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ABSTRACT 25 

 26 

A geochemical comparison of Early Palaeozoic felsic magmatic episodes throughout 27 

the south-western European margin of Gondwana is made, and includes (i) Furongian–28 

Early Ordovician (Toledanian) activies recorded in the Central Iberian and Galicia-Trás-29 

os-Montes Zones of the Iberian Massif, and (ii) Early–Late Ordovician (Sardic) activities 30 

in the eastern Pyrenees, Occitan Domain (Albigeois, Montagne Noire and Mouthoumet 31 

massifs) and Sardinia. Both phases are related to uplift and denudation of an inherited 32 

palaeorelief, and stratigraphically preserved as distinct angular discordances and 33 

paraconformities involving gaps of up to 22 m.y. The geochemical features of the 34 

Toledanian and Sardic, felsic-dominant activies point to a predominance of magmatic 35 

byproducts derived from the melting of metasedimentary rocks, rich in SiO2 and K2O 36 

and with peraluminous character. Zr/TiO2, Zr/Nb, Nb/Y and Zr vs. Ga/Al ratios, and 37 

REE and ƐNd(t) values suggest the contemporaneity, for both phases, of two 38 

geochemical scenarios characterized by arc and extensional features evolving to 39 

distinct extensional and rifting conditions associated with the final outpouring of mafic 40 

tholeiitic-dominant lava flows. The Toledanian and Sardic magmatic phases are linked 41 

to neither metamorphism nor penetrative deformation; on the contrary, their 42 

unconformities are associated with foliation-free open folds subsequently affected by 43 

the Variscan deformation. The geochemical and structural framework precludes 44 

subduction generated melts reaching the crust in a magmatic arc to back-arc setting, 45 

but favours partial melting of sediments and/or granitoids in a continental lower crust 46 

triggered by the underplating of hot mafic magmas related to the opening of the Rheic 47 

Ocean. 48 

Keywords: granite, orthogneiss, geochemistry, Cambrian, Ordovician, Gondwana. 49 

 50 

 51 



3 
 

 

1. Introduction 52 

 53 

A succession of Early–Palaeozoic magmatic episodes, ranging in age from Furongian 54 

(former “late Cambrian”) to Late Ordovician, is widespread along the south-western 55 

European margin of Gondwana. Magmatic pulses are characterized by preferential 56 

development in different palaeogeographic areas and linked to the development of 57 

stratigraphic unconformities, but they are related to neither metamorphism nor 58 

penetrative deformation (Gutiérrez Marco et al., 2002; Montero et al., 2007). In the 59 

Central Iberian Zone of the Iberian Massif (representing the western branch of the 60 

Ibero-Armorican Arc; Fig. 1A–B), this magmatism is mainly represented by the Ollo de 61 

Sapo Formation, which has long been recognized as a Furongian–Early Ordovician 62 

(495–470 Ma) assemblage of felsic-dominant volcanic, subvolcanic and plutonic 63 

igneous rocks. This magmatic activity is contemporaneous with the development of the 64 

Toledanian Phase, which places Lower Ordovician (upper Tremadocian–Floian) rocks 65 

onlapping an inherited palaeorelief formed by Ediacaran–Cambrian rocks and involving 66 

a sedimentary gap of ca. 22 m.y. This unconformity can be correlated with the 67 

“Furongian gap” identified in the Ossa-Morena Zone of the Iberian Massif and the Anti-68 

Atlas Ranges of Morocco (Álvaro et al., 2007, 2018; Álvaro and Vizcaïno, 2018; 69 

Sánchez-García et al., 2019), and with the “lacaune normande” in the central and 70 

North-Armorican Domains (Le Corre et al., 1991).  71 

Another felsic-dominant magmatic event, although younger (Early–Late Ordovician) 72 

in age, has been recognized in some massifs situated along the eastern branch of the 73 

Variscan Ibero-Armorican Arc, such as the Pyrenees, the Occitan Domain and Sardinia 74 

(Fig. 1A, C–E). This magmatism is related to the Sardic unconformity, where 75 

Furongian–Lower Ordovician rocks are unconformably overlain by those attributed to 76 

the Sandbian–lower Katian (former Caradoc). The Sardic Phase is related to a 77 

sedimentary gap of ca. 16–20 m.y. and geometrically ranges from 90° (angular 78 
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discordance) to 0° (paraconformity) (Barca and Cherchi, 2004; Funneda and Oggiano, 79 

2009; Álvaro et al., 2016, 2018; Casas et al., 2019).  80 

Although a general consensus exists to associate this Furongian–Ordovician 81 

magmatism with the opening of the Rheic Ocean and the drift of Avalonia from 82 

northwestern Gondwana (Díez Montes et al., 2010; Nance et al., 2010; Thomson et al., 83 

2010; Álvaro et al., 2014a), the origin of this magmatism has received different 84 

interpretations. In the Central Iberian Zone, for instance, several geodynamic models 85 

have been proposed, such as: (i) subduction-related melts reaching the crust in a 86 

magmatic arc to back-arc setting (Valverde-Vaquero and Dunning, 2000; Castro et al., 87 

2009); (ii) partial melting of sediments or granitoids in a continental lower crust affected 88 

by the underplating of hot mafic magmas during an extensional regime (Bea et al., 89 

2007; Montero et al., 2009; Díez Montes et al., 2010); and (iii) post-collisional 90 

decompression melting of an earlier thickened continental crust, and without significant 91 

mantle involvement (Villaseca et al., 2016). In the Occitan Domain (southern French 92 

Massif Central and Mouthoumet massifs) and the Pyrenees, Marini (1988), Pouclet et 93 

al. (2017) and Puddu et al. (2019) have suggested a link to mantle thermal anomalies. 94 

Navidad et al. (2018) proposed that the Pyrenean magmatism was induced by 95 

progressive crustal thinning and uplift of lithospheric mantle isoterms. In Sardinia, 96 

Oggiano et al. (2010), Carmignani et al. (2001), Gaggero et al. (2012) and Cruciani et 97 

al. (2018) have suggested that a subduction scenario, mirroring an Andean-type active 98 

margin, caused the main Mid–Ordovician magmatic activity. In the Alps, the Sardic 99 

counterpart is also interpreted as a result of the collision of the so-called Qaidam Arc 100 

with the Gondwanan margin, subsequently followed by the accretion of the Qilian Block 101 

(Von Raumer and Stampfli, 2008; Von Raumer et al., 2013, 2015). This geodynamic 102 

interpretation is mainly suggested for the Alpine Briançonnais-Austroalpine basement, 103 

where the volcanosedimentary complexes postdating the Sardic tectonic inversion and 104 

folding stage portray a younger arc-arc oblique collision (450 Ma) of the eastern tail of 105 

the internal Alpine margin with the Hun terrane, succeeded by conspicuous exhumation 106 
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in a transform margin setting (430 Ma) (Zurbriggen et al., 1997; Schaltegger et al., 107 

2003; Franz and Romer, 2007; Von Raumer and Stampfli, 2008; Von Raumer et al., 108 

2013; Zurbriggen, 2015, 2017). 109 

Until now the Toledanian and Sardic magmatic events had been studied on different 110 

areas and interpreted separately, without taking into account their similarities and 111 

differences. In this work, the geochemical affinities of the Furongian–Early Ordovician 112 

(Toledanian) and Early–Late Ordovician (Sardic) felsic magmatic activities recorded in 113 

the Central Iberian and Galicia-Trás-os-Montes Zones, Pyrenees, Occitan Domain and 114 

Sardinia are compared. The re-appraisal is based on 17 new samples from the 115 

Pyrenees, Montagne Noire and Sardinia, completing the absence of analysis in these 116 

areas and wide-ranging a dataset of 93 previously published geochemical analyses 117 

throughout the study region in south-western Europe. This comparison may contribute 118 

to a better understanding of the meaning and origin of this felsic magmatism, and thus, 119 

to discuss the geodynamic scenario of this Gondwana margin (Fig. 1A) during 120 

Cambrian–Ordovician times, bracketed between the Cadomian and Variscan 121 

orogenies. 122 

 123 

2. Emplacement and age of magmatic events 124 

 125 

This section documents the emplacement (summarized in Fig. 2) and age (Fig. 3) of 126 

the Toledanian and Sardic magmatic events throughout a SW-NE palaeogeographic 127 

transect of the south-western European margin of Gondwana during Cambro‒128 

Ordovician times. 129 

 130 

2.1. Iberian Massif 131 

 132 

In the Ossa Morena and southern Central Iberian Zones of the Iberian Massif (Fig. 1A‒133 

B), the so-called Toledanian Phase is recognized as an angular discordance that 134 
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separates variably tilted Ediacaran–Cambrian Series 2 rifting volcanosedimentary 135 

packages from overlying passive-margin successions. The Toledanian gap comprises, 136 

at least, most of the Furongian and basal Ordovician, but the involved erosion can 137 

incise into the entire Cambrian and the upper Ediacaran Cadomian basement 138 

(Gutiérrez-Marco et al., 2019; Álvaro et al., 2019; Sánchez-García et al., 2019). 139 

Recently, Sánchez-García et al. (2019) have interpreted the Toledanian Phase as a 140 

break-up (or rift/drift) unconformity with the Armorican Quartzite (including the Purple 141 

Series and Los Montes Beds; McDougall et al., 1987; Gutiérrez-Alonso et al., 2007; 142 

Shaw et al., 2012, 2014) sealing an inherited Toledanian palaeorelief (Fig. 2). 143 

The phase of uplift and denudation of an inherited palaeorelief composed of upper 144 

Ediacaran–Cambrian rocks is associated with the massive outpouring of felsic-145 

dominant calc-alkaline magmatic episodes related to neither metamorphic nor cleavage 146 

features. This magmatic activity is widely distributed throughout several areas of the 147 

Iberian Massif, such as the Cantabrian Zone and the easternmost flank of the West 148 

Asturian-Leonese Zone, where sills and rhyolitic lava flows and volcaniclastics mark 149 

the base of the Armorican Quartzite (dated at ca. 477.5 Ma; Gutiérrez-Alonso et al., 150 

2007, 2016), and the lower Tremadocian Borrachón Formation of the Iberian Chains 151 

(Álvaro et al., 2008). Similar ages have been reported from igneous rocks of the Basal 152 

Allochthonous Units and the Schistose Domain in the Galicia-Trás-os-Montes Zone 153 

(500–462 Ma; Valverde-Vaquero et al., 2005, 2007; Montero et al., 2009; Talavera et 154 

al., 2008, 2013; Dias da Silva et al., 2012, 2014; Díez Fernández et al., 2012; Farias et 155 

al., 2014) and different areas of the Central Iberian Zone, including the contact 156 

between the Central Iberian and Ossa-Morena Zones, where the Carrascal and 157 

Portalegre batoliths are intruded and the felsic volcanosedimentary Urra Formation 158 

marks the unconformity that separates Cambrian and Ordovician strata (494–470 Ma, 159 

Solá et al., 2008; Antunes et al., 2009; Neiva et al., 2009; Romaõ et al., 2010; Rubio-160 

Ordóñez et al., 2012; Villaseca et al., 2013) (Fig. 1B). 161 
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The most voluminous Toledanian-related volcanic episode is represented by the 162 

Ollo de Sapo Formation, which crops out throughout the northeastern Central Iberian 163 

Zone. It mainly consists of felsic volcanosedimentary and volcanic rocks, interbedded 164 

at the base of the Lower Ordovician strata and plutonic bodies. The Ollo de Sapo 165 

volcanosedimentary Formation has long been recognized as an enigmatic Furongian–166 

Early Ordovician (495–470 Ma) magmatic event exposed along the core of a 600 km-167 

long antiform (labelled as 77 in Fig. 1B) (Valverde-Vaquero and Dunning, 2000; Bea et 168 

al., 2006; Montero et al., 2007, 2009; Zeck et al., 2007; Castiñeiras et al., 2008a; Díez 169 

Montes et al., 2010; Navidad and Castiñeiras, 2011; Talavera et al., 2013; López-170 

Sánchez et al., 2015; Díaz-Alvarado el al., 2016; Villaseca et al., 2016; García-Arias et 171 

al., 2018). The peak of magmatic activity was reached at ca. 490‒485 Ma and its most 172 

recognizable characteristic is the presence of abundant megacrysts of K-feldspar, 173 

plagioclase and blue quartz. There is no evident space-time relationship in its 174 

distribution (for a discussion, see López-Sánchez et al., 2015) and, collectively, the 175 

Ollo de Sapo Formation rocks record a major tectonothermal event whose expression 176 

can be found in most of the Variscan massifs of continental Europe including the 177 

Armorican and Bohemian massifs (e.g., von Quadt, 1997; Kröner and Willmer, 1998; 178 

Linnemann et al., 2000; Tichomirowa et al., 2001; Friedl et al., 2004; Mingram et al., 179 

2004; Teipel et al., 2004; Ballèvre et al., 2012; El Korh et al., 2012; Tichomirowa et al., 180 

2012; for a summary, see Casas and Murphy, 2018). The large volume of magmatic 181 

rocks located in the European Variscan Belt led some authors to propose the existence 182 

of a siliceous Large Igneous Province (LIP) (Díez Montes et al., 2010; Gutiérrez-Alonso 183 

et al., 2016), named Ibero-Armorican LIP by García-Arias et al. (2018). 184 

 185 

2.2. Central and Eastern Pyrenees 186 

 187 

In the central and eastern Pyrenees (Fig. 1D), earliest Ordovician volcanic-free 188 

passive-margin conditions, represented by the Jujols Group (Padel et al., 2018), were 189 
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succeeded by a late Early–Mid Ordovician phase of uplift and erosion that led to the 190 

onset of the Sardic unconformity (Fig. 2). Uplift was associated with magmatic activity, 191 

which continued until Late Ordovician times. An extensional interval took place then 192 

developing normal faults that controlled the sedimentation of post–Sardic siliciclastic 193 

deposits infilling palaeorelief depressions. Acritarchs recovered in the uppermost part 194 

of the Jujols Group suggest a broad Furongian–earliest Ordovician age (Casas and 195 

Palacios, 2012), conterminous with a maximum depositional age of ca. 475 Ma, based 196 

on the age of the youngest detrital zircon populations (Margalef et al., 2016). On the 197 

other hand, a ca. 459 Ma U–Pb age for the Upper Ordovician volcanic rocks overlying 198 

the Sardic Unconformity has been proposed in the eastern Pyrenees (Martí et al., 199 

2019), and ca. 452–455 Ma in the neighbouring Catalan Coastal Ranges, which 200 

represent the southern prolongation of the Pyrenees (Navidad et al., 2010; Martínez et 201 

al., 2011). Thus, a time gap of about 16–23 m.y. can be related to the Sardic Phase in 202 

the eastern Pyrenees and the neighbouring Catalan Coastal Ranges.  203 

Coeval with the late Early–Mid Ordovician phase of generalized uplift and 204 

denudation, a key magmatic activity led to the intrusion of voluminous granitoids, about 205 

500 to 3000 m thick and encased in strata of the Ediacaran–Lower Cambrian 206 

Canaveilles Group (Fig. 2). These granitoids constitute the protoliths of the large 207 

orthogneissic laccoliths that punctuate the backbone of the central and eastern 208 

Pyrenees. These are, from west to east (Fig. 1D), the Aston (467‒470 Ma ; Denèle et 209 

al., 2009; Mezger and Gerdes, 2016), Hospitalet (about 472 Ma, Denèle et al., 2009), 210 

Canigó (472‒462 Ma, Cocherie et al., 2005; Navidad et al., 2018), Roc de Frausa 211 

(477‒476 Ma; Cocherie et al., 2005; Castiñeiras et al., 2008b) and Albera (about 470 212 

Ma; Liesa et al., 2011) massifs, which comprise a dominant Floian–Dapingian age. It is 213 

noticeable the fact that only a minor representation of coeval basic magmatic rocks are 214 

outcropped. The acidic volcanic equivalents have been documented in the Albera 215 

massif, where subvolcanic rhyolitic porphyroid rocks have yielded similar ages to those 216 
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of the main gneissic bodies at about 474–465 Ma (Liesa et al., 2011). Similar acidic 217 

byproducts are represented by the rhyolitic sills of Pierrefite (Calvet et al., 1988).  218 

The late Early–Mid Ordovician (“Sardic”) phase of uplift was succeeded by a Late 219 

Ordovician extensional interval responsible for the opening of (half-)grabens infilled 220 

with the basal Upper Ordovician alluvial-to-fluvial conglomerates (La Rabassa 221 

Conglomerate Formation). At map scale, a set of NE-SW trending normal faults 222 

abruptly controlling the thickness of the basal Upper Ordovician formations can be 223 

recognized in the La Cerdanya area (Casas and Fernández, 2007; Casas, 2010). 224 

Sharp variations in the thickness of the Upper Ordovician strata have been 225 

documented by Hartevelt (1970) and Casas and Fernández (2007). Drastic variations 226 

in grain size and thickness can be attributed to the development of palaeotopographies 227 

controlled by faults and subsequent erosion of uplifted palaeoreliefs, with subsequent 228 

infill of depressed areas by alluvial fan and fluvial deposits, finally sealed by Silurian 229 

sediments (Puddu et al., 2019). A Late Ordovician magmatic pulse contemporaneously 230 

yielded a varied set of magmatic rocks. Small granitic bodies are encased in the 231 

Canaveilles strata of the Canigó massif. They constitute the protoliths of the Cadí 232 

(about 456 Ma; Casas et al., 2010), Casemí (446 to 452 Ma; Casas et al., 2010), Núria 233 

(ca. 457 Ma; Martínez et al., 2011) and Canigó G-1 type (ca. 457 Ma; Navidad et al., 234 

2018) gneisses. 235 

The lowermost part of the Canaveilles Group (the so-called Balaig Series) host 236 

metre-scale thick bodies of metadiorite sills related to an Upper Ordovician protolith, 237 

(ca. 453 Ma, SHRIMP U–Pb in zircon; Casas et al., 2010). Coeval calc-alkaline 238 

ignimbrites, andesites and volcaniclastic rocks are interbedded in the Upper Ordovician 239 

succession of the Bruguera and Ribes de Freser areas (Robert and Thiebaut, 1976; 240 

Ayora, 1980; Robert, 1980; Martí et al., 1986, 2019). In the Ribes area, a granitic body 241 

with granophyric texture, dated at ca. 458 Ma by Martínez et al. (2011), intruded at the 242 

base of the Upper Ordovician succession. In the La Pallaresa dome, some metre-scale 243 

rhyodacitic to dacitic subvolcanic sills, Late Ordovician in age (ca. 453 Ma, Clariana et 244 
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al., 2018), occur interbedded within the pre-unconformity strata and close to the base 245 

of the Upper Ordovician.  246 

 247 

2.3. Occitan Domain: Albigeois, Montagne Noire and Mouthoumet massifs 248 

 249 

The parautochthonous framework of the southern French Massif Central, named 250 

Occitan Domain by Pouclet et al. (2017), includes among others, from south to north, 251 

the Mouthoumet, Montagne Noire and Albigeois massifs. The domain represents the 252 

southeastern prolongation of the Variscan South Armorican Zone (including 253 

southwestern Bretagne and Vendée). Since Gèze (1949) and Arthaud (1970), the 254 

southern edge of the French Massif Central has been traditionally subdivided, from 255 

north to south, into the northern, axial and southern Montagne Noire (Fig. 1C). The 256 

Palaeozoic succession of the northern and southern sides includes sediments ranging 257 

from late Ediacaran to Silurian and from Terreneuvian (Cambrian) to Visean in age, 258 

respectively. These successions are affected by large scale, south-verging recumbent 259 

folds that display a low to moderate metamorphic grade. Their emplacement took place 260 

in Late Visean to Namurian times (Engel et al., 1980; Feist and Galtier, 1985; Echtler 261 

and Malavieille, 1990). The Axial Zone consists of plutonic, migmatitic and 262 

metamorphic rocks forming a regional ENE-WSW oriented dome (Fig. 1C), where four 263 

principal lithological units can be recognized (i) schists and micaschists, (ii) migmatitic 264 

orthogneisses, (iii) metapelitic metatexites, and (iv) diatexites and granites (Cocherie, 265 

2003; Faure et al., 2004; Roger et al., 2004, 2015; Bé Mézème, 2005; Charles et al., 266 

2009; Rabin et al., 2015). The Rosis micaschist synform subdivides the eastern Axial 267 

Zone into the Espinouse and Caroux sub-domes, whereas the southwestern edge of 268 

the Axial Zone comprises the Nore massif. 269 

In the Occitan Domain, two main Cambro–Ordovician felsic events can be identified 270 

giving rise to the protoliths of (i) the Larroque metarhyolites in the northern Montagne 271 
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Noire and Albigeois, thrusted southward from Rouergue; and (ii) the migmatitic 272 

ortogneisses that form the Axial Zone of the Montagne Noire (Fig. 2). 273 

(i) The Larroque volcanosedimentary Complex is a thick (500–1000 m) package of 274 

porphyroclastic metarhyolites located on the northern Montagne Noire (Lacaune 275 

Mountains), Albigeois (St-Salvi-de-Carcavès and St-Sernin-sur-Rance nappes) and 276 

Rouergue; the Variscan setting of the formation is allochthonous in the Albigeois and 277 

parautochthonous in the rest. This volcanism emplaced above the Furongian strata and 278 

the so-called “Série schisto-gréseuse verte” (see Guérangé-Lozes et al., 1996; 279 

Guérangé-Lozes and Alabouvette, 1999), and is encased in the upper part of the 280 

Miaolingian La Gardie Formation (Pouclet et al., 2017) (Fig. 2). The Larroque volcanic 281 

rocks consist of deformed porphyroclastic rhyolites rich in largely fragmented, lacunous 282 

(rhyolitic) quartz and alkali feldspar phenocrysts. The metarhyolites occur as porphyritic 283 

lava flows, sills and other associated facies, such as aphyric lava flows, porphyritic and 284 

aphyric pyroclastic flows of welded or unwelded ignimbritic types, fine to coarse tephra 285 

deposits, and epiclastic and volcaniclastic deposits. These rocks are named “augen 286 

gneiss” or augengneiss and do not display a high-grade gneiss paragenesis but a 287 

general lower grade metamorphic mineralogy. The Occitan augengneisses mimic the 288 

Ollo de Sapo facies from the Central Iberian Zone because of their large bluish quartz 289 

phenocrysts. Based on geochemical similarities and contemporaneous emplacement, 290 

Pouclet et al. (2017) suggested that this event also supplied the Davejean acidic 291 

volcanic rocks in the Mouthoumet Massif, which represent the southern prolongation of 292 

the Montagne Noire (Fig. 2), and the Génis rhyolitic unit of the western Limousin 293 

sector.  294 

(ii) Some migmatitic orthogneisses make up the southern Axial Zone, from the 295 

western Cabardès to the eastern Caroux domes. The orthogneisses, derived from 296 

Ordovician metagranites bearing large K-feldspar phenocrysts, were emplaced at 297 

about 471 Ma (Somail Orthogneiss, Cocherie et al., 2005), 456 to 450 Ma (Pont de 298 

Larn and Gorges d’Héric gneisses, Roger et al., 2004) and ca. 455 Ma (Sain Eutrope 299 
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gneiss, Pitra et al., 2012). They intruded a metasedimentary pile, traditionally known as 300 

“Schistes X” and formally named St. Pons-Cabardès Group (Fig. 2). The latter consists 301 

of schists, greywackes, quartzites and subsidiary volcanic tuffs and marbles (Demange 302 

et al., 1996; Demange, 1999; Alabouvette et al., 2003; Roger et al., 2004; Cocherie et 303 

al., 2005). The group is topped by the Sériès Tuff, dated at about 545 Ma (Lescuyer 304 

and Cocherie, 1992), which represents a contemporaneous equivalent of the 305 

Cadomian Rivernous rhyolitic tuff (542.5 to 537.1 Ma) from the Lodève inlier of the 306 

northern Montagne Noire (Álvaro et al., 2014b, 2018; Padel et al., 2017). Age of 307 

migmatization has been inferred from U‒Pb dates on monacite from migmatites and 308 

anatectic granites at 333 to 327 Ma (Bé Mézème, 2005; Charles et al., 2008); as a 309 

result, the 330–325 Ma time interval can represent a Variscan crustal melting event in 310 

the Axial Zone.  311 

As in the Pyrenees, the Middle Ordovician is absent in the Occitan Domain. Its gap 312 

allows distinction between a Lower Ordovician pre-unconformity sedimentary package 313 

para- to unconformably overlain by an Upper Ordovician–Silurian succession (Álvaro et 314 

al., 2016; Pouclet et al., 2017). 315 

 316 

2.4. Sardinia 317 

 318 

In Sardinia the Cambro–Ordovician magmatism is well represented in the external 319 

(southern) and internal (northern) nappe zones of the exposed Variscan Belt (Fig. 1E), 320 

and ranges in age from late Furongian to Late Ordovician. A Furongian–Tremadocian 321 

(ca. 491–480 Ma) magmatic activity, predating the Sardic phase, is mostly represented 322 

by felsic volcanic and subvolcanic rocks encased in the San Vito sandstone Formation. 323 

The Sardic-related volcanic products differ from one nappe to another: intermediate 324 

and basic (mostly metandesites and andesitic basalts) are common in the nappe 325 

stacking of the central part of the island (Barbagia and Goceano), whereas felsic 326 

metavolcanites prevail in the southeastern units. Their age is bracketed between 465 327 
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and 455 Ma (Giacomini et al., 2006; Oggiano et al., 2010; Pavanetto et al., 2012; 328 

Cruciani et al., 2018) and matches the Sardic gap based on biostratigraphy (Barca et 329 

al., 1988). 330 

Teichmüller (1931) and Stille (1939) were the first to recognize in southwestern 331 

Sardinia an intra–Ordovician stratigraphic hiatus. Its linked erosive unconformity is 332 

supported by a correlatable strong angular discordance in the Palaeozoic basement of 333 

the Iglesiente-Sulcis area, External Zone (Carmignani et al., 2001). This major 334 

discontinuity separates the Cambrian–Lower Ordovician Nebida, Gonnesa and Iglesias 335 

groups (Pillola et al., 1998) from the overlying coarse-grained (“Puddinga”) Monte 336 

Argentu metasediments (Leone et al., 1991, 2002; Laske et al., 1994). The gap 337 

comprises a chronostratigraphically constrained minimum gap of about 18 m.y. that 338 

includes the Floian and Dapingian (Barca et al., 1987, 1988; Pillola et al., 1998; Barca 339 

and Cherchi, 2004) (Fig. 2). The hiatus is related to neither metamorphism nor 340 

cleavage, though some E–W folds have been documented in the Gonnesa Anticline 341 

and the Iglesias Syncline (Cocco et al., 2018), which are overstepped by the 342 

“Puddinga” metaconglomerates. Both the E–W folds and the overlying 343 

metaconglomerates were subsequently affected by Variscan N–S folds (Cocco and 344 

Funneda, 2011, 2017). Sardic-related volcanic rocks are not involved in this area, but 345 

Sardic-inherited palaeoreliefs are lined with breccia slides that include metre- to 346 

decametre-scale carbonate boulders (“Olistoliti”), some of them hosting 347 

synsedimentary faults contemporaneously mineralized with ore bodies (Boni and 348 

Koeppel, 1985; Boni, 1986; Barca, 1991; Caron et al., 1997). The lower part of the 349 

unconformably overlying Monte Argentu Formation deposited in alluvial to fluvial 350 

environments (Martini et al., 1991; Loi et al., 1992; Loi and Dabard, 1997).  351 

A similar gap was reported by Calvino (1972) in the Sarrabus-Gerrei units of the 352 

External Nappe Zone. The so-called “Sarrabese Phase” is related to the onset of thick, 353 

up to 500 m thick, volcanosedimentary complexes and volcanites (Barca et al., 1986; 354 

Di Pisa et al., 1992) with a Darriwilian age for the protoliths of the metavolcanic rocks 355 
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(465.4 to 464 Ma; Giacomini et al., 2006; Oggiano et al., 2010). In the Iglesiente-Sulcis 356 

region (Fig. 1E), Carmignani et al. (1986, 1992, 1994, 2001) suggested that the 357 

“Sardic-Sarrabese phase” should be associated with the compression of a Cambro–358 

Ordovician back-arc basin that originated the migration of the Ordovician volcanic arc 359 

toward the Gondwanan margin. 360 

Some gneissic bodies, interpreted as the plutonic counterpart of metavolcanic rocks, 361 

are located in the Bithia unit (e.g., the Monte Filau area, 458 to 457 Ma, surrounded by 362 

a Mid‒Ordovician andalusite thermal aureole; Pavanetto et al., 2012; Costamagna et 363 

al., 2016) and in the internal units (Lodè orthogneiss, ca. 456 Ma; Tanaunella 364 

orthogneiss, ca. 458 Ma, Helbing and Tiepolo, 2005; Golfo Aranci orthogneiss, ca. 469 365 

Ma, Giacomini et al., 2006). 366 

The Sardic palaeorelief is sealed by Upper Ordovician trangressive deposits. The 367 

sedimentary facies show high variability, but the –mostly terrigenous– sediments vary 368 

from grey fine- to medium-sized sandstones, to muddy sandstones and mudstones. 369 

They are referred to the Katian Punta Serpeddì and Orroeledu formations (Pistis et al., 370 

2016). This post–Sardic sedimentary succession is coeval with a new magmatic 371 

pulsation represented by alkaline to tholeiitic within-plate basalts (Di Pisa et al., 1992; 372 

Gaggero et al., 2012). 373 

 374 

3. Geochemical data 375 

 376 

3.1. Materials and methods 377 

 378 

The rocks selected for geochemical analysis (231 samples; see tectonostratigraphic 379 

location in Fig. 1 and stratigraphic emplacement in Fig. 2) have recorded different 380 

degrees of hydrothermalism and metamorphism, as a result of which only the most 381 

immobiles elements have been considered. The geochemical calculations, in which the 382 
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major elements take part, have been made from values recalculated to 100 in volatile 383 

free compositions; Fe is reported as FeOt. 384 

The geochemical dataset of the Central Iberian Zone includes 152 published 385 

geochemical data, from which 85 are plutonic and 67 volcanic and volcaniclastic rocks 386 

from the Ollo de Sapo Formation (Galicia, Sanabria and Guadarrama areas), and the 387 

contact between the Central Iberian and Ossa Morena Zones (Urra Formation and 388 

Portalegre and Carrascal granites). Other data were yielded from six volcanic rocks of 389 

the Galicia-Trás-os-Montes Zone (Saldanha area) (Fig. 1B; Repository Data). 390 

The dataset of the eastern Pyrenees consists of 38 samples, six of which are upper 391 

Lower Ordovician volcanic rocks, and seven upper Lower Ordovician plutonic rocks, 392 

together with nine Upper Ordovician volcanic and 14 Upper Ordovician plutonic rocks 393 

(Repository Data). New data reported below include two samples of subvolcanic sills 394 

intercalated in the pre‒Sardic unconformity succession (Clariana et al., 2018; Margalef, 395 

unpubl.; Table 1).  396 

The study samples from the Occitan Domain comprise six metavolcanic rocks, four 397 

from the Larroque volcanosedimentary Complex in the Albigeois and northern 398 

Montagne Noire and two from the Mouthoumet massif (Pouclet et al., 2017) 399 

(Repository Data), and four new samples for the Axial Zone gneisses (Table 1). 400 

In the Sardinian dataset, 25 published analyses are selected: five correspond to the 401 

Golfo Aranci orthogneiss (Giacomini et al., 2006), six to metavolcanics from the central 402 

part of the island (Giacomini et al., 2006; Cruciani et al., 2013), and five to 403 

metavolcanics and one to gneisses from the Bithia unit (Cruciani et al., 2018) 404 

(Repository Data). Ten new analyses are added from the Monte Filau and Capo 405 

Spartivento gneisses of the Bithia unit, and from the Punta Bianca gneisses embedded 406 

within the migmatites of the High-grade Metamorphic complex of the Inner Zone (Table 407 

1).  408 

Whole-rock major and trace elements and rare earth element (REE) compositions 409 

were determined at ACME Laboratories, Vancouver, Canada. LiBO2 fusion followed by 410 
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X-ray fluorescence spectroscopy (XRF) analysis was used to determine major 411 

elements. Rare earth and refractory elements were measured by ICP–MS following a 412 

lithium metaborate/tetraborate fusion and nitric acid digestion on 0.2 g of sample. For 413 

base metals, 0.5 g of sample was digested in Aqua Regia at 95 ºC and analyzed by 414 

inductively coupled plasma - atomic emission spectrometry (ICP–AES). Analyses of 415 

standards and duplicate samples indicate precision to better than 1 % for major oxides, 416 

and 3–10 % for minor and trace elements. 417 

Additional Sm‒Nd isotopic analyses were performed at Centro de Geocronologia y 418 

Geoqulmica Isotopica from the Complutense University, Madrid. They were carried out 419 

in whole-rock powders using a 150Nd‒149Sm tracer by isotope dilution-thermal ionization 420 

mass spectrometry (ID‒TIMS). The samples were first dissolved through oven 421 

digestion in sealed Teflon bombs with ultra pure reagents to perform two-stage 422 

conventional cation-exchange chromatography for separation of Sm and Nd (Strelow, 423 

1960; Winchester, 1963), and subsequently analysed using a Sector 54 VG-Micromass 424 

multicollector spectrometer. The measured 143Nd/l44Nd isotopic ratios were corrected 425 

for possible isobaric interferences from 142Ce and 144Sm (only for samples with 426 

147Sm/144Sm<0.0001) and normalized to 146Nd/144Nd=0.7219 to correct for mass 427 

fractionation. The Lajolla Nd international isotopic standard was analysed during 428 

sample measurement, and gave an average value of 143Nd/144Nd=0.5114840 for 9 429 

replicas, with an internal precision of ± 0.000032 (2σ). These values were used to 430 

correct the measured ratios for possible sample drift. The estimated error for the 431 

147Sm/144Nd ratio is 0.1%. 432 

A general classification of the analyzed samples, following Winchester and Floyd 433 

(1977), can be seen in Figure 4A–B, and the geographical coordinates of the new 434 

samples in Table 1. For geochemical comparison (summarized in Table 2), two large 435 

groups or suites are differentiated in order to check the similarities and differences 436 

between the magmatic rocks, and to infer a possible geochemical trend following a 437 
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palaeogeographic SW‒NE transect. The description reported below follows the same 438 

palaeogeographic and chronological order. 439 

 440 

3.2. Furongian‒to‒Mid Ordovician Suite 441 

 442 

In the Central Iberian and Galicia-Trás-os-Montes Zones, the Furongian‒to‒Mid 443 

Ordovician magmatic activity is pervasive. Their main representative is the Ollo de 444 

Sapo Formation, which includes volcanic and subvolcanic rocks (67 samples) as well 445 

as plutonic rocks (85 samples) (data from Murphy et al., 2006; Díez-Montes, 2007; 446 

Montero et al., 2007, 2009; Solá, 2007; Solá et al., 2008; Talavera, 2009; Villaseca et 447 

al., 2016). From the Parautochthon Schistose Domain of the Galicia-Trás-os Montes 448 

Zone, six samples of rhyolite tuffs of the Saldanha Formation (Dias da Silva et al., 449 

2014) are selected, which share geochemical features with the Ollo de Sapo 450 

Formation. In summary, five facies are differentiated in the Central Iberian and Galicia-451 

Trás-os Montes Zones: the Ollo de Sapo orthogneisses, some leucogneisses, 452 

metagranites and volcanic rocks, and the San Sebastián orthogneiss (for a 453 

geochemical characterization, see Table 2).  454 

In the central and eastern Pyrenees, an Early−Mid Ordovician magmatic activity 455 

gave rise to the intrusion of voluminous (about 500−3000 m in size) aluminous granitic 456 

bodies, encased into the Canaveilles beds (Álvaro et al., 2018; Casas et al., 2019). 457 

They constitute the protoliths of the large orthogneissic laccoliths that form the core of 458 

the domal massifs scattered throughout the backbone of the Pyrenees. Rocks of the 459 

Canigó, Roc de Frausa and Albera massifs have been taken into account in this work, 460 

in which volcanic rocks of the Pierrefite and Albera massifs, and the so-called G2 and 461 

G3 orthogneisses by Guitard (1970) are also included. All subgroups vary 462 

compositionally from subalkaline andesite to rhyolite, as illustrated in the Pearce’s 463 

(1996) diagram of Figure 5 (data compiled from Vilà et al., 2005; Castiñeiras et al., 464 

2008b; Liesa et al., 2011; Navidad et al., 2018).  465 
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Although most rocks in this area are acidic, it is remarkable the presence of minor 466 

mafic bodies (Cortalet and Marialles metabasites, not studied in this work), which could 467 

indicate a mantle connection with parental magmas during the Mid and Late 468 

Ordovician. As well, it should be noted that there are no andesitic rocks in the area. 469 

In the Occitan Domain, six samples of the Larroque volcanosedimentary Complex 470 

(Early Tremadocian in age) represent basin floors and subaerial explosive and effusive 471 

rhyolites (Pouclet et al., 2017). The porphyroclastic rocks of the Larroque metarhyolites 472 

were sampled in the Saint-Géraud and Larroque areas from the Saint-Sernin-sur-473 

Rance nappe and the Saint-André klippe above the Saint-Salvi-de-Carcavès nappe 474 

(Pouclet et al., 2017). 475 

In the Middle Ordovician rocks of Sardinia, 11 samples are selected, five of which 476 

correspond to orthogneisses of the Aranci Gulf, in the Inner Zone of the NE island 477 

(Giacomini et al., 2006), completed with six volcanic rocks of the External Zone 478 

(Giacomini et al., 2006; Cruciani et al., 2018) (Table 2).  479 

 480 

3.3 Upper Ordovician Suite 481 

 482 

In the central and eastern Pyrenees, four Upper Ordovician subgroups are 483 

distinguished based on their field occurrence and geochemical and geochronological 484 

features: the G1-type orthogneisses sensu Guitard (1970); the Cadí and Casemí 485 

orthogneisses and the metavolcanic rocks that include the Ribes de Freser rhyolites; 486 

the Els Metges volcanic tuffs; and the rhyolites from Andorra and Pallaresa areas (the 487 

latter dated at ca. 453 Ma; Clariana et al., 2018) (Table 2). The suite is completed with 488 

the Somail orthogneisses of the Axial Montagne Noire (dated at ca. 450 Ma at Gorges 489 

d’Héric; Roger et al., 2004) and the orthogneisses from the Sardinian External Zone 490 

(dated at ca. 458‒457 Ma at Monte Filau; Pavanetto et al., 2012) and the volcanic roks 491 

from the Sardinian Nappe Zone (Table 2). 492 

 493 
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4. Geochemical framework 494 

 495 

A geochemical comparison between the Furongian‒Ordovician felsic rocks of all the 496 

above-reported groups offers the opportunity to characterize the successive sources of 497 

crustal-derived melts along the south-western European margin of Gondwana. 498 

The geochemical features point to a predominance of materials derived from the 499 

melting of metasedimentary rocks, rich in SiO2 and K2O (average K2O/Na2O = 2.25) 500 

and peraluminous (0.4 < Cnorm < 4.5 and 0.94 < A/CNK > 3.12), with only three samples 501 

with A/CNK <1 (samples 100786 of the Casemí subgroup, and T26 and T27 of the San 502 

Sebastián subgroup).  503 

The result of plotting the REE content vs. average values of continental crust 504 

(Rudnick and Gao, 2004; Fig. 6) yields a flat spectra and a base level shared by most 505 

of the considered groups. The total content in REE is moderate to high (average REE = 506 

176 ppm, ranging between 482.2 and 26.0 ppm; Fig. 7), with a maximum in the 507 

subgroup of the Middle Ordovician volcanic rocks from Sardinia (average REE = 335 508 

ppm, VOL-SMO), and with LREE values more fractionated than HREE ones, and 509 

negative anomalies of Eu, which would indicate a characteristic process of magmatic 510 

evolution with plagioclase fractionation. These features are common in peraluminous 511 

granitoids. 512 

All subgroups display similar chondritic normalized REE patterns (Fig. 7), with an 513 

enrichment in LREE relative to HREE, which should indicate the involvement of crustal 514 

materials in their parental magmas. Nevertheless, some variations can be highlighted, 515 

such as the lesser fractionation in REE content of some subgroups. These are the 516 

leucogneisses from the Iberian massif (LG, La/Ybn = 2.01), the Upper Ordovician 517 

orthogneisses from Sardinia (OG-SUO, La/Ybn = 2.94), the Casemí orthogneisses 518 

(La/Ybn = 4.42) and the Middle Ordovician volcanic rocks from Sardinia (OG-SUO, 519 

La/Ybn = 2.94). This may be interpreted as a greater degree of partial fusion in the 520 

origin of their parental magmas (Rollinson, 1993). 521 
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There are three geochemical groups displaying (Gd/Yb)n values > 2, and (La/Yb)n 522 

values  9. These groups are OSS (Central Iberian Zone), VOL-OD (Occitan Domain) 523 

and G1 (Pyrenees), and share higher alkalinity features. 524 

Some V1 rocks from the Pyrenees (Pierrefite Formation) show no negative 525 

anomalies in Eu. Their parental magmas could have been derived from deeper origins 526 

and related to residual materials of the lower continental crust, in areas of production of 527 

K-rich granites (Taylor and McLenan, 1989). 528 

The spider diagrams (Fig. 8), however, exhibit strong negative anomalies in Nb, Sr 529 

and Ti, which indicate a distinct crustal affiliation (Díez-Montes, 2007). Only the San 530 

Sebastián orthogneisses (OSS) show distinct discrepancies in respect of the remaining 531 

samples from the Ollo de Sapo Formation. They display lower negative anomalies in 532 

Nb and a more alkaline character by comparison with the rest of the Ollo de Sapo 533 

rocks, which point to alkaline affinities and greater negative anomalies in Nb. 534 

Despite some small differences in the chemical ranges of some major elements, 535 

most felsic Ordovician rocks from the Iberian massif (Central Iberian and Galicia-Trás-536 

os Montes Zones), eastern Pyrenees, Occitan Domain and Sardinia share a common 537 

chemical pattern. The Lower‒Middle Ordovician rocks of the eastern Pyrenees show 538 

less variation in the content of Zr and Nb (Fig. 8B). The volcanic rocks of these groups 539 

show a different REE behaviour, which would indicate different sources. Two groups 540 

are distinguished in Figure 7, one with greater enrichment in REE and negative 541 

anomaly of Eu, and another with lesser content of HREE and without Eu negative 542 

anomalies.  543 

Figure 9 illustrates how the average of all the considered groups approximates the 544 

mean values of the Rudnick and Gao’s (2003) upper continental crust (UCC). In this 545 

figure, small deviations can be observed, some of them toward lower continental crust 546 

(LCC) values and others toward bulk continental crust (BCC), indicating variations in 547 

their parental magmas but with quite similar spectra. Overall chondrite-normalized 548 
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patterns are close to the values that represent the upper continental crust, with slight 549 

enrichments in the Th/Nb, Th/La and Th/Yb ratios. 550 

Finally, in the Occitan volcanic rocks (VOL-OD) the rare earth elements are enriched 551 

and fractionated (33.2 ppm < La < 45.6 ppm; 11.2 < La/Yb < 14.5). The upper 552 

continental crust normalized diagram exhibits negative anomalies of Ti, V, Cr, Mn and 553 

Fe associated with oxide fractionation, of Zr and Hf linked to zircon fractionation, and of 554 

Eu related to plagioclase fractionation. The profiles are comparable to the Vendean 555 

Saint-Gilles rhyolitic ones. The Th vs. Rb/Ba features are also similar to those of the 556 

Saint-Gilles rhyolites, and the Iberian Ollo de Sapo and Urra rhyolites (Solá et al., 557 

2008; Díez Montes et al., 2010). 558 

 559 

4. Discussion 560 

 561 

4.1 Inferred tectonic settings 562 

 563 

In order to clarify the evolution of geotectonic environments, the data have been 564 

represented in different discrimination diagrams. The Zr/TiO2 ratio (Lentz, 1996; Syme, 565 

1998) is a key index of compositional evolution for intermediate and felsic rocks. In the 566 

Syme diagram (Fig. 10), most rocks from the Central Iberian Zone represent a 567 

characteristic arc association, although there are some contemporaneous samples 568 

characterized by extensional-related values (Zr/Ti = 0.10, LG). The rocks of the 569 

Middle‒Ordovician San Sebastián orthogneisses (OSS) show values of Zr/Ti = 0.08, 570 

intermediate between extensional and arc conditions. This could be interpreted as a 571 

sharp change in geotectonic conditions toward the Mid Ordovician (Fig. 10A). For a 572 

better comparison, the samples of the San Sebastián orthogneisses (OSS) and the 573 

granites (GRA) have been distinguished with a shaded area in all the diagrams, since 574 

they have slightly different characteristics to the rest of the samples from the Ollo de 575 

Sapo group. The samples G1 (Pyrenees) and VOL (Central Iberian Zone) broadly 576 
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share similar values, as a result of which, the three latter groups (OSS, G1 and VOL) 577 

arrange following a good correlation line. The same trend seems to be inferred in the 578 

eastern Pyrenees (Fig. 10B), where the Middle Ordovician subgroups display arc 579 

features, but half of the Upper Ordovician subgroups show extensional affinities (G1 580 

and Casemí orthogneisses). In the case of the Occitan orthogneisses (Fig. 10C), they 581 

show arc characters, which contrast with the contemporaneous volcanic rocks 582 

displaying extensional values with Zr/Ti = 0.10. This disparity between plutonic and 583 

volcanic rocks could be interpreted as different conditions for the origin of these 584 

magmas. In Sardinia (Fig. 10D), the same evolution from arc to extensional conditions 585 

is highlighted for the Upper Ordovician samples, although some Middle Ordovician 586 

volcanic rocks already shared extensional patterns (Zr/Ti = 0.09). In summary, there 587 

seems to be a geochemical evolution in the Ordovician magmas grading from arc to 588 

extensional environments. 589 

In the Nb‒Y tectonic discriminating diagram of Pearce et al. (1984) (Fig. 11), most 590 

samples plot in the volcanic arc-type, though some subgroups project in the whitin-591 

plate and anomalous ORG. The majority of samples display very similar Zr/Nb and 592 

Nb/Y ratios, typical of island arc or active continental margin rhyolites (Díez-Montes et 593 

al., 2010). Only some samples plot separately: OSS samples with highest Nb contents 594 

(>20 ppm), and some volcanic rocks of the Occitan Domain (average Nb =16.87 ppm). 595 

In the eastern Pyrenees, the Middle Ordovician rocks plot in the volcanic arc field, 596 

whereas the Upper Ordovician ones point in the ORG type, except the Casemí 597 

samples. This progress of magmatic sources agrees with the evolution seen in Figure 598 

10. In the Ocitan Domain, VOL-OD samples share values with those of the San 599 

Sebastián orthogneiss, while OG-OD shares values with those of OG from the Central 600 

Iberian Zone.  601 

The Zr vs. Nb diagram (Leat et al., 1986; modified by Piercey, 2011) (Fig. 12) 602 

illustrates how magmas evolved toward richer values in Zr and Nb, which is consistent 603 

with what it is observed in the Syme diagram (Fig. 10). Figure 12A documents how 604 
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most samples show a general positive correlation. These different groups correspond 605 

to the OSS and Portalegre granites, highlighted in the figure. The two groups indicate a 606 

tendency toward alkaline magmas. Some samples, such as the Pyrenean G1, some 607 

Occitan VOL-OD samples and some Sardinian OG-UOS samples share the same 608 

affinity, clearly distinguished from the general geochemical trend exhibited by the 609 

Central Iberian Zone. 610 

On a Zr vs. Ga/Al diagram (Whalen et al., 1987) (Fig. 13), the samples depict an 611 

intermediate character between anorogenic or alkaline (A-type) and orogenic (I&S-612 

type). In the Central Iberian Zone, samples from the San Sebastián orthogneisses and 613 

Portalegre granites show characters of A-type granites, while the remaining samples 614 

display affinities of I&S-type granites. For the Central Iberian Zone, a clear magmatic 615 

shift toward more extensional geotectonic environments is characterized. For the 616 

eastern Pyrenees, we find the same situation as in the Central Iberian Zone, with a 617 

magmatic evolution toward A-granite type characteristics, indicating more extensional 618 

geotectonic environments. In the Occitan Domain, the samples show a clear I&S 619 

character. In the Sardinian case, the same seems to happen as in the Central Iberian 620 

Zone: the Upper Ordovician orthogneisses suggest a more extensional character. 621 

In summary, all the reported diagrams point to a magmatic evolution through time, 622 

grading from arc to extensional geotectonic environments (with increased Zr/Ti ratios) 623 

and to granite type-A characters. This geotectonic framework is consistent with that 624 

illustrated in Figure 10. The geochemical characters of these rocks show a rhyodacite 625 

to dacite composition, peraluminous and calc-alkaline K-rich character, and an arc-626 

volcanic affinity for most of samples, but without intermediate rocks associated with 627 

andesitic types. Hence a change in time is documented toward more alkaline magmas. 628 

 629 

4.2 Interpretation of ƐNd values 630 

 631 
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ƐNd(t) values are useful to interpret the nature of magmatic sources. Most samples of 632 

the above-reported groups show no significant differences in isotopic ƐNd(t) values, and 633 

NdCHUR model ages (Fig. 14). Some exceptions are related to granites from the 634 

southern Central Iberian Zone, which display positive values (from +2.6 to ‒2.4) and 635 

TDM values from 0.90 to 3.46 Ga. These granites, space-related with calcalkaline 636 

diorites and gabbros, were interpreted by Solá et al. (2008) as the result of 637 

underplating and temporal storage of mantle-derived magmas as a potential source for 638 

the intrusive “orogenic melts” during Early Palaeozoic extension. 639 

Some samples from (i) the Central Iberian Zone, such as VI-3 (Leucogneiss subgroup) 640 

and PORT2 and PORT15 (Granite subgroup); (ii) the eastern Pyrenees, such as 99338 641 

(G1 subgroup) and 100786 samples (Casemí subgroup); and (iii) the Sardinian CS5, 642 

CS8 and CC5 samples (Upper Ordovician Orthogneiss subgroup) display anomalous 643 

TDM values and 147Sm/144Nd ratios > 0.17 (Table 2; Fig. 14), a character relatively 644 

common in some felsic rocks (DePaolo, 1988; Martínez et al., 2011). According to 645 

Stern et al. (2012), these values should not be considered, but a possible explanation 646 

for these high ratios may be related to the M-type tetrad effect (e.g., Irber, 1999; 647 

Monecke et al., 2007; Ibrahim et al., 2015), which affects REE fractionation in highly 648 

evolved felsic rocks due to the interaction with hydrothermal fluids. This process can be 649 

reflected as an enrichment of Sm related to Nd. Other authors, however, explain this 650 

enrichment as a result of both magmatic evolution (e.g., McLennan, 1994; Pan, 1997) 651 

and weathering processes after exhumation (e.g., Masuda and Akagi, 1989; Takahasi 652 

et al., 2002).  653 

In the granites of the southern Central Iberian Zone and the volcanic rocks of 654 

Sardinia, positive values in ƐNd(t) could be interpreted as a more primitive nature of 655 

their parental magmas, even though the samples with highest TDM values are those 656 

that display higher 147Sm/144Nd ratios (> 0.17; Table 2). 657 

The volcanic rocks of the Central Iberian Zone display some differences following a 658 

N-S transect, being ƐNd(t) values less variable in the north (ƐNd(t): ‒4.0 to ‒5.0) than in 659 
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the south (ƐNd(t): ‒1.6 to ‒5.5). The isotopic signature of the Urra volcaniclastic rocks is 660 

compatible with magmas derived from young crustal rocks, with intermediate to felsic 661 

igneous compositions (Solá et al., 2008). The volcanic rocks of the northern Central 662 

Iberian Zone could be derived from old crustal rocks (Montero et al., 2007). The 663 

isotopic composition of the granitoids from the southern Central Iberian Zone has more 664 

primitive characters than those of the northern Central Iberian Zone, suggesting 665 

different sources for both sides (Talavera et al., 2013). OSS shows lower inheritance 666 

patterns, more primitive Sr–Nd isotopic composition than other rocks of the Ollo de 667 

Sapo suite, and an age some 15 m.y. younger than most meta-igneous rocks of the 668 

Sanabria region (Montero et al., 2009), likely reflecting a greater mantle involvement in 669 

its genesis (Díez-Montes et al., 2008).  670 

According to Talavera et al. (2013), the Cambro–Ordovician rocks of the Galicia-671 

Trás-os-Montes Zone schistose area and the magmatic rocks of the northern Central 672 

Iberian Zone are contemporary. Both metavolcanic and metagranitic rocks almost 673 

share the same isotopic compositions. 674 

The Upper Ordovician orthogneisses from the Occitan Domain show very little 675 

variation in ƐNd(t) values (‒3.5 to ‒4.0), typical of magmas derived from young crustal 676 

rocks. The variation in TDM values is also small (1.4 to 1.8 Ga) indicating similar 677 

crustal residence times to other rock groups. 678 

In Sardinia, ƐNd(t) values present a greater variation (‒1.6 to ‒3.3), but they are also 679 

included in the typical continental crustal range. As noted above, anormal TDM values 680 

(between 1.2 to 4.5 Ga) may be due to post-magmatic hydrothermal alteration 681 

processes. 682 

 683 

5. Geodynamic setting 684 

 685 

In the Iberian Massif, the Ediacaran–Cambrian transition was marked by 686 

paraconformities and angular discordances indicating the passage from Cadomian 687 
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volcanic arc to rifting conditions. The axis of the so-called Ossa-Morena Rift lies along 688 

the homonymous Zone (Quesada, 1991; Sánchez-García et al., 2003, 2008, 2010) 689 

close to the remains of the Cadomian suture (Murphy et al., 2006). Rifting conditions 690 

were accompanied by a voluminous magmatism that changed from peraluminous acid 691 

to bimodal (Sánchez-García et al., 2003, 2008, 2016, 2019). Some authors (Álvaro et 692 

al., 2014; Sánchez-García et al., 2019) propose that this rift resulted from a SW-to-NE 693 

inward migration, toward innermost parts of Gondwana, of rifting axes from the Anti-694 

Atlas in Morocco to the Ossa-Morena Zone in the Iberian Massif. According to this 695 

proposal the rifting developed later (in Cambro‒Ordovician times) in the Iberian, 696 

Armorican and Bohemian massifs.  697 

The Furongian–Ordovician transition to drifting conditions is associated, in the 698 

Iberian Massif, Occitan Domain, Pyrenees and Sardinia, with a stepwise magmatic 699 

activity contemporaneous with the record of the Toledanian and Sardic unconformities. 700 

These, related to neither metamorphism nor penetrative deformations, are linked to 701 

uplift, erosion and irregularly distributed mesoscale deformation that gave rise to 702 

angular unconformities up to 90º. The time span involved in these gaps is similar (22 703 

m.y. in the Iberian Massif, 16–23 m.y. in the Pyrenees and 18 m.y. in Sardinia). This 704 

contrasts with the greater time span displayed by the magmatic activity (30–45 m.y.), 705 

which started before the unconformity formation (early Furongian in the Central Iberian 706 

Zone vs. Floian in the Pyrenees, Occitan Domain and Sardinia), continued during the 707 

unconformity formation (Furongian and early Tremadocian in the Central Iberian Zone 708 

vs. Floian–Darriwilian in the Pyrenees, Occitan Domain and Sardinia), and ended 709 

during the sealing of the uplifted and eroded palaeorelief (Tremadocian–Floian 710 

volcaniclastic rocks at the base of the Armorican Quartzite in the Central Iberian Zone 711 

vs. Sandbian–Katian volcanic rocks at the lowermost part of the Upper Ordovician 712 

successions in the Pyrenees, Occitan Domain and Sardinia; Gutiérrez-Alonso et al., 713 

2007, 2016; Navidad et al., 2010; Martínez et al., 2011; Álvaro et al., 2016; Martí et al., 714 

2019). In the Pyrenees, Upper Ordovician magmatism and sedimentation coexist with 715 
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normal faults controlling marked thickness changes of the basal Upper Ordovician 716 

succession and cutting the lower part of this succession, the Sardic unconformity and 717 

the underlying Cambro–Ordovician sequence (Puddu et al., 2018, 2019).  718 

Although the Toledanian and Sardic Phases reflect similar geodynamic conditions in 719 

two distinct palaeogeographic areas, at present forming the western and eastern 720 

branches of the Variscan Ibero-Armorican Arc, they display different peaks in magmatic 721 

activity with a minor chronological overlapping (Fig. 3). This may reflect a SW-to-NE 722 

“zip-like” propagation of the latest Ediacaran‒Terreneuvian rifting axes in the so-called 723 

Atlas-Ossa Morena Rift. 724 

 725 

Toledanian Phase 726 

 727 

The Early Ordovician (Toledanian) magmatism of the Central Iberian Zone evolved to a 728 

typical passive-margin setting, with geochemical features dominated by acidic rocks, 729 

peraluminous and rich in K, and lacking any association with basic or intermediate 730 

rocks. Some of the orthogneisses of the Galicia-Trás-os-Montes Zone basal and 731 

allochthonous complex units share these same patterns. This fact has been interpreted 732 

by some authors as a basin environment subject to important episodes of crustal 733 

extension (Martínez-Catalán et al., 2007; Díez-Montes et al., 2010). In contrast, 734 

Villaseca et al. (2016) interpreted this absence as evidence against rifting conditions, 735 

though the absence of contemporary basic magmatism may be explained by the partial 736 

fusion of a thickened crust, through recycling of Neoproterozoic crustal materials. The 737 

thrust of a large metasedimentary sequence could generate dehydration and 738 

metasomatism of the rocks above this sequence, triggering partial fusion at different 739 

levels, although the increase in peraluminosity with the basicity of the orthogneisses is 740 

against any AFC process involving mantle materials. However, this increase in 741 

peraluminosity with the basicity has not been revealed in the samples studied above. 742 

Following Villaseca et al.’s (2016) model, a flat subduction of the southern part of the 743 
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Central Iberian Zone would have taken place under its northern prolongation, whereas 744 

the reflection of such a subduction is not evident in the field. The calc-alkaline signature 745 

of this magmatism has also been taken into account as proof of its relationship with 746 

volcanic-arc environments (Valverde-Vaquero and Dunning, 2000). However, calc-747 

alkaline features may be also interpreted as a result of a variable degree of continental 748 

crustal contamination and/or previously enriched mantle source (Sánchez-García et al., 749 

2003, 2008, 2016, 2019; Díez-Montes et al., 2010). Finally, other granites not 750 

considered here of Tremadocian age have been reported in the southern Central 751 

Iberian Zone, such as the Oledo massif and the Beira Baixa-Central Extremadura, 752 

which display a I-type affinity (Antunes et al., 2009; Rubio Ordóñez et al., 2012). These 753 

granites could represent different sources for the Ordovician magmatism in the Central 754 

Iberian Zone. 755 

Sánchez-García et al. (2019) have proposed that the anomaly that produced the 756 

large magmatism throughout the Iberian Massif could have migrated from the rifting 757 

axis to inwards zones and the acid, peraluminous, K-rich rocks of Mid Ordovician in 758 

age should represent the initial stages of a new rifting pulse, resembling the 759 

peraluminous rocks of the Early Rift Event sensu Sánchez-García et al. (2003) from the 760 

Cambrian Epoch 2 of the Ossa-Morena Rift. 761 

In the parautochthon of the Galicia-Trás-os-Montes Zone, the appearance of 762 

tholeiitic and alkaline-peralkaline magmatism in the Mid Ordovician would signal the 763 

first steps toward extensional conditions (Díez Fernández et al., 2012; Dias da Silva et 764 

al., 2016). In the Montagne Noire and the Mouthoumet massifs contemporaneous 765 

tholeiitic lavas indicate a similar change in the tectonic regimen (Álvaro et al., 2016). 766 

This gradual change in geodynamic conditions is also marked by the appearance of 767 

rocks with extensional characteristics in some of subgroups considered here, such as 768 

the Central Iberian Zone (San Sebastián orthogneisses), eastern Pyrenees (Casemí 769 

orthoneisses, and G1), volcanic rocks of the Occitan Domain, and the orthogneises 770 

and volcanic rocks from Sardinia. 771 
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 772 

Sardic Phase 773 

 774 

In the eastern Pyrenees, two peaks of Ordovician magmatic activity are observed 775 

(Casas et al., 2019). Large Lower‒Middle Ordovician peraluminous granite bodies are 776 

known representing the protoliths of numerous gneissic bodies with laccolithic 777 

morphologies. In the Canigó massif, the Upper Ordovician granite bodies (protholits of 778 

Cadí, Casemí, G1) are encased in sediments of the Canaveilles and Jujols groups. 779 

During this time span, there was generalized uplift and erosion that culminated with the 780 

onset of the Sardic unconformity. The Sardic Phase was succeeded by an extensional 781 

interval related to the formation of normal faults affecting the pre‒unconformity strata 782 

(Puddu et al., 2018, 2019). The volcanic arc signature can be explain by crustal 783 

recycling (Navidad et al., 2010; Casas et al., 2010; Martínez et al., 2011), as in the 784 

case of the Toledanian Phase in the Central Iberian Zone, although, according to 785 

Casas et al. (2019), the Pyrenees and the Catalan Coastal Ranges were probably 786 

fringing the Gondwana margin in a different position than that occupied by the Iberian 787 

Massif. As a whole, the Ordovician magmatism in the Pyrenees lasted about 30 m.y., 788 

from ca 477 to 446 Ma, in a time span contemporaneous with the formation of the 789 

Sardic unconformity (Fig. 2). Recently, Puddu et al. (2019) proposed that a thermal 790 

doming, bracketted between 475 and 450 Ma, could have stretched the Ordovician 791 

lithosphere. The emersion and denudation of the inherited Cambrian–Ordovician 792 

palaeorelief would have given rise to the onset of the Sardic unconformity. According to 793 

these authors, thermal doming triggered by hot mafic magma underplating may also be 794 

responsible for the late Early–Late Ordovician coeval magmatic activity. 795 

In the Occitan Domain, there was a dramatic volcanic event in early Tremadocian 796 

times, with the uprising of basin floors and the subsequent effusion of abundant 797 

rhyolitic activities under subaerial explosive conditions (Larroque volcanosedimentary 798 

Complex in the Montagne Noire, and Davejean acidic volcanic counterpart in the 799 
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Mouthoumet Massif). Pouclet el al., (2017) interpreted this as a delayed Ollo de Sapo-800 

style outpouring where a massive crustal melting required a rather significant heat 801 

supply. Asthenospheric upwelling leading to the interplay of lithospheric doming, 802 

continental break-up, and a decompressionally driven mantle melting can explain such 803 

a great thermal anomaly. The magmatic products accumulated on the mantle-crust 804 

contact would provide enough heat transfer for crustal melting (Huppert and Sparks, 805 

1988). Subsequently, a post–Sardic reactivation of rifting conditions is documented in 806 

the Cabrières klippes (southern Montagne Noire) and the Mouthoumet massif. There, a 807 

Late Ordovician fault-controlled subsidence linked to the record of rift-related tholeiites 808 

(Roque de Bandies and Villerouge formations) were contemporaneous with the record 809 

of the Hirnantian glaciation (Álvaro et al., 2016). Re-opening of rifting branches 810 

(Montagne Noire and Mouthoumet massifs) was geometrically recorded as onlapping 811 

patterns and final sealing of Sardic palaeoreliefs by Silurian and Lower Devonian 812 

strata. 813 

Sardinia illustrates an almost complete record of the Variscan Belt (Carmignani et 814 

al., 1994; Rossi et al., 2009). Some plutonic orthogneises of the Inner Zone belong to 815 

this cycle, such as the orthogneises of Golfo Aranci (Giacomini et al., 2006). Gaggero 816 

et al. (2012) described three magmatic cycles. The first cycle is well represented in the 817 

Sarrabus unit by Furongian–Tremadocian volcanic and subvolcanic interbeds within a 818 

terrigenous sucession (San Vito Formation) which is topped by the Sardic 819 

uncomformity. Some plutonic orthogneises of the Inner Zone belong to this cycle, such 820 

as the orthogneises of Golfo Aranci (Giacomini et al., 2006) and the PB orthogneiss of 821 

Punta Bianca). The second Mid‒Ordovician cycle, about 50 m.y. postdating the 822 

previous cycle, is of an arc-volcanic type with calc-alkaline affinity and acidic-to-823 

intermediate composition. The acidic metavolcanites are referred in the literature as 824 

“porphyroids”, which crop out in the External Nappe Zone and some localities of the 825 

Inner Zone. The intermediate to basic derivates are widespread in Central Sardinia 826 

(Serra Tonnai Formation). Some plutonic rocks (Mt. Filau orthogneisses and Capo 827 
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Spartivento) of the second cycle are discussed above. The third cycle consists of 828 

alkalic meta-epiclastites interbedded in post–Sandbian strata and metabasites marking 829 

the Ordovician/Silurian contact and reflecting rifting conditions. In this work only the first 830 

two cycles are considered. Giacomini et al. (2006) cite coeval mafic rocks of felsic 831 

magmatism of Mid Ordovician age (Cortesogno et al., 2004; Palmeri et al., 2004; 832 

Giacomini et al., 2005), although they interpret a subduction scenario of the Hun terrain 833 

below Corsica and Sardinia in the Mid Ordovician. 834 

 835 

Origin of intracrustal siliceous melts 836 

 837 

In this scenario, the key to generate large volumes of acidic rocks in an intraplate 838 

context would be the existence of a lower-middle crust, highly hydrated, in addition to a 839 

high heat flow, possibly caused by mafic melts (Bryan et al., 2002; Díez-Montes, 2007). 840 

This could be the scenario initiated by the arrival of a thermal anomaly in a subduction-841 

free area (Sánchez-García et al., 2003, 2008, 2019; Álvaro et al., 2016). The formation 842 

of large volumes of intracrustal siliceous melts could act as a viscous barrier, 843 

preventing the rise of mafic magmas within volcanic environments, and causing the 844 

underplating of these magmas at the contact between the lower crust and the mantle 845 

(Huppert and Sparks, 1988; Pankhurst et al., 1998; Bindeman and Valley, 2003). The 846 

cooling of these magmas could lead to crustal thickening and in this case, the volcanic 847 

arc signature can be explained by crustal recycling (Navidad et al., 2010; Díez-Montes 848 

et al., 2010; Martínez et al., 2011).  849 

Sánchez-García et al. (2019) have proposed that the anomaly that produced the 850 

large magmatism throughout the Iberian Massif could have migrated from the rifting 851 

axis to inwards zones and the acid, peraluminous, K-rich rocks of Mid Ordovician in 852 

age should represent the initial stages of a new rifting pulse, resembling the 853 

peraluminous rocks of the Early Rift Event sensu Sánchez-García et al. (2003) from the 854 

Cambrian Epoch 2 of the Ossa-Morena Rift. In the parautochthon of the Galicia-Trás-855 



32 
 

 

os-Montes Zone, the appearance of tholeiitic and alkaline-peralkaline magmatism in 856 

the Mid Ordovician would signal the first steps toward extensional conditions (Díez 857 

Fernández et al., 2012; Dias da Silva et al., 2016). In the Montagne Noire and the 858 

Mouthoumet massifs contemporaneous tholeiitic lavas indicate a similar change in the 859 

tectonic regimen (Álvaro et al., 2016). This change in geodynamic conditions is also 860 

marked by the appearance of rocks with extensional characteristics in some of 861 

subgroups considered here, such as the Central Iberian Zone (San Sebastián 862 

orthogneisses), eastern Pyrenees (Casemí orthogneisses, and G1), volcanic rocks of 863 

the Occitan Domain, and the orthogneises and volcanic rocks from Sardinia. In the 864 

Pyrenees, Puddu et al. (2019) proposed that a thermal doming, between 475 and 450 865 

Ma, should have stretched the Ordovician lithosphere leading to emersion and 866 

denudation of a Cambrian–Ordovician palaeorelief, and giving rise to the onset of the 867 

Sardic unconformity. According to these authors, thermal doming triggered by hot mafic 868 

magma underplating may also be responsible for the late Early–Late Ordovician coeval 869 

magmatic activity 870 

A major continental break-up, leading to the so-called Tremadocian Tectonic Belt, 871 

was suggested by Pouclet et al. (2017), which initiated by upwelling of the 872 

asthenosphere and tectonic thinning of the lithosphere. Mantle-derived mafic magmas 873 

were underplated at the mantle-crust transition zone and intruded the crust. These 874 

magmas provided heat for crustal melting, which supplied the rhyolitic volcanism. After 875 

emptying the rhyolitic crustal reservoirs, the underlying mafic magmas finally rose and 876 

reached the surface. According to Pouclet et al. (2017), the acidic magmatic output 877 

associated with the onset of the Larroque metarhyolites resulted in massive crustal 878 

melting requiring a rather important heat supply. Asthenospheric upwelling leading to 879 

lithospheric doming, continental break-up, and a decompressionally driven mantle 880 

melting can explain such a great thermal anomaly. Magmatic products accumulated on 881 

the mantle-crust contact providing enough heat transfer for crustal melting. 882 

 883 
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6. Conclusions 884 

 885 

A geochemical comparison of 231 plutonic and volcanic samples of two major suites, 886 

Furongian‒Mid Ordovician and Late Ordovician in age, from the Central Iberian and 887 

Galicia-Trás-os-Montes Zones of the Iberian Massif and in the eastern Pyrenees, 888 

Occitan Domain (Albigeois, Montagne Noire and Mouthoumet massifs) and Sardinia 889 

points to a predominance of materials derived from the melting of metasedimentary 890 

rocks, peraluminous and rich in SiO2 and K2O. The total content in REE is moderate to 891 

high. Most felsic rocks display similar chondritic normalized REE patterns, with an 892 

enrichment of LREE relative to HREE, which should indicate the involvement of crustal 893 

materials in their parental magmas. 894 

Zr/TiO2, Zr/Nb, Nb/Y and Zr vs. Ga/Al ratios, and REE and ƐNd values reflect 895 

contemporaneous arc and extensional scenarios, which progressed to distinct 896 

extensional conditions finally associated with outpouring of mafic tholeiitic-dominant 897 

rifting lava flows. Magmatic events are contemporaneous with the formation of the 898 

Toledanian (Furongian–Early Ordovician) and Sardic (Early–Late Ordovician) 899 

unconformities, related to neither metamorphism nor penetrative deformation. The 900 

geochemical and structural framework precludes subduction generated melts reaching 901 

the crust in a magmatic arc to back-arc setting. On the contrary, it favours partial 902 

melting of sediments and/or granitoids in a continental lower crust triggered by the 903 

underplating of hot mafic magmas related to the opening of the Rheic Ocean as a 904 

result of asthenospheric upwelling. 905 
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FIGURE CAPTIONS 1552 

 1553 

Figure 1. A. Reconstruction of the south-western European margin of Gondwana in 1554 

Late Carboniferous–Early Permian times; modified from Pouclet et al. (2017). B. 1555 

Setting of samples in the Central Iberian and Galicia-Trás-os-Montes zones; 59- 1556 

Carrascal, 68- Guadarrama, 70- Sanabria, 74- Miranda do Douro, 77- Ollo de Sapo, 1557 

79- Portalegre, 82- Saldanha, 84- San Sebastián, 99- Urra, Sa Sanabria; modified from 1558 

Sánchez-García et al. (2019). C. Setting of samples in the Montagne Noire and 1559 

Mouthoumet massifs; Am1-2 Larroque hamlet (Ambialet), Stg- St.Géraud  Sta- St. 1560 

André, Mj- Montjoi, Qu- Quintillan, GL- Roque de Bandies, VLR- Villerouge-Termenès, 1561 

VIN- Le Vintrou, HER- Gorges d'Héric (Caroux massif), Ax1- S Mazamet (Nore massif), 1562 

Ax2 (Rou)- S Rouayroux (Agout massif); modified from Álvaro et al. (2016). D. Setting 1563 

of Pyrenean samples; modified from Casas et al. (2019). E. Setting of Sardinian 1564 

samples; CS 2,3,4,8- Spartivento Cap, T2- Tuerreda, CC5- Cuile Culurgioni, MF1- 1565 

Monte Filau, MFS1-Monte Settiballas, PB- Punta Bianca; modified from Oggiano et al. 1566 

(2010). 1567 
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Figure 2. Stratigraphic comparison of the Cambro-Ordovician successions from the 1570 

Central Iberian Zone, Galicia Trás-os-Montes Zone, Occitan Domain, Eastern 1571 

Pyrenees and Sardinia; modified from Álvaro et al. (2014b, 2016, 2018), Pouclet et al. 1572 

(2017) and Sánchez-García et al. (2019); abbreviations: Ag Agualada, Ca Campelles 1573 

ignimbrites (ca. 455 Ma,Martí et al., 2014), CD Cadí gneiss (456 ± 5 Ma, Casas et al., 1574 

2010), Cg Canigó gneiss (472–462 Ma, Cocherie et al., 2005; Navidad et al., 2018), Co 1575 

Cortalets metabasite (460 ± 3 Ma, Navidad et al., 2018), Cs Casemí gneiss (446 ± 5 1576 

and 452 ± 5 Ma, Casas et al., 2010), Es Estremoz rhyolites (499 Ma, Pereira et al., 1577 

2012), Ga Galiñero, GA Golfo Aranci orthogneiss (469 ± 3.7 Ma, Giacomini et al., 1578 

2006), GH Gorges d’Heric orthogneiss (450 ± 6 Ma, Roger et al., 2004), La Larroque 1579 

Volcanic Complex, Ma Marialles microdiorite (453 ± 4 Ma, Casas et al., 2010), Lo Lodè 1580 

orthogneiss (456 ± 14 Ma, Helbing and Tiepolo, 2005), MF Monte Filau-Capo 1581 

Spartivento orthogneiss (449 ± 6 Ma, Ludwing and Turi, 1989; 457.5 ± 0,3 and 458.2 ± 1582 

0.3 Ma, Pavanetto et al., 2012), Mo Mora (493.5 ± 2 Ma, Dias Da Silva et al., 2014), Nu 1583 

Núria gneiss (457 ± 4 Ma, Martínez et al., 2011), OS Ollo de Sapo rhyolites and ash-1584 

fall tuff beds (ca. 477 Ma., Gutiérrez-Alonso et al., 2016), PL Pont de Larn orthogneiss 1585 

(456 ± 3 Ma, Roger et al., 2004), Qb Queralbs gneiss (457 ± 5 Ma, Martínez et al., 1586 

2011), PB Punta Bianca orthogneiss (broadly Furongian‒Tremadocian in age), PC 1587 

Porto Corallo dacites (465.4 ± 1.9 and 464 ± 1 Ma, Giacomini et al., 2006; Oggiano et 1588 

al., 2010), Ri Ribes granophyre (458 ± 3 Ma, Martínez et al., 2011), Rf Roc de Frausa 1589 

gneiss (477 ± 4, 476 ± 5 Ma, Cocherie et al., 2005; Castiñeiras et al., 2008), So Somail 1590 

orthogneiss (471 ± 4 Ma, Cocherie et al. 2005), Sa Saldanha (483.7 ± 1.5; Dias da 1591 

Silva, 2014), SE Saint Eutrope gneiss (455 ± 2 Ma, Pitra et al., 2012), Ta Tanaunella 1592 

orthogneiss 458 ± 7 Ma (Helbing and Tiepolo, 2005), Tr Turchas and Ur Urra rhyolites. 1593 
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Figure 3. Relative probability plots of the age of the Cambrian‒Ordovician magmatism 1596 

for (A) the Ollo de Sapo domain from the Central Iberian Zone; and (B) Pyrenees 1597 

(Guilleries and Gavarres massifs), French Central Massif (including Montagne Noire), 1598 

Sardinia, Corsica and Sicily (n = number of analyses). Data obtained from references 1599 

cited in the text. 1600 

 1601 

  1602 
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Figure 4. SiO2 vs. Zr/TiO2 and Zr/TiO2 vs. Nb/Y plots (Winchester and Floyd, 1977) 1603 

showing the composition of new samples (purple diamonds) and those taken from the 1604 

literature (green triangles). 1605 

 1606 

 1607 

  1608 
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Figure 5. Zr/Ti vs. Nb/Y discrimination diagram (after Winchester and Floyd, 1977; 1609 

Pearce, 1996). A. Lower‒Middle Ordovician rocks of Iberian Massif (Central Iberian 1610 

and Galicia-Trás-os-Montes zones). B. Middle‒Upper Ordovician rocks of the eastern 1611 

Pyrenees. C) Middle Ordovician rocks of the Occitan Domain. C‒D. Middle‒Upper 1612 

Ordovician rocks of Sardinia. 1613 

 1614 

 1615 
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Figure 6. Upper Crustal-normalized REE patterns (Rudnick and Gao, 2003) with 1616 

average values for all distinguished groups; symbols as in Figure 4. 1617 

 1618 

 1619 

  1620 
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Figure 7. Chondrite-normalized REE patterns (Sun and McDonough, 1989) for all 1621 

study samples. 1622 

 1623 

 1624 

  1625 
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Figure 8. Multi-element diagram normalised to Primitive Mantle of Palme and O’Neill 1626 

(2004) for all study samples. 1627 

 1628 

 1629 

  1630 
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Figure 9. Chondrite-normalised isotope ratio patterns (Sun and McDonough, 1989) for 1631 

standard comparison for all study samples. Blue area: limits of continental crustal 1632 

values (Lower and Upper) of Rudnick and Gao (2003). 1633 

 1634 

 1635 

  1636 
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Figure 10. Tectonic discriminating diagram of Zr vs. TiO2 (Syme, 1998) for all study 1637 

samples. Double-sided arrows indicate ranging of differents fields: rhyolites in tholeiitic 1638 

and calc-alkaline arc suites have Zr/TiO2 ratios ranging from about 0.016 to 0.04, and 1639 

extension-related rhyolites from about 0.13 to 0.28 (Syme, 1989). 1640 

 1641 

 1642 

  1643 
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Figure 11. Tectonic discriminating diagram of Y vs. Nb (Pearce et al., 1984) for all 1644 

study samples. 1645 

 1646 

 1647 

  1648 
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Figure 12. Zr vs. 104 Ga/Al discrimination diagram (Whalen et al., 1987). 1649 

 1650 

 1651 
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Figure 13. Zr‒Nb plot diagram (Leat et al.,1986; modified by Piercey, 2011) for all 1653 

study samples. 1654 

 1655 

 1656 

  1657 
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Figure 14. εNd(t) vs. age diagram (DePaolo and Wasserburg, 1976; DePaolo, 1981) for 1658 

study sampled. A. Central Iberian and Galicia-Trás-os-Montes Zones. B. Eastern 1659 

Pyrenees. C. Occitan Domain. D. Sardinia; see references in the text. 1660 

 1661 

 1662 
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Table 1. Chemical analyses of magmatic rocks. ICP and ICP‒MS methods at ACME‒1664 

LABS in Canada. 1665 

 1666 

 1667 

  1668 

PYRENEES

Albera Pallaresa Andorra Axial Zone External Zone Inner Zone

Sample A-08-03 fC1803 BN 1 Ax - 1 Ax - 2 HER VIN CC 5 CS 2 CS 3 CS 5 CS 8 MF 1 MFS 1 T 2 PB50 PB100

Long. (E)  3º7’39’’ 1º27’43’’ 1º33’29’’ 2º13'50'' 2º33'58'' 2º57'58'' 2º13'50'' 8º50'37'' 8º50'35'' 8º50'35'' 8º50'40'' 8º50'35'' 8º50'47'' 8º52'02'' 8º48'54'' 9°09'32'' 9°09'32''

Lat. (N) 42º25’2’’ 42º36’1’’ 42º32’30’’ 43º34'32'' 43º29'3'' 43º34'32'' 43º17'45'' 38º54'16'' 38º52'38'' 38º52'38'' 38º52'36'' 38º52'39'' 38º54'58'' 38º53'57'' 38º53'57'' 41°11'' 41°11'04''

SiO2 68.38 71.67 69.18 70.38 67.43 68.31 73.97 76.43 75.14 76.52 76.61 76.36 72.13 75.94 75.55 68.93 67.24

TiO2 0.57 0.63 0.61 0.36 0.64 0.61 0.20 0.08 0.08 0.09 0.04 0.06 0.31 0.13 0.18 0.41 0.46

Al2O3 15.68 14.24 15.05 14.90 15.76 15.39 13.82 13.28 12.81 11.80 12.71 12.63 13.80 13.16 12.94 16.32 15.79

Fe2O3 4.09 4.54 4.20 3.04 4.11 4.19 2.05 0.69 1.39 1.44 1.28 1.35 2.96 1.55 1.62 3.19 4.78

MnO 0.07 0.06 0.05 0.04 0.04 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04 0.08 0.08

MgO 1.35 0.78 1.16 0.78 1.33 1.34 0.43 0.08 0.15 0.16 0.06 0.05 0.36 0.19 0.08 1.15 1.58

CaO 0.21 0.53 1.78 1.22 1.44 1.58 0.62 0.32 0.25 0.15 0.20 0.35 0.61 0.38 0.17 3.05 2.70

Na2O 4.07 1.67 3.40 3.33 2.78 2.93 2.87 3.04 1.71 1.58 2.91 3.35 2.89 2.57 2.53 3.85 3.43

K2O 2.84 2.91 2.71 4.35 4.68 4.03 4.55 4.79 7.84 7.43 5.16 4.91 5.47 4.94 5.36 2.26 2.96

P2O5 0.17 0.24 0.20 0.21 0.2 0.19 0.18 0.15 0.05 0.05 0.03 0.04 0.12 0.11 0.07 0.15 0.14

L.O.I. 2.03 2.60 1.50 1.2 1.3 1.2 1.2 1.1 0.4 0.7 0.9 0.8 1.1 0.9 1.4 0.90 0.70

Total 99.05 99.42 99.42 99.51 99.30 99.39 99.73 99.90 99.69 99.79 99.78 99.78 99.47 99.75 99.78 99.97 99.37

As 77.20 1.70 6.80 2.50 6.00 1.80 1.90 0.70 1.00 0.50 2.80 1.10 1.80 101.10 4.00 5.00 5.00

Ba 742.50 388.00 398.00 499 1050 767 256 60 467 109 21 27 784 194 192 689.00 600.00

Be 2.44 3.00 2.00 4.00 2.00 5.00 3.00 6.00 3.00 1.00 9.00 2.00 7.00 3.00 7.00 3.00 5.00

Bi 0.30 0.20 0.10 0.20 0.20 0.20 0.40 0.30 0.10 0.10 0.10 0.10 0.10 0.70 0.40 4.00 4.00

Cd 0.18 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Co 5.84 4.60 6.20 5.20 5.20 5.40 2.70 0.50 1.60 1.00 0.80 0.60 2.30 1.50 1.20 5.00 14.00

Cs 9.79 5.60 4.90 14.30 7.10 6.80 7.30 4.20 3.40 1.60 4.50 4.60 6.40 3.90 4.10 4.20 9.40

Cu 16.34 13.20 10.30 7.20 7.40 10.10 8.70 4.70 4.60 8.20 26.80 2.50 5.00 5.50 5.00 10.00 60.00

Ga 21.03 19.80 18.80 19.10 19.20 18.90 16.70 19.30 14.90 15.30 19.40 19.20 20.70 19.00 19.90 17.00 18.00

Hf 6.40 7.30 6.40 5.00 6.90 5.70 3.10 3.10 4.10 4.30 3.50 3.80 8.80 3.70 5.80 5.90 5.30

Mo 1.20 0.90 1.00 0.60 0.90 0.60 0.30 0.70 0.70 0.70 0.80 0.50 1.70 0.80 1.60 2.00 2.00

Nb 10.49 11.30 11.30 9.60 12.40 11.90 7.90 10.30 7.70 12.10 13.20 13.30 20.20 9.10 20.60 9.00 11.00

Ni 16.56 8.00 7.70 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 80.00

Pb 7.94 9.80 22.90 3.50 4.60 5.10 3.60 2.90 7.40 8.60 4.50 5.50 5.10 6.30 5.50 21.00 24.00

Rb 124.40 123.70 137.20 204.6 161.6 142.2 188.2 289.9 206.1 187.4 294.1 275.1 208.7 256.4 227.1 85.00 118.00

Sb 2.27 0.10 0.30 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 5.00 5.00

Sc 10.00 10.00 6.00 9.00 9.00 4.00 3.00 3.00 4.00 4.00 4.00 15.00 4.00 8.00 9.00 12.00

Sn 2.11 5.00 5.00 9.00 3.00 3.00 7.00 9.00 4.00 3.00 13.00 15.00 7.00 15.00 12.00 3.00 3.00

Sr 158.00 201.80 83.70 91.20 160.30 150.10 68.70 30.70 73.90 25.20 7.90 8.10 59.90 45.60 25.00 217.00 167.00

Ta 1.07 1.10 1.10 0.80 1.00 0.80 0.70 2.10 0.90 1.10 3.40 1.70 1.60 1.70 2.30 1.00 1.20

Th 11.90 15.70 13.50 11.10 14.40 14.30 5.90 9.10 14.10 17.00 13.50 13.10 22.80 10.20 26.90 13.30 11.50

U 3.70 5.10 4.60 4.10 3.60 3.20 4.80 3.30 2.90 3.20 3.50 3.50 4.60 8.10 4.90 4.50 2.20

V 44.49 49.00 36.00 36.00 63.00 68.00 22.00 8.00 8.00 8.00 8.00 8.00 15.00 8.00 10.00 62.00 53.00

W 1.80 1.90 2.50 3.20 2.60 1.60 3.00 5.60 0.90 2.10 5.20 3.00 2.40 4.40 3.50 1.00 20.00

Y 29.29 43.90 50.60 28.30 38.40 36.20 27.80 28.00 60.10 53.60 44.40 46.00 61.60 31.80 55.80 29.00 24.00

Zn 63.71 52.00 70.00 55.00 71.00 78.00 46.00 7.00 35.00 39.00 15.00 24.00 37.00 30.00 22.00 70.00 70.00

Zr 233.30 263.20 237.10 174.40 249.20 219.10 93.70 73.50 93.80 105.10 62.20 74.50 311.80 108.10 161.90 245.00 214.00

La 27.90 45.30 38.00 29.60 39.50 38.70 13.60 10.50 22.70 19.50 12.10 13.40 54.20 17.90 31.30 26.90 34.30

Ce 59.00 86.90 75.50 58.10 77.00 78.20 26.70 21.60 42.10 39.70 26.20 29.90 109.80 37.40 97.60 53.20 70.50

Pr 7.26 9.80 8.47 6.99 9.41 9.55 3.36 2.36 4.73 4.85 3.00 3.24 11.94 4.07 6.86 5.88 8.20

Nd 27.83 35.60 31.20 26.00 36.40 36.40 12.60 8.40 16.60 17.10 10.50 10.90 44.70 15.00 24.00 21.60 29.40

Sm 5.80 7.69 7.16 5.70 7.55 7.63 3.15 2.43 4.10 4.41 3.28 3.44 9.37 3.88 4.93 4.70 6.00

Eu 0.98 1.05 1.03 0.87 1.27 1.15 0.41 0.14 0.43 0.13 0.06 0.09 1.17 0.30 0.19 0.95 0.93

Gd 5.22 8.32 7.89 5.59 7.28 7.05 3.38 3.20 5.60 5.50 4.42 4.69 10.60 4.50 6.34 4.00 5.10

Tb 0.87 1.26 1.27 0.89 1.17 1.10 0.67 0.69 1.13 1.18 1.03 1.07 1.70 0.82 1.27 0.70 0.80

Dy 5.30 6.68 8.00 5.09 6.89 6.39 4.59 4.30 7.69 8.23 7.31 7.66 10.28 5.24 9.00 3.70 4.30

Ho 1.06 1.52 1.73 0.99 1.42 1.30 0.98 0.91 1.91 1.91 1.59 1.65 2.13 1.12 2.01 0.70 0.80

Er 2.98 4.52 4.96 2.64 3.92 3.56 3.07 2.85 5.80 6.46 5.35 5.38 6.25 3.64 6.17 2.20 2.10

Tm 0.46 0.60 0.73 0.38 0.57 0.50 0.44 0.43 0.91 1.00 0.85 0.85 0.89 0.52 0.92 0.35 0.32

Yb 3.00 3.98 4.72 2.33 3.56 3.11 2.83 2.95 5.81 6.60 6.10 6.16 5.53 3.70 6.04 2.50 2.20

Lu 0.44 0.58 0.69 0.33 0.53 0.45 0.39 0.44 0.90 0.94 0.92 0.94 0.86 0.56 0.90 0.41 0.36

MONTAGNE NOIRE SARDINIA
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Table 2. Summarized geochemical features of the Furongian and Ordovician felsic 1669 

episodes described in the text; data from Lancelot et al. (1985), Calvet et al. (1988), 1670 

Valverde-Vaquero and Dunning (2000), Roger et al. (2004), Vilà et al. (2005), 1671 

Giacomini et al. (2006), Díez-Montes (2007), Montero et al. (2007, 2009), Solá (2007), 1672 

Zeck et al. (2007), Castiñeiras et al. (2008b), Talavera (2009), Casas et al. (2010), 1673 

Navidad et al. (2010, 2018), Liesa et al. (2011), Martínez et al. (2011, 2018), Navidad 1674 

and Castiñeiras (2011), Gaggero et al. (2012), Talavera et al. (2013), Villaseca et al. 1675 

(2016), Pouclet et al. (2017), Cruciani et al. (2018) and this work. Abbreviations: CIZ 1676 

Central Iberian Zone, GTOMZ Galicia-Trás-os-Montes Zone, OCC Occitan Domain, 1677 

PYR Pyrenees and SAR Sardinia; * sensu Guitard (1970); A/CNK ratio is always 1678 

peraluminous. 1679 
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