Resolving uncertainties in the application of zircon Th/U and CL gauges to interpret U-Pb ages: a case study of eclogites in polymetamorphic terranes of NW Iberia

Pedro Castiñeira¹, Juan Gómez Barreiro², Francisco J. Fernández³, Carmen Aguilar⁴ and José Manuel Benítez Pérez⁵

¹Departamento de Petrología y Geoquímica, Universidad Complutense de Madrid, José Antonio Novais 12, 28040 Madrid (Spain).
²Departamento de Geología. Universidad de Salamanca. Facultad de Ciencias, Pza. de los Caídos s/n, 37008 Salamanca (Spain).
³Departamento de Geología., Universidad de Oviedo, Jesús Arias de Velasco s/n, 33005 Oviedo (Spain).
⁴Centre for Lithospheric Research, Czech Geological Survey, Klárov 3, 11821 Prague, Czech Republic.
⁵Centro de Ciências e Tecnologias Nucleares. Instituto Superior Técnico. Universidad de Lisboa. Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal

Correspondence to: J. Gómez Barreiro (jugb@usal.es)

castigar@ucm.es
brojos@geol.uniovi.es
carmen.gil@geology.cz
jose.benitez@ctn.tecnico.ulisboa.pt

Abstract. Zircon crystal texture and Th/U ratio have been used as a watertight argument when interpreting U-Pb ages. The wide, and sometimes indiscriminate, use of those gauges could result into misinterpretation of the geological meaning of U-Pb data. A case study is presented here where zircons from a controversial polymetamorphic eclogite unit were analyzed with SHRIMP U-Pb and trace element (TE) data were collected for each point. The combination of TE and structural arguments indicates that zircon was part of the eclogite facies mineral assemblage at 390 Ma. However, using Th/U ratio and CL textures lead to a different interpretation. Our results suggest that in complex orogenic scenarios and extreme environments well-known techniques (CL) and geochemical relationships (Th/U) must be used in combination with TE data and structural relationships as provenance/process gauges. While geochronology provides accurate isotope relationships, their temporal dimension must rely on structural and petrological evidence.

1 Introduction
Dating metamorphic rocks using the U-Pb isotopic system in zircon can be a challenging task owing to the ability of this mineral to grow in a variety of geological conditions and its relative resistance to metamorphic processes. When the evolution of a rock results in complex textures in zircon, the combination of the high spatial resolution provided by the SIMS (secondary ionization mass spectrometry) instruments together with cathodoluminescence (CL) or backscattered (BS) images has turned out to be very convenient in most cases to decipher this intricate history (see Corfu et al., 2003). As most of the geological processes result in a specific set of zircon textures under CL or BS, this methodology strongly relies in our ability to recognize the origin of zircon based on those textures, so we can link the obtained ages to specific geological processes. For example, the most frequent texture in metamorphic zircon is homogeneous zoning found in discordant rims (Rubatto and Gebauer, 2000), patchy zoning is commonly found in eclogitic zircon (Tomaschek et al., 2003), soccer-ball zoning appears in high-grade metamorphic rocks (Fernández Suárez et al., 2007), subrounded and truncated internal areas are considered inherited zircon (xenocrystic cores), and oscillatory zoning is typical of magmatic zircon (Corfu et al., 2003). However, there is a lack of understanding of the zircon growth process, precluding in some cases a straightforward distinction between magmatic and metamorphic zircon (e.g., Harley and Black, 1997; Corfu et al., 2003; Kelly and Harley, 2005). Furthermore, experimental data are scarce and technically challenging (e.g., Ayers et al., 2003), limiting our interpretation of zircon growth ages. This is particularly true when high pressure and high temperature conditions are explored, or when we are dealing with suspected polymetamorphic terranes. Metamorphic growth of zircon may occur not only during the thermal peak, but also along the prograde and retrograde path (Roberts and Finger, 1997; Liati and Gebauer, 1999; Vavra et al., 1999; Hermann et al., 2001). Moreover, it is commonly accepted that Th/U ratios lower than 0.1 indicate zircon growth under metamorphic conditions, whereas higher ratios are found in magmatic environments (Williams et al., 1997).

However, some of these one-to-one correspondences have been defied in a few cases; whether it be metamorphic zircon with high Th/U ratios (see Harley et al., 2007 and references therein) or the unconventional correspondence between oscillatory zoning and an eclogitic origin for zircon (Gebauer et al., 1997; Rubatto et al., 1998; Bingen et al., 2001; Corfu et al., 2002; cited by Corfu et al., 2003). In such cases, the problem is solved falling back on previous geochronological studies to interpret the obtained age, but the distinctive composition of zircon grown under eclogitic conditions can be used as well to determine its origin (e.g. Young and Kylander-Clark, 2015; Paquette et al., 2017; Lotout et al., 2018).

In this paper, we present one of these examples where both the zircon texture and the Th/U ratio strongly suggest that the obtained age could be interpreted as igneous; whereas, in addition to regional evidence, the REE composition of zircon provides a more complete way to link ages to geological processes.

2 Geological Setting

The Cabo Ortegal Complex is one of the allochthonous complexes cropping out in NW Iberia. These complexes record the protracted history of the northern margin of Gondwana from Cambrian-Ordovician times to the Variscan orogeny (Martínez Catalán et al., 2009, 2019). A recent paper explores the connection between...
the Iberian allochthonous complexes and some units present in the Armorican Massif (Ballèvre et al., 2014), grouping all of them into lower, middle and upper allochthon depending on their tectonometamorphic evolution and structural position. In NW Iberia, the lower allochthon is a Lower Cambrian siliciclastic sequence, intruded by a Lower Ordovician bimodal magmatism, which experienced high pressure and low to intermediate temperature metamorphism during the Middle Devonian (Díez Fernández et al., 2012a, 2012b; Abati et al., 2010; López Carmona et al., 2013). It represents the most external margin of Gondwana. The middle allochthon is mainly composed of mafic and ultramafic rocks interpreted as fragments of oceanic lithosphere; the oldest (495 Ma) is related to the Iapetus-Tornquist Ocean, whereas the youngest (~395 Ma) is probably related to the Rheic Ocean (see Arenas et al., 2014, Martínez Catalán et al., 2019 and references therein). The upper allochthon is interpreted as a volcanic arc, and it can be divided according to their metamorphic evolution into HP-HT units, bellow, and intermediate-P units, above. In the Cabo Ortegal Complex, the HP-HT units define an overturned thinned sequence of rocks that is composed, from bottom to top, of quartzo-feldspathic gneisses, eclogitic felsic granulites and ultramafic peridotites (Fig. 1). Regarding the age of this HP-HT event, a first group of authors have proposed a single event occurring during the Devonian (~390 Ma, e.g., Ordóñez Casado et al., 2001) based on geochronology of eclogites and granulites. In contrast, a second group of authors have found evidences of previous HP-HT metamorphic event at Neo-Ordovician times, whereas the younger metamorphic event could have been HP, probably not UHP (Fernández Suárez et al., 2002). A general account regional data from different allochthonous complexes in NW Iberia and France. Those ages have Early-Middle Devonian subduction of the HP-HT allochthonous units and eventually an accretionary process probably to Laurussia (Ballèvre et al., 2014; Martínez Catalán et al., 2019). This event would be interpreted as the first collisional evidence of the Variscan orogeny in Europe.

3 Sample preparation and zircon description

The eclogite studied in this work is a block-in-matrix included in quartzo-feldspathic gneisses located in the Cariño beach (sample COZ-4, lab number 110405, Fig. 1). The gneisses correspond to the Banded Gneisses Formation defined by Vogel (1967) mainly constituted by migmatitic garnet- and kyanite-bearing quartzo-feldspathic gneisses with inclusions of eclogite, mafic granulites and calc-silicate rocks (Vogel, 1967; Gil Ibarguchi et al., 1990; Fernández, 1997). Lithological and mineralogical composition is heterogeneous and thickness variable (~200 m), with gradational contacts between layers locally enriched in garnet or amphibole. Intercalations of leucocratic garnet-bearing orthogneisses, coronitic metagabbros and dioritic dykes evidence also an old magmatism. The sample COZ-4 has a granoblastic texture and is mainly composed of omphacite and garnet with honeycomb texture. Biotite, brown amphibole, calcite, sulphides and rutile appear as minor phases. The eclogite block has an ellipsoid shape of ratio 1:1:2. The section YZ of the ellipsoid is a square of approximately of 1 m² with sharp limits and rounded corners. It is enclosed in a phyllonite matrix formed basically by serpentine and amphibole. The matrix is well-foliated obliquely to the main foliation, whereas the eclogite block is not foliated and has granoblastic texture. Oblique foliation is disposed parallel to the foliation planes of refolded decimeter-scale folds and sheath folds with top-to-the-N20E sense of movement. The structural relationships between the
Eclogite block and banded gneisses evidence a high competence contrast, where the block is passively displaced during all the deformation process.

Metamorphic evolution of the enclosing eclogitic banded gneisses recorded a HP-HT event followed by a fast exhumation under granulite and finally amphibolite facies metamorphism, with extensive partial melting. The eclogite P-T conditions calculated from omphacite-garnet-bearing mafic rock indicated 22 kbar and 780-800 °C (Basterra et al., 1989; Gil Ibarguchi et al., 1990; Mendia, 2000; Albert et al., 2012).

Mineral separation was carried out at the Universidad Complutense (Madrid) and it involved an initial concentration of heavy minerals using a Wilfley table, the sieving of the resulting sample below 0.2 mm, the separation of the magnetic minerals with a Franz isodynamic magnetic separator, and the final concentration with methylene iodide (MEI). A significant amount of heavy minerals was obtained, mainly rutile and sulphides, whereas the zircon yield was poor (hardly 50 grains out of 30 kg of sample). Zircon grains are usually fragments, typical of populations extracted from mafic rocks (Corfu et al., 2003), varying in size from 0.1 to 0.2 mm across. Still, in a few grains it is possible to recognize some crystal faces. Zircon is colorless with scarce mineral or fluid inclusions.

The zircon grains were mounted on glass slides with a double-sided adhesive in parallel rows together with some grains of zircon standard R33 (Black et al., 2004) and set in epoxy resin. After the resin was cured, the mounts were ground down to expose their central portions. Prior to isotopic analysis, zircons were imaged with transmitted and reflected light on a petrographic microscope, and with cathodoluminescence (CL) on a JEOL 5600LV scanning electron microscope, housed at the Stanford-US Geological Survey microanalysis center (SUMAC). Following the analysis, secondary electron images were taken to determine the location of the spots.

Cathodoluminescence images of zircon grains from sample COZ-4 display a variety of textures (Fig. 2). The most common CL texture is a combination of oscillatory and sector zoning (grains #5, 6, 11, 13, 14, and 15, Fig. 2). Some zircon grains only have a well-defined oscillatory zoning with moderate to poor luminescence (grains #2, 8 and 9, Fig. 2), whereas other zircon grains exclusively show sector and fir-tree zoning with moderate luminescence (grains #1, 4, 7, 10 and 16, Fig. 2). Grain #2 also displays a non-luminescent homogeneous rim. There is a luminescent subrounded core (grain #3), which shows textures typically attributed to metamorphism, such as recrystallization and microveining, and it is mantled by zircon with a faint soccer-ball zoning, similar to grain #12. Grain #17 shows an irregular domainal texture (comparable to Fig. 3.5 in Corfu et al., 2003), interpreted as a result of strain during zircon growth. This internal patchy area is partially surrounded by new zircon not affected by strain and it presents broad and faint oscillatory zones.

In summary, following the most accepted interpretation of zircon textures (Corfu et al., 2003), most of the grains exhibit zoning typical of zircon grown in an igneous environment, except grains #3, #12, #17 and the rim in #2, which textures can be unequivocally interpreted as generated under metamorphic conditions.
Zircon U-Th-Pb analyses were conducted on the sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG) operated by the SUMAC facility (Stanford-USGS micro analysis center) at the Stanford University. An O\(^2\) primary ion beam varying from 4 to 6 nA generates secondary ions from the target spot with a diameter of ~20 µm and a depth of 1-2 µm. As we assumed a Paleozoic age, the counting time for \(^{206}\)Pb is increased to improve counting statistics and precision of the \(^{206}\)Pb/\(^{238}\)U age. Concentration data were normalized against zircon standard CZ3 (550 ppm U, Pidgeon et al., 1994), and isotope ratios were calibrated against R33 (419 Ma, Black et al., 2004). Data reduction followed the methods described by Williams (1997), Ireland and Williams (2003), and Squid 1.08 and Isoplot 3.0 software (Ludwig, 2001, 2003) were used. The U-Pb zircon data are shown in Table DR-1.

Twenty analyses were performed in 17 zircon grains. The youngest result has high common Pb content and it will not be further considered in the discussion of the age (analysis #3.2). The following youngest result is obtained from a non-luminescent rim in grain #2 (369 Ma) and the seventeen remaining analyses are evenly distributed between 382 and 403 Ma (Fig. 3). The weighted mean obtained from eight analyses is 390.4±1.2 Ma, with a square of weighted deviation (MSWD) of 0.65. Finally, one analysis taken in a core yields the oldest age (474 Ma) and, in spite of its high common lead, its significance will be discussed later.

4.2 Trace element SHRIMP-RG analyses

After the isotopic analysis, the zircon mounts were lightly polished to remove the original gold coating and sputtered pits, and recoated with gold. Methods follow those presented by Mazda (2009). A small spot diameter (about 15 µm) and a less energetic O\(^2\) beam (between 1 and 2 nA) permitted that the analyses were conducted in a volume adjacent to that analyzed for isotopic compositions. The primary standard MAD is a gem quality crystal from Madagascar that has been extensively characterized in-house and found to be very chemically homogeneous (Mazda and Wooden, 2006). The secondary zircon standard is CZ3 (see previous section). These standards were analyzed every ten unknowns over multiple analytical sessions to establish precision of the trace element analyses. The procedure to obtain concentrations from raw counts is described in Schwartz et al. (2010). Precision for Y at 2σ is ±6%; for the measured rare earth elements (REE, excluding La), Hf, Th, and U, 2σ precision ranges from ±8 to 18%; the precision for La is ±30%.

Even though we performed thirty-six trace element (TE) analyses in 19 zircon grains, in this work we are only reporting those analyses adjacent to a U-Pb spot (Table DR-2). Uranium concentrations range from 55 to 1,150 ppm, most of the values are below 230 ppm and a group of five analyses aimed to the less luminescent areas yield values higher than 370 ppm. Thorium concentrations are generally low, scattered between 10 and 55 ppm, excepting the analyses in the less luminescent zones, which vary between 90 and 290 ppm. In the Th-U graph (Fig. 4a), the data show a good positive correlation and, with the exception of analysis #8.1, Th/U ratios are higher than 0.1.

Total REE concentrations are low and range from 30 to 350 ppm. In a chondrite-normalized REE diagram (Fig. 4b), all analyses depict similar patterns that are characterized by a moderate fractionation from lanthanum (La) to lutetium (Lu), with a prominent positive anomaly in cerium (Ce), absence of europium (Eu)
anomaly and a slightly negative slope in heavy (H) REE. The lack of a Eu anomaly is typically explained as the result of absence of plagioclase (Rubatto, 2002), whereas the high distribution coefficient for the HREE in garnet accounts for the remarkably depleted content in these elements and the resulting humped patterns in zircon (Kelly and Harley, 2005, and references therein). The combination of plagioclase absence and garnet presence is commonly attributed to eclogitic metamorphism (Puga et al., 2005; McClelland et al., 2006; Chen et al., 2010).

5 Interpretation and discussion

5.1 Interpretation of the results

Even though CL images are fundamental to select the best spots for analysis in complex zircon grains, it is clear that the evaluation of the geochronological results based only in the CL textures is not straightforward. In the zircon grains studied in this study, both CL textures and Th/U ratios strongly suggest that the obtained Middle Devonian age should correspond to the igneous protolith. However, this interpretation is inconsistent with previous geochronology studies and with the regional geology. On one hand, the age of other mafic and felsic rocks in the allochthonous complexes in NW Iberia varies between 520 and 470 Ma and there is no evidence of a Devonian magmatic event so far (e.g., Ordóñez Casado et al., 2001; Abati et al., 2007; Fernández Suárez et al., 2007; Andonaegui et al., 2012). On the other hand, several studies have suggested that there is a high-pressure–high-temperature metamorphic event in this unit during the Middle Devonian (Ordóñez Casado et al., 2001; Fernández Suárez et al., 2007). The fallibility of the CL-Th/U–based geochronology can be easily circumvented in this case studying the REE composition of zircon. Under eclogitic conditions, this mineral exhibits a couple of diagnostic features such as depletion in HREE and absence of an Eu negative anomaly.

5.2 Origin of zircon

There are three main ways to form zircon in metamorphic environments (e.g., Young and Kylander-Clark, 2015): dissolution of existing grains and subsequent precipitation, recrystallization of former crystals, and new growth, either by Zr-releasing reactions or by direct crystallization from a partial melt or a fluid. Dissolution and precipitation can be used to explain the texture and isotopic data from the only grain with a core-rim feature (grain #3 Fig. 2, Table DR-1). In spite of its high common Pb content, the age obtained in the core (~474 Ma) is equivalent to other ages found in the literature for the eclogitic protolith (Fernando Griffiths et al., 1985; Peucat et al., 1990; Ordóñez Casado et al., 2001), whereas the rim age (~360 Ma) is probably affected by lead loss. In any case, the absence of xenocrystic cores in the rest of the grains suggests that dissolution and precipitation was subordinate and other zircon-forming processes were active in this eclogite.
Even though zircon recrystallization during metamorphism usually disturbs the former igneous zoning, Schaltegger et al. (1999) report a U-loss process during zircon recrystallization that results in a weakening of CL intensity, without losing the oscillatory zoning. However, this annealing is usually coupled with partial U-Pb resetting. In our case, data are tightly grouped and they are equivalent to other ages obtained for the HP-HT metamorphism in adjacent areas (e.g., Ordoñez Casado et al., 2001), making this argument unsound.

Other possibility is that new zircon grew during eclogite metamorphism. Direct crystallization from a melt or a fluid has been invoked in the few studies where oscillatory zoning was found in eclogitic zircon (Gebauer et al., 1997; Rubatto et al., 1998). However, crystallization from a fluid can be discarded as zircons grown that way usually have Th/U ratios lower than 0.1 (Rubatto et al., 1998). On the other hand, zircon crystallization from a melt generated during eclogite metamorphism could show Th/U ratios higher than 0.1. In that case, the system would be open, making HREE available for both garnet and zircon (Rubatto, 2002). Nevertheless, the REE pattern of the zircon analyzed precludes this possibility. Alternatively, zircons could be generated from a metamorphic reaction in solid state. The abundance of rutile suggests that titanite or ilmenite were also present in the protolith, making any of these two minerals the ideal precursors for zircon (Bingen et al., 2001; Bea et al., 2006).

5.3 Implications for the geochronology of the upper allochthon

The assortment of geochronological results in the upper allochthon (Fig. 5) could be increasing that the rocks grouped under this denomination have different origins, even though they are considered as different crustal sections of a volcanic arc. This is coherent with the heterogeneity of the allochthonous sequences at different scales, including significant differences in the structural and metamorphic evolution (e.g., Castiñeiras, 2005; Gómez Barreiro et al., 2006, 2007; Paquette et al., 2017). The good correlation of Lower, Middle and Upper allochthon across the allochthonous complexes of NW Iberia and France support the general tectonic setting but does not exclude the possibility that several lithospheric fragments were amalgamated under similar conditions during the activity of the system. In addition, it should be noted that the variety of techniques and the interpretation of age data does not show the degree of robustness and could also contribute to the apparent dispersion of ages (see Paquette et al., 2017; Lotout et al., 2018).

The combination of the trace elements (TE) signature, CL images and a high-resolution ion probe emerges as an excellent approach to overcome regional uncertainty in the studied case as previously stated in similar context (e.g. Lotout et al., 2018). The positive correlation of TE evolution and metamorphic assemblage let us connect textural information and regional evidence with geochronology, which was not considered in previous works. Due to the correlation between metamorphic evolution and TE data, we suggest that the analyzed zircons represent part of the eclogite facies assemblage, so that a HP event about 390 Ma is favored. It should be noted that the existence of a previous (pre-400 Ma) HP event is not dismissed but specific experiments need to be conducted to figure out its geological meaning (e.g. Lotout et al 2018).
5.4 concluding remarks

We have dated zircons from an eclogitic block-in-matrix with a combination of high-resolution ion probe, CL-image and TE data. Strengths and weaknesses of those techniques have been discussed and correlated with regional knowledge. An age about 390 Ma has been identified and linked to an eclogite facies mineral assemblage based on zircon TE data. These data represent the most robust evidence of an eclogite facies event at 390 Ma for the allochthonous complexes of the NW Iberia.

Our results indicate that well-known techniques (CL) and geochemical relationships (Th/U) must be used in combination with TE data and structural relationships as provenance/process gauges, particularly in complex orogenic scenarios or extreme environments. While geochronology provides accurate isotope relationships, their temporal dimension must rely on structural and petrological evidence.

Data availability

The data are not publicly accessible

Supplement

Tables DR-1, with U-Pb isotopic zircon data, and DR-2, with REE zircon composition, is available online at [link to be included by Solid Earth]

Author contributions

PC, JGB contributed equally to the field, experimental and elaboration of the manuscript. CA and JMBP contribute to U-Pb data acquisition, processing and interpretation, and FJF participated in the fieldwork and the geological interpretation.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

Carmen Valdehita is thanked for her assistance during mineral separation. Fieldwork, sample separation and analytical expenses were financed by Universidad Complutense (Madrid) through the Grupo de Investigación UCM Eurovarisco (910129). PC and JGB benefited from two travel aids of the “Programa de ayudas a investigadores del CSIC para la realización de estancias en centros de investigación extranjeros”. CA travel was financed by projects CGL-2007-66857CO2-02 and CGL2010-21298 of the Spanish Commission for Science and Technology. JGB acknowledges financial support from the Ramón y Cajal Program (RYC-2010-05818).

Funds from the Projects CGL2010-14890 and CGL2011-23628/BTE of the Spanish Secretary of State for Research, Development and Innovation and projects CGL2011-22728 and CGL2016-78560-P of the Spanish Ministry of Economy, Industry and Competitiveness, as part of the National Program of Projects in Fundamental Research are kindly acknowledged. JMBP appreciates financial support by the Spanish Ministry of Economy, Industry and Competitiveness though the Formación de Profesional Investigador grant FPI 2013-
2016 (BES-2012-059893). JGB appreciates financial support by the Spanish Ministry of Science and Innovation through the IEDI-2016-00691 fellowship.

References


Chen Ren Xu, Zheng Yong-Fei, and Xie, Liewen, 2010, Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in
https://doi.org/10.1016/j.lithos.2009.08.006.


© Author(s) 2020. CC BY 4.0 License.


FIGURE CAPTIONS

Figure 1. Geological map of the northern area of the Cabo Ortegal Complex with the location of the sample.

Figure 2. Cathodoluminescence images of the analyzed zircons. Ellipses indicate the location of the U-Pb spots, whereas circles represent the trace element analyses.

Figure 3. (A) Tera-Wasserburg diagram showing U-Pb data for the analyzed sample. Gray ellipses represent data included in the calculated mean. (B) Age distribution of the data considered in the mean age calculation.

Figure 4. (A) U versus Th and (B) chondrite-normalized REE patterns. Normalization values after Anders and Grevesse (1989), modified by Korotev (1996).

Figure 5. Protolith and metamorphism ages in the upper allochthon, including the HP-HT and the IP units. Abbreviations: Zrn, zircon; Mnz, monazite; Hbl, hornbende; Am, amphibole; Ms, muscovite; Bt, biotite; Ttn, titanite; Ep, epidote; Rt, rutile; Phl, phlgopite; Ed, edenite; WR, whole-rock; rcl, recalculated by Kuilper et al. (1982).

Supplementary data

Tables DR-1, with U-Pb isotopic zircon data, and DR-2, with REE zircon composition, is available online at [link to be included by Solid Earth].
Figure 1
Figure 2
Figure 3

Mean = 390.4±1.2 [0.31%] 95% conf.
Wtd by data-pt errs only, 0 of 8 rej.
MSWD = 0.65, probability = 0.72
(error bars are 2σ)
Figure 4
Figure 5

<table>
<thead>
<tr>
<th>Allochthonous complexes</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eclogites</td>
</tr>
<tr>
<td></td>
<td>Bacariza Granulites</td>
</tr>
<tr>
<td></td>
<td>Chimparra Gneisses</td>
</tr>
<tr>
<td></td>
<td>Ultramafic rocks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HP-HT UNITS</th>
<th>Massif Central</th>
<th>Southern Armorican Massif</th>
<th>Bragança</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eclogites (Limousin)</td>
<td>Eclogites (Essarts)</td>
<td>Eclogites</td>
</tr>
<tr>
<td></td>
<td>Mafic HP Granulites</td>
<td>Felsic HP Granulites</td>
<td></td>
</tr>
</tbody>
</table>