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ABSTRACT

A geochemical comparison of Early Palaeozoic felsic magmatic episodes throughout
the south-western European margin of Gondwana is made, and includes (i) Furongian—
Early Ordovician (Toledanian) activies recorded in the Central Iberian and Galicia-Tras-
0s-Montes Zones of the Iberian Massif, and (ii) Early—Late Ordovician (Sardic) activities
in the eastern Pyrenees, Occitan Domain (Albigeois, Montagne Noire and Mouthoumet
massifs) and Sardinia. Both phases are related to uplift and denudation of an inherited
palaeorelief, and stratigraphically preserved as distinct angular discordances and
paraconformities involving gaps of up to 22 m.y. The geochemical features of the
Toledanian and Sardic, felsic-dominant activies point to a predominance of magmatic
byproducts derived from the melting of metasedimentary rocks, rich in SiO, and K,O
and with peraluminous character. Zr/TiO,, Zr/Nb, Nb/Y and Zr vs. Ga/Al ratios, and
REE and ¢Nd; values suggest the contemporaneity, for both phases, of two
geochemical scenarios characterized by arc and extensional features evolving to
distinct extensional and rifting conditions associated with the final outpouring of mafic
tholeiitic-dominant lava flows. The Toledanian and Sardic magmatic phases are linked
to neither metamorphism nor penetrative deformation; on the contrary, their
unconformities are associated with foliation-free open folds subsequently affected by
the Variscan deformation. The geochemical and structural framework precludes
subduction generated melts reaching the crust in a magmatic arc to back-arc setting,
but favours partial melting of sediments and/or granitoids in a continental lower crust
triggered by the underplating of hot mafic magmas related to the opening of the Rheic

Ocean.

Keywords: granite, orthogneiss, geochemistry, Cambrian, Ordovician, Gondwana.
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1. Introduction

A succession of Early—Palaeozoic magmatic episodes, ranging in age from Furongian
(former “late Cambrian”) to Late Ordovician, is widespread along the south-western
European margin of Gondwana. Magmatic pulses are characterized by preferential
development in different palaeogeographic areas and linked to the development of
stratigraphic unconformities, but they are related to neither metamorphism nor
penetrative deformation (Gutiérrez Marco et al., 2002; Montero et al., 2007). In the
Central Iberian Zone of the Iberian Massif (representing the western branch of the
Ibero-Armorican Arc; Fig. 1A-B), this magmatism is mainly represented by the Ollo de
Sapo Formation, which has long been recognized as a Furongian—Early Ordovician
(495-470 Ma) assemblage of felsic-dominant volcanic, subvolcanic and plutonic
igneous rocks. This magmatic activity is contemporaneous with the development of the
Toledanian Phase, which places Lower Ordovician (upper Tremadocian—Floian) rocks
onlapping an inherited palaeorelief formed by Ediacaran—Cambrian rocks and involving
a sedimentary gap of ca. 22 m.y. This unconformity can be correlated with the
“Furongian gap” identified in the Ossa-Morena Zone of the Iberian Massif and the Anti-
Atlas Ranges of Morocco (Alvaro et al., 2007, 2018; Alvaro and Vizcaino, 2018;
Sanchez-Garcia et al., 2019), and with the “lacaune normande” in the central and
North-Armorican Domains (Le Corre et al., 1991).

Another felsic-dominant magmatic event, although younger (Early—Late Ordovician)
in age, has been recognized in some massifs situated along the eastern branch of the
Variscan Ibero-Armorican Arc, such as the Pyrenees, the Occitan Domain and Sardinia
(Fig. 1A, C-E). This magmatism is related to the Sardic unconformity, where
Furongian—Lower Ordovician rocks are unconformably overlain by those attributed to
the Sandbian—lower Katian (former Caradoc). The Sardic Phase is related to a

sedimentary gap of ca. 16-20 m.y. and geometrically ranges from 90° (angular
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discordance) to 0° (paraconformity) (Barca and Cherchi, 2004; Funneda and Oggiano,
2009; Alvaro et al., 2016, 2018; Casas et al., 2019).

Although a general consensus exists to associate this Furongian—Ordovician
magmatism with the opening of the Rheic Ocean and the drift of Avalonia from
northwestern Gondwana (Diez Montes et al., 2010; Nance et al., 2010; Thomson et al.,
2010; Alvaro et al., 2014a), the origin of this magmatism has received different
interpretations. In the Central lberian Zone, for instance, several geodynamic models
have been proposed, such as: (i) subduction-related melts reaching the crust in a
magmatic arc to back-arc setting (Valverde-Vaquero and Dunning, 2000; Castro et al.,
2009); (ii) partial melting of sediments or granitoids in a continental lower crust affected
by the underplating of hot mafic magmas during an extensional regime (Bea et al.,
2007; Montero et al., 2009; Diez Montes et al.,, 2010); and (iii) post-collisional
decompression melting of an earlier thickened continental crust, and without significant
mantle involvement (Villaseca et al., 2016). In the Occitan Domain (southern French
Massif Central and Mouthoumet massifs) and the Pyrenees, Marini (1988), Pouclet et
al. (2017) and Puddu et al. (2019) have suggested a link to mantle thermal anomalies.
Navidad et al. (2018) proposed that the Pyrenean magmatism was induced by
progressive crustal thinning and uplift of lithospheric mantle isoterms. In Sardinia,
Oggiano et al. (2010), Carmignani et al. (2001), Gaggero et al. (2012) and Cruciani et
al. (2018) have suggested that a subduction scenario, mirroring an Andean-type active
margin, caused the main Mid—Ordovician magmatic activity. In the Alps, the Sardic
counterpart is also interpreted as a result of the collision of the so-called Qaidam Arc
with the Gondwanan margin, subsequently followed by the accretion of the Qilian Block
(Von Raumer and Stampfli, 2008; Von Raumer et al., 2013, 2015). This geodynamic
interpretation is mainly suggested for the Alpine Brianconnais-Austroalpine basement,
where the volcanosedimentary complexes postdating the Sardic tectonic inversion and
folding stage portray a younger arc-arc oblique collision (450 Ma) of the eastern tail of

the internal Alpine margin with the Hun terrane, succeeded by conspicuous exhumation
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in a transform margin setting (430 Ma) (Zurbriggen et al., 1997; Schaltegger et al.,
2003; Franz and Romer, 2007; Von Raumer and Stampfli, 2008; Von Raumer et al.,
2013; Zurbriggen, 2015, 2017).

Until now the Toledanian and Sardic magmatic events had been studied on different
areas and interpreted separately, without taking into account their similarities and
differences. In this work, the geochemical affinities of the Furongian—Early Ordovician
(Toledanian) and Early—Late Ordovician (Sardic) felsic magmatic activities recorded in
the Central Iberian and Galicia-Tras-os-Montes Zones, Pyrenees, Occitan Domain and
Sardinia are compared. The re-appraisal is based on 17 new samples from the
Pyrenees, Montagne Noire and Sardinia, completing the absence of analysis in these
areas and wide-ranging a dataset of 93 previously published geochemical analyses
throughout the study region in south-western Europe. This comparison may contribute
to a better understanding of the meaning and origin of this felsic magmatism, and thus,
to discuss the geodynamic scenario of this Gondwana margin (Fig. 1A) during
Cambrian—Ordovician times, bracketed between the Cadomian and Variscan

orogenies.

2. Emplacement and age of magmatic events

This section documents the emplacement (summarized in Fig. 2) and age (Fig. 3) of

the Toledanian and Sardic magmatic events throughout a SW-NE palaeogeographic

transect of the south-western European margin of Gondwana during Cambro—

Ordovician times.

2.1. Iberian Massif

In the Ossa Morena and southern Central Iberian Zones of the Iberian Massif (Fig. 1A—

B), the so-called Toledanian Phase is recognized as an angular discordance that
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separates variably tilted Ediacaran—Cambrian Series 2 rifting volcanosedimentary
packages from overlying passive-margin successions. The Toledanian gap comprises,
at least, most of the Furongian and basal Ordovician, but the involved erosion can
incise into the entire Cambrian and the upper Ediacaran Cadomian basement
(Gutiérrez-Marco et al., 2019; Alvaro et al., 2019; Sanchez-Garcia et al., 2019).
Recently, Sanchez-Garcia et al. (2019) have interpreted the Toledanian Phase as a
break-up (or rift/drift) unconformity with the Armorican Quartzite (including the Purple
Series and Los Montes Beds; McDougall et al., 1987; Gutiérrez-Alonso et al., 2007;
Shaw et al., 2012, 2014) sealing an inherited Toledanian palaeorelief (Fig. 2).

The phase of uplift and denudation of an inherited palaeorelief composed of upper
Ediacaran—Cambrian rocks is associated with the massive outpouring of felsic-
dominant calc-alkaline magmatic episodes related to neither metamorphic nor cleavage
features. This magmatic activity is widely distributed throughout several areas of the
Iberian Massif, such as the Cantabrian Zone and the easternmost flank of the West
Asturian-Leonese Zone, where sills and rhyolitic lava flows and volcaniclastics mark
the base of the Armorican Quartzite (dated at ca. 477.5 Ma; Gutiérrez-Alonso et al.,
2007, 2016), and the lower Tremadocian Borrachdn Formation of the Iberian Chains
(Alvaro et al., 2008). Similar ages have been reported from igneous rocks of the Basal
Allochthonous Units and the Schistose Domain in the Galicia-Tras-os-Montes Zone
(500-462 Ma; Valverde-Vaquero et al., 2005, 2007; Montero et al., 2009; Talavera et
al., 2008, 2013; Dias da Silva et al., 2012, 2014; Diez Fernandez et al., 2012; Farias et
al., 2014) and different areas of the Central Iberian Zone, including the contact
between the Central Iberian and Ossa-Morena Zones, where the Carrascal and
Portalegre batoliths are intruded and the felsic volcanosedimentary Urra Formation
marks the unconformity that separates Cambrian and Ordovician strata (494-470 Ma,
Sol4 et al., 2008; Antunes et al., 2009; Neiva et al., 2009; Romad et al., 2010; Rubio-

Ordodfiez et al., 2012; Villaseca et al., 2013) (Fig. 1B).
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The most voluminous Toledanian-related volcanic episode is represented by the
Ollo de Sapo Formation, which crops out throughout the northeastern Central Iberian
Zone. It mainly consists of felsic volcanosedimentary and volcanic rocks, interbedded
at the base of the Lower Ordovician strata and plutonic bodies. The Ollo de Sapo
volcanosedimentary Formation has long been recognized as an enigmatic Furongian—
Early Ordovician (495-470 Ma) magmatic event exposed along the core of a 600 km-
long antiform (labelled as 77 in Fig. 1B) (Valverde-Vaquero and Dunning, 2000; Bea et
al., 2006; Montero et al., 2007, 2009; Zeck et al., 2007; Castifieiras et al., 2008a; Diez
Montes et al., 2010; Navidad and Castifieiras, 2011; Talavera et al., 2013; Lopez-
Sanchez et al., 2015; Diaz-Alvarado el al., 2016; Villaseca et al., 2016; Garcia-Arias et
al., 2018). The peak of magmatic activity was reached at ca. 490—485 Ma and its most
recognizable characteristic is the presence of abundant megacrysts of K-feldspar,
plagioclase and blue quartz. There is no evident space-time relationship in its
distribution (for a discussion, see Lépez-Sanchez et al., 2015) and, collectively, the
Ollo de Sapo Formation rocks record a major tectonothermal event whose expression
can be found in most of the Variscan massifs of continental Europe including the
Armorican and Bohemian massifs (e.g., von Quadt, 1997; Kroner and Willmer, 1998;
Linnemann et al., 2000; Tichomirowa et al., 2001; Fried! et al., 2004; Mingram et al.,
2004; Teipel et al., 2004; Ballevre et al., 2012; El Korh et al., 2012; Tichomirowa et al.,
2012; for a summary, see Casas and Murphy, 2018). The large volume of magmatic
rocks located in the European Variscan Belt led some authors to propose the existence
of a siliceous Large Igneous Province (LIP) (Diez Montes et al., 2010; Gutiérrez-Alonso

et al., 2016), named Ibero-Armorican LIP by Garcia-Arias et al. (2018).

2.2. Central and Eastern Pyrenees

In the central and eastern Pyrenees (Fig. 1D), earliest Ordovician volcanic-free

passive-margin conditions, represented by the Jujols Group (Padel et al., 2018), were
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succeeded by a late Early—Mid Ordovician phase of uplift and erosion that led to the
onset of the Sardic unconformity (Fig. 2). Uplift was associated with magmatic activity,
which continued until Late Ordovician times. An extensional interval took place then
developing normal faults that controlled the sedimentation of post—Sardic siliciclastic
deposits infilling palaeorelief depressions. Acritarchs recovered in the uppermost part
of the Jujols Group suggest a broad Furongian—earliest Ordovician age (Casas and
Palacios, 2012), conterminous with a maximum depositional age of ca. 475 Ma, based
on the age of the youngest detrital zircon populations (Margalef et al., 2016). On the
other hand, a ca. 459 Ma U-Pb age for the Upper Ordovician volcanic rocks overlying
the Sardic Unconformity has been proposed in the eastern Pyrenees (Marti et al.,
2019), and ca. 452-455 Ma in the neighbouring Catalan Coastal Ranges, which
represent the southern prolongation of the Pyrenees (Navidad et al., 2010; Martinez et
al., 2011). Thus, a time gap of about 16—23 m.y. can be related to the Sardic Phase in
the eastern Pyrenees and the neighbouring Catalan Coastal Ranges.

Coeval with the late Early-Mid Ordovician phase of generalized uplift and
denudation, a key magmatic activity led to the intrusion of voluminous granitoids, about
500 to 3000 m thick and encased in strata of the Ediacaran—-Lower Cambrian
Canaveilles Group (Fig. 2). These granitoids constitute the protoliths of the large
orthogneissic laccoliths that punctuate the backbone of the central and eastern
Pyrenees. These are, from west to east (Fig. 1D), the Aston (467-470 Ma ; Denéle et
al., 2009; Mezger and Gerdes, 2016), Hospitalet (about 472 Ma, Denele et al., 2009),
Canig6 (472—-462 Ma, Cocherie et al., 2005; Navidad et al.,, 2018), Roc de Frausa
(477-476 Ma; Cocherie et al., 2005; Castifieiras et al., 2008b) and Albera (about 470
Ma; Liesa et al., 2011) massifs, which comprise a dominant Floian—Dapingian age. It is
noticeable the fact that only a minor representation of coeval basic magmatic rocks are
outcropped. The acidic volcanic equivalents have been documented in the Albera

massif, where subvolcanic rhyolitic porphyroid rocks have yielded similar ages to those
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of the main gneissic bodies at about 474-465 Ma (Liesa et al., 2011). Similar acidic
byproducts are represented by the rhyolitic sills of Pierrefite (Calvet et al., 1988).

The late Early—Mid Ordovician (“Sardic”) phase of uplift was succeeded by a Late
Ordovician extensional interval responsible for the opening of (half-)grabens infilled
with the basal Upper Ordovician alluvial-to-fluvial conglomerates (La Rabassa
Conglomerate Formation). At map scale, a set of NE-SW trending normal faults
abruptly controlling the thickness of the basal Upper Ordovician formations can be
recognized in the La Cerdanya area (Casas and Fernandez, 2007; Casas, 2010).
Sharp variations in the thickness of the Upper Ordovician strata have been
documented by Hartevelt (1970) and Casas and Fernandez (2007). Drastic variations
in grain size and thickness can be attributed to the development of palaeotopographies
controlled by faults and subsequent erosion of uplifted palaeoreliefs, with subsequent
infill of depressed areas by alluvial fan and fluvial deposits, finally sealed by Silurian
sediments (Puddu et al., 2019). A Late Ordovician magmatic pulse contemporaneously
yielded a varied set of magmatic rocks. Small granitic bodies are encased in the
Canaveilles strata of the Canig6 massif. They constitute the protoliths of the Cadi
(about 456 Ma; Casas et al., 2010), Casemi (446 to 452 Ma; Casas et al., 2010), Ndria
(ca. 457 Ma; Martinez et al., 2011) and Canig6 G-1 type (ca. 457 Ma; Navidad et al.,
2018) gneisses.

The lowermost part of the Canaveilles Group (the so-called Balaig Series) host
metre-scale thick bodies of metadiorite sills related to an Upper Ordovician protolith,
(ca. 453 Ma, SHRIMP U-Pb in zircon; Casas et al., 2010). Coeval calc-alkaline
ignimbrites, andesites and volcaniclastic rocks are interbedded in the Upper Ordovician
succession of the Bruguera and Ribes de Freser areas (Robert and Thiebaut, 1976;
Ayora, 1980; Robert, 1980; Marti et al., 1986, 2019). In the Ribes area, a granitic body
with granophyric texture, dated at ca. 458 Ma by Martinez et al. (2011), intruded at the
base of the Upper Ordovician succession. In the La Pallaresa dome, some metre-scale

rhyodacitic to dacitic subvolcanic sills, Late Ordovician in age (ca. 453 Ma, Clariana et
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al., 2018), occur interbedded within the pre-unconformity strata and close to the base

of the Upper Ordovician.

2.3. Occitan Domain: Albigeois, Montagne Noire and Mouthoumet massifs

The parautochthonous framework of the southern French Massif Central, named
Occitan Domain by Pouclet et al. (2017), includes among others, from south to north,
the Mouthoumet, Montagne Noire and Albigeois massifs. The domain represents the
southeastern prolongation of the Variscan South Armorican Zone (including
southwestern Bretagne and Vendée). Since Géze (1949) and Arthaud (1970), the
southern edge of the French Massif Central has been traditionally subdivided, from
north to south, into the northern, axial and southern Montagne Noire (Fig. 1C). The
Palaeozoic succession of the northern and southern sides includes sediments ranging
from late Ediacaran to Silurian and from Terreneuvian (Cambrian) to Visean in age,
respectively. These successions are affected by large scale, south-verging recumbent
folds that display a low to moderate metamorphic grade. Their emplacement took place
in Late Visean to Namurian times (Engel et al., 1980; Feist and Galtier, 1985; Echtler
and Malavieille, 1990). The Axial Zone -consists of plutonic, migmatitic and
metamorphic rocks forming a regional ENE-WSW oriented dome (Fig. 1C), where four
principal lithological units can be recognized (i) schists and micaschists, (ii) migmatitic
orthogneisses, (iii) metapelitic metatexites, and (iv) diatexites and granites (Cocherie,
2003; Faure et al., 2004; Roger et al., 2004, 2015; Bé Mézéme, 2005; Charles et al.,
2009; Rabin et al., 2015). The Rosis micaschist synform subdivides the eastern Axial
Zone into the Espinouse and Caroux sub-domes, whereas the southwestern edge of
the Axial Zone comprises the Nore massif.

In the Occitan Domain, two main Cambro—Ordovician felsic events can be identified

giving rise to the protoliths of (i) the Larroque metarhyolites in the northern Montagne
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Noire and Albigeois, thrusted southward from Rouergue; and (i) the migmatitic
ortogneisses that form the Axial Zone of the Montagne Noire (Fig. 2).

(i) The Larroque volcanosedimentary Complex is a thick (500-1000 m) package of
porphyroclastic metarhyolites located on the northern Montagne Noire (Lacaune
Mountains), Albigeois (St-Salvi-de-Carcavés and St-Sernin-sur-Rance nappes) and
Rouergue; the Variscan setting of the formation is allochthonous in the Albigeois and
parautochthonous in the rest. This volcanism emplaced above the Furongian strata and
the so-called “Série schisto-gréseuse verte” (see Guérangé-Lozes et al.,, 1996;
Guérangé-Lozes and Alabouvette, 1999), and is encased in the upper part of the
Miaolingian La Gardie Formation (Pouclet et al., 2017) (Fig. 2). The Larroque volcanic
rocks consist of deformed porphyroclastic rhyolites rich in largely fragmented, lacunous
(rhyolitic) quartz and alkali feldspar phenocrysts. The metarhyolites occur as porphyritic
lava flows, sills and other associated facies, such as aphyric lava flows, porphyritic and
aphyric pyroclastic flows of welded or unwelded ignimbritic types, fine to coarse tephra
deposits, and epiclastic and volcaniclastic deposits. These rocks are named “augen
gneiss” or augengneiss and do not display a high-grade gneiss paragenesis but a
general lower grade metamorphic mineralogy. The Occitan augengneisses mimic the
Ollo de Sapo facies from the Central Iberian Zone because of their large bluish quartz
phenaocrysts. Based on geochemical similarities and contemporaneous emplacement,
Pouclet et al. (2017) suggested that this event also supplied the Davejean acidic
volcanic rocks in the Mouthoumet Massif, which represent the southern prolongation of
the Montagne Noire (Fig. 2), and the Génis rhyolitic unit of the western Limousin
sector.

(i) Some migmatitic orthogneisses make up the southern Axial Zone, from the
western Cabardés to the eastern Caroux domes. The orthogneisses, derived from
Ordovician metagranites bearing large K-feldspar phenocrysts, were emplaced at
about 471 Ma (Somail Orthogneiss, Cocherie et al., 2005), 456 to 450 Ma (Pont de

Larn and Gorges d’Héric gneisses, Roger et al., 2004) and ca. 455 Ma (Sain Eutrope
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gneiss, Pitra et al., 2012). They intruded a metasedimentary pile, traditionally known as
“Schistes X” and formally named St. Pons-Cabardés Group (Fig. 2). The latter consists
of schists, greywackes, quartzites and subsidiary volcanic tuffs and marbles (Demange
et al., 1996; Demange, 1999; Alabouvette et al., 2003; Roger et al., 2004; Cocherie et
al., 2005). The group is topped by the Séries Tuff, dated at about 545 Ma (Lescuyer
and Cocherie, 1992), which represents a contemporaneous equivalent of the
Cadomian Rivernous rhyolitic tuff (542.5 to 537.1 Ma) from the Lodeve inlier of the
northern Montagne Noire (Alvaro et al., 2014b, 2018; Padel et al., 2017). Age of
migmatization has been inferred from U-Pb dates on monacite from migmatites and
anatectic granites at 333 to 327 Ma (Bé Mézéme, 2005; Charles et al., 2008); as a
result, the 330-325 Ma time interval can represent a Variscan crustal melting event in
the Axial Zone.

As in the Pyrenees, the Middle Ordovician is absent in the Occitan Domain. Its gap
allows distinction between a Lower Ordovician pre-unconformity sedimentary package
para- to unconformably overlain by an Upper Ordovician—Silurian succession (Alvaro et

al., 2016; Pouclet et al., 2017).

2.4. Sardinia

In Sardinia the Cambro—Ordovician magmatism is well represented in the external
(southern) and internal (northern) nappe zones of the exposed Variscan Belt (Fig. 1E),
and ranges in age from late Furongian to Late Ordovician. A Furongian—Tremadocian
(ca. 491-480 Ma) magmatic activity, predating the Sardic phase, is mostly represented
by felsic volcanic and subvolcanic rocks encased in the San Vito sandstone Formation.
The Sardic-related volcanic products differ from one nappe to another: intermediate
and basic (mostly metandesites and andesitic basalts) are common in the nappe
stacking of the central part of the island (Barbagia and Goceano), whereas felsic

metavolcanites prevail in the southeastern units. Their age is bracketed between 465
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and 455 Ma (Giacomini et al., 2006; Oggiano et al., 2010; Pavanetto et al., 2012;
Cruciani et al., 2018) and matches the Sardic gap based on biostratigraphy (Barca et
al., 1988).

Teichmdller (1931) and Stille (1939) were the first to recognize in southwestern
Sardinia an intra—Ordovician stratigraphic hiatus. Its linked erosive unconformity is
supported by a correlatable strong angular discordance in the Palaeozoic basement of
the Iglesiente-Sulcis area, External Zone (Carmignani et al., 2001). This major
discontinuity separates the Cambrian—Lower Ordovician Nebida, Gonnesa and Iglesias
groups (Pillola et al., 1998) from the overlying coarse-grained (“‘Puddinga”) Monte
Argentu metasediments (Leone et al.,, 1991, 2002; Laske et al., 1994). The gap
comprises a chronostratigraphically constrained minimum gap of about 18 m.y. that
includes the Floian and Dapingian (Barca et al., 1987, 1988; Pillola et al., 1998; Barca
and Cherchi, 2004) (Fig. 2). The hiatus is related to neither metamorphism nor
cleavage, though some E-W folds have been documented in the Gonnesa Anticline
and the Iglesias Syncline (Cocco et al.,, 2018), which are overstepped by the
‘Puddinga” metaconglomerates. Both the E-W folds and the overlying
metaconglomerates were subsequently affected by Variscan N-S folds (Cocco and
Funneda, 2011, 2017). Sardic-related volcanic rocks are not involved in this area, but
Sardic-inherited palaeoreliefs are lined with breccia slides that include metre- to
decametre-scale carbonate boulders (“Olistoliti’), some of them hosting
synsedimentary faults contemporaneously mineralized with ore bodies (Boni and
Koeppel, 1985; Boni, 1986; Barca, 1991; Caron et al., 1997). The lower part of the
unconformably overlying Monte Argentu Formation deposited in alluvial to fluvial
environments (Martini et al., 1991; Loi et al., 1992; Loi and Dabard, 1997).

A similar gap was reported by Calvino (1972) in the Sarrabus-Gerrei units of the
External Nappe Zone. The so-called “Sarrabese Phase” is related to the onset of thick,
up to 500 m thick, volcanosedimentary complexes and volcanites (Barca et al., 1986;

Di Pisa et al., 1992) with a Darriwilian age for the protoliths of the metavolcanic rocks
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(465.4 to 464 Ma; Giacomini et al., 2006; Oggiano et al., 2010). In the Iglesiente-Sulcis
region (Fig. 1E), Carmignani et al. (1986, 1992, 1994, 2001) suggested that the
“Sardic-Sarrabese phase” should be associated with the compression of a Cambro—
Ordovician back-arc basin that originated the migration of the Ordovician volcanic arc
toward the Gondwanan margin.

Some gneissic bodies, interpreted as the plutonic counterpart of metavolcanic rocks,
are located in the Bithia unit (e.g., the Monte Filau area, 458 to 457 Ma, surrounded by
a Mid—Ordovician andalusite thermal aureole; Pavanetto et al., 2012; Costamagna et
al., 2016) and in the internal units (Lodé orthogneiss, ca. 456 Ma; Tanaunella
orthogneiss, ca. 458 Ma, Helbing and Tiepolo, 2005; Golfo Aranci orthogneiss, ca. 469
Ma, Giacomini et al., 2006).

The Sardic palaeorelief is sealed by Upper Ordovician trangressive deposits. The
sedimentary facies show high variability, but the —mostly terrigenous— sediments vary
from grey fine- to medium-sized sandstones, to muddy sandstones and mudstones.
They are referred to the Katian Punta Serpeddi and Orroeledu formations (Pistis et al.,
2016). This post—Sardic sedimentary succession is coeval with a new magmatic
pulsation represented by alkaline to tholeiitic within-plate basalts (Di Pisa et al., 1992;

Gaggero et al., 2012).

3. Geochemical data

3.1. Materials and methods

The rocks selected for geochemical analysis (231 samples; see tectonostratigraphic

location in Fig. 1 and stratigraphic emplacement in Fig. 2) have recorded different

degrees of hydrothermalism and metamorphism, as a result of which only the most

immobiles elements have been considered. The geochemical calculations, in which the
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major elements take part, have been made from values recalculated to 100 in volatile
free compositions; Fe is reported as FeO..

The geochemical dataset of the Central Iberian Zone includes 152 published
geochemical data, from which 85 are plutonic and 67 volcanic and volcaniclastic rocks
from the Ollo de Sapo Formation (Galicia, Sanabria and Guadarrama areas), and the
contact between the Central Iberian and Ossa Morena Zones (Urra Formation and
Portalegre and Carrascal granites). Other data were yielded from six volcanic rocks of
the Galicia-Tras-os-Montes Zone (Saldanha area) (Fig. 1B; Repository Data).

The dataset of the eastern Pyrenees consists of 38 samples, six of which are upper
Lower Ordovician volcanic rocks, and seven upper Lower Ordovician plutonic rocks,
together with nine Upper Ordovician volcanic and 14 Upper Ordovician plutonic rocks
(Repository Data). New data reported below include two samples of subvolcanic sills
intercalated in the pre—Sardic unconformity succession (Clariana et al., 2018; Margalef,
unpubl.; Table 1).

The study samples from the Occitan Domain comprise six metavolcanic rocks, four
from the Larroque volcanosedimentary Complex in the Albigeois and northern
Montagne Noire and two from the Mouthoumet massif (Pouclet et al., 2017)
(Repository Data), and four new samples for the Axial Zone gneisses (Table 1).

In the Sardinian dataset, 25 published analyses are selected: five correspond to the
Golfo Aranci orthogneiss (Giacomini et al., 2006), six to metavolcanics from the central
part of the island (Giacomini et al.,, 2006; Cruciani et al., 2013), and five to
metavolcanics and one to gneisses from the Bithia unit (Cruciani et al., 2018)
(Repository Data). Ten new analyses are added from the Monte Filau and Capo
Spartivento gneisses of the Bithia unit, and from the Punta Bianca gneisses embedded
within the migmatites of the High-grade Metamorphic complex of the Inner Zone (Table
1).

Whole-rock major and trace elements and rare earth element (REE) compositions

were determined at ACME Laboratories, Vancouver, Canada. LiBO, fusion followed by
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X-ray fluorescence spectroscopy (XRF) analysis was used to determine major
elements. Rare earth and refractory elements were measured by ICP-MS following a
lithium metaborate/tetraborate fusion and nitric acid digestion on 0.2 g of sample. For
base metals, 0.5 g of sample was digested in Aqua Regia at 95 °C and analyzed by
inductively coupled plasma - atomic emission spectrometry (ICP—AES). Analyses of
standards and duplicate samples indicate precision to better than 1 % for major oxides,
and 3-10 % for minor and trace elements.

Additional Sm—Nd isotopic analyses were performed at Centro de Geocronologia y
Geoqulmica Isotopica from the Complutense University, Madrid. They were carried out
in whole-rock powders using a **°Nd-'**Sm tracer by isotope dilution-thermal ionization
mass spectrometry (ID-TIMS). The samples were first dissolved through oven
digestion in sealed Teflon bombs with ultra pure reagents to perform two-stage
conventional cation-exchange chromatography for separation of Sm and Nd (Strelow,
1960; Winchester, 1963), and subsequently analysed using a Sector 54 VG-Micromass
multicollector spectrometer. The measured ***Nd/**Nd isotopic ratios were corrected
for possible isobaric interferences from '*Ce and ***Sm (only for samples with
147Sm/***Sm<0.0001) and normalized to *°Nd/***Nd=0.7219 to correct for mass
fractionation. The Lajolla Nd international isotopic standard was analysed during
sample measurement, and gave an average value of **Nd/***Nd=0.5114840 for 9
replicas, with an internal precision of + 0.000032 (20). These values were used to
correct the measured ratios for possible sample drift. The estimated error for the
4'Sm/***Nd ratio is 0.1%.

A general classification of the analyzed samples, following Winchester and Floyd
(1977), can be seen in Figure 4A-B, and the geographical coordinates of the new
samples in Table 1. For geochemical comparison (summarized in Table 2), two large
groups or suites are differentiated in order to check the similarities and differences

between the magmatic rocks, and to infer a possible geochemical trend following a
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palaeogeographic SW-NE transect. The description reported below follows the same

palaeogeographic and chronological order.

3.2. Furongian—to—Mid Ordovician Suite

In the Central Iberian and Galicia-Tras-os-Montes Zones, the Furongian—to—Mid
Ordovician magmatic activity is pervasive. Their main representative is the Ollo de
Sapo Formation, which includes volcanic and subvolcanic rocks (67 samples) as well
as plutonic rocks (85 samples) (data from Murphy et al., 2006; Diez-Montes, 2007;
Montero et al., 2007, 2009; Sola, 2007; Sola et al., 2008; Talavera, 2009; Villaseca et
al., 2016). From the Parautochthon Schistose Domain of the Galicia-Tras-os Montes
Zone, six samples of rhyolite tuffs of the Saldanha Formation (Dias da Silva et al.,
2014) are selected, which share geochemical features with the Ollo de Sapo
Formation. In summary, five facies are differentiated in the Central Iberian and Galicia-
Trds-os Montes Zones: the Ollo de Sapo orthogneisses, some leucogneisses,
metagranites and volcanic rocks, and the San Sebastian orthogneiss (for a
geochemical characterization, see Table 2).

In the central and eastern Pyrenees, an Early-Mid Ordovician magmatic activity
gave rise to the intrusion of voluminous (about 500-3000 m in size) aluminous granitic
bodies, encased into the Canaveilles beds (Alvaro et al., 2018; Casas et al., 2019).
They constitute the protoliths of the large orthogneissic laccoliths that form the core of
the domal massifs scattered throughout the backbone of the Pyrenees. Rocks of the
Canigo6, Roc de Frausa and Albera massifs have been taken into account in this work,
in which volcanic rocks of the Pierrefite and Albera massifs, and the so-called G2 and
G3 orthogneisses by Guitard (1970) are also included. All subgroups vary
compositionally from subalkaline andesite to rhyolite, as illustrated in the Pearce’s
(1996) diagram of Figure 5 (data compiled from Vila et al., 2005; Castifieiras et al.,

2008Db; Liesa et al., 2011; Navidad et al., 2018).



466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

18

Although most rocks in this area are acidic, it is remarkable the presence of minor
mafic bodies (Cortalet and Marialles metabasites, not studied in this work), which could
indicate a mantle connection with parental magmas during the Mid and Late
Ordovician. As well, it should be noted that there are no andesitic rocks in the area.

In the Occitan Domain, six samples of the Larroque volcanosedimentary Complex
(Early Tremadocian in age) represent basin floors and subaerial explosive and effusive
rhyolites (Pouclet et al., 2017). The porphyroclastic rocks of the Larroque metarhyolites
were sampled in the Saint-Géraud and Larroque areas from the Saint-Sernin-sur-
Rance nappe and the Saint-André klippe above the Saint-Salvi-de-Carcaves nappe
(Pouclet et al., 2017).

In the Middle Ordovician rocks of Sardinia, 11 samples are selected, five of which
correspond to orthogneisses of the Aranci Gulf, in the Inner Zone of the NE island
(Giacomini et al., 2006), completed with six volcanic rocks of the External Zone

(Giacomini et al., 2006; Cruciani et al., 2018) (Table 2).

3.3 Upper Ordovician Suite

In the central and eastern Pyrenees, four Upper Ordovician subgroups are
distinguished based on their field occurrence and geochemical and geochronological
features: the Gl-type orthogneisses sensu Guitard (1970); the Cadi and Casemi
orthogneisses and the metavolcanic rocks that include the Ribes de Freser rhyolites;
the Els Metges volcanic tuffs; and the rhyolites from Andorra and Pallaresa areas (the
latter dated at ca. 453 Ma; Clariana et al., 2018) (Table 2). The suite is completed with
the Somail orthogneisses of the Axial Montagne Noire (dated at ca. 450 Ma at Gorges
d’Héric; Roger et al., 2004) and the orthogneisses from the Sardinian External Zone
(dated at ca. 458457 Ma at Monte Filau; Pavanetto et al., 2012) and the volcanic roks

from the Sardinian Nappe Zone (Table 2).
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4. Geochemical framework

A geochemical comparison between the Furongian—Ordovician felsic rocks of all the
above-reported groups offers the opportunity to characterize the successive sources of
crustal-derived melts along the south-western European margin of Gondwana.

The geochemical features point to a predominance of materials derived from the
melting of metasedimentary rocks, rich in SiO, and K,O (average K,O/Na,O = 2.25)
and peraluminous (0.4 < C,om < 4.5 and 0.94 < A/CNK > 3.12), with only three samples
with A/CNK <1 (samples 100786 of the Casemi subgroup, and T26 and T27 of the San
Sebastian subgroup).

The result of plotting the REE content vs. average values of continental crust
(Rudnick and Gao, 2004; Fig. 6) yields a flat spectra and a base level shared by most
of the considered groups. The total content in REE is moderate to high (average REE =
176 ppm, ranging between 482.2 and 26.0 ppm; Fig. 7), with a maximum in the
subgroup of the Middle Ordovician volcanic rocks from Sardinia (average REE = 335
ppm, VOL-SMO), and with LREE values more fractionated than HREE ones, and
negative anomalies of Eu, which would indicate a characteristic process of magmatic
evolution with plagioclase fractionation. These features are common in peraluminous
granitoids.

All subgroups display similar chondritic normalized REE patterns (Fig. 7), with an
enrichment in LREE relative to HREE, which should indicate the involvement of crustal
materials in their parental magmas. Nevertheless, some variations can be highlighted,
such as the lesser fractionation in REE content of some subgroups. These are the
leucogneisses from the Iberian massif (LG, La/Yb, = 2.01), the Upper Ordovician
orthogneisses from Sardinia (OG-SUO, La/Yb, = 2.94), the Casemi orthogneisses
(La/Yb, = 4.42) and the Middle Ordovician volcanic rocks from Sardinia (OG-SUO,
La/Yb, = 2.94). This may be interpreted as a greater degree of partial fusion in the

origin of their parental magmas (Rollinson, 1993).
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There are three geochemical groups displaying (Gd/Yb), values > 2, and (La/Yb),
values > 9. These groups are OSS (Central Iberian Zone), VOL-OD (Occitan Domain)
and G1 (Pyrenees), and share higher alkalinity features.

Some V1 rocks from the Pyrenees (Pierrefite Formation) show no negative
anomalies in Eu. Their parental magmas could have been derived from deeper origins
and related to residual materials of the lower continental crust, in areas of production of
K-rich granites (Taylor and McLenan, 1989).

The spider diagrams (Fig. 8), however, exhibit strong negative anomalies in Nb, Sr
and Ti, which indicate a distinct crustal affiliation (Diez-Montes, 2007). Only the San
Sebastian orthogneisses (OSS) show distinct discrepancies in respect of the remaining
samples from the Ollo de Sapo Formation. They display lower negative anomalies in
Nb and a more alkaline character by comparison with the rest of the Ollo de Sapo
rocks, which point to alkaline affinities and greater negative anomalies in Nb.

Despite some small differences in the chemical ranges of some major elements,
most felsic Ordovician rocks from the Iberian massif (Central Iberian and Galicia-Tras-
0s Montes Zones), eastern Pyrenees, Occitan Domain and Sardinia share a common
chemical pattern. The Lower—Middle Ordovician rocks of the eastern Pyrenees show
less variation in the content of Zr and Nb (Fig. 8B). The volcanic rocks of these groups
show a different REE behaviour, which would indicate different sources. Two groups
are distinguished in Figure 7, one with greater enrichment in REE and negative
anomaly of Eu, and another with lesser content of HREE and without Eu negative
anomalies.

Figure 9 illustrates how the average of all the considered groups approximates the
mean values of the Rudnick and Gao’s (2003) upper continental crust (UCC). In this
figure, small deviations can be observed, some of them toward lower continental crust
(LCC) values and others toward bulk continental crust (BCC), indicating variations in

their parental magmas but with quite similar spectra. Overall chondrite-normalized
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patterns are close to the values that represent the upper continental crust, with slight
enrichments in the Th/Nb, Th/La and Th/Yb ratios.

Finally, in the Occitan volcanic rocks (VOL-OD) the rare earth elements are enriched
and fractionated (33.2 ppm < La < 45.6 ppm; 11.2 < La/Yb < 14.5). The upper
continental crust normalized diagram exhibits negative anomalies of Ti, V, Cr, Mn and
Fe associated with oxide fractionation, of Zr and Hf linked to zircon fractionation, and of
Eu related to plagioclase fractionation. The profiles are comparable to the Vendean
Saint-Gilles rhyolitic ones. The Th vs. Rb/Ba features are also similar to those of the
Saint-Gilles rhyolites, and the Iberian Ollo de Sapo and Urra rhyolites (Sola et al.,

2008; Diez Montes et al., 2010).

4. Discussion

4.1 Inferred tectonic settings

In order to clarify the evolution of geotectonic environments, the data have been
represented in different discrimination diagrams. The Zr/TiO, ratio (Lentz, 1996; Syme,
1998) is a key index of compositional evolution for intermediate and felsic rocks. In the
Syme diagram (Fig. 10), most rocks from the Central Iberian Zone represent a
characteristic arc association, although there are some contemporaneous samples
characterized by extensional-related values (Zr/Ti = 0.10, LG). The rocks of the
Middle—Ordovician San Sebastian orthogneisses (OSS) show values of Zr/Ti = 0.08,
intermediate between extensional and arc conditions. This could be interpreted as a
sharp change in geotectonic conditions toward the Mid Ordovician (Fig. 10A). For a
better comparison, the samples of the San Sebastian orthogneisses (OSS) and the
granites (GRA) have been distinguished with a shaded area in all the diagrams, since
they have slightly different characteristics to the rest of the samples from the Ollo de

Sapo group. The samples G1 (Pyrenees) and VOL (Central Iberian Zone) broadly
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share similar values, as a result of which, the three latter groups (OSS, G1 and VOL)
arrange following a good correlation line. The same trend seems to be inferred in the
eastern Pyrenees (Fig. 10B), where the Middle Ordovician subgroups display arc
features, but half of the Upper Ordovician subgroups show extensional affinities (G1
and Casemi orthogneisses). In the case of the Occitan orthogneisses (Fig. 10C), they
show arc characters, which contrast with the contemporaneous volcanic rocks
displaying extensional values with Zr/Ti = 0.10. This disparity between plutonic and
volcanic rocks could be interpreted as different conditions for the origin of these
magmas. In Sardinia (Fig. 10D), the same evolution from arc to extensional conditions
is highlighted for the Upper Ordovician samples, although some Middle Ordovician
volcanic rocks already shared extensional patterns (Zr/Ti = 0.09). In summary, there
seems to be a geochemical evolution in the Ordovician magmas grading from arc to
extensional environments.

In the Nb-Y tectonic discriminating diagram of Pearce et al. (1984) (Fig. 11), most
samples plot in the volcanic arc-type, though some subgroups project in the whitin-
plate and anomalous ORG. The majority of samples display very similar Zr/Nb and
Nb/Y ratios, typical of island arc or active continental margin rhyolites (Diez-Montes et
al., 2010). Only some samples plot separately: OSS samples with highest Nb contents
(>20 ppm), and some volcanic rocks of the Occitan Domain (average Nb =16.87 ppm).
In the eastern Pyrenees, the Middle Ordovician rocks plot in the volcanic arc field,
whereas the Upper Ordovician ones point in the ORG type, except the Casemi
samples. This progress of magmatic sources agrees with the evolution seen in Figure
10. In the Ocitan Domain, VOL-OD samples share values with those of the San
Sebastian orthogneiss, while OG-OD shares values with those of OG from the Central
Iberian Zone.

The Zr vs. Nb diagram (Leat et al., 1986; modified by Piercey, 2011) (Fig. 12)
illustrates how magmas evolved toward richer values in Zr and Nb, which is consistent

with what it is observed in the Syme diagram (Fig. 10). Figure 12A documents how



605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

23

most samples show a general positive correlation. These different groups correspond
to the OSS and Portalegre granites, highlighted in the figure. The two groups indicate a
tendency toward alkaline magmas. Some samples, such as the Pyrenean G1, some
Occitan VOL-OD samples and some Sardinian OG-UOS samples share the same
affinity, clearly distinguished from the general geochemical trend exhibited by the
Central Iberian Zone.

On a Zr vs. Ga/Al diagram (Whalen et al., 1987) (Fig. 13), the samples depict an
intermediate character between anorogenic or alkaline (A-type) and orogenic (1&S-
type). In the Central Iberian Zone, samples from the San Sebastian orthogneisses and
Portalegre granites show characters of A-type granites, while the remaining samples
display affinities of 1&S-type granites. For the Central Iberian Zone, a clear magmatic
shift toward more extensional geotectonic environments is characterized. For the
eastern Pyrenees, we find the same situation as in the Central Iberian Zone, with a
magmatic evolution toward A-granite type characteristics, indicating more extensional
geotectonic environments. In the Occitan Domain, the samples show a clear 1&S
character. In the Sardinian case, the same seems to happen as in the Central Iberian
Zone: the Upper Ordovician orthogneisses suggest a more extensional character.

In summary, all the reported diagrams point to a magmatic evolution through time,
grading from arc to extensional geotectonic environments (with increased Zr/Ti ratios)
and to granite type-A characters. This geotectonic framework is consistent with that
illustrated in Figure 10. The geochemical characters of these rocks show a rhyodacite
to dacite composition, peraluminous and calc-alkaline K-rich character, and an arc-
volcanic affinity for most of samples, but without intermediate rocks associated with

andesitic types. Hence a change in time is documented toward more alkaline magmas.

4.2 Interpretation of ¢Nd values
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¢Nd(, values are useful to interpret the nature of magmatic sources. Most samples of

the above-reported groups show no significant differences in isotopic ¢Nd, values, and
Ndchur Model ages (Fig. 14). Some exceptions are related to granites from the
southern Central Iberian Zone, which display positive values (from +2.6 to —2.4) and
Tom values from 0.90 to 3.46 Ga. These granites, space-related with calcalkaline
diorites and gabbros, were interpreted by Sola et al. (2008) as the result of
underplating and temporal storage of mantle-derived magmas as a potential source for
the intrusive “orogenic melts” during Early Palaeozoic extension.
Some samples from (i) the Central Iberian Zone, such as VI-3 (Leucogneiss subgroup)
and PORT2 and PORT15 (Granite subgroup); (ii) the eastern Pyrenees, such as 99338
(G1 subgroup) and 100786 samples (Casemi subgroup); and (iii) the Sardinian CS5,
CS8 and CC5 samples (Upper Ordovician Orthogneiss subgroup) display anomalous
Tow values and **'Sm/**Nd ratios > 0.17 (Table 2; Fig. 14), a character relatively
common in some felsic rocks (DePaolo, 1988; Martinez et al., 2011). According to
Stern et al. (2012), these values should not be considered, but a possible explanation
for these high ratios may be related to the M-type tetrad effect (e.g., Irber, 1999;
Monecke et al., 2007; Ibrahim et al., 2015), which affects REE fractionation in highly
evolved felsic rocks due to the interaction with hydrothermal fluids. This process can be
reflected as an enrichment of Sm related to Nd. Other authors, however, explain this
enrichment as a result of both magmatic evolution (e.g., McLennan, 1994; Pan, 1997)
and weathering processes after exhumation (e.g., Masuda and Akagi, 1989; Takahasi
et al., 2002).

In the granites of the southern Central Iberian Zone and the volcanic rocks of
Sardinia, positive values in ¢Ndy could be interpreted as a more primitive nature of
their parental magmas, even though the samples with highest Tpy values are those
that display higher **’Sm/***Nd ratios (> 0.17; Table 2).

The volcanic rocks of the Central Iberian Zone display some differences following a

N-S transect, being ¢Nd, values less variable in the north (¢Nd;: —4.0 to —5.0) than in
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the south (¢Nd(: —1.6 to —5.5). The isotopic signature of the Urra volcaniclastic rocks is
compatible with magmas derived from young crustal rocks, with intermediate to felsic
igneous compositions (Sol4 et al., 2008). The volcanic rocks of the northern Central
Iberian Zone could be derived from old crustal rocks (Montero et al., 2007). The
isotopic composition of the granitoids from the southern Central Iberian Zone has more
primitive characters than those of the northern Central Iberian Zone, suggesting
different sources for both sides (Talavera et al., 2013). OSS shows lower inheritance
patterns, more primitive Sr—Nd isotopic composition than other rocks of the Ollo de
Sapo suite, and an age some 15 m.y. younger than most meta-igneous rocks of the
Sanabria region (Montero et al., 2009), likely reflecting a greater mantle involvement in
its genesis (Diez-Montes et al., 2008).

According to Talavera et al. (2013), the Cambro—Ordovician rocks of the Galicia-
Tras-os-Montes Zone schistose area and the magmatic rocks of the northern Central
Iberian Zone are contemporary. Both metavolcanic and metagranitic rocks almost
share the same isotopic compositions.

The Upper Ordovician orthogneisses from the Occitan Domain show very little
variation in ¢Nd, values (-3.5 to —4.0), typical of magmas derived from young crustal
rocks. The variation in TDM values is also small (1.4 to 1.8 Ga) indicating similar
crustal residence times to other rock groups.

In Sardinia, ¢Nd, values present a greater variation (—1.6 to —3.3), but they are also
included in the typical continental crustal range. As noted above, anormal TDM values
(between 1.2 to 4.5 Ga) may be due to post-magmatic hydrothermal alteration

processes.

5. Geodynamic setting

In the Iberian Massif, the Ediacaran—Cambrian transition was marked by

paraconformities and angular discordances indicating the passage from Cadomian
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volcanic arc to rifting conditions. The axis of the so-called Ossa-Morena Rift lies along
the homonymous Zone (Quesada, 1991; Sanchez-Garcia et al., 2003, 2008, 2010)
close to the remains of the Cadomian suture (Murphy et al., 2006). Rifting conditions
were accompanied by a voluminous magmatism that changed from peraluminous acid
to bimodal (Sanchez-Garcia et al., 2003, 2008, 2016, 2019). Some authors (Alvaro et
al., 2014; Sanchez-Garcia et al., 2019) propose that this rift resulted from a SW-to-NE
inward migration, toward innermost parts of Gondwana, of rifting axes from the Anti-
Atlas in Morocco to the Ossa-Morena Zone in the Iberian Massif. According to this
proposal the rifting developed later (in Cambro—Ordovician times) in the Iberian,
Armorican and Bohemian massifs.

The Furongian—Ordovician transition to drifting conditions is associated, in the
Iberian Massif, Occitan Domain, Pyrenees and Sardinia, with a stepwise magmatic
activity contemporaneous with the record of the Toledanian and Sardic unconformities.
These, related to neither metamorphism nor penetrative deformations, are linked to
uplift, erosion and irregularly distributed mesoscale deformation that gave rise to
angular unconformities up to 90°. The time span involved in these gaps is similar (22
m.y. in the Iberian Massif, 16—-23 m.y. in the Pyrenees and 18 m.y. in Sardinia). This
contrasts with the greater time span displayed by the magmatic activity (30—45 m.y.),
which started before the unconformity formation (early Furongian in the Central Iberian
Zone vs. Floian in the Pyrenees, Occitan Domain and Sardinia), continued during the
unconformity formation (Furongian and early Tremadocian in the Central Iberian Zone
vs. Floian—Darriwilian in the Pyrenees, Occitan Domain and Sardinia), and ended
during the sealing of the uplifted and eroded palaeorelief (Tremadocian—Floian
volcaniclastic rocks at the base of the Armorican Quartzite in the Central Iberian Zone
vs. Sandbian—Katian volcanic rocks at the lowermost part of the Upper Ordovician
successions in the Pyrenees, Occitan Domain and Sardinia; Gutiérrez-Alonso et al.,
2007, 2016; Navidad et al., 2010; Martinez et al., 2011; Alvaro et al., 2016; Marti et al.,

2019). In the Pyrenees, Upper Ordovician magmatism and sedimentation coexist with
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normal faults controlling marked thickness changes of the basal Upper Ordovician
succession and cutting the lower part of this succession, the Sardic unconformity and
the underlying Cambro—Ordovician sequence (Puddu et al., 2018, 2019).

Although the Toledanian and Sardic Phases reflect similar geodynamic conditions in
two distinct palaeogeographic areas, at present forming the western and eastern
branches of the Variscan Ibero-Armorican Arc, they display different peaks in magmatic
activity with a minor chronological overlapping (Fig. 3). This may reflect a SW-to-NE
“zip-like” propagation of the latest Ediacaran—Terreneuvian rifting axes in the so-called

Atlas-Ossa Morena Rift.

Toledanian Phase

The Early Ordovician (Toledanian) magmatism of the Central Iberian Zone evolved to a
typical passive-margin setting, with geochemical features dominated by acidic rocks,
peraluminous and rich in K, and lacking any association with basic or intermediate
rocks. Some of the orthogneisses of the Galicia-Tras-os-Montes Zone basal and
allochthonous complex units share these same patterns. This fact has been interpreted
by some authors as a basin environment subject to important episodes of crustal
extension (Martinez-Catalan et al., 2007; Diez-Montes et al., 2010). In contrast,
Villaseca et al. (2016) interpreted this absence as evidence against rifting conditions,
though the absence of contemporary basic magmatism may be explained by the partial
fusion of a thickened crust, through recycling of Neoproterozoic crustal materials. The
thrust of a large metasedimentary sequence could generate dehydration and
metasomatism of the rocks above this sequence, triggering partial fusion at different
levels, although the increase in peraluminosity with the basicity of the orthogneisses is
against any AFC process involving mantle materials. However, this increase in
peraluminosity with the basicity has not been revealed in the samples studied above.

Following Villaseca et al.’s (2016) model, a flat subduction of the southern part of the
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Central Iberian Zone would have taken place under its northern prolongation, whereas
the reflection of such a subduction is not evident in the field. The calc-alkaline signature
of this magmatism has also been taken into account as proof of its relationship with
volcanic-arc environments (Valverde-Vaquero and Dunning, 2000). However, calc-
alkaline features may be also interpreted as a result of a variable degree of continental
crustal contamination and/or previously enriched mantle source (Sanchez-Garcia et al.,
2003, 2008, 2016, 2019; Diez-Montes et al., 2010). Finally, other granites not
considered here of Tremadocian age have been reported in the southern Central
Iberian Zone, such as the Oledo massif and the Beira Baixa-Central Extremadura,
which display a I-type affinity (Antunes et al., 2009; Rubio Ordé6fiez et al., 2012). These
granites could represent different sources for the Ordovician magmatism in the Central
Iberian Zone.

Sanchez-Garcia et al. (2019) have proposed that the anomaly that produced the
large magmatism throughout the Iberian Massif could have migrated from the rifting
axis to inwards zones and the acid, peraluminous, K-rich rocks of Mid Ordovician in
age should represent the initial stages of a new rifting pulse, resembling the
peraluminous rocks of the Early Rift Event sensu Sanchez-Garcia et al. (2003) from the
Cambrian Epoch 2 of the Ossa-Morena Rift.

In the parautochthon of the Galicia-Tras-os-Montes Zone, the appearance of
tholeiitic and alkaline-peralkaline magmatism in the Mid Ordovician would signal the
first steps toward extensional conditions (Diez Fernandez et al., 2012; Dias da Silva et
al., 2016). In the Montagne Noire and the Mouthoumet massifs contemporaneous
tholeiitic lavas indicate a similar change in the tectonic regimen (Alvaro et al., 2016).
This gradual change in geodynamic conditions is also marked by the appearance of
rocks with extensional characteristics in some of subgroups considered here, such as
the Central Iberian Zone (San Sebastian orthogneisses), eastern Pyrenees (Casemi
orthoneisses, and G1), volcanic rocks of the Occitan Domain, and the orthogneises

and volcanic rocks from Sardinia.
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Sardic Phase

In the eastern Pyrenees, two peaks of Ordovician magmatic activity are observed
(Casas et al., 2019). Large Lower—Middle Ordovician peraluminous granite bodies are
known representing the protoliths of numerous gneissic bodies with laccolithic
morphologies. In the Canigd massif, the Upper Ordovician granite bodies (protholits of
Cadi, Casemi, G1) are encased in sediments of the Canaveilles and Jujols groups.
During this time span, there was generalized uplift and erosion that culminated with the
onset of the Sardic unconformity. The Sardic Phase was succeeded by an extensional
interval related to the formation of normal faults affecting the pre—unconformity strata
(Puddu et al., 2018, 2019). The volcanic arc signature can be explain by crustal
recycling (Navidad et al., 2010; Casas et al., 2010; Martinez et al., 2011), as in the
case of the Toledanian Phase in the Central Iberian Zone, although, according to
Casas et al. (2019), the Pyrenees and the Catalan Coastal Ranges were probably
fringing the Gondwana margin in a different position than that occupied by the Iberian
Massif. As a whole, the Ordovician magmatism in the Pyrenees lasted about 30 m.y.,
from ca 477 to 446 Ma, in a time span contemporaneous with the formation of the
Sardic unconformity (Fig. 2). Recently, Puddu et al. (2019) proposed that a thermal
doming, bracketted between 475 and 450 Ma, could have stretched the Ordovician
lithosphere. The emersion and denudation of the inherited Cambrian—Ordovician
palaeorelief would have given rise to the onset of the Sardic unconformity. According to
these authors, thermal doming triggered by hot mafic magma underplating may also be
responsible for the late Early—Late Ordovician coeval magmatic activity.

In the Occitan Domain, there was a dramatic volcanic event in early Tremadocian
times, with the uprising of basin floors and the subsequent effusion of abundant
rhyolitic activities under subaerial explosive conditions (Larroque volcanosedimentary

Complex in the Montagne Noire, and Davejean acidic volcanic counterpart in the
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Mouthoumet Massif). Pouclet el al., (2017) interpreted this as a delayed Ollo de Sapo-
style outpouring where a massive crustal melting required a rather significant heat
supply. Asthenospheric upwelling leading to the interplay of lithospheric doming,
continental break-up, and a decompressionally driven mantle melting can explain such
a great thermal anomaly. The magmatic products accumulated on the mantle-crust
contact would provide enough heat transfer for crustal melting (Huppert and Sparks,
1988). Subsequently, a post—Sardic reactivation of rifting conditions is documented in
the Cabriéres Kklippes (southern Montagne Noire) and the Mouthoumet massif. There, a
Late Ordovician fault-controlled subsidence linked to the record of rift-related tholeiites
(Roque de Bandies and Villerouge formations) were contemporaneous with the record
of the Hirnantian glaciation (Alvaro et al., 2016). Re-opening of rifting branches
(Montagne Noire and Mouthoumet massifs) was geometrically recorded as onlapping
patterns and final sealing of Sardic palaeoreliefs by Silurian and Lower Devonian
strata.

Sardinia illustrates an almost complete record of the Variscan Belt (Carmignani et
al., 1994; Rossi et al., 2009). Some plutonic orthogneises of the Inner Zone belong to
this cycle, such as the orthogneises of Golfo Aranci (Giacomini et al., 2006). Gaggero
et al. (2012) described three magmatic cycles. The first cycle is well represented in the
Sarrabus unit by Furongian—Tremadocian volcanic and subvolcanic interbeds within a
terrigenous sucession (San Vito Formation) which is topped by the Sardic
uncomformity. Some plutonic orthogneises of the Inner Zone belong to this cycle, such
as the orthogneises of Golfo Aranci (Giacomini et al., 2006) and the PB orthogneiss of
Punta Bianca). The second Mid-Ordovician cycle, about 50 m.y. postdating the
previous cycle, is of an arc-volcanic type with calc-alkaline affinity and acidic-to-
intermediate composition. The acidic metavolcanites are referred in the literature as
“porphyroids”, which crop out in the External Nappe Zone and some localities of the
Inner Zone. The intermediate to basic derivates are widespread in Central Sardinia

(Serra Tonnai Formation). Some plutonic rocks (Mt. Filau orthogneisses and Capo
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Spartivento) of the second cycle are discussed above. The third cycle consists of
alkalic meta-epiclastites interbedded in post—Sandbian strata and metabasites marking
the Ordovician/Silurian contact and reflecting rifting conditions. In this work only the first
two cycles are considered. Giacomini et al. (2006) cite coeval mafic rocks of felsic
magmatism of Mid Ordovician age (Cortesogno et al., 2004; Palmeri et al., 2004;
Giacomini et al., 2005), although they interpret a subduction scenario of the Hun terrain

below Corsica and Sardinia in the Mid Ordovician.

Origin of intracrustal siliceous melts

In this scenario, the key to generate large volumes of acidic rocks in an intraplate
context would be the existence of a lower-middle crust, highly hydrated, in addition to a
high heat flow, possibly caused by mafic melts (Bryan et al., 2002; Diez-Montes, 2007).
This could be the scenario initiated by the arrival of a thermal anomaly in a subduction-
free area (Sanchez-Garcia et al., 2003, 2008, 2019; Alvaro et al., 2016). The formation
of large volumes of intracrustal siliceous melts could act as a viscous barrier,
preventing the rise of mafic magmas within volcanic environments, and causing the
underplating of these magmas at the contact between the lower crust and the mantle
(Huppert and Sparks, 1988; Pankhurst et al., 1998; Bindeman and Valley, 2003). The
cooling of these magmas could lead to crustal thickening and in this case, the volcanic
arc signature can be explained by crustal recycling (Navidad et al., 2010; Diez-Montes
et al., 2010; Martinez et al., 2011).

Sanchez-Garcia et al. (2019) have proposed that the anomaly that produced the
large magmatism throughout the Iberian Massif could have migrated from the rifting
axis to inwards zones and the acid, peraluminous, K-rich rocks of Mid Ordovician in
age should represent the initial stages of a new rifting pulse, resembling the
peraluminous rocks of the Early Rift Event sensu Sanchez-Garcia et al. (2003) from the

Cambrian Epoch 2 of the Ossa-Morena Rift. In the parautochthon of the Galicia-Tras-
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0s-Montes Zone, the appearance of tholeiitic and alkaline-peralkaline magmatism in
the Mid Ordovician would signal the first steps toward extensional conditions (Diez
Fernandez et al., 2012; Dias da Silva et al., 2016). In the Montagne Noire and the
Mouthoumet massifs contemporaneous tholeiitic lavas indicate a similar change in the
tectonic regimen (Alvaro et al., 2016). This change in geodynamic conditions is also
marked by the appearance of rocks with extensional characteristics in some of
subgroups considered here, such as the Central Iberian Zone (San Sebastian
orthogneisses), eastern Pyrenees (Casemi orthogneisses, and G1), volcanic rocks of
the Occitan Domain, and the orthogneises and volcanic rocks from Sardinia. In the
Pyrenees, Puddu et al. (2019) proposed that a thermal doming, between 475 and 450
Ma, should have stretched the Ordovician lithosphere leading to emersion and
denudation of a Cambrian—Ordovician palaeorelief, and giving rise to the onset of the
Sardic unconformity. According to these authors, thermal doming triggered by hot mafic
magma underplating may also be responsible for the late Early—Late Ordovician coeval
magmatic activity

A major continental break-up, leading to the so-called Tremadocian Tectonic Belt,
was suggested by Pouclet et al. (2017), which initiated by upwelling of the
asthenosphere and tectonic thinning of the lithosphere. Mantle-derived mafic magmas
were underplated at the mantle-crust transition zone and intruded the crust. These
magmas provided heat for crustal melting, which supplied the rhyolitic volcanism. After
emptying the rhyolitic crustal reservoirs, the underlying mafic magmas finally rose and
reached the surface. According to Pouclet et al. (2017), the acidic magmatic output
associated with the onset of the Larroque metarhyolites resulted in massive crustal
melting requiring a rather important heat supply. Asthenospheric upwelling leading to
lithospheric doming, continental break-up, and a decompressionally driven mantle
melting can explain such a great thermal anomaly. Magmatic products accumulated on

the mantle-crust contact providing enough heat transfer for crustal melting.
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6. Conclusions

A geochemical comparison of 231 plutonic and volcanic samples of two major suites,
Furongian—Mid Ordovician and Late Ordovician in age, from the Central Iberian and
Galicia-Tras-os-Montes Zones of the Iberian Massif and in the eastern Pyrenees,
Occitan Domain (Albigeois, Montagne Noire and Mouthoumet massifs) and Sardinia
points to a predominance of materials derived from the melting of metasedimentary
rocks, peraluminous and rich in SiO, and K,O. The total content in REE is moderate to
high. Most felsic rocks display similar chondritic normalized REE patterns, with an
enrichment of LREE relative to HREE, which should indicate the involvement of crustal
materials in their parental magmas.

Zr[TiOz, Zr/Nb, Nb/Y and Zr vs. Ga/Al ratios, and REE and ¢Nd values reflect
contemporaneous arc and extensional scenarios, which progressed to distinct
extensional conditions finally associated with outpouring of mafic tholeiitic-dominant
rifting lava flows. Magmatic events are contemporaneous with the formation of the
Toledanian (Furongian—Early Ordovician) and Sardic (Early—Late Ordovician)
unconformities, related to neither metamorphism nor penetrative deformation. The
geochemical and structural framework precludes subduction generated melts reaching
the crust in a magmatic arc to back-arc setting. On the contrary, it favours partial
melting of sediments and/or granitoids in a continental lower crust triggered by the
underplating of hot mafic magmas related to the opening of the Rheic Ocean as a

result of asthenospheric upwelling.
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FIGURE CAPTIONS

Figure 1. A. Reconstruction of the south-western European margin of Gondwana in
Late Carboniferous—Early Permian times; modified from Pouclet et al. (2017). B.
Setting of samples in the Central Iberian and Galicia-Tras-os-Montes zones; 59-
Carrascal, 68- Guadarrama, 70- Sanabria, 74- Miranda do Douro, 77- Ollo de Sapo,
79- Portalegre, 82- Saldanha, 84- San Sebastian, 99- Urra, Sa Sanabria; modified from
Sanchez-Garcia et al. (2019). C. Setting of samples in the Montagne Noire and
Mouthoumet massifs; Am1-2 Larroque hamlet (Ambialet), Stg- St.Géraud Sta- St.
André, Mj- Montjoi, Qu- Quintillan, GL- Roque de Bandies, VLR- Villerouge-Termenes,
VIN- Le Vintrou, HER- Gorges d'Héric (Caroux massif), Ax1- S Mazamet (Nore massif),
Ax2 (Rou)- S Rouayroux (Agout massif); modified from Alvaro et al. (2016). D. Setting
of Pyrenean samples; modified from Casas et al. (2019). E. Setting of Sardinian
samples; CS 2,3,4,8- Spartivento Cap, T2- Tuerreda, CC5- Cuile Culurgioni, MF1-
Monte Filau, MFS1-Monte Settiballas, PB- Punta Bianca; maodified from Oggiano et al.

(2010).



59

[:] Variscan allochthon

l:] Variscan (par-)autochthon

— Variscan Faults
- Alpine front

J

¢lberian
Chains

A
[ Variscan granitoids

- Upper Ordovician rifting rocks
[ somail Orthogneisses
Saint-Sernin - Lower Ordovician rhyolites

sur Rance nappe [ Larroque metarhyolites

= = [ Pre-Variscan rocks

[ Variscan granitoids &

: Ordovician granitoids o
and rhyolites

\:l Pre-Variscan rocks

200 km

Saint-Salvi

A\_B\GEO‘S 20 km
de Carcaves 4 -

R
Félines-Palairac slice

v/’ SOUTHE

arautochthon Mj VLR Quintillan PB
C:q‘zlp.— j\__ slice f\ ~a
—
Roc de nitable slice B Qu

|E MOUTHOUMET |?

>~ [ Variscan granitoids

Z
Ospitalet == |:] Ordovician intrusives
BN-1_

30 km

[ Variscan granitoids
[ ordovician intrusives

20 km
1568 [ Pre-Variscan rocks IF

1569



1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

60

Figure 2. Stratigraphic comparison of the Cambro-Ordovician successions from the
Central Iberian Zone, Galicia Tras-os-Montes Zone, Occitan Domain, Eastern
Pyrenees and Sardinia; modified from Alvaro et al. (2014b, 2016, 2018), Pouclet et al.
(2017) and Sanchez-Garcia et al. (2019); abbreviations: Ag Agualada, Ca Campelles
ignimbrites (ca. 455 Ma,Marti et al., 2014), CD Cadi gneiss (456 + 5 Ma, Casas et al.,
2010), Cg Canig6 gneiss (472—-462 Ma, Cocherie et al., 2005; Navidad et al., 2018), Co
Cortalets metabasite (460 + 3 Ma, Navidad et al., 2018), Cs Casemi gneiss (446 £ 5
and 452 + 5 Ma, Casas et al., 2010), Es Estremoz rhyolites (499 Ma, Pereira et al.,
2012), Ga Galifiero, GA Golfo Aranci orthogneiss (469 + 3.7 Ma, Giacomini et al.,
2006), GH Gorges d’Heric orthogneiss (450 + 6 Ma, Roger et al., 2004), La Larrogue
Volcanic Complex, Ma Marialles microdiorite (453 + 4 Ma, Casas et al., 2010), Lo Lodé
orthogneiss (456 + 14 Ma, Helbing and Tiepolo, 2005), MF Monte Filau-Capo
Spartivento orthogneiss (449 + 6 Ma, Ludwing and Turi, 1989; 457.5 + 0,3 and 458.2 +
0.3 Ma, Pavanetto et al., 2012), Mo Mora (493.5 + 2 Ma, Dias Da Silva et al., 2014), Nu
Nuria gneiss (457 + 4 Ma, Martinez et al., 2011), OS Ollo de Sapo rhyolites and ash-
fall tuff beds (ca. 477 Ma., Gutiérrez-Alonso et al., 2016), PL Pont de Larn orthogneiss
(456 + 3 Ma, Roger et al., 2004), Qb Queralbs gneiss (457 + 5 Ma, Martinez et al.,
2011), PB Punta Bianca orthogneiss (broadly Furongian-Tremadocian in age), PC
Porto Corallo dacites (465.4 £ 1.9 and 464 £ 1 Ma, Giacomini et al., 2006; Oggiano et
al., 2010), Ri Ribes granophyre (458 + 3 Ma, Martinez et al., 2011), Rf Roc de Frausa
gneiss (477 £ 4, 476 + 5 Ma, Cocherie et al., 2005; Castifieiras et al., 2008), So Somail
orthogneiss (471 + 4 Ma, Cocherie et al. 2005), Sa Saldanha (483.7 + 1.5; Dias da
Silva, 2014), SE Saint Eutrope gneiss (455 + 2 Ma, Pitra et al., 2012), Ta Tanaunella

orthogneiss 458 + 7 Ma (Helbing and Tiepolo, 2005), Tr Turchas and Ur Urra rhyolites.
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1596  Figure 3. Relative probability plots of the age of the Cambrian—Ordovician magmatism
1597 for (A) the Ollo de Sapo domain from the Central lberian Zone; and (B) Pyrenees
1598  (Guilleries and Gavarres massifs), French Central Massif (including Montagne Noire),
1599  Sardinia, Corsica and Sicily (n = number of analyses). Data obtained from references

1600 cited in the text.
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Figure 4. SiO, vs. Zr/TiO, and Zr/TiO, vs. Nb/Y plots (Winchester and Floyd, 1977)

showing the composition of new samples (purple diamonds) and those taken from the

literature (green triangles).
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Figure 5. Zr/Ti vs. Nb/Y discrimination diagram (after Winchester and Floyd, 1977;

Pearce, 1996). A. Lower—Middle Ordovician rocks of Iberian Massif (Central Iberian

and Galicia-Tras-os-Montes zones). B. Middle—Upper Ordovician rocks of the eastern

Pyrenees. C) Middle Ordovician rocks of the Occitan Domain. C-D. Middle—Upper

Ordovician rocks of Sardinia.
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Figure 6. Upper Crustal-normalized REE patterns (Rudnick and Gao, 2003) with

average values for all distinguished groups; symbols as in Figure 4.
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Figure 7. Chondrite-normalized REE patterns (Sun and McDonough, 1989) for all

study samples.
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Figure 8. Multi-element diagram normalised to Primitive Mantle of Palme and O’Neill

(2004) for all study samples.
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1631  Figure 9. Chondrite-normalised isotope ratio patterns (Sun and McDonough, 1989) for
1632  standard comparison for all study samples. Blue area: limits of continental crustal
1633  values (Lower and Upper) of Rudnick and Gao (2003).
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Figure 10. Tectonic discriminating diagram of Zr vs. TiO, (Syme, 1998) for all study

samples. Double-sided arrows indicate ranging of differents fields: rhyolites in tholeiitic

and calc-alkaline arc suites have Zr/TiO, ratios ranging from about 0.016 to 0.04, and

extension-related rhyolites from about 0.13 to 0.28 (Syme, 1989).
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Figure 11. Tectonic discriminating diagram of Y vs. Nb (Pearce et al., 1984) for all

study samples.
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Figure 12. Zr vs. 10* Ga/Al discrimination diagram (Whalen et al., 1987).
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Figure 13. Zr—Nb plot diagram (Leat et al.,1986; modified by Piercey, 2011) for all

B-Pyrenees
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1658  Figure 14. eNd, vs. age diagram (DePaolo and Wasserburg, 1976; DePaolo, 1981) for
1659  study sampled. A. Central Iberian and Galicia-Tras-os-Montes Zones. B. Eastern
1660 Pyrenees. C. Occitan Domain. D. Sardinia; see references in the text.
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Table 1. Chemical analyses of magmatic rocks. ICP and ICP—MS methods at ACME~—

LABS in Canada.

PYRENEES MONTAGNE NOIRE SARDINIA
Albera Pallaresa_Andorra Axial Zone External Zone Inner Zone
Sample A-08-03 fC1803 BN 1 Ax -1 Ax -2 HER VIN CC5 CS2 CS3 CS5 CS8 MF 1 MFS 1 T2 PB50 PB100
Long. (E) 3°7°39” 1°27°43” 1°33'29” [ 2°13'50" 2°33'58" 2°57'58" 2°13'50" 8°50'37"  8°50'35" 8°50'35" 8°50'40" 8°50'35" 8°50'47"  8°52'02"  8°48'54"  9°09'32" 9°09'32"
Lat. (N) 42°25'2"  42°36'1" 42°32'30"( 43°34'32" 43°29'3" 43°34'32" 43°17'45" | 38°54'16" 38°52'38" 38°52'38" 38°52'36" 38°52'39" 38°54'58" 38°53'57" 38°53'57" 41°11"  41°11'04"|
Sio, 68.38 71.67 69.18 70.38 67.43 68.31 73.97 76.43 75.14 76.52 76.61 76.36 72.13 75.94 75.55 68.93 67.24
TiO, 0.57 0.63 0.61 0.36 0.64 0.61 0.20 0.08 0.08 0.09 0.04 0.06 0.31 0.13 0.18 0.41 0.46
Al,05 15.68 14.24 15.05 14.90 15.76 15.39 13.82 13.28 12.81 11.80 12.71 12.63 13.80 13.16 12.94 16.32 15.79
Fe,04 4.09 4.54 4.20 3.04 4.11 4.19 2.05 0.69 1.39 1.44 1.28 1.35 2.96 1.55 1.62 3.19 4.78
MnO 0.07 0.06 0.05 0.04 0.04 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04 0.08 0.08
MgO 1.35 0.78 1.16 0.78 1.33 1.34 0.43 0.08 0.15 0.16 0.06 0.05 0.36 0.19 0.08 115 1.58
Ca0O 0.21 0.53 1.78 122 1.44 1.58 0.62 0.32 0.25 0.15 0.20 0.35 0.61 0.38 0.17 3.05 2.70
Na,0 4.07 1.67 3.40 3.33 278 293 2.87 3.04 171 1.58 2.91 3.35 2.89 257 253 3.85 3.43
K0 2.84 291 271 4.35 4.68 4.03 4.55 4.79 7.84 7.43 5.16 4.91 5.47 4.94 5.36 2.26 2.96
P,0s 0.17 0.24 0.20 0.21 0.2 0.19 0.18 0.15 0.05 0.05 0.03 0.04 0.12 0.11 0.07 0.15 0.14
L.O.l 2.03 2.60 1.50 12 13 12 12 11 0.4 0.7 0.9 0.8 11 0.9 1.4 0.90 0.70
Total 99.05 99.42 99.42 99.51 99.30 99.39 99.73 99.90 99.69 99.79 99.78 99.78 99.47 99.75 99.78 99.97 99.37
As 77.20 1.70 6.80 2.50 6.00 1.80 1.90 0.70 1.00 0.50 2.80 1.10 1.80 101.10 4.00 5.00 5.00
Ba 742.50 388.00 398.00 499 1050 767 256 60 467 109 21 27 784 194 192 689.00 600.00
Be 2.44 3.00 2.00 4.00 2.00 5.00 3.00 6.00 3.00 1.00 9.00 2.00 7.00 3.00 7.00 3.00 5.00
Bi 0.30 0.20 0.10 0.20 0.20 0.20 0.40 0.30 0.10 0.10 0.10 0.10 0.10 0.70 0.40 4.00 4.00
Cd 0.18 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Co 5.84 4.60 6.20 5.20 5.20 5.40 2.70 0.50 1.60 1.00 0.80 0.60 2.30 1.50 1.20 5.00 14.00
Cs 9.79 5.60 4.90 14.30 7.10 6.80 7.30 4.20 3.40 1.60 4.50 4.60 6.40 3.90 4.10 4.20 9.40
Cu 16.34 13.20 10.30 7.20 7.40 10.10 8.70 4.70 4.60 8.20 26.80 2.50 5.00 5.50 5.00 10.00 60.00
Ga 21.03 19.80 18.80 19.10 19.20 18.90 16.70 19.30 14.90 15.30 19.40 19.20 20.70 19.00 19.90 17.00 18.00
Hf 6.40 7.30 6.40 5.00 6.90 5.70 3.10 3.10 4.10 4.30 3.50 3.80 8.80 3.70 5.80 5.90 5.30
Mo 1.20 0.90 1.00 0.60 0.90 0.60 0.30 0.70 0.70 0.70 0.80 0.50 170 0.80 1.60 2.00 2.00
Nb 10.49 11.30 11.30 9.60 12.40 11.90 7.90 10.30 7.70 12.10 13.20 13.30 20.20 9.10 20.60 9.00 11.00
Ni 16.56 8.00 7.70 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 80.00
Pb 7.94 9.80 22.90 3.50 4.60 5.10 3.60 2.90 7.40 8.60 4.50 5.50 5.10 6.30 5.50 21.00 24.00
Rb 124.40 123.70  137.20 204.6 161.6 142.2 188.2 289.9 206.1 187.4 294.1 275.1 208.7 256.4 227.1 85.00 118.00
Sh 227 0.10 0.30 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 5.00 5.00
Sc 10.00 10.00 6.00 9.00 9.00 4.00 3.00 3.00 4.00 4.00 4.00 15.00 4.00 8.00 9.00 12.00
Sn 211 5.00 5.00 9.00 3.00 3.00 7.00 9.00 4.00 3.00 13.00 15.00 7.00 15.00 12.00 3.00 3.00
Sr 158.00 201.80 83.70 91.20 160.30  150.10 68.70 30.70 73.90 25.20 7.90 8.10 59.90 45.60 25.00 217.00 167.00
Ta 1.07 1.10 1.10 0.80 1.00 0.80 0.70 2.10 0.90 1.10 3.40 1.70 1.60 1.70 2.30 1.00 1.20
Th 11.90 15.70 13.50 1110 14.40 14.30 5.90 9.10 14.10 17.00 13.50 13.10 22.80 10.20 26.90 13.30 11.50
u 3.70 5.10 4.60 4.10 3.60 3.20 4.80 3.30 2.90 3.20 3.50 3.50 4.60 8.10 4.90 4.50 2.20
v 44.49 49.00 36.00 36.00 63.00 68.00 22.00 8.00 8.00 8.00 8.00 8.00 15.00 8.00 10.00 62.00 53.00
1.80 1.90 2.50 3.20 2.60 1.60 3.00 5.60 0.90 2.10 5.20 3.00 2.40 4.40 3.50 1.00 20.00
Y 29.29 43.90 50.60 28.30 38.40 36.20 27.80 28.00 60.10 53.60 44.40 46.00 61.60 31.80 55.80 29.00 24.00
Zn 63.71 52.00 70.00 55.00 71.00 78.00 46.00 7.00 35.00 39.00 15.00 24.00 37.00 30.00 22.00 70.00 70.00
Zr 233.30 263.20 237.10 174.40 249.20 219.10 93.70 73.50 93.80 105.10 62.20 74.50 311.80 108.10 161.90 245.00 214.00
La 27.90 45.30 38.00 29.60 39.50 38.70 13.60 10.50 22.70 19.50 12.10 13.40 54.20 17.90 31.30 26.90 34.30
Ce 59.00 86.90 75.50 58.10 77.00 78.20 26.70 21.60 42.10 39.70 26.20 29.90 109.80 37.40 97.60 53.20 70.50
Pr 7.26 9.80 8.47 6.99 9.41 9.55 3.36 2.36 4.73 4.85 3.00 3.24 11.94 4.07 6.86 5.88 8.20
Nd 27.83 35.60 31.20 26.00 36.40 36.40 12.60 8.40 16.60 17.10 10.50 10.90 44.70 15.00 24.00 21.60 29.40
Sm 5.80 7.69 7.16 5.70 7.55 7.63 3.15 243 4.10 4.41 3.28 3.44 9.37 3.88 4.93 4.70 6.00
Eu 0.98 1.05 1.03 0.87 127 115 0.41 0.14 0.43 0.13 0.06 0.09 117 0.30 0.19 0.95 0.93
Gd 5.22 8.32 7.89 5.59 7.28 7.05 3.38 3.20 5.60 5.50 4.42 4.69 10.60 4.50 6.34 4.00 5.10
Th 0.87 1.26 127 0.89 117 110 0.67 0.69 113 118 1.03 1.07 170 0.82 127 0.70 0.80
Dy 5.30 6.68 8.00 5.09 6.89 6.39 4.59 4.30 7.69 8.23 7.31 7.66 10.28 5.24 9.00 3.70 4.30
Ho 1.06 1.52 1.73 0.99 1.42 1.30 0.98 0.91 191 1.91 1.59 1.65 213 112 2.01 0.70 0.80
Er 2.98 4.52 4.96 2.64 3.92 3.56 3.07 2.85 5.80 6.46 5.35 5.38 6.25 3.64 6.17 2.20 2.10
m 0.46 0.60 0.73 0.38 0.57 0.50 0.44 0.43 0.91 1.00 0.85 0.85 0.89 0.52 0.92 0.35 0.32
Yb 3.00 3.98 4.72 2.33 3.56 3.11 2.83 2.95 5.81 6.60 6.10 6.16 5.53 3.70 6.04 2.50 2.20
Lu 0.44 0.58 0.69 0.33 0.53 0.45 0.39 0.44 0.90 0.94 0.92 0.94 0.86 0.56 0.90 0.41 0.36
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Table 2. Summarized geochemical features of the Furongian and Ordovician felsic
episodes described in the text; data from Lancelot et al. (1985), Calvet et al. (1988),
Valverde-Vaquero and Dunning (2000), Roger et al. (2004), Vila et al. (2005),
Giacomini et al. (2006), Diez-Montes (2007), Montero et al. (2007, 2009), Sola (2007),
Zeck et al. (2007), Castifieiras et al. (2008b), Talavera (2009), Casas et al. (2010),
Navidad et al. (2010, 2018), Liesa et al. (2011), Martinez et al. (2011, 2018), Navidad
and Castifeiras (2011), Gaggero et al. (2012), Talavera et al. (2013), Villaseca et al.
(2016), Pouclet et al. (2017), Cruciani et al. (2018) and this work. Abbreviations: CIZ
Central Iberian Zone, GTOMZ Galicia-Tras-os-Montes Zone, OCC Occitan Domain,
PYR Pyrenees and SAR Sardinia; * sensu Guitard (1970); A/CNK ratio is always

peraluminous.
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