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Abstract. We propose a non-local, meso-scale approach for coupling multiphysics processes across the scales. The physics is

based on discrete phenomena, triggered by local Thermo-Hydro-Mechano-Chemical (THMC) instabilities, that cause cross-

diffusion (quasi-soliton) acceleration waves. These waves nucleate when the overall stress field is incompatible with accel-

erations from local feedbacks of generalized THMC thermodynamic forces that trigger generalized thermodynamic fluxes of

another kind. Cross-diffusion terms in the 4× 4 THMC diffusion matrix are shown to lead to multiple diffusional P - and5

S-wave equations as coupled THMC solutions. Uncertainties in the location of meso-scale material instabilities are captured

by a wave-scale correlation of probability amplitudes. Cross-diffusional waves have unusual dispersion patterns and, although

they assume a solitary state, do not behave like solitons but show complex interactions when they collide. Their characteristic

wavenumber and constant speed define mesoscopic internal material time-space relations entirely defined by the coefficients

of the coupled THMC reaction-cross-diffusion equations. Part 2 proposes an application to earthquakes showing that for ex-10

treme conditions, cross-diffusion waves can lead to an energy cascade connecting large and small-scales and cause solid-state

turbulence.

1 Introduction

The theory presented in this paper grew out of the conference series dedicated to understanding Coupled Thermo-Hydro-

Mechanical-Chemical (THMC) in Geosystems (GEOPROC). The 7th international event was held in 2019 in Utrecht and15

focussed on earthquake and faulting mechanics (this special volume). Integration of mechanical, hydrodynamical, thermal,

and chemical processes covers, however, a much wider field from the pore to plate tectonic scale for a wide range of natural

and engineering problems in geological system discussed in focus topics on earlier GEOPROC conferences. These problems

include nuclear waste disposal, coal seam gas, enhanced oil and gas recovery, geothermal energy, mineral deposits, tailing

dam collapse, landslide and many others. The individual problems may have their own characteristics. However, the common20

scientific issue of multi-scale feedback of THMC processes remains the same.
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The GEOPROC theme seeks to foster the urgently needed growth of experimental, numerical, and theoretical studies on

multiphysics (THMC) and multiscale framework studies in Earth Sciences. The current practice is to still use engineering

solutions based on empirical material laws to address specific natural and engineering problems in geological systems and

energy production in geothermal energy, nuclear waste disposal, reservoir engineering for oil and gas, the formation of mineral25

deposits, induced seismicity, natural hazards, and CO2 sequestration and utilization. These empirical engineering approaches

are often inadequate, as indicated, for example, in the failure to avoid the 5.5 magnitude earthquake in Pohang Korea in

November 2017, which was anthropogenically induced by high-pressure hydraulic injection during the previous two years

(Grigoli et al., 2018).

Part of the reasons for lack of a wider adoption of coupled THMC approaches in the community is a lack of a theoretical basis30

on which to assess the rich solution space that arise from a coupling of the four (THMC) partial differential reaction diffusion

equations. While parallel numerical tools for modelling fully coupled non-linear systems of THMC equations have become

available through pioneering work in nuclear engineering (Gaston et al., 2009; Permann et al., 2020), the corresponding theory

has not progressed as far. The application of the powerful nuclear engineering modelling tool has been successfully transferred

to geosciences and applied to geodynamic modelling (Jacquey and Cacace, 2020a, b) and the modelling of the Non Volcanic35

Tremor and Slip (NVTS) events in the circum-Pacific subduction zones (Poulet et al., 2014b) as well as applied to geological

faulting problems (Poulet et al., 2014a). However, a sound theoretical description and interpretation of the local processes

resulting in the interesting macroscopic phenomena has been lacking. Part 2 (Regenauer-Lieb et al., 2020) will attempt to

rectify this shortcoming.

Before discussing a possible application of the new theory to the processes of earthquakes and faulting in our companion40

paper (Regenauer-Lieb et al., 2020), here we present a transdisciplinary approach bridging the gap between observations of

instabilities from the molecular scale to the very large scale. The theory in this paper is written using approaches familiar to the

theoretical and applied mechanics community. The original work is based on the 1960’s work (Hill, 1962) building the founda-

tion of theoretical approaches to localisation criteria, via the so-called acoustic tensor criterion, widely used in the engineering

community (Rudnicki and Rice, 1975). The approach focusses on standing wave quasi-static solutions based on vanishing45

speeds of acceleration waves. Surprisingly, little effort has been made to explore the rich wave field of the corresponding trav-

elling wave solutions, probably because dynamic events are only of academic interest to the engineering plasticity community

that focusses mainly on developing safety standards as well as limit analysis and design. A notable exception is the work of

Benallal and Bigoni (2004) who found that under dynamic conditions, unbounded growth of perturbations can be found in the

short wavelength regime with divergence growth. This calls for an extension to the theoretical work of Hill (1962) which is50

presented here.

The dynamic field is, however, of special interest to the researcher in the area of earthquake and faulting instabilities. The

state of the art in this field is defined by the influential experimental work of Dieterich (1979) including the early work on the

application of the rate and state variable friction approach to earthquakes (Tse and Rice, 1986). The approach based on these

laboratory-derived constitutive equations has reached a mature stage, and no attempt is made here to compare the rich field of55

findings with the present theory. We approach the problem from an entirely different angle through theoretical investigation
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of the mathematical solutions of the system of coupled partial differential THMC equations that deliver wave solutions with

short wavelength instabilities. In the course of developing the new approach, we describe wave physics phenomena that have

previously not been reported in geophysical solids but are well known in a range of different fields from quantum systems to

ocean waves (Zakharov et al., 2004). It is fair to say that the theory is rather in its infancy state, and special care needs to be60

taken before considering a direct application to the aforementioned systems. The first part therefore presents the theoretical

derivation, and the second part delves into possible applications and proposed experimental tests to verify the applicability of

the theory.

In this paper, we introduce the classical approach of acceleration waves in plasticity theory to the seismology community

by starting with the Helmholtz decomposition of the seismic wave equation into P- and S- waves (see section 3.1). We show65

how plasticity theory can be integrated via Hill’s acceleration waves into the equations. This approach leads directly to the

unbounded short wavelength growth described by Benallal and Bigoni (2004) which cannot be solved without further assump-

tions. The innovation proposed in the two manuscripts is to appeal to the multi-scale nature of the THMC coupled problem.

We regularise the problem by embedding an open system thermodynamic meso-scale theory with unbounded solutions into a

closed system macro-scale approach that describes the emergence of a standing-wave solutions.70

There are two opposite starting points for the derivation of the approach. Here, we investigate the meso-scale from the

conventional mechanical quasi-steady state (infinite time scale) solution of the macro-scale. The present manuscript uses the

macro-scale view, i.e. the classical mechanical viewpoint for the investigation of the physics of acceleration waves (Hill, 1962).

The second part (Regenauer-Lieb et al., 2020) describes the meso-scale view which is the classical viewpoint of a chemist.

Both viewpoints are objective descriptions of the coupled THMC problem and should deliver the same outcome.75

In order to define the separation between the meso- and macro-scale of a THMC coupled problem, we propose that the

scale for each of the THMC-processes is defined by their own characteristic diffusion time/length scales (Regenauer-Lieb

et al., 2013b). For simple problems progress can be made by studying thermodynamic equilibrium states in isolated closed

systems. Likewise closed, coupled, far-from-equilibrium THMC systemss that feature irreversible behaviours can be modelled

by a thermomechanics approach (Collins and Houlsby, 1997), also called a thermodynamics with internal variables approach80

(Maugin and Muschik, 1999) or a hyperplastic approach (Houlsby and Puzrin, 2007). This theory is, however, only applicable

to faults that have reached a thermal steady state as implied by a standing wave solution of acceleration waves. This approach

prevents modelling of dynamic phenomena. Modelling of earthquake and faulting is hence one of the most difficult topics to

address using a self-consistent thermodynamic approach.

A particular challenge for deriving dynamic THMC coupled wave solutions is the discrete nature of the cascade of steady85

state solutions defined by the standing wave solutions of thermomechanics which leads to a discrete material behaviour as

discussed in the next section. Standard probability theory is therefore not suitable as this assumes a continuum of wave functions

(Cohen, 1988). In order to solve this issue we use a transfer of knowledge from classical quantum mechanics to characterise

any system at a larger scale. The information on multiple internal material time/length scale processes travels and disperse each

at characteristic velocities in the form of acceleration waves.90
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The nucleation mechanism of these waves relies on the meso-scale open system behaviour where the overall macro-scale

thermodynamic forces can become incompatible with accelerations from local thermodynamic fluxes. These incompatibilities

radiate wave energy away from its source in the form of "cross-diffusion" waves. The emergence of cross-diffusion waves can

be perhaps best understood from a chemical viewpoint (Regenauer-Lieb et al., 2020) where propagating chemical waves have

been studied in details (Vanag and Epstein, 2009). In chemical systems cross-diffusion, is defined as the phenomenon in which95

a gradient in the concentration of one species induces a flux of another chemical species. In the present context thermodynamic

forces and fluxes are generalized THMC fluxes defined in Table 1. Before discussing cross-scale coupling of thermodynamic

forces and fluxes in sections (3.3) following, it is useful to briefly review insights into the formation of discrete dissipative

structures.

2 Dissipative structures100

The concept was introduced first in chemical and biological systems where morphogenic patterns (Turing, 1952) were identified

as solutions to the underlying reaction-diffusion equations (see Figure 1). These discrete patterns were later on named Turing

patterns. A review of Turing patterns in nature can be found in Ball (2012).

We propose here a generalised approach to cross-diffusion that is known in bio-physics as taxis (Heilmann et al., 2018). For

example, the pufferfish and the siltstone in Figure 1 show similar patterns caused by a fundamental mechanism known as taxis.105

This is a process that forces components of a pattern to organise as an ensemble in reaction to changes in the environment, and

so to move towards, or away from a perturbation . The process eventually leads to the formation of a new energetically sta-

ble pattern. The fundamental pattern-forming taxis mechanism can be caused by adhesive forces (hapto-taxis), hydrodynamic

(gyro-taxis), gravitational (gravi-taxis), light intensities (photo-taxis), or chemical driving forces; chemo-taxis; as shown in

Figure 1. Non-biological patterns are generally formed by Thermal, Hydrodynamic, Mechanical, and Chemical (THMC) re-110

actions, which can also include electrical and biological drivers. In mathematical biology, taxis models are used to understand

and quantify a variety of complex problems, ranging from nerve pulse responses and spreading of diseases (Zemskov et al.,

2017) to predicting the spatio-temporal patterns of predator-prey systems.

However, except for the seminal early work by Ortoleva and co-workers (Dewers and Ortoleva, 1990; Ortoleva, 1993, 1994)

developments of taxis models in Earth and Material Sciences have lagged. A review of the progress made in this field as well115

as a specific case study of rhythmic banding in marls can be found in the recent work of L’Heureux (L’Heureux, 2018, 2013).

The present work develops the key ideas into a geomechanical perspective building on an initial approach proposed for hydro-

mechanical coupling (Hu et al., 2020; Alevizos et al., 2017; Regenauer-Lieb et al., 2016; Veveakis and Regenauer-Lieb, 2015;

Regenauer-Lieb et al., 2013a).

By analogy to the mathematically similar biological and chemical systems we propose here that earthquake instabilities120

are preceded by propagating THMC dissipative waves which could enable new detection methods if they can be resolved

by sensors. We will discuss such possible precursor phenomena for earthquakes in part 2 (Regenauer-Lieb et al., 2020). In

chemical systems, propagating waves stemming from reaction-diffusion physics, are very well documented and the hypothesis
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Figure 1. Dissipative patterns in chemical and biological systems: Simulated and real patterns on Puffer Fish (Sanderson et al., 2006) and

strangely patterned siltstone (Zebra Rock, Ranford formation in the Kununurra district in the East Kimberley region of Western Australia).

Both pattern formations can be modelled by a reaction-diffusion-advection type instability due to chemo-taxis.

here is that this applies generally to all THMC coupled processes. Excellent update of the formulation for chemical systems can

be found in Vanag and Epstein (2009). While chemical oscillations thus appear to be well understood, the phenomenon of an125

oscillatory response is less well established in other THMC systems. However, these systems show the same transitions from a

simple continuum response to a highly localized state. The existence of a discrete, particle-like nature has also been discovered

in fluids when they are driven far from equilibrium. If driven far from equilibrium by surface forces, fluids clearly show (see

Fig. 2) a highly dissipative, sharp transition from a continuum state to one of a highly localized, propagating, particle-like state

(Lioubashevski et al., 1996).130

For the case of deforming geomaterials localization phenomena, characterized by a sudden transition from continuum de-

formation behaviour to a highly localized state, are also well established in solid mechanics applications (Rudnicki and Rice,

1975). Fig. 3 shows a periodic set of localised deformation structures formed as a result of a compressive tectonic regime. Sim-

ilar standing wave like features are encountered in many geological systems L’Heureux (2018); Ball (2012). However, direct

experimental evidence for precursory transient travelling solitary states is largely unknown and has only been shown recently135

based on mathematical considerations (Hu et al., 2020). In the supplementary material of part 2 (Regenauer-Lieb et al., 2020)

we will discuss possible experimental tests of the precursor phenomena. The lack of experimental evidence can be explained

by the challenging task of dealing with the large length scale of the geomechanical phenomena and the long-time scales of

observation required to mimic natural processes in the laboratory.

The dynamics of the formation of these mechanical dissipative patterns can therefore only be investigated using analogue140

materials in the laboratory. Analogue experiments have been performed in a granular, brittle- matter compressed in a uniaxial

direction (Guillard et al., 2015; Einav and Guillard, 2018). A propagating compaction wave phenomenon has been observed.

Acoustic bursts have been registered when the waves interact with interfaces leading to the conversion of their kinetic energy
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Figure 2. Dissipative patterns in fluid systems: Water molecules exhibit a discrete quantum-like solitary state when forced by a mechanical

shaker at a critical condition (here 41 Hz). Periodic finger-like solitary states travel from right to left at a constant velocity. Each snapshot

shows 20 ms intervals. Unlike classical solitons their appearance is particle-like. They can pass through each other with a slight loss of

amplitude, or ‘collide‘ to create a new state whose direction of propagation is at an angle to that of the original states or disintegrate upon

collision (image from Lioubashevski et al. (1996)).

into acoustic emissions. The phenomenon has been compared to ice-quakes in ice sheets (Einav and Guillard, 2018). While

these experiments allow some insight into the precursor phenomena of stationary compaction bands the experiments themselves145

never reached the stationary mode. This aspect will be discussed in more detail in part 2 (Regenauer-Lieb et al., 2020) where

experiments that are very close to the stationary mode are also introduced (Barraclough et al., 2017). The stationary mode

allows development of a robust thermomechanics theory which offers a modular thermodynamically self-consistent approach

for modeling earth instabilities (Jacquey and Regenauer-Lieb, 2020).

Experiments with highly porous carbonates have been performed (Chen et al., 2020). These produced stationary and non-150

stationary compaction bands under uniaxial loading. Unfortunately, these experiments have the opposite problem in that the

exact analysis of the dynamic evolution did not reach sufficient resolution in space and time to convincingly detect the wave

phenomenon described in the granular brittle matter. We, therefore, explore in this contribution theoretical predictions of

the dynamic wave propagation based on an extension of the thermomechanics approach for wave propagation in dissipative

materials (Coleman et al., 1965).155

We propose here that the dissipative wave phenomenon is universal for THMC reaction-diffusion systems that are driven far

from equilibrium. The approach allows an interpretation of observations in nature and the laboratory in terms of propagating

particle-like states which emerge as stationary Turing patterns for long-timescale standing wave solution of a THMC cross-
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Figure 3. Dissipative patterns in solid systems: Two generations of compaction and shear enhanced compaction bands (hand lense for scale)

in silt- and sandstones of the Miocene Whakataki formation, south of Castlepoint, North Island, New Zealand. The porosity reduction renders

the bands less susceptible to erosion causing a marked positive relief. The periodic bands reminiscent of a standing wave phenomenon are

thought to be the result of slow compression of the porous siltstone in the compressive environment (accretionary wedge) of the Hikurangi

subduction zone.

diffusion formulation. In order to recover the dissipative wave equations, we present in the following the standard constitutive

assumptions for any generic thermodynamic fluid or solid mechanical system and describe how the physics of THMC feedbacks160

can be implemented to resolve the phenomenon of propagating dissipative waves in these systems.

3 Wave equations

3.1 Constitutive assumptions

The fundamental equation of motion is:

∇ ·σ + f = ρa, (1)165

where σ = σij is the Cauchy stress tensor, ρ the density, f is a body force (e.g. gravity) and a the acceleration. This equation

does not stipulate a constitutive law but with constitutive assumptions it becomes the master equation for the theory of elastic

waves, fluid mechanics and continuum mechanics. In elasticity, wave equations directly result from the equation of motion

defining the wave characteristics by using the Helmholtz decomposition, in terms of shear (S-wave) and compressional (P -

wave) wave velocities which is a convenient description for the purpose of this paper.170
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For an isotropic elastic medium, for instance, accelerations in Eq. (1) are only allowing elastic displacements described by

u. In this case the material can be characterized by just two velocities: the elastic P -wave velocity vp and the elastic S-wave

velocity vs, and we obtain from Eq. (1) the elastic-wave equation:

∂2u

∂t2
= v2

p∇(∇ ·u)︸ ︷︷ ︸
P wave

−v2
s∇× (∇×u)︸ ︷︷ ︸

S wave

. (2)

Similarly, by allowing the material to deform in a viscous manner, acceleration can be monitored by a local change in175

velocity v, and the Helmholtz decomposition identifies a scalar P -wave and a vectorial S-wave potential field. The material

constants are the dynamic shear η and bulk ζ viscosities to obtain the generalized Navier-Stokes equation:

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p+ 2∇2(ηε̇′) +∇(ζ(∇ ·v)) + f (3)

where

ε̇′ =
1

2

(
∇v + (∇v)T

)
− ε̇0

is the deviatoric viscous strain-rate. with

ε̇0 =
1

3
(∇ ·v)I

where I is the identity matrix.

We emphasize here, that although the Helmholtz decomposition can be performed in a similar way to derive volumetric and180

shear moduli that describe dissipative material behaviour, their response to infinitesimal perturbation is generally to dampen

propagating elastic waves. One could, therefore, come to the erroneous conclusion that their contribution to precursory wave

phenomena to macroscopic failure is an overall suppression of instabilities.

Coleman and Gurtin (1965) have shown that this conclusion is wrong using the concept of materials with fading memory con-

ceptualized by rational thermodynamics. We are using a simpler approach and are introducing fading memory through THMC185

dissipation processes based on the non-equilibrium thermodynamics approach of deGroot (1962). Therein, non-equilibrium

conditions are seen as a concatenation of thermostatic equilibrium processes. We, therefore, can use the local equilibrium

definition of the pressure as p=− ∂U∂V , where U is the internal energy and V the volume and explore the emergent dynamics

through investigating the stability of small perturbations from individual equilibrium states. In the present context pressure is

therefore defined as p= 1
3 tr(σ) and is negative for compression.190

For the elasto-visco-plastic case, we have the equivalent fourth-order elastic-viscoplastic stiffness tensor C characterizing

material stiffness and the corresponding elasto-viscoplastic bulk viscosity ζ to give

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p+ 2∇(Cε̇′) + 3∇(ζε̇0) + f , (4)

in this case ε̇′ denotes the deviatoric strain rate which in the purely elastic case before yield is ε̇′ = ε̇′e becoming post-yield

the elasto-viscoplastic strain-rate defined by ε̇′ = ε̇′e + ε̇′vp where the subscripts e and vp refer to the elastic and viscoplastic195

components. The same approach is used for decomposing the equivalent elasto-viscoplastic volumetric strain-rate ε̇0. While
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the emergence of elastic P− and S- waves for any infinitesimal disturbance is a well-known physics phenomenon, dissipative

processes are commonly known to dampen elastic waves. Long-range wave propagation in dissipative materials was therefore

contested for a long time (Coleman and Gurtin, 1965). Ideal elastic waves without damping propagate without loss of energy

as they are based on the conservation of energy. However, the dissipative chemical and biological diffusion waves are known200

to propagate as autonomous wave sources, spontaneous oscillations, and quasi-stochastic waves which are synchronized over

the entire space to form dissipative structures (Vasil’ev, 1979).

They are an entirely different class of waves as they are based on dissipation in active kinetic systems in contrast to waves

in conservative systems. For simplicity, we only discuss the slow visco-plastic wave phenomenon allowing the investigation of

conservative and dissipative waves as different processes. For decoupling elastic and dissipative waves, we need to assume large205

differences in the propagation speed of the waves. This is done by assuming Maxwellian rheology, implying a separation of

elastic and visco-plastic wave time-scales in the context of an additive strain-rate decomposition of Eq. (2) and (4). To recover

dissipative waves from the above discussed Navier-Stokes equation, modified for the inclusion of elastoplastic behaviour, we

introduce local thermodynamic THMC feedback processes that change the instantaneous fourth-order elastic-visco-plastic

stiffness tensor C.210

3.2 Acceleration waves and classical theories of localisation

The simplest implementation of the non-equilibrium approach of deGroot (1962) is the theory of internal variable thermo-

dynamics which unifies the kinetic description of chemical reaction-diffusion processes and the above described elastic-

viscoplastic formulation (Maugin and Muschik, 1999). Perturbations to the local equilibrium assumption of the non-equilibrium

thermodynamic theory of internal variables can lead to conditions of violation of smoothness on surfaces in a body, where one215

or more internal variables from the lower scale suffer jump discontinuities, owing to locally reaching a critical dissipation. In

a classical thermodynamic sense, this can be viewed as suddenly switching on a micro-engine somewhere in the system that

disturbs the overall stress field. This is the physical reason for the formation of acceleration fronts, where the diffusive length-

scales are linked to the convective velocity of the step function on dissipation waves. While fluid- and solid-wave phenomena

occur when the above equation includes inertial forces, so-called ‘acceleration waves‘(Hill, 1962), caused by local surfaces of220

acceleration (see Fig. 4), can also occur in the creeping flow limit when no acceleration due to a (gravity) potential is present

and f = 0. These acceleration waves are defined as geometric surfaces (here assumed to be plane waves) that move relative to

the material.

Acceleration waves can be described in two ways. One can use two coordinate systems, one for the reference state and one

for the current state. A more elegant way is to consider convective coordinate systems by formulating the constitutive law in225

terms of stress-rate. For this we consider the space derivative normal to the moving wavefront (see Figure 4) indicated by ∂
∂s .

Waves are travelling concerning a background Lagrangian moving material reference frame.

Considering the traction (load per unit area) in the direction normal to the wavefront as F and choosing the magnitude of

the velocity of the moving wavefront as c , the jump condition indicated by the square Iverson brackets can be advected along
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Figure 4. Acceleration waves can originate at a body surface when the existing internal stress gradient is dynamically incompatible with

accelerations imposed on particles of the surface. A propagating plane-wave front is shown here for reference, but a plane-wave is not a

necessary restriction. Across these surfaces particle accelerations and spatial gradients of velocity are momentarily discontinuous while the

velocity itself is continuous.

c. This leads to Hadamard’s jump condition where the true traction rate along the advected coordinates is:230 [
Ḟ
]

=−c
[
∂F

∂s

]
. (5)

Hadamard’s jump condition applies to all internal variables and the acceleration across the wavefront is constrained by

[ρv̇] =

[
∂F

∂s

]
. (6)

Combining Eq. (5) and (6) we obtain

[Ḟ] + c[ρv̇] = 0. (7)235

Substituting v̇ =−c∂v∂s into Eq. (7) we obtain

[Ḟ] = c2
[
ρ
∂v

∂s

]
. (8)

Hill’s formulation of acceleration waves in Eq. (8) expresses the energetics of the acceleration waves by the square of the

material velocity c times the mass of the characteristic segment defined by ∂v
∂s . This provides a simple formulation where

the energetics of the material is solely described by Eq. (1) and the mesoscale mass exchange rates on acceleration waves by240

Eq. (8). The material velocity c, being the velocity of acceleration waves becomes a material constant for the propagation of

acceleration waves. Acceleration waves form the basis of localization criteria in plasticity theory. The criterion for instability

is derived from the equivalent theory in elastodynamics where for an elastoplastic body the acoustic tensor Γ is defined by

Γ = n ·C ·n (9)
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In elastodynamics, the eigenvalues of Γ divided by the mass density represent the square of the elastic wave propagation speed245

in the direction of the unit normal vector n. In elasto-plasticity, the equivalent dynamic stability criterion is defined by Eq. (8)

which in terms of acoustic tensor implies that

Γ
∂v

∂s
= ρc2

∂v

∂s
(10)

Dynamic system stability can be evaluated through assessing the eigenvalues of the acoustic tensor thus determining the speed

of the acceleration waves which must be real and defined by the square root of the instantaneous modulus C divided by the250

instantaneous density ρ (Coleman and Gurtin, 1965). Mathematically, Eq. (2 - 4) can be represented by the addition of two

functions, a scalar field and the curl of a vector field. The former without curl or rotation identifies dissipative compressional

P -waves and the latter features zero divergence and corresponds to isochoric sinistral and dextral dissipative shear S-waves.

These waves are interpreted as stationary (standing) waves when the determinant of the acoustic tensor and consequently

the wave speed is zero,255

det(Γ) = 0 (11)

which is the standard condition for localisation in plasticity theory (Vardoulakis and Sulem, 1995). Accordingly, the formation

of localized shear-bands out of homogeneous plastic flow is assumed, when the velocity of the wavefront vanishes. Hill (1962)

was discussing shear acceleration waves in an ideal linear, time-independent elasto-plastic material where two families of

characteristics (dextral and sinistral slip lines) feature a jump in strain-rate at the wavefront accompanied by one in stress-260

rate (but not in stress). This in turn implies a related jump in stress gradient. Later work extended the theory to formulate

accelerations waves as the basis of modern criteria for localization in plastic media (Rudnicki and Rice, 1975; Rice, 1976).

In those theories the possibility of volumetric acceleration waves was, however, neglected and volumetric deformation was

parameterized by an empirical dilatancy angle. Another shortcoming of the localization criterion for the application to THMC

instabilities is that it is not directly applicable to the rate-dependent elasto-viscoplastic case. The inclusion of rate effects implies265

a positive wave speed different from zero (Duszek-Perzyna and Perzyna, 1996). The thermomechanics approach (Jacquey and

Regenauer-Lieb, 2020) allows incorporation of a quasi-static wave speed related to the internal variable that quantifies the

rate-dependence.

However, to date, no generally accepted localization criteria for the transition from a dynamic to quasistatic rate-dependent

solution of Eq. (4) exists, although stationary and wave-like propagating localization phenomena for rate-sensitive materials270

(Barraclough et al., 2017) are observed in the laboratory and nature. The method of choice to date is to use all field equations

and perform a numerical stability analysis. A discussion on an extension to the above-discussed criterion has been presented

recently (Pisanò and Prisco, 2016) and energy-based criteria that successfully model the adiabatic limit have been repeat-

edly revisited many times over the past 30 years (Paesold et al., 2016). The present approach provides an alternative path to

systematically analyse the full system of field equations.275
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3.3 THMC acceleration waves

We assume creeping flow in Eq. (4), and there is, therefore, no effect of gravitational acceleration (F = 0). We will show that

the meso-scale formalism identifies an alternate internal force density from within the considered material volume stemming

from a local thermodynamic THMC force (e.g. ∇p). This internal force integrates over the accelerations aM of the micro-

processes inside the continuum element by multiplying them with the average volume density. These accelerations stem from280

dissipative mechanisms (e.g. volume changes by phase transitions, fracture, etc.) inside the representative volume element

(Hu et al., 2020). For critical conditions, they can cause acceleration waves propagating as creeping waves. Hadamard’s jump

conditions need to be extended for internal THMC variables µ such as temperature, porosity, permeability, viscosity, etc...

Hadamard’s jump conditions state that if time derivatives (Ḟ, v̇, µ̇) and gradients ∇F,∇v, ∇µ) have jump discontinuities

across the wavefront then F,v and µ are continuous functions of space. The compatibility condition relating jumps in rates of285

change of internal variables to jumps in gradients for all internal variables µ (Duszek-Perzyna and Perzyna, 1996) implying

that the jump in the gradient of pressure inside the acceleration wave is constrained by

[∇p] =−1

c
[ṗ]. (12)

Acceleration waves consider a step function (Eq. 5) where the stress-rate is discontinuous along the surface. The stress is, how-

ever, continuous across the wavefront and the stress self-diffusion coefficient is also constant outside of the wave. Therefore,290

for modelling acceleration waves in a homogeneous material we can simplify Eq. (1) further and assume constant bulk and

shear viscosity outside the wave and assume continuity of stress across the acceleration wave. Noting that the traction in the

direction of the normal vector n on the acceleration wavefront is F = n ·σ it follows from Eq. (7) that the jump in stress-rate

on the acceleration wave is (Duszek-Perzyna and Perzyna, 1996):

n · [σ̇] =−c[ρv̇] (13)295

Substituting the stress-rate for the acceleration v̇ from Eq. (13) and the pressure rate for the gradient of pressure from Eq. (12)

and inserting the jump condition into Eq. (4) it follows that

1

c
[n · [σ̇]] =−1

c
[ṗ]− [C∇(ε̇′)]− [ζ∇ε̇0] (14)

If we define the magnitude of the wave speed in the normal reference system as w = w ·n, then c= w−v ·n is the local

particle velocity of THMC accelerations in the acceleration wave relative to the normal material velocity.300

Eq. (14) allows us to draw some important conclusions for acceleration waves. (1) The first term on the right shows that the

pressure rate divided by the wave velocity or the equivalent gradient of pressure plays an important role in acceleration waves.

(2) The second term on the right implies that gradients of deviatoric strain-rates are related to rate changes of the stiffness

tensor as implied by the jump condition of the internal variable inside the propagating wave. Recall that the jump condition

(Eq. 5 or 12) advects jumps in gradients of the internal variable around the propagating wavefront through a jump in the rate305

of change of the variable. (3) The last term implies that the same is true for the volumetric strain-rates and the rate of change

of bulk viscosity.
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4 Multiscale cross-diffusion model

So far we have only discussed the mechanical reaction-diffusion equation, where the shear and bulk viscosities control the

diffusion of stress. For the multiphysics implementation, it is convenient to think of diffusion of momentum and use the310

momentum diffusivity (kinematic viscosity) instead of the dynamic viscosity. We, therefore, denominate ζM as the volumetric

diffusion coefficient of pressure (kinematic viscosity). In the following, we first formulate the reaction-diffusion equation in

a classical way. That is to say that meso-scale cross-diffusion effects are neglected. We identify THMC-Turing patterns as

multiscale energy eigenstates of the reaction-diffusion equations thus characterizing Prigogine’s dissipative structures if they

emerge.315

In these formulations, the viscous (M) mechanical pressure diffusion equation finds its counterparts in the equivalent thermal

(T) Fourier-, (H) Darcy- and (C) Fick’s- diffusion laws where the diffusion coefficients are indicated by the associated THMC

subscript. The corresponding reaction rates are the local hidden-variable reaction rate RT ,RH ,RM and RC , respectively. It

is common practice to ignore the meso-scale cross-diffusion kinetics introduced in the classical theories of localisation. We

emphasize therefore the difference between large-scale reaction rates Ri and meso-scale reaction rates ri of the non-local320

theory which considers the important effect of cross-diffusion. The two rates are identical in the infinite time-scale limit as

cross-diffusion can be eliminated adiabatically (Biktashev and Tsyganov, 2016).

In the adiabatic limit we obtain similar reaction-diffusion equations across a vast range of THMC diffusion length scales

as tabulated in ta The reaction rates most often stem from different micro-processes at lower scale inside the considered

continuum element which introduces cross-scale diffusion fluxes as shown in the next section. In order to generalize the

Table 1. Generalized Thermodynamic Fluxes and Forces in a THMC coupled system (1-D)

Type Force Flux reaction-diffusion equations

T FT =∇T qT =−DT
Dt

DT
Dt

= ζT∇2T +RT

H FH =∇pH qH =−DpH
Dt

-DpH
Dt

= ζH∇2pH + ηε̇′−RH

M FM =∇pM qM =−DpM
Dt

-DpM
Dt

= ζM∇2pM +∇(Cε̇′)−RM

C FC =∇C qC =−DC
Dt

DC
Dt

= ζC∇2C +RC

325

approach we propose that the composite multi-scale THMC wave operator ĤTHMC in Table 1 can be constructed through a

linear superposition characterized by

ĤTHMC =−ζi
N∑
i=1

∇2, (15)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and i refers to the individual thermodynamic THMC process. For the following discussion,

we simplify further and neglect the deviatoric terms in Eq. 14 and retain only the scalar volumetric terms and reduce the330

equations to 1-D. This allows us to investigate the poorly known volumetric dissipative waves which must exist in addition
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to the dissipative shear waves discussed by Hill (1962). To introduce the meso-scale considerations we identify wave scale

reactive source terms rT , rH , rM , rC of the hidden variable rates RT ,RH ,RM ,RC as the actual terms that trigger acceleration

waves. These meso-scale source terms stem from a jump in the thermodynamic force (gradient of the variable) into a jump

in the thermodynamic flux (rate of the variable, i.e. temperature, fluid, and solid pressure and concentration). The important335

volumetric coupling is overlooked in the classical localisation theory (Rudnicki and Rice, 1975). The wave-scale source term

provides the convected pressure rate built up by internal accelerations. It relates to the local mass exchange processes according

to Eq. 8.

5 Cross-diffusion as a non-local theory for localisation

In the following we generalise the discussion of the meso-scale THMC mass exchange processes using mixture theory applied340

to HM coupling as presented in Hu et al. (2020). We show that the physics of cross-diffusion follows from a reactive source

term at the macroscale that requests a cross-diffusion term at the meso-scale for thermodynamic consistency. The full derivation

is found in Hu et al. (2020). Here we summarize the main conclusion from the mixture theory analysis for convenience.

We consider two mass fractions A and B for mass exchange denoted by the ith and jth phase as an example. We identify

ξ̇REVi as the large-scale Representative Elementary Volume (REV) for averaging of mass transfer rate from the phases A to345

B where VREV , VA, VB denote the REV volume and the volume of the ith and jth phase, respectively. ξ̇REVi defines the

REV-scale averaging of the mass exchange rate between the phases where the REV-scale source term of mass is obtained from

the other species:

ξ̇REVi =
1

VREV

∫
VREV

ξ̇localj dVREV , (16a)

ξ̇REVj =
1

VREV

∫
VREV

ξ̇locali dVREV , (16b)350

where ξ̇locali and ξ̇localj denotes the mass exchange rate from the A to B phase and vice-versa. In the meso-scale formalism

we need to consider information from the local scale processes in the THMC diffusion matrix and decompose the processes

leading to the local mass production ξ̇locali and ξ̇localj . In order to specify this further we define the global volume fraction of

the A-phase as:

φ=
VA
VREV

= 1− VB
VREV

, (17)355

Mass conservation at global scale for the phases A and B gives:

∂[ρAVA]

∂t
+
∂[ρAVAvA]

∂x
= ξ̇AVREV , (18a)

∂[ρBVB ]

∂t
+
∂[ρBVBvB ]

∂x
= ξ̇BVREV . (18b)
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ρA and ρB identify the density of the respective phases, while vA and vB their velocities in the direction of x while ξ̇A and

ξ̇B represent the volume averaged mass generation in the REV. Following an approach presented in Hu et al. (2020) using the360

generalised THMC mass exchange processes we arrive at:

∂[ρAφ]

∂t
+

∂[ρAφvA]

∂x︸ ︷︷ ︸
Self−diffusion

+
1

VREV

∫
VREV

∂[ρB(1−φlocal)vB ]

∂x
dVREV

︸ ︷︷ ︸
Cross−diffusion

=− 1

VREV

∫
VREV

∂[ρB(1−φlocal)]
∂t

dVREV , (19a)

∂[ρB(1−φ)]

∂t
+
∂[ρB(1−φ)vB ]

∂x
dVREV︸ ︷︷ ︸

Self−diffusion

+
1

VREV

∫
VREV

∂[ρAφ
localvA]

∂x
dVREV

︸ ︷︷ ︸
Cross−diffusion

=− 1

VREV

∫
VREV

∂[ρAφ
local]

∂t
dVREV , (19b)365

In a saturated porous medium, a straightforward interpretation of ρA and ρB may be the density of the fluid phase and that of

the solid phase, respectively (Hu et al., 2020). The interpretation of the incorporation of the effects of chemical and thermal

processes may not be as straightforward for the observer as they act via Eq. 15 as a linear convolution operation. If we interpret

the time-domain convolution operation of THMC waves in the frequency domain, then the chemical and thermal waves can

be seen as filters for HM coupling, sharpening or smoothing the waves. The interpretation of THMC waves in terms of a370

sharpening or smoothing filter analogue is discussed in detail in part 2 (Regenauer-Lieb et al., 2020).

To illustrate the point of choosing a particular time-space scale of observation of THMC waves we first consider the simple

homo-entropic flow assumption and choose a classical mechanics point of view. Density is then defined as a function of

pressure, temperature, and chemical concentrations by the Equation of State. The coupling in Eq. 19 leads to the possible

nucleation of Hydro-Mechanical cross-diffusion pressure waves (Hu et al., 2020). Considering that possible thermal processes,375

ρA, and ρB , at the solid-fluid interface may be affected by the local temperature changes, we identify new time-dependent

processes at the solid-fluid boundary. The process of heat transport sets two new internal timescales changing the fluid and

solid pressure, respectively. Therefore, the thermal process acts as a ‘convolution filter‘ added to the pressure evolution of each

phase. Conversely, the pressure diffusion process in the solid and fluid phase triggers two additional timescales in the change

of temperature. Now a 3×3 Thermo-Hydro-Mechanical cross-diffusion formulation can be obtained following the same steps380

of upscaling from local to a global scale, and the additional 4 timescales correspond to the newly introduced 4 cross-diffusion

coefficients. One can arrive at a similar conclusion by considering the interplay between the evolution of pressure distribution

and internal chemical reactions.
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5.0.1 Formulation of the THMC cross-diffusion matrix

The concept of cross-diffusion is well known in chemistry. In a chemical system with just two species A and B, for instance,385

cross-diffusion is the phenomenon, in which a flux of species A is induced by a gradient of species B (Vanag and Epstein,

2009). In more general THMC terms, cross-diffusion is the phenomenon where a gradient of one generalised thermodynamic

force drives another generalised thermodynamic flux. Staying with the chemical example of species A and B, we have in 1-D:

∂CA

∂t = ζA
∂2CA

∂x2 +LAB
∂2CB

∂x2 + rB

∂CB

∂t = ζB
∂2CB

∂x2 +LBA
∂2CA

∂x2 + rA.
(20)

where rA and rB are the local source terms using the mesoscopic self-diffusion and cross-diffusion decomposition in Eq. (19).390

Following Eq. (15) we can now generalize (20) to include the full cascade of internal accelerations through multiscale coupling.

Cross-diffusion allows coupling of accelerations from one classical REV-scale reaction-diffusion system, defined by the (self-

)diffusive length scale
√
ζ(T,H,M,C)t, to another. These cross-diffusion coefficients link the gradient of a thermodynamic force

Cj of one THMC process to the flux of another kind. This allows the definition of a fully populated diffusion matrix as in:

DC

Dt
=


ζT LTH LTM LTC

LHT ζH LHM LHC

LMT LMH ζM LMC

LCT LCH LCM ζC

∇2C + ri. (21)395

The cross-diffusion processes formulate the link between different THMC processes. The cross-diffusion coefficients thereby

introduce new cross-scale coupling length and the time scales and are often much smaller than the self-diffusion scales. This

is not always the case (Manning, 1970). Hu et al. (2020) show normal examples where cross-diffusion length/time scales are

much smaller than the self-diffusion length scales.

5.0.2 Criterion for nucleation of cross-diffusion Waves400

A detailed discussion of the criterion for nucleation of cross-diffusion waves and their waveforms can be found in Tsyganov

and Biktashev (Tsyganov and Biktashev, 2014). Here, we first summarize the basic method that is well established in the

fields of mathematical biology and chemistry and follow on with a discussion of other communities, where the phenomenon

of cross-diffusion waves is well-documented under different names.

The criterion for nucleation of cross-diffusion waves relies on assessing the dispersion relation of the eigenvalues of the char-405

acteristic matrix of a perturbed cross-diffusion-reaction equation (Vanag and Epstein, 2009). The eigenvalues are functions of

the square of the wavenumber of the perturbed state and identify the growth rate of the perturbations. This approach for deriv-

ing the mathematical criterion for nucleation of acceleration waves is hence evaluated from a small plane-wave ε-perturbation
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of Eq. (21) with

C̃(x,t) = C0(1 + ε)eλt+i(kx) (22)410

The characteristic matrix of the thus perturbed Eq. (21) allows assessing the stability of the system. Accordingly, all eigenvalues

of the characteristic matrix must be real and positive, and hence the determinant of the matrix must be larger than zero. For

determinants smaller than zero, cross-diffusion waves are expected to propagate as quasi-solitons (Tsyganov and Biktashev,

2014). A worked example for hydromechanical cross-diffusion waves can be found in Hu et al. (2020).

6 Soliton versus quasi-soliton solutions415

Since cross-diffusion waves in geomaterials are largely unexplored due to the extreme length and time scales encountered in

a geosystem, an appreciation of their complex characteristics can be obtained from mathematically similar systems such as

waves in oceans, Lasers, and ice. There is an important difference between solitonic waves and quasi-solitonic cross-diffusion

waves. We follow Zakharov et al.‘s (Zakharov and Kuznetsov, 1998) definition of solitons and quasi-solitons and identify

solutions to the perturbed Eq. 22 of the type:420

ψ(x,t) = β(x−vt)eiΩt, (23)

as solitons when the wave amplitude |ψ(x,t)|= |β(x−vt)| propagates without change of form and v and Ω are constants.

Quasi-solitons appear as non-local solutions to Eq. (22) if localized coherent structures defined by true soliton solutions cannot

be formed for any type of non-linearity. In the context of the cross-diffusion waves for hydro-poro-mechanical coupling (Hu

et al., 2020) real stationary solitons, which propagate with a constant velocity without changing their form, are exact solutions425

of the Korteweg-deVries equation (Regenauer-Lieb et al., 2013a; Veveakis and Regenauer-Lieb, 2015). They depend on the

fluid- and solid self-diffusion coefficients only (Veveakis and Regenauer-Lieb, 2015). Cross-diffusion waves are quasi-solitons

where the two additional cross-diffusion coefficients cannot be eliminated (Hu et al., 2020). These additional time-dependent

properties lead to interesting dynamics.

Following dynamic properties of quasi-solitons have been identified (Zakharov et al., 2004): Quasi-solitons live only for430

a finite time and can be compared to unstable particles in nuclear physics. Unlike true solitons, quasi-solitons loose energy

through their oscillatory tails which can have different wavenumbers in the forward and backward direction of their motion. If

the amplitudes of the tails are small, quasi-solitons can be treated as slowly decaying real solitons which lose their energy by

radiating quasi-monochromatic waves with wavenumber k0 in the backward direction.

The discrete particle-like behaviour can be explained by their unusual dispersion relation. Quasi-solitons travel with a con-435

stant group velocity ω′. When their phase velocity ω(k)/k exhibits a local minimum at a nonzero wavenumber a gap in the

spectrum ω(k) appears. According to Zakharov et al. (2004), this peculiar discretization of wave energy has been noticed in

many disciplines. Different nomenclatures of quasi-solitons have been adopted. In the theoretical physics community, they

have been attributed to Cherenkov radiation. In the ice-wave community, they have been called ice-waves with decaying oscil-

lations and in shallow water theory, they have been identified as capillary-gravity waves. If the amplitudes of the quasi-solitons440
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are small and their velocities are close, they obey the non-linear Schrödinger equation and their interaction is elastic. However,

the stability and the interaction of large amplitude quasi-solitons are still open questions that cannot be solved analytically.

Quasi-solitons move with different velocities and can lead to quasi-solitonic turbulence (Zakharov et al., 2004) when they

collide with each other.

In photonics, optical turbulence in the form of sporadic bursts of light (Hammani et al., 2010), have been observed upon the445

collision of quasi-solitons. In water waves, the same phenomenon is known as ’rogue waves’ that seem to appear from nowhere

(Akhmediev et al., 2009). Their physics relies on the unusual non-local energetics of quasi-solitons that can pump energy from

the environment to provide a quasi-stationary transport of wave energy from large to small scales. Earlier, we have introduced

a simple ‘convolution filter‘ interpretation of THMC coupling. In this sense, the interaction of THMC-waves may be seen as

an extreme form of sharpening filter that can generate rogue waves.450

The independent choice of a reference system such as discussed in the convolution filter analogy also applies to the energy

carried by the waves. If we choose for instance an observer of hydro-mechanical waves, the inverse energy cascade from

THMC wave action from small to large-scale and the direct energy cascade from large to small-scales (Zakharov et al., 2004)

allows the identification of rogue waves, if they occur. The phenomenon of the collision, merging, and the collapse of quasi-

solitons may provide a mechanism for a bi-directional THMC energy cascade that leads to earthquakes as a form of solid-state455

turbulence as discussed in the application in part 2 (Regenauer-Lieb et al., 2020).

7 Conclusions

This paper has introduced three important innovations for modelling THMC instabilities: (i) a multiscale extension of the

theory of thermodynamics of irreversible processes to include dynamic events by using a meso-macro-scale model; (ii) a

generalization of the theory of cross-diffusion waves from chemical systems to generalised THMC thermodynamic-force flux460

pairs; (iii) a transfer of knowledge from classical quantum mechanics to characterise any system at a larger scale in order to

deal with the discreteness of multiscale material behaviour.

(i) We have shown that cross-diffusion waves in THMC systems can be decomposed into cross-diffusional S- and P - accel-

eration waves and have discussed a THMC multiphysics implementation, where cross-diffusion waves appear as quasi-soliton

waves for critical conditions identified from a perturbed Eq. (21). These waves radiate energy away from meso-scale sources465

that are incompatible with the overall macro-scale stress gradients with a complex, reflection, and interaction behaviour into

the far field. This finding overcomes the problem of unbounded solutions encountered in the classical solid mechanical theory

of localisation (Benallal and Bigoni, 2004) where acceleration waves are modelled on the basis of coupled thermomechanics

reaction-diffusion equations without the cross-diffusion term. The necessity of decomposing the macro-scale reactive source

term into a meso-scale reaction-diffusion couple was discovered recently by using mixture theory (Hu et al., 2020).470

(ii) The multiscale approach can be encapsulated in a concise fully populated self/ cross-diffusion matrix (Eq. 21). The theory

is based on an extension of the chemical systems to generalised linear thermo-dynamic force-flux pairs at the meso-length/time

scale. These are found to nucleate cross-diffusion waves under critical conditions and replicate nonlinear behaviour for the long
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time/spatial macroscale. This occurs when cross-diffusion waves converge to standing wave solutions when their radiative tails

become vanishingly small such as in the non-linear Schrödinger equation or the Korteweg-deVries equation. The approach475

reveals that instabilities based on the shear and volumetric response of the material at the meso-scale are fundamentally im-

portant and have been overlooked. We have shown that incompatibilities of meso-scale accelerations with the overall stress

field lead to the nucleation of cross-diffusion waves which travel in an unstable particle-like state with characteristic material

velocities c defined by the competition of meso-scale reaction-diffusion processes at the propagating wavefront. The physics

of this phenomenon is discussed further in (Regenauer-Lieb et al., 2020). These velocities characterise the progress of internal480

material timescales for the formation of multiscale space/time dissipative structures and are characteristic properties for the

dynamic behaviour of a given material. These internal material clocks are here introduced as a multiscale THMC cascade for

coupling the physics of the very small to the very large.

(iii) Cross-diffusion waves have first been discovered for interactions in quantum mechanics such as in photonics where they

show anomalous dispersion patterns that, unlike solitons radiate energy in the form of oscillatory (Cherenkov)-tails (Zakharov485

and Kuznetsov, 1998; Paschotta, 2008). This unusual energy radiation property differentiates them from solitons as quasi-

solitons. Since they assume an unstable particle-like state (see the example in Fig. 2), the reflections and collisions, when

they happen, can lead to a variety of responses (Biktashev and Tsyganov, 2016; Zakharov et al., 2004; Lioubashevski et al.,

1996). Despite their nucleation through discrete internal micro-dissipative mechanisms, cross-diffusional waves also show

proper soliton wave-like behaviour and can penetrate through each other and reflect from boundaries. However, unlike true490

solitons, their amplitude and speed are not controlled by initial conditions but by material properties (Tsyganov and Biktashev,

2014). The effect of cross-diffusion is to trigger cross-diffusion waves for critical conditions. They form by THMC-feedback

as discrete material instabilities which can be either observed as a local, discrete failure or as damage waves.

They are found to propagate and reflect from boundaries in a multiscale energy cascade which in extreme cases can lead to the

formation of a local turbulence phenomenon that seems to appear from nowhere. The phenomenon of wave sampling of energy495

into ultra-localized events is well known in many disciplines and appears in oceans as ’rogue waves’ or in laser physics as

sudden ’light-bursts’. In part 2 (Regenauer-Lieb et al., 2020) we will elaborate on the constraints that may lead to an earthquake

as a "rogue wave" phenomenon through pumping wave energy over multiple length-scales by multiphysics THMC-feedbacks.

In analogue quantum and hydrodynamic systems the collision, merging and collapse of quasi-solitons (cross-diffusion) waves

provides an important mechanism for a direct cascade of energy, which has been also labelled "quasisolitonic turbulence"500

(Zakharov et al., 2004). This phenomenon may be considered a potential source mechanism for the nucleation of earthquakes.

Their unstable non-local nature and their capability to focus energy from the large-scale to feed local scale ‘rogue waves‘

(Zakharov et al., 2004; Akhmediev et al., 2009) is well documented in photonics (Solli et al., 2007) and shallow water theory

(Akhmediev et al., 2009).
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