-shale gouges when coal content ≥50 vol% under similar 440 

experimental conditions (Liu et al., submitted). Recall that mineral content in our coal samples is ~5 % only. This all 

suggests the presence of minerals should play little role in controlling this significant slip-weakening behaviour. Moreover, 

the temperature and sliding rates employed in our experiments, together with our XRD results, mean that lubrication effects 

(Di Toro et al., 2011) due to sample-scale frictional heating and graphitization effects widely seen in high-velocity friction 

experiments (e.g. Oohashi et al., 2011) can be eliminated. In addition, this marked slip-weakening behaviour was observed 445 

in both samples under vacuum dry and samples exposed to DI water at 15 MPa. This suggests that local overpressure effects 

of DI pore water as a mechanism (e.g. Faulkner et al., 2018) can be eliminated. On the other hand, our microstructure 

observations on the deformed gouges shown in Fig. 6 and 7 indicate the development of R-, B-, Y- shear bands. Following 

Logan et al. (1992), strain localization in shear bands may be one of mechanisms responsible for this slip-weakening 

behaviour of coal. Importantly, our XRD and Raman analysis on the PSZ of the sheared samples suggest the crystallinity 450 

was improved in the shear bands upon strain localization associated with strain energy (also see Sect.4.1). As reported by 

Oohashi et al. (2011), the peak and steady-state friction of amorphous carbon at low slip rates yields ~0.5 while graphite 

yields ~0.1, suggesting molecular structure of carbon may play a significant role in controlling frictional properties. Recall 

that our XRD showed that no graphite was formed after friction experiments. We therefore infer the improvement of 

crystallinity in coal may dominate the steady-state friction of coal approaching ~0.3, which lies in between the steady-state 455 

friction of amorphous carbon and graphite. As a result, this all suggests that the marked slip-weakening behaviour of coal 

could largely be attributed to both the development of R-, B- and Y- shear bands and an increase in crystallinity of coal in 

the shear bands upon strain localization. However, we also note that little amounts of gas (e.g. CO and/or CH4) might be 

produced, in potential, upon volatilization of small molecules and slight breaking of aliphatic chains during shear 

deformation. It still yet remains unknown whether this process occurred in our experiments and how this process would 460 

influence the slip-weakening behaviour.  
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4.3 Velocity dependence of friction 

Our velocity stepping (VS) experiments, from an RSF point view, indicate sliding velocity and pore fluids play roles in rate 

dependence of friction of coal (see Fig. 4b). In attempt to better illustrate these effects, we plot the (a-b) values obtained 

from the experiments S2–S7 against up-step sliding velocity shown in Fig. 12. Careful inspection of Fig. 12 shows a clear, 465 

systematic tendency for a transition from velocity strengthening to velocity weakening, regardless of the experimental 

conditions employed in this study. Interestingly, the transition occurs at a slip rate of ∼10 µm s-1 in samples S3–S7 exposed 

to DI water at 15 MPa, but may occur at a slip rate of ~1 µm s-1 in the sample S2 under vacuum dry condition. As this 

transition from velocity strengthening to velocity weakening is seen both in vacuum dry samples and in samples exposed to 

pore water at 15 MPa, we infer that the local fluid overpressure effects (e.g. Faulkner et al., 2018) may play little or minor 470 

role. On the other hand, we note that, unlike mineral gouges, coal exhibits marked stress-strain-sorption behaviour when 

exposed to water or/and gas (Liu et al., 2016, 2018). This behaviour leads to swelling/shrinkage strains that strongly depend 

on chemical activity (pressure) of the adsorbing fluid as well as on the Terzaghi effective stress supported by the solid grain 

framework. Such effects could conceivably result in competition between compaction and dilatation during shearing of coal 

gouge, leading to a complex rate-dependence of friction similar to that produced by competition between dilatant granular 475 

flow and compaction by pressure solution seen in mineral gouges (Niemeijer and Spiers, 2007; Chen and Spiers, 2016). In 

the following, we attempt to determine whether the above mechanism proposed by Chen, Niemeijer and Spiers can logically 

explain the observed transitions.   

 

We first focus on the coal sample under vacuum dry condition, in which the transition from velocity strengthening to 480 

weakening occurred at a sliding velocity of ~1 µm s-1. This, following Niemeijer and Spiers (2007), suggests that for the 

vacuum dry coal, the rate of compaction was similar to the dilatation rate during shear deformation at the imposed sliding 

velocities of ~1–100 µm s-1. This may be reasonable, because our XRD results as well as the experimental results reported 

by the literatures (Ross and Bustin, 1990; Ross et al., 1991) suggest that shear deformation (strain) changes the coal 

molecular structure so that stacks of aromatic layers become more uniformly packed, thus enhancing the rate of compaction 485 

to the same order as the rate of the dilatation process at sliding velocities >~1 µm s-1. By contrast, compared to vacuum dry 

coal, the presence of water may largely increase the compaction rate, by 1–2 orders, because pore water may activate or 

enhance a) permanent time-dependent compaction (creep) seen in the oedometer-type uniaxial compaction experiments, b) 

the thermodynamic effect of a stress-driven reduction in water sorption capacity and associated compaction, and c) stress-

driven closure of transport paths within the coal particle (Liu et al., 2018). In this case, enhanced compaction rates in the wet 490 

coal samples compared to vacuum dry samples may dominate the competition against dilation at sliding velocities of ~1–10 

µm s-1, thus promoting velocity strengthening. As a result, our present study suggests the microphysical model developed by 

Chen, Niemeijer and Spiers (Niemeijer and Spiers, 2007; Chen and Spiers, 2016) may logically explain the observed rate 

dependence of friction. However, other mechanisms cannot be completely eliminated. More research is needed for a better 
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understanding of such behaviour, for example experiments employing a broader range of slip rates, or investigation of the 495 

effects of the compaction rate of coal exposed to different pore fluids. 

 

In addition, we note, from our previous direct shear experiments performed on simulated coal-shale fault gouges under 

similar PT conditions (see Liu et al., submitted), that the 50:50 volume fraction coal-shale mixtures exhibited a tendency for 

a transition from velocity weakening to velocity strengthening at a sliding velocity of ~10 µm s-1, as opposed to pure coal 500 

samples reported here. This strongly suggests that the presence of mineral phases may play a significant role in rate-

dependence of friction of coal-rich faults. 

4.4 Implications for frictional strength and seismic potential of coal-rich faults 

Our experiments demonstrate that bituminous coal exhibits significant slip-weakening at an initial displacement of ~1–2 mm, 

when a sliding velocity of 1 µm s-1 is imposed under both dry and wet conditions, at a temperature of 100 ℃ and effective 505 

normal stress of 25–45 MPa. Post-test analysis suggests this marked slip-weakening was caused by the development of strain 

localization in shear bands, accompanied by the improvement of the organization of molecular structure and accordingly of 

coal maturity. Similar slip weakening behaviour associated with coal-rich shear bands was also observed on simulated coal-

shale gouges when coal content ≥ 50 vol%, under similar PT conditions at sliding velocities of 0.1–100 µm s-1 (Liu et al., 

submitted). This suggests that this marked slip weakening of coal may play a role in promoting unstable slip of coal or coal-510 

rich faults, i.e. facilitating accelerating fault slip and earthquake nucleation in coal-rich fault segments, given appropriately 

low stiffness of the surrounding rock volume. However, the shear-unload-reshear experiments performed by Liu et al. 

(submitted) on 50:50 volume fraction coal-shale mixtures suggest that significant slip-weakening occurs only in previously 

unsheared material in which coal rich shear bands have yet to develop (Logan et al., 1992; Marone, 1998). This suggests that 

slip-weakening may not be prone to occur on coal-rich faults at the low slip velocities associated with rupture nucleation, as 515 

previous tectonic displacements have potentially exceeded the 1–2 mm slip weakening distance observed in our experiments. 

This is highly uncertain, however, since diagenetic processes in faults during periods of no slip may rework the gouge fabric, 

so that renewed slip weakening may occur upon reactivation. On the other hand, marked slip-weakening may occur in coal 

seams when new fractures are produced upon failure of the intact material, caused by underground coal mining or (enhanced) 

coalbed methane recovery operations. In addition, our SHS experiment shows minor healing (restrengthening) effects of 520 

bituminous coal, with transient peak healing in friction increasing with the logarithm of hold time (s) at a linearized rate of 

only ~0.006. This healing rate would become even smaller when adding 50 vol% shale (see Liu et al. submitted). Post-

healing slip weakening effects are correspondingly minor, compared with healing rates typically measured in quartz or 

carbonate gouges (Nakatani and Scholz, 2004; Chen et al., 2015). We accordingly expect minor or little effect of healing on 

frictional strength of coal-coal or coal-rich faults, even after geological periods of healing, which again points to very limited 525 

scope for slip weakening and seismogenic rupture nucleation in the case of fault reactivation. Besides slip weakening effects, 

we note that the near steady-state friction strength of coal yields ~0.3, which is insensitive to pore fluids and effective normal 

https://doi.org/10.5194/se-2020-43
Preprint. Discussion started: 9 April 2020
c© Author(s) 2020. CC BY 4.0 License.



18 
 

stresses employed in this study. This suggests the mechanical heterogeneity caused by weak coal-coal and coal-smear 

patches may also play a role in promoting instability of faults (Tembe et al., 2010; Kohli and Zoback, 2013; Buijze et al., 

2017; Kaneki and Hirono, 2019).  530 

 

Our VS experiments demonstrate a transition from velocity strengthening to velocity weakening at a slip rate of ~10 µm s-1 

for wet coal at 15 MPa pore water pressure, while this occurs at ~1 µm s-1 for vacuum dry coal. We inferred this transition 

was caused by competition between dilatant granular flow and compaction by stress-strain-sorption behaviour of coal. We 

note that this rate dependent friction of coal, observed at subseismic slip velocities, may be changed by adding other 535 

minerals (e.g. coal-shale mixtures reported by Liu et al., submitted), as the dilatation/compaction processes and accordingly 

their competition will be changed. Therefore, whether coal-coal or smeared out coal-rich fault patches exhibit slip-

weakening behaviour, potentially causing seismogenic rupture nucleation (Scholz, 2019), remains an open question for a 

given fault.  

5 Conclusions 540 

This paper has investigated frictional properties of simulated bituminous coal gouges under (near) in situ conditions of 100 ℃ 

and 25–45 MPa effective normal stresses, employing sliding velocities of 0.1–100 µm s-1. We determined the rate 

dependence of friction following RSF theory. In addition, frictional healing effects of coal were investigated by performing a 

single slide-hold-slide experiment with hold durations in the range 300 to 30000 s. Microstructures of the deformed gouges 

were investigated and the development of molecular structure of coal was analyzed using XRD and Raman spectroscopy. 545 

The likely mechanisms controlling the frictional behaviour were then discussed. The main findings are summarized as 

follows: 

1. All simulated coal gouges show marked slip weakening behaviour, from a peak friction coefficient approaching 

~0.5 to a near steady state value around only ~0.3, regardless of the applied effective normal stress (25–45 MPa) or 

the presence of water (at 15 MPa pore pressure) versus vacuum dry conditions. 550 

2. Microstructural observations, performed on the sheared samples using optical microscopy and SEM, show that all 

coal gouges have developed a principal boundary slip zone with marked stack-layer structure, and a weakly 

deformed zone. A single sample (S5) shows clear R- and Y- shear bands. This suggests strain localization in the 

shear bands of coal gouge. 

3. The crystal structure of the coal samples was investigated using XRD. Our results showed that a) no graphite was 555 

formed due to shearing/friction processes; b) following shear deformation, the interlayer spacing of graphite-like 

structure (d002) decreased from ~3.57 to 3.47–3.53, while the stacked height (Lc) and aromaticity (fa) increased from 

~13 Å to ~20 Å and from 0.44–0.49 to 0.53–0.67, respectively. This suggests an improvement in crystallinity of the 
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sheared coal samples, which may be caused by strain localization associated with strain energy developed in the 

shear bands.  560 

4. Raman spectroscopy showed that a) D and G bands were present in all samples at ~1360 cm-1 and ~1600 cm-1, 

respectively; b) both D and G bands observed in the sheared samples are more narrow than those observed in the 

unsheared samples; c) G-FWHM values decreased from 91.3 cm-1 to 71.7–79.7 cm-1 following shear deformation, 

while RBS and SI values increased from 227.7 cm-1 to 239.3–256.7 cm-1 and from 3.27 to 3.65–4.26, respectively. 

This all indicates an increase of coal maturity, which is in good agreement with our XRD results. 565 

5. On the basis of above findings of 2–4, we suggest that the marked slip-weakening behaviour of coal could largely 

be attributed to the development of R-, B- and Y- shear bands, i.e. strain localization in shear bands, accompanied 

by the improvement of crystallinity and maturity of coal. 

6. From an RSF point of view, our VS experiments show a transition from velocity strengthening to velocity 

weakening at slip velocity of ~1 μm s-1 in the coal sample under vacuum dry condition, but at ~10 μm s-1 in coal 570 

samples exposed to DI water at 15 MPa pore pressure. This may be dominated by competition between dilatant 

granular flow and compaction enhanced by the presence of water. 

7. The single SHS experiment revealed transient peak healing (restrengthening) which increased log-linearly with hold 

time at a rate of ~0.006, demonstrating minor time-dependent healing. 

8. Our findings, together with our previous research on frictional properties of coal-shale mixtures, suggest that the 575 

rather marked slip weakening of coal may not be prone to occur on pre-existing coal-rich faults with a well-

developed, localized internal structure, at least for low slip velocities associated with rupture nucleation, but may 

occur in coal seams when failure or new fractures are produced by underground coal mining or (enhanced) coalbed 

methane recovery. Such behaviour may lead to accelerating slip and the associated possible seismic hazard. Based 

on our single SHS experiment, healing is expected to play only a minor role in the frictional strength evolution of 580 

coal-rich faults, even for geological time scales, which again points to very limited scope for slip weakening and 

seismogenic rupture nucleation in the case of fault reactivation. In addition, the rate dependence of friction observed 

in coal gouges may change due to the addition of other minerals (e.g. coal-shale mixtures), which suggests that the 

seismogenic potential of coal-bearing faults, via slip-weakening behaviour, remains an open question for a given 

fault. 585 
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Table 1. List of experiments, experimental conditions and key mechanical data. VS = velocity stepping, SHS = slide-hold-slide. 
Note that all experiments reported here were performed at ~100 ℃. μpeak represents the peak friction coefficient obtained at 0.5–
0.75 mm shear displacement, μss1 and μss2 represent the near steady-state friction coefficient obtained at ~2.2 mm and ~5.7 mm 
shear displacement respectively. Dtot represents the total shear displacement. t0 and t represent the thickness of the gouge layer 
measured before and after the experiments, respectively. τss2 and ε represent the steady-state shear stress and shear strain 
measured at the shear displacement of ~5.7 mm and the latter equals to 5.7 divided by initial thickness t0. 

Exp./ 
Sam. 

σn Pf μpeak μss1 μss2 Dtot V t0 t τss2 ε 

[MPa] [MPa] [-] [-] [-] [mm] [μm s-1] [mm] [mm] [MPa] [-] 
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S* * *          
S0 20 *          
VS            
S1 40 0 0.494 0.327 0.295 6.201 0.1–100 1.03 0.93 11.73 5.56 
S2 40 0 0.465 0.278 0.244 5.563 0.1–100 0.92 0.75 9.62 6.16 
S3 40 15 0.524 0.338 0.282 5.602 0.1–100 1.00 0.75 6.87 5.70 
S4 50 15 N/A 0.279 0.253 6.183 0.1–100 1.18 0.83 8.78 4.85 
S5 55 15 0.441 0.258 0.228 5.766 0.1–100 0.90 0.65 8.91 6.33 
S6 55 15 0.485 0.293 0.256 6.010 0.1–100 0.90 0.73 10.14 6.33 
S7 60 15 0.454 0.273 0.245 5.750 0.1–100 1.00 0.80 10.85 5.70 

SHS            
S8 55 15 0.460 0.275 0.244 6.057 1 1.00 0.80 9.64 5.70 

S* represents the starting, loose coal powders without pre-compaction process. 
S0 represents the compacted coal gouge layer only, i.e. without the shear deformation. 
S* and S0 are used as the control samples for XRD and Raman tests, in an attempt to determine the effects of shear deformation on 
molecular structure of carbon in coal. 
N/A: This value is missing. 
 810 

 

Table 2. Summary of RSF data for all velocity-stepping experiments reported in this paper. 

Sam./Steps V0 [μm s-1] V [μm s-1] a-b [-] a [-] b [-] Dc [mm] 

S1             
V_step1 0.1 1 N/A N/A N/A N/A 
V_step2 1 10 -0.0055 0.0051 0.0094 0.0074 
V_step3 10 100 N/A N/A N/A N/A 
S2             
V_step1 0.1 1 0.0001 0.0030 0.0029 0.0029 
V_step2 1 10 -0.0018 0.0028 0.0047 0.0120 
V_step3 10 100 -0.0047 0.0629 0.0676 0.0440 
S3             
V_step1 0.1 1 N/A N/A N/A N/A 
V_step2 1 10 0.0010 0.0034 0.0024 0.0032 
V_step3 10 100 -0.0042 0.0637 0.0679 0.0370 
S4             
V_step1 0.1 1 0.0061 0.0128 0.0067 0.0014 
V_step2 1 10 0.0012 0.0043 0.0031 0.0101 
V_step3 10 100 -0.0012 0.3271 0.3283 0.0578 
S5             
V_step1 0.1 1 0.0052 0.0327 0.0276 0.0014 
V_step2 1 10 -0.0019 0.0057 0.0076 0.0364 
V_step3 10 100 -0.0049 0.1008 0.1057 0.0436 
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S6             
V_step1 0.1 1 0.0135 0.0470 0.0336 0.0071 
V_step2 1 10 0.0009 0.0039 0.0030 0.0134 
V_step3 10 100 -0.0008 0.0091 0.0099 0.0234 
S7             
V_step1 0.1 1 0.0014 0.0047 0.0033 0.0067 
V_step2 1 10 0.0001 0.0029 0.0028 0.0143 
V_step3 10 100 -0.0054 0.4209 0.4264 0.0586 

N/A: This value cannot be obtained as the fitting quality is low. 
 
 

Table 3. Coal crystal structure parameters determined from XRD profiles.  

Sam. 2θ002 
[°] 

2θ10 
[°] 

β002 
[°] 

β10 
[°] 

d002 
[Å] 

Lc 
[Å] 

La 
[Å] I26/I20 ƒa 

 
S* 

24.81 43.59 5.81 8.94 3.58 
±0.01 

14.26 
±0.59 

20.22 
±0.92 

1.29 
±0.10 

0.44 
±0.04 24.93 43.59 5.48 8.38 

S0 
25.02 43.72 6.10 8.13 3.56 

±0.01 
12.87 
±0.45 

21.46 
±0.09 

1.21 
±0.03 

0.49 
±0.03 24.94 43.80 6.41 8.18 

P 
S 
Z 

S1 25.57 44.73 3.88 11.79 3.48 20.76 14.90 1.72 0.56 

S3 25.25 43.96 5.28 9.13 3.52 15.25 19.18 1.33 0.53 

S4 25.62 44.17 3.77 11.04 3.47 21.37 15.88 1.76 0.56 

S5 
25.46 44.30 3.92 10.82 3.49 

±0.00 
20.22 
±0.46 

15.97 
±0.34 

2.23 
±0.00 

0.67 
±0.00 25.51 44.30 4.05 11.15 

S7 25.57 44.36 4.06 10.58 3.48 19.84 16.58 1.96 0.61 

S8 25.21 43.82 5.18 9.10 3.53 15.54 19.24 1.69 0.61 

W 
D 
Z 

S1 25.22 44.17 4.61 10.96 3.53 17.46 15.99 2.11 0.64 

S3 25.55 43.80 4.51 9.52 3.48 17.86 18.39 1.51 0.51 

S4 25.34 44.11 4.49 8.97 3.51 17.93 19.54 2.29 0.63 

S5 25.40 43.97 4.55 10.77 3.50 17.70 16.26 1.58 0.54 

S7 25.28 44.21 4.65 7.74 3.52 17.31 22.65 1.98 0.60 

S8 25.54 43.67 4.27 10.27 3.48 18.86 17.04 1.16 0.43 
PSZ and WDZ represent principal boundary slip zone and weakly deformed zone retrieved from the sheared samples. 
Note that the parameter for Sample S*, S0 and S5 are mean values, associated with standard deviation, obtained from the reproducible 
tests.  
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Table 4. Parameters obtained from normalized Raman spectra using the method reported by Henry et al. (2018). 

Sam.  S* S4* S0 S1 S2 S3 S4 S5 S6 S7 S8 

D Position 
[cm-1] 

1368 1354 1369 1359 1364 1361 1362 1361 1352 1348 1347 
Stdev / 10.1 7.0 8.5 1.5 7.5 8.7 2.5 8.4 2.9 3.0 
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D-FWHM 
[cm-1] 

N/A N/A N/A 209.4 N/A N/A N/A N/A N/A 217.3 201.3 
Stdev / N/A N/A 7.7 N/A N/A N/A N/A N/A 4.6 10.1 

G position 
[cm-1] 

1601 1601 1597 1603 1601 1601 1602 1601 1603 1601 1604 
Stdev / 0.0 3.5 1.5 0.0 0.0 1.2 0.6 1.7 0.6 0.6 

G-FWHM 
[cm-1] 

84.0 78.0 91.3 73.9 77.7 79.0 79.7 78.0 77.0 77.3 71.7 
Stdev / 4.6 4.5 4.4 0.6 2.6 4.0 1.0 6.3 0.6 3.5 
RBS 

[cm-1] 
233.0 246.7 227.7 244.5 237.3 240.0 239.7 239.3 250.5 252.3 256.7 

Stdev / 10.1 10.3 9.8 1.5 7.5 9.2 3.1 10.1 3.2 3.1 
ID/IG 

/ 
0.540 0.548 0.543 0.553 0.555 0.561 0.543 0.553 0.553 0.552 0.551 

Stdev / 0.024 0.004 0.009 0.006 0.014 0.006 0.013 0.019 0.011 0.003 
SI 

/ 
3.70 3.84 3.27 4.26 3.65 3.78 3.76 3.65 3.75 3.79 4.08 

Stdev / 0.65 0.34 0.32 0.10 0.33 0.09 0.08 0.30 0.10 0.13 
S4* represents the weakly deformed zone of sample S4. 
N/A: This value cannot be obtained due to the limitations of the processing method described in Sect.2.5.3. 
 

 

 
Figure 1: Post treatment of the recovered fragments used for microstructural observation, XRD and Raman spectroscopy. (a) 
Stored loose fragments. (b) The free surface of the unsheared sample S0 that was glued on a glass slide. (c) The slip surface of the 820 
sample S7, showing the surface of principal slip zone (PSZ) and of weakly deformed zone (WDZ). 
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Figure 2: Fitting curves in X-ray diffraction pattern for the sample S1. 

 825 

 
Figure 3: Frictional properties of the samples S1–S7 obtained from the velocity stepping experiments. (a) Apparent coefficient of 
friction (μ) against shear displacement. (b) Apparent coefficient of friction (μ) against applied stress (𝝈𝝈𝒏𝒏,𝑷𝑷𝒇𝒇). 
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 830 
Figure 4: (a) Results of experiment S6, illustrating the best fitting of a full RSF law to the experimental data obtained at velocity 
step from 10 to 100 μm s-1. (b) (a-b) values, obtained from upward velocity steps using a full RSF fit, versus applied stress (𝝈𝝈𝒏𝒏,𝑷𝑷𝒇𝒇). 

 

 
Figure 5: Slide-hold-slide experimental data for sample S8 tested at a pore fluid pressure of 15 MPa and a confining pressure of 55 835 
MPa. (a) Friction coefficient versus shear displacement, showing slide-hold-slide testing sequence. (b) Transient peak healing or 
post-hold frictional restrengthening plotted as a function of the logarithm of hold time. The black solid squares represent the 
experimental data derived from (a).  

 

https://doi.org/10.5194/se-2020-43
Preprint. Discussion started: 9 April 2020
c© Author(s) 2020. CC BY 4.0 License.



32 
 

 840 
Figure 6: Microstructure of samples S1, S5 and S6 after shear deformation. (a) and (b) were imaged using optical microscope in a 
reflected light mode, while (c) was imaged using SEM in secondary electron mode. (a) The shear surface of sample S6, showing 
highly reflective (mirrorlike) slip surface. (b) The cross-section of sample S1 in an orientation parallel to the shear direction, 
indicating a principal slip zone (PSZ) and a weakly deformed zone (WDZ). (c) The cross-section of sample S5 in an orientation 
parallel to the shear direction, showing the development of first R shear, and then boundary and Y shear bands.  845 
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Figure 7: SEM secondary electron images of the samples S4 (a, b, c, f) and S5 (d, e) after direct shear experiments and EDS data (g) 
for the representative spots. (a) Randomly oriented coal grain with slide stripes in the WDZ, located in the cross-section of S4. (b) 850 
The fractures inside the coal grain shown in (a). (c) Fractures inside coal grains to form crushed particles. (d) The central region of 
shear surface of sample S5, showing cracks and slide stripes. (e) Small coal particles (<~10 μm) in the broken edge of shear surface. 
(f) Remarkable layered structure at the margins of slip zone, likely reflecting an interaction between PSZ and WDZ and the role of 
PSZ during friction process. (g) EDS data for three spots located in S4, roughly showing the elemental composition. 

 855 

 
Figure 8: X-ray diffractograms for starting coal powder S*, pre-compacted coal (unsheared) sample S0, and sheared samples S1–
S8 except S2 and S6. The minor peaks are marked by possible minerals using points. The red and black lines represent XRD 
profile for samples retrieved from the principal boundary slip zone (PSZ) and the weakly deformed zone (WDZ). Note that the 
intensity for sample S* was reduced by ten times to a comparable scale. 860 
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Figure 9: Representative crystal structure parameters obtained from the samples S*–S8 versus apparent steady-state shear stress 
associated with shear strain measured at shear displacement of ~5.7 mm in the direct shear experiments. Note that * and # 
represent coal powder S* and the pre-compacted sample S0 without shearing. Note that solid and hollow squares or triangles 865 
represent the values for the PSZ and WDZ retrieved from the sheared samples, respectively. The error bars for samples S*, S0 
and S5 are the standard deviations. 
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Figure 10: The processed Raman spectra of coal samples, showing the spectra differences between unsheared samples (S* and S0) 870 
and sheared samples (S1–S8). Note that different colors mean different experimental conditions and S4* represents the weakly 
deformed zone of the sample S4. Some important parameters were marked according to Henry et al. (2018). 
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Figure 11: Representative Raman parameters as a function of apparent steady-state shear stress associated with shear strain 875 
measured at shear displacements of ~5.7 mm, plotted in (a) and (b). Note that the relation of G-FWHM vs. vitrinite reflectance and 
of RBS vs. vitrinite reflectance plotted in (a) were obtained from Henry et al. (2019). (c) and (d) show the difference of Raman 
parameters between S*, S0, S4-PSZ and S4-WDZ. The error bars are the standard deviations.  
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 880 
Figure 12: (a-b) values obtained from the experiments S2–S7 versus up-step velocity, showing a transition from velocity 
strengthening to velocity weakening.  
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