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Abstract. We present new field observations from Selwicks Bay, NE England, an exposure of the Flamborough Head Fault 

Zone (FHFZ). We combine these with U-Pb geochronology of syn- to post-tectonic calcite mineralisation to provide absolute 

constraints on the timing of deformation. The extensional Frontal Fault zone, located within the FHFZ, was active at ca. 63 

Ma, with protracted fluid activity occurring as late as ca. 55 Ma. Other dated tensile fractures overlap this timeframe, and also 

cross-cut earlier formed fold structures, providing a lower bracket for the timing of folding and compressional deformation. 15 

The Frontal Fault zone acted as a conduit for voluminous fluid flow, linking deeper sedimentary units to the shallow sub-

surface, potentially hosting open voids at depth for a significant period of time, and exhibiting a protracted history of fracturing 

and fluid-flow over several million years. Such fault-hosted fluid pathways are important considerations in understanding 

chalk reservoirs and utilisation of the sub-surface for exploration, extraction and storage of raw and waste materials. Most 

structures at Selwicks Bay may have formed in a deformation history that is simpler than previously interpreted, with a 20 

protracted phase of extensional and strike-slip motion along the FHFZ. The timing of this deformation overlaps that of the 

nearby Cleveland Dyke intrusion and of regional uplift in NW Britain, opening the possibility that extensional deformation 

and hydrothermal mineralisation at Selwicks Bay are linked to these regional and far-field processes during the Palaeocene. 

 

1 Introduction 25 

Faulting of sedimentary basin fills in the subsurface is an important process in producing structurally constrained aquifers and 

reservoirs, as well as providing potential conduits and barriers to fluid resource migration and accumulation. Fault- and 

fracture-hosted infill and mineralisation allow us to assess the character and scale of along-fault fluid-migration. Maintenance 

of open fractures is an increasingly recognised phenomenon in faults formed in the shallowest parts of the crust down to depths 

of 1-2 km (e.g. Wright et al. 2009; van Gent et al. 2010; von Hagke et al. 2019). Open or partially open fractures can be 30 
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propped open and preserved in the subsurface when they become infilled by wall rock collapse breccias, water-borne sediments 

and/or hydrothermal mineralisation (e.g. Walker et al. 2011; Holdsworth et al., 2019, 2020). These so-called fissure systems 

have the potential to act as significant channelways for the migration and storage of subsurface fluids such as water, 

hydrocarbons or geothermal fluids, and in carbonate aquifers, can also act as pathways for the development of larger 

dissolutional conduits and cave systems. 35 

 

The absolute timings of fracture opening and fault displacement are critical to understanding how subsurface fluid migration 

evolves over time, and link individual fractures to the record of external tectonic deformation. Most sedimentary basins, 

whether ancient or currently active, lack direct chronological constraints on their structural history, and rely instead on the 

interpretation of stratigraphical and structural relations from field-data, or those imaged by geophysical means, e.g. seismic 40 

reflection data. Exposed faults can be directly dated if suitable geochronometers are preserved; recent methodological 

developments have broadened the range of such mineral chronometers. Clay minerals can be dated by K-Ar, Ar-Ar and Rb-

Sr, but require fault gouge, and a meticulous analytical approach to generate robust dates (e.g. Viola et al., 2016). U-Th/He 

dating of hematite coatings (e.g. Ault et al., 2016), U-Th-Pb dating of hydrothermal monazite (Bergemann et al., 2018), Rb-

Sr dating of feldspar (Tillberg et al., 2020) and Re-Os dating of hydrothermal sulphides (e.g. Dichiarante et al., 2016) are 45 

promising techniques that are also of use for faults and fault-hosted mineralisation of the right composition. In this paper, we 

utilise U-Pb dating of vein-filling calcite. Calcite is an extremely abundant mineral fill in brittle fractures and faults of wide-

ranging host lithologies. It has been shown to be an effective chronometer that can be linked to the timing of hydrothermal 

mineralisation, fault slip and fold development (Roberts & Walker, 2016; Ring and Gerdes, 2016; Goodfellow et al., 2017; 

Nuriel et al., 2017, 2019; Beaudoin et al., 2018; Hansman et al., 2018; Holdsworth et al., 2019, 2020; Parrish et al., 2018; 50 

Smeraglia et al., 2019; Roberts et al., 2020). 

 

In ancient sedimentary basin systems worldwide, many episodes of uplift and deformation are a consequence of tectonic 

inversion associated with the far-field effects of orogenesis. In the British Isles, the youngest of these events are Cenozoic and 

may be related to either the Palaeogene Pyrenean or Neogene Alpine orogeny, both of which have been linked to major 55 

geological structures exposed across Southern England (e.g. see Chadwick, 1993; Blundell, 2002; Parrish et al., 2018), but 

may also have led to deformation as far north as Yorkshire, and offshore in the Southern North Sea (Ziegler, 1989). Here we 

present data from the Flamborough Head Fault Zone (FHFZ), which forms the southern boundary to the Mesozoic Cleveland 

Basin, and for which there is no present consensus as to the timing and kinematic history. In this paper, we combine new field 

observations with U-Pb geochronology of calcite veins. Our dates present the first absolute timing constraints on deformation 60 

within the FHFZ, and are placed into context with new field observations pertinent to understanding the structural setting of 

associated fluid flow and fracture filling processes. 
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2 Geological Setting 

The Mesozoic Cleveland Basin (Fig. 1a) located in East Yorkshire, northern England, has experienced inversion, the timing 65 

of which is poorly constrained. It is attributed by most authors to distant effects of the Pyrenean or Alpine orogeny (e.g. 

Starmer, 1995). The Jurassic-Cretaceous basin fills are bounded to the north and south by complex fault zones. To the south, 

the FHFZ is an east-east striking zone of brittle faults, which separates the Cleveland Basin from the Market Weighton Block 

(Fig. 1a). Inland exposures of the fault zone are poor, and largely restricted to small quarries in Cretaceous Chalk; however, 

they can be mapped on the surface, and are visible on remotely sensed datasets (Farrant et al., 2015). In contrast, the coastline 70 

preserves excellent exposures of the faults and associated deformation. Flamborough Head (Fig. 1b) exposes several fault 

zones that have a complex structure and potentially a protracted history; these are the Bempton, Selwicks Bay, and Dykes End 

fault zones (Fig. 1b). The chalk at Flamborough Head is amongst the youngest exposed in Yorkshire, and comprises the 

Burnham Chalk Formation (Late Coniacian to Early Santonian) and the overlying Flamborough Chalk Formation (Santonian) 

(see Whitham, 1993; Mortimore, 2020). 75 

 

The FHFZ is an E-W zone of brittle faults exposed at the coast at Flamborough Head, extending inland for 30 to 40 miles (see 

Fig. 1a, and Farrant et al., 2015). The fault zone is linked with the Vale of Pickering Fault Zone (Kirby and Swallow, 1987), 

and has also been referred to as the Howardian Hill-Flamborough Fault Belt (Starmer, 1995). To the east, the fault zone is 

truncated offshore by the Dowsing Fault Zone, which forms the western margin of the Sole Pit Basin. The deformation of the 80 

Cretaceous Chalk rocks around Flamborough Head associated with some of the E-W faults has long been studied due to the 

excellent and structurally complex exposures preserved here (e.g. Phillips, 1829; Lamplugh, 1895; Kent, 1974; 1980; Kirby & 

Swallow, 1987; Peacock & Sanderson, 1994; Starmer, 1995, 2008, 2013; Rawson & Wright, 2000; Sagi et al., 2016).  

 

Previous geological constraints on the timing of fault movements within the FHFZ come from the interpretation of seismic 85 

reflection data and sedimentological and structural analyses of several key outcrops (Jeans, 1973; Kirby and Swallow, 1987; 

Starmer, 1995). The offshore seismic interpretation of Kirby and Swallow (1987) indicates the existence of both steep faults 

that cut underlying Permian and Carboniferous strata at depth, and listric faults that detach within the Permian Zechstein strata. 

Faults on the northern and southern margins of the fault zone form a graben structure. Thickness changes of the Speeton Clay 

and Red Chalk have been interpreted as evidence that the northern fault zone (comprising the Bempton and Speeton faults; 90 

Fig. 1b) began movement in the early Cretaceous (Jeans, 1973; Neale, 1974; Kirby and Swallow, 1987). Kirby and Swallow 

(1987) concluded that an early stage of near-vertical normal faulting (early Cretaceous) produced the graben structure, which 

was then followed by a period of listric normal faulting, with both events occurring prior to the Late Cretaceous. Inversion of 

the former extensional structures, forming the ‘Shatter Zones’ at Bempton and Selwicks Bay, is inferred to have occurred at 

the end of the Cretaceous, and has been related to the more regional uplift, folding and inversion of the Cleveland Basin to the 95 

north forming amongst other structures, the Cleveland Anticline (Fig. 1a, Kirby et al., 1987). 
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Peacock and Sanderson (1994) conducted a detailed investigation of the orientation and displacements of faults exposed around 

Flamborough Head, covering some 1340 individual structures. They interpret their data as indicating that sigma1 during 

faulting was sub-vertical, with extension occurring sub-horizontally in all directions, and that complex relationships existed 100 

between sigma2 and sigma3. Based on oblique-slip kinematics they suggested that a sub-horizontal sigma3 developed over 

time in a dominantly NNW-SSE direction. These authors also briefly describe the existence of contractional structures, namely 

oblique or reverse displacements on some fault surfaces, with a NNW-SSE contraction direction. Brecciation and veining are 

pervasive at Selwicks Bay, and Peacock and Sanderson (1994) tentatively suggest that both were related to the contractional 

event. They do not, however, present clear evidence for whether contraction preceded or followed extension.  105 

 

Starmer (1995) produced a deformation history of the chalk at Selwicks Bay based on detailed mapping and structural analyses 

in onshore exposures of chalk; he describes four phases of deformation (D1 to D4). D1 produced folds with NNW-SSE axes 

and bedding plane-parallel shears, with an ENE-WSW to E-W shortening direction. Subsequent D2 deformation was attributed 

to extension in an E-W direction, and the formation of tensional extensional fractures. D3 started with E-W directed flexure 110 

of the strata, and some strike-slip faulting. Once the folds had tightened, thrusts with top-to-the-S to -SSE shear sense directions 

cut through the strata. Dextral strike-slip at the same time suggested a transpressional strain. D4 was interpreted as a complex 

phase of extension-transtension, first with E-W extension allowing N-S structures to activate, and followed by a N-S 

component of extension. Starmer (1995) links these events to ‘Laramide’ (late Maastrichtian to early Palaeocene) compression 

(D1), ‘Laramide’ extension (D2), Alpine (Oligocene) compression (D3) and post-Alpine extension (D4). 115 

 

Sagi et al. (2016) studied the exposures at both Selwicks Bay and Dykes End (see Fig. 1b), analysing the fault density and 

connectivity in particular, and the relationship of these to fluid-flow. These authors describe numerous occurrences of dilational 

and contractional jogs occurring along the fault planes, exhibiting textures that include pressure solution styolites and coarse-

crystalline calcite vein-fill. At Selwicks Bay, Sagi et al. (2016) focused on two large, steeply-dipping ENE-WSE normal faults 120 

that are a distinctive structural feature (the Frontal Faults of Starmer, 1995), related to folding and intense metre scale zones 

of intense veining and brecciation in the chalk wall rocks. These authors describe the damage zones associated with this set of 

faults (the Selwicks Bay ‘Shatter Zone’) and show that they are 4 to 5 m wide in the footwall, but less than 1 m wide in the 

hanging-wall. These brecciated damage zones are where the highest intensity of veining occurs forming a highly 

interconnected, braided network of tensile calcite-filled fractures. This study showed that fluid connectivity was much higher 125 

in the damage zones of the faults (up to 60%) compared the surrounding wall-rock (less than 10%), i.e. that these faults 

unequivocally represented highly effective fluid conduits in the geological past. 

 

Faÿ-Gomard et al. (2018) present a geochemical study of veining at Selwicks Bay, and describe a relative chronology of three 

different phases of calcite veining. They use clumped isotopes of carbonates to determine precipitation temperatures of ca. 130 



5 

 

60°C, and combined with carbon, oxygen and strontium isotope analyses, postulate that the fluids originate from the underlying 

Triassic Sherwood sandstone. These authors link the timing of veining to Late Mesozoic to Cenozoic basin inversion, 

suggesting veining may have occurred in a pulsed manner linked to phases of inversion; although in their figure, they utilise 

the burial history curve of Emery (2016), correlating the veining with Oligocene-Miocene regional uplift. 

 135 

Mortimore (2019) revisited the stratigraphy of the chalk exposed at Selwicks Bay, providing new stratigraphic and 

sedimentological logs for exposures north and south of the Frontal Faults. Mortimore (2019) also re-evaluated both micro and 

macro–scale structures and sedimentological features exposed at Selwicks Bay, questioning whether many of those exposed 

are a result of syn-sedimentary slumping and downslope displacement, rather than being purely tectonic processes.  

3 Methodology 140 

Fieldwork focussed on examples of calcite mineralisation associated with folds, fractures and faults in the well-exposed 

Selwicks Bay (Fig. 1c). Several samples of calcite mineralisation were collected for U-Pb dating purposes, with additional 

material collected from some fracture fills in order to understand the geological context of fracture-filling processes. Thin 

sections from these samples were studied optically in order to characterise the mineralogy, structural setting and – where 

possible – the sequence of fracture filling in each sample.   145 

 

U-Pb geochronology was conducted at the Geochronology and Tracers Facility, British Geological Survey, UK. Samples were 

analysed using polished epoxy blocks/slabs. The instrumentation used was a New Wave Research 193UC excimer laser 

ablation system fitted with a TV2 cell, coupled to a Nu Instruments Attom single collector inductively coupled plasma mass 

spectrometer (ICP-MS). The method follows that described in Roberts et al. (2017). Laser parameters were pre-ablation 150 

conditions of 150 µm static spots fired at 10 Hz with a fluence of ~8 J/cm2 for 2 seconds, and ablation conditions of a 100 µm 

spot, fired at 10 Hz with a fluence of ~8 J/cm2 for 30 seconds. A 60 second background is taken before every set of standard-

bracketed analyses, and a 5 second washout is left between each ablation. Data reduction uses the Time Resolved Analysis 

function of the Nu Instruments Attolab software, and an Excel spreadsheet. Isoplot v4 (Ludwig, 2011) is used for calculation 

and plotting of ages. Uncertainty propagation follows the recommendations of Horstwood et al. (2016), with final dates 155 

including propagation of systematic uncertainties. The carbonate material WC-1 (254 Ma; Roberts et al., 2017) was used as 

the primary reference material, and Duff Brown Tank (64.04 Ma; Hill et al., 2016) and ASH15D (2.96 Ma; Perach Nuriel pers. 

Comm. 2020) were used as validation materials. The pooled result of all Duff Brown analyses yields a lower intercept age of 

65.4 ± 1.2 Ma, and the pooled result of ASH15D yields a lower intercept age of 2.88 ± 0.08 Ma. 
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4 Outcrop settings of samples 160 

It is not our intention here to provide a detailed kinematic analysis of faulting in the region. Instead, it is our objective to simply 

provide the context for our new U-Pb dates in terms of the general movement history of the fault zones and the associated 

hydrothermal mineralisation. 

 

Our sampling comes from three outcrop locations (Fig. 1c); all photographs in the following sections relate to these three 165 

locations and a fourth that wasn’t sampled. Location 1 is the damage zone between the two E-W striking ‘Frontal Faults’ 

(Frontal Fault North, and Frontal Fault South), of Starmer (1995), also termed the Intensely Brecciated Zone (IBZ) by Sagi et 

al. (2016). The combined displacement across these faults has been estimated as ~20 m based on stratigraphic offsets (Rawson 

and Wright, 2000; Mortimore, 2019), with downthrow to the north. The two faults separate a 4-5 m wide zone of highly calcite 

veined, variably misoriented and brecciated chalk (Figs. 2a-2d, 3a-3d). The areas of breccia are highly variable in their 170 

development – some smaller examples up to 20 cm wide are fairly constant in thickness and are bounded by well-defined 

planar fracture surfaces (Fig. 3b), whilst others are more irregular, with diffuse margins, varying between a few cm to more 

than 1.5 m across. As noted by Sagi et al. (2016), many veins in the brecciated panel between the two bounding faults show 

geometries consistent with tensile (Mode I) opening during normal faulting (Fig. 3b), with the development of well-defined 

median lines and, in places, open vuggy cavities suggesting syntaxial mineralisation into large open voids (Woodcock et al., 175 

2014). Three samples comes from this damage zone. CJ-1 is from coarse-grained (up to 10cm) calcite grown in an open vug 

within the cliff (similar to Fig. 3b). NR1707 and NR1708 are from the calcite cement within the damage zone breccia, located 

on the foreshore approximately 20 m from the main cliff. NR1707 is from the main matrix cement, and NR1708 is from a vein 

of calcite cement that is located within a chalk of pebble (Fig. 2b-2d) 

 180 

Location 2 is the region of folding in the middle of the bay, approximately 30 m north of the Frontal Faults and Location 1. 

The sample NR1901 comes from a tight synformal fold (Fig. 2e, 4c). Here, a metre-scale, close to tight, southward verging 

antiform-synform pair is developed and is closely associated with at least two top-to-the-S low to moderately N dipping thrust 

faults (Fig. 4c). The exposed synformal fold hinge reveals bedding-parallel calcite slickenfibres oriented at high angles, oblique 

to the fold hinge (Fig. 2f-2g, 4d) consistent with the operation of oblique flexural slip processes during folding (e.g. Holdsworth 185 

et al., 2002). 

 

The final sample, NR1709 comes from an E-W steeply dipping tensile calcite vein in the densely fractured natural pavement 

close to the base of North Cliff (Fig. 2h-2i; Loc. 4). The structural setting of these veins is seen in the cliffs to the west about 

half way between Localities 2 and 4 where a steeply S dipping normal fault with dip-slip slickenlines is seen offsetting an 190 

earlier low angle thrust fault with a cm-scale, close to tight southward verging antiform in its immediate hangingwall (Fig. 4a; 

Loc. 3). Close to the beach at the base of the cliff, E-W subvertical calcite veins identical to those at Locality 4 are seen to be 
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well developed in the immediate hangingwall of the normal fault and show a sense of obliquity consistent with the normal 

shear sense along the fault (Fig. 4b), suggesting that they are the same age. 

 195 

In the following sections we first provide the results of our U-Pb geochronology, and then, to understand the context of our 

new dates, we provide field observations and petrographic observations based on thin sections. 

 

5 U-Pb Geochronology Results 

Tera-Wasserburg plots of our new U-Pb data are shown in Figure 5. NR1707 yielded a lower intercept date of 63.9 ± 2.6 Ma 200 

(MSWD = 2.1); this date is from seventeen spots from one crystal. NR1708 yielded a lower intercept date of 63.4 ± 5.3 Ma 

(MSWD = 1.8); this date results from a traverse of one crystal comprising forty-nine spots. CJ1 is from a localised region of 

one large calcite crystal, towards its base; sixty-one spots yielded a date of 54.9 ± 3.1 Ma (MSWD = 1.5). Two domains of 

NR1901 were calculated separately. The first domain comprising thin (<200 µm) layers of slickenfibre calcite yielded no 

reasonable date, as the data are dominated by common lead (see supplementary file). The second domain comprising a cross-205 

cutting veinlet yielded a date of 58.8 ± 1.9 Ma (MSWD = 1.4); this date is from seventy-three spots. NR1709 yielded a lower 

intercept date of 56.2 ± 8.2 Ma (MSWD = 1.6 Ma); this result was obtained from two crystals, comprising fifty-one spots in 

total. The five successful dates provide a spread in crystallisation of nine million years, although taking uncertainties into 

account, this may be as small as three million years. The three samples from the Frontal Fault (NR1708, NR1709, CJ-1) do 

not overlap when considering their age uncertainties, indicating a protracted period of fluid-flow of several Myrs. 210 

 

6 Field Observations - Fracture fills and microstructure 

The contractional and extensional phases of deformation seen in Selwicks Bay are associated with significantly different fault 

rocks and fracture fills. 

 215 

6.1 Contractional structures 

The low angle thrusts and folds are typically marked by narrow (<5cm thick) zones of incohesive crush breccia and gouge 

(Fig. 6a, 6b), with gouges often best developed where thrust faults interact with clay-rich ‘marly’ interbeds in the chalk. Local 

gouge injections <1mm thick are seen cutting the wall rocks adjacent to thrusts (Fig. 6b). Calcite mineralisation is largely 

limited to the development of slickenfibres along exposed thrust planes and bedding planes around metre-scale folds (Figs. 2f, 220 

6d). These slickenfibres show widespread evidence for crack-seal textures and are locally cross cut by later veinlets of 

structureless sparry calcite (Fig. 2g). The age of the folding relative to the normal movements along the Frontal Faults is 

unclear, as no clear mesoscale cross-cutting relationships are seen, but the folds and thrusts cross cut by the normal faults at 
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Locality 3 are identical in style to those at this last locality. Thus, it is suggested that the main phase of extensional displacement 

and hydrothermal calcite mineralisation associated with the Frontal Fault Zone likely post-dates an earlier phase of generally 225 

top-to-the-S thrusting and folding. 

 

6.2 Extensional structures 

The fracture fills associated with both the ‘Frontal Fault’ zone of Starmer (1995) and the small scale normal faults and 

associated veins elsewhere in Selwicks Bay are significantly different compared to the earlier contractional features.  230 

 

Shear fractures have various orientations in the wall rocks, comprising small-offset (< 0.5m) normal faults with dip-slip 

slickenlines (Sagi et al., 2016). These are closely associated with steeply dipping to subvertical generally E-W trending calcite 

veins filling tensile (Mode I) fractures (e.g. Figs 3b-c, 7a-c; the Group I veins of Faÿ-Gomord et al. 2018). The fills are 

predominantly fine to coarse-grained sparry calcite and commonly form as braided, up to 0.5 m wide zones of veins (e.g. Fig 235 

3c-d) that resemble the “zebra rocks” described by Holland and Urai (2010) in low porosity limestones in Oman. Most 

individual veins have an average thickness of 1–2 mm, but the thickest can (locally) reach widths of up to 30 cm. Many veins 

are composite having more than one calcite fill with subtle differences in colour. 

 

Breccia fills are mostly associated with the Frontal Fault zone (e.g. Figs. 2c-d, 3c-d). The majority are generally E-W to ENE-240 

WSW trending, steeply dipping, with clasts dominated by chalk that are clearly derived from the host wall rocks, although 

differences in texture and colour of individual clasts relative to immediately adjacent wall rocks and other clasts indicate a 

degree of mixing and displacement from source. The breccias show every gradation from incipient crackle (Fig. 7a) through 

mosaic to chaotic textures (Fig. 2c, 7b), with clasts becoming generally more rounded as the fill becomes chaotic (Woodcock 

& Mort, 2008). Importantly, the fills show very little evidence for shearing or attrition of clasts and closely resemble breccias 245 

formed by wall rock collapse and infilling into open tensile fissures in near surface faulting environments (Woodcock et al., 

2006; Holdsworth et al., 2019, 2020). 

 

The breccia matrices are compositionally very variable. Some are clay rich (‘marly’) and darker coloured whilst the majority 

are lighter coloured with less clay and are well cemented by sparry calcite (the Group II veins of Faÿ-Gomord et al., 2018). 250 

Generally, E-W trending calcite veins essentially identical to those seen in the wall rocks are seen to both cross-cut breccia as 

well as being included as clasts in breccia or as earlier misoriented veins cross-cutting chalk clasts (Fig. 2d, 7b). This might 

suggest that calcite mineralisation, breccia formation and cementation were broadly contemporaneous processes. Many veins 

are composite having more than one calcite fill with subtle differences in colour; weathering on the foreshore reveals both 

ferroan calcite (stained red due to oxidation) and non-ferroan calcite (unstained) fills (Fig 7c), implying changing fluid 255 

chemistry during the period of fracture-fill mineralisation. 
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A notable feature of the locally later tensile calcite vein fills (Group III veins of Faÿ-Gomord et al., 2018) is the widespread 

development of vuggy cavities (Figs. 3b and 7b); these are particularly widespread in the Frontal Fault zone. Their development 

implies that in the latter stages of vein filling at least, rates of mineral precipitation were reduced relative to fracture opening 260 

rates, implying that fractures remained open for protracted periods of time. 

 

Further evidence for the development of long-lived open fissures in the Frontal Fault zone comes from the preservation of 

brown-coloured marly breccias and sediment fills in tensile fissures (Figs. 8a-d). These occur as sub-vertical features that both 

post-date and predate adjacent sub-parallel calcite veins (Figs. 8a and 8b, respectively) and in steeply inclined fissures that 265 

obliquely cross-cut adjacent veins (Fig. 8c). More rarely, irregular subhorizontal zones of fine marly sediment fill the lower 

part of fractures that cross-cut earlier calcite veins, whilst the upper part of the cavity is filled with later calcite (Fig. 8d). These 

sediments are crudely bedded and represent geopetal structures that consistently young upwards wherever they are found. 

 

Thin sections reveal that the majority of calcite veins are syntaxial and sparry (Fig. 9a). The marly breccias and sediment fills 270 

contain numerous fragments of wall rock chalk, earlier calcite vein fills and more exotic materials such as brown clays, chert, 

individual microfossils - including sponge spicules - and rounded grains of both quartz and glauconite (Fig. 9b-d). The geopetal 

fills preserve striking examples of graded bedding (Figs. 9a and 9e) and cockade style mineralisation textures (Fig. 9f), with 

fine grained, graded suspensions of sedimentary grains floating in single crystals of calcite cement grown in perfect optical 

continuity with adjacent vein fills (Figs. 9a, 9e, and 9f). The preservation of such features suggest that sedimentary material 275 

was transported by flowing fluids into open cavities connected to the surface and that cementation associated with 

contemporaneous hydrothermal mineralisation ‘froze’ the finer materials in place before they were able to settle out of 

suspension (cf. Wright et al., 2009; Frenzel & Woodcock, 2014). 

 

In summary, most, but not all of the calcite mineralisation seen at Selwicks Bay is related to extensional structures that locally 280 

appear to post-date an earlier phase of cm to m-scale top-to-the-S folding and thrusting. Mineral veins are predominantly 

tensile and generally E-W trending and appear to be broadly contemporaneous with the development of calcite mineralized 

breccias along the Frontal Fault zone. The breccias preserve widespread textures consistent with wall rock collapse into open 

cavities rather than being the product of attritional cataclasis. The existence of long-lived open fissures is confirmed by the 

widespread preservation of vuggy textures and cockade-style calcite mineralisation, together with the local development of 285 

marly sediment fills and geopetal structures.  Based on the large amount of calcite mineralisation – especially along the Frontal 

Fault zone, it is clear that substantial volumes of fluid flow have been localised along this fault zone during extension (Sagi et 

al., 2016). 
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7 Discussion 

7.1 The timing of deformation at Selwicks Bay 290 

The dates obtained from the five samples yield constraints on the timing of deformation at Selwicks Bay. NR1707 and NR1708 

(Loc 1) are inferred to directly date the extensional phase of deformation (normal faulting) along the Frontal Fault zone, as 

they are from regions of calcite veining and cemented collapse breccias. These samples provide overlapping ages of 63.9 and 

63.4 Ma. CJ1 is also from the Frontal Front zone, but yields a younger age of 54.9 Ma that is outside of analytical uncertainty 

of the breccia samples. This younger date is from a relatively late large vuggy fracture fill. We cannot be certain whether this 295 

younger date reflects a later fracture-opening event, but there are no clear field or thin section relationships observed to suggest 

this. NR1709 (Loc. 4) has a large uncertainty, overlapping both the breccia and younger vuggy calcite from the Frontal Fault. 

The date indicates that fracture opening at the northern part of Selwicks Bay overlaps that of the Frontal Fault in the southern 

part of the bay. The dated late veinlet within sample NR1901 (Loc. 2) overlaps the dates of the other samples (except NR1707). 

Since this veinlet cross-cuts the flexural folding-related slickenfibre growth, this date provides a lower boundary for the timing 300 

of the folding and associated contractional/transpressional deformation. 

 

7.2 Implications for chalk-hosted fluid-flow 

Chalk is an important aquifer for groundwater, particularly in parts of Britain and surrounding countries in Europe (e.g. Price, 

1987; MacDonald and Allen, 2001). Chalk can also act as both reservoirs and seals for hydrocarbons (e.g. Hardman, 1982; 305 

Mallon & Swarbrick, 2008). As such, the timing and origin of fracture-hosted permeability is an important constraint on 

understanding fluid-flow through Chalk.  

 

The Frontal Fault zone structure at Selwicks Bay represents a significant damage zone associated with normal faulting in the 

region. This fault zone forms part of the FHFZ, but has much less offset than other fault-zones to the north (Bempton Fault) 310 

and south (Langtoft Fault) (Fig. 1a-1b). It is clear, however, that the large fissure systems forming the fault zone have acted as 

a major fluid conduit allowing voluminous fluid-flow through the chalk, possibly over a long time period of at least five million 

years. Geochemical analyses of the calcite fills by Faÿ-Gomord et al. (2018) show that all the calcite veins share broadly the 

same chemical signature, which they link to an underlying source of meteoric fluids in the Triassic Sherwood Sandstone. 

However, their salinity data vary, suggesting some mixing with saline fluids. Given the development of open vugs and geopetal 315 

sediment fills with glauconite and microfossil fragments, we propose that the fluid pathways were linked to a surface marine 

environment at the time of calcite mineralisation. The development of contemporaneous open fissures with sediment infilling 

due to wall rock collapse and washing-in of finer materials from the surface, together with hydrothermal mineralisation sourced 

from below, and occurring during tectonic extension, is an increasingly recognised phenomenon in near surface fracture 

systems (< 1-2km depth; e.g. Wright et al., 2009; Walker et al., 2011; Holdsworth et al., 2019, 2020; Hardman et al., 2020).  320 
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We suggest that the fault has acted as a ‘fluid superhighway’ connecting deeper reservoir units (Triassic sandstones) with the 

surface during the Palaeocene to early Eocene. The existence of a fluid conduit of this kind potentially has major implications 

for storage and migration processes associated with reservoirs, whether they be for groundwater or hydrocarbons. Importantly, 

this structure is potentially of sub-seismic scale, indicating that even sub-seismic features may host large-scale fluid-flow, and 325 

produce significant conduits that exhibit high permeability over protracted time periods lasting millions of years. We should 

also point out that this is just one fault of many in the FHFZ, and that many of the faults exposed inland are also associated 

with extensive veining, as well as secondary cementation of the Chalk adjacent to the faults. These secondary cements form 

hard chalk zones, which then potentially act as barriers to fluid-flow. 

 330 

7.3 Implications for regional tectonics 

The Flamborough Head Fault Zone forms a structural boundary that separates the Cleveland Basin to the north, and the Market 

Weighton Block to the south (Kirby & Swallow, 1987; Starmer, 1995). The history of the fault zone is thought to be influenced 

by the subsidence and later inversion of the Cleveland Basin, whilst the Market Weighton Block remained high and stable 

(Kent, 1980). The Flamborough Head Fault Zone is truncated to the east by several intersecting deformation zones (Central 335 

Fracture Zone, Dowsing Fault Zone, Sole Pit Basin; see Fig. 1), and truncated onland by the Humanby Trough-Peak Fault 

Zone (see Fig. 1 and Ford et al., 2020). The deformation that led to the formation and inversion of these basins has a long 

history extending from the Permo-Triassic to the Miocene (e.g. Starmer, 1995 and references therein), and the far-field stress 

associated with their formation may have some relevance to the Flamborough Head Fault Zone. The histories of these offshore 

regions are only constrained by seismic and borehole data, and correlation with known regional events. Therefore, dating of 340 

onshore structures such as those presented in the current study provides additional and new absolute timing constraints on the 

structural evolution at a regional scale. 

 

There have been long-standing differences in the interpretations of the structural complexity of deformation in the 

Flamborough Head region. Some prefer a polyphase deformation sequence over a protracted time period from the later 345 

Cretaceous to Neogene times (e.g. Starmer, 1995 and references therein) whilst others favour a somewhat simpler regime 

involving shorter-lived periods of strike-slip tectonics and polymodal or polygonal extensional faulting (e.g. Peacock & 

Sanderson, 1994; Sagi et al., 2016, Faÿ-Gomord et al., 2017). 

 

Our findings show that at Selwicks Bay, and by inference, along the FHFZ, a regionally significant extensional phase of 350 

deformation occurred over a protracted period during the earliest Palaeocene to early Eocene times (ca. 64-55 Ma). Our field 

observations suggest that this represents the youngest phase of deformation along the Frontal Fault zone – and by inference 

the FHFZ - post-dating any contractional or transpressional deformation. It should be noted that we cannot rule out that fluid-
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flow and tensile fracturing may have extended to even younger dates than our study implies. Interestingly, this timing of 

deformation overlaps with, but is broadly younger than the estimated late Cretaceous timing of widespread inversion and 355 

tectonic events across parts of NW Europe, discussed by Mortimore (2018). 

 

The age ranges for calcite mineralisation are almost exactly coeval with the timing of igneous activity in W Scotland and 

Northern Ireland related to mantle upwelling forming the British Paleogene Igneous Province (Jolley & Bell, 2002), and 

associated regional uplift (Lewis, 2002; Nadin et al., 1997). In particular, a clear temporal link exists between the calcite 360 

mineralisation and the intrusion of the nearby Cleveland Dyke, the easternmost exposure of which lies some 30 km NW of 

Selwicks Bay (Fig 1a). The intrusion of this dyke – which can be traced across a wide region of northern Britain, is thought to 

be ca. 58-55 Ma based on K-Ar dating (Fitch et al., 1978; Evans et al., 1973). Our findings therefore open up the intriguing 

possibility that extension and associated fluid flow in the Flamborough Head region are related to the far field influence of N 

Atlantic opening processes. 365 

 

Our findings further suggest that folding and thrusting of the Chalk at Flamborough Head must be older than ca. 64 Ma. Given 

the Santonian age of the youngest Chalk affected by deformation (ca. 86-72 Ma; Whitham, 1993; Mortimore, 2020), this 

implies that the inversion event can be no older than latest Cretaceous. In previous interpretations, much of the late stage 

compressional deformation along the FFHZ has been linked to inversion related to the far-field effects of the Alpine orogeny 370 

during the Neogene (Starmer, 1995). Clearly, our findings from Selwicks Bay cast significant doubt on this model. It seems 

possible that the earlier folding and thrusting seen at Selwicks Bay and elsewhere around Flamborough Head is related to a 

phase of strike-slip deformation along the FHFZ. Based on our findings to date, we cannot rule out the possibility that these 

strike-slip events overlap with the later extensional deformation, i.e. they are all manifestations of a protracted phase of regional 

transtensional tectonics in latest Cretaceous to Palaeocene times. Thickness changes in the Chalk around the faults exposed at 375 

Flamborough Head (see Mortimore, 2019 and references therein), are the only current evidence for extensional deformation 

occurring earlier than our oldest date of 64 Ma.  

 

We propose that a careful reassessment of the deformation structures and sequences in the onshore and offshore regions around 

Flamborough Head is required, ideally with further absolute dating and palaeostress inversion analyses. More generally, our 380 

findings are a further illustration that the sequence, timing and tectonic significance of the Cenozoic history of the British Isles 

is in need of significant reassessment (e.g. see discussion in Parrish et al., 2018).  

8 Conclusions 

U-Pb dating of calcite vein-fill from Selwicks Bay provides constraints on the timing of faulting. Five dates, ranging from 63.9 

to 54.9 Ma, indicate that formation of the mineralized collapse breccia within the extensional Frontal Fault zone occurred at 385 
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ca. 63 Ma, with fluid-flow continuing to at least 55 Ma. Calcite from a Mode I tensile vein in the nearby wall rocks has a large 

age uncertainty but overlaps both these dates. A veinlet cross-cutting slickenfibres formed on a bedding parallel surface of a 

fold structure, places a lower boundary on folding at 56 Ma. The dates indicate that faulting within the Flamborough Head 

Fault Zone was Palaeocene in age. As an alternative to the polyphase compressional and extensional model of Starmer (1995), 

we instead suggest that, except for the possibility of syn-sedimentary slump structures (Mortimore, 2020), a more 390 

straightforward model involving overlapping strike-slip and extensional deformation may explain much if not all of the 

deformation at Selwicks Bay. Our study has shown that the extensional Frontal Fault zone at Selwicks Bay represents: [1] a 

fault-hosted fluid conduit that linked deeper sedimentary units to the shallow sub-surface, and hosted voluminous fluid-flow 

over a protracted time-scale; and [2] that its fault activity occurred within a 5-10 Ma time frame overlapping with that of the 

intrusion of the nearby Cleveland Dyke (ca. 58-55 Ma), the development of the N Atlantic Igneous Province and the regional 395 

uplift of NW Britain related to the opening of the North Atlantic.  
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Figure 1. (a) Geological sketch map of the region around Flamborough Head, NE England, showing the regional structural 

elements. Modified after Powell (2010) and Starmer (1995), reproduced by permission of the Council of the Yorkshire 

Geological Society. (b) Geological sketch map of Flamborough Head showing main structural features. Modified after Starmer 

(2013), reproduced by permission of the Council of the Yorkshire Geological Society. (c) Satellite image of Selwicks Bay 

showing location of samples. Google map data: Imagery ©2020 CNES / Airbus, Getmapping plc, Infoterra Ltd & Bluesky, 575 

Maxar Technologies, Map data ©2020. 
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Figure 2. (a) View looking west of both the Frontal Faults (locality 1) and region of tight folding (locality 2). FFS = Frontal 580 

Fault South; FFN = Frontal Fault North. (b) Frontal Fault zone with location of samples NR1707 and NR1708 on foreshore. 

(c) Chaotic breccia fissure fill cemented by calcite with location of samples. (d) Close-up of clast with calcite vein (sample 

NR1708) and breccia cement (NR1707). (e) Locality 2 showing the location of sample NR1901 on the hinge of a fold. (f) 

Slickenfibres located on the bedding plane in the fold hinge. (g) Reflected light photograph of cross section view of 

slickenfibres and cross-cutting sparry vein; sample NR1901. (h) Locality 4 showing the foreshore pavement with sub-vertical 585 

E-W striking calcite filled veins. (i) Close-up of locality 4 and sample NR1709. 
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Figure 3. (a) The Frontal Faults North and South (red dashed lines labelled FFN and FFS, respectively) viewed looking west 590 

in the cliffs at Selwicks Bay. The locations of the images shown in b-d are shown. (b) Open vuggy tensile vein with partial 

sparry calcite fill from brecciated region bounded by FFS and FFN. Note the opposite dip to the bounding faults consistent 

with N-side down motion. (c) Relatively planar fault zone with breccia that forms part of the FFS. Note gentle drag folding in 

both hangingwall and footwall consistent with N-side down motion. (d) Wider, more irregular fault breccia that forms part of 

the FFN, with clasts of wall rocks up to 1.5m across. 595 
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Figure 4. (a) Locality 3 - View looking W of top-to-the-S thrust fault cross-cut by S-side-down, steeply dipping normal fault, 

north side of Selwicks Bay. Bedding in the hangingwall (blue) of the thrust is deformed by a cm-scale, S-overturning anticline. 

Box shows location of (b). (b) Close up view of normal fault shown in (a) with N-dipping tensile veins filled with calcite in 600 

hangingwall consistent with S-side-down sense of throw. (c) Locality 2 - View looking W of  metre-scale, close to tight, 

southward verging antiform-synform pair (fold axes in yellow) and associated top-to-the-S low to moderately N dipping thrust 

faults (black dashed lines) some 40 m north of the FFN. (d) View looking S of exposed synformal fold hinge shown in (c) with 

bedding-parallel calcite slickenfibres oriented oblique to the fold hinge. 
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Figure 5. (a-e) Tera-Wasserburg plots of U-Pb results (all uncertainties shown and quoted at 2σ), and corresponding sample 

images (see Supplementary Text for full size images). (f) Comparison of the five dates plotted with their 2σ uncertainties. 
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Figure 6. Structures associated with contractional structures in Selwicks Bay; all from locality 3. (a) Crush breccia along top-

to-the-S thrust fault reoriented by later, normal fault-related tilting. (b) Crush breccia and brown gouge derived from chalk and 

shale, respectively, associated with top-to-the-S thrust fault with narrow gouge injections into footwall, one of which is 

arrowed. (c) Calcite-hematite slickenlines associated with top-to-the-S thrust fault. 615 

 

 

Figure 7. Breccia development associated with extensional movements along the Frontal Faults zone in Selwicks Bay in the 

region bounded by the FFS and FFN; all photos are from the foreshore. (a) Incipient crackle breccia development (plan view) 620 

looking at a bedding plane in chalk that is cross-cut by a narrow calcite-filled tensile vein. (b) Cross-section view of typical 

chaotic collapse breccia with little evidence for shearing or attrition of clasts. Note that calcite veins occur in clasts (examples 

arrowed) and as cross-cutting later vuggy features (labelled vug). (c) Composite calcite veins in plan view from foreshore 

below high tide with younger orange-stained ferroan calcite and older white non-ferroan calcite rims. 
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Figure 8. Brown-coloured marly breccias and sediment fills in tensile fissures associated with the Frontal Fault zone, Selwicks 

Bay; photos a and c from the cliff, and b and d from the adjacent foreshore. (a) Marly breccia fill in cross-section view that 

post-dates sub-parallel calcite veins that line fracture. (b) Marly breccia that pre-dates calcite cemented breccia in plan view. 630 

(c) Steeply inclined fissure fill in cross section view that obliquely cross-cuts adjacent calcite veins. (d) Oblique view of 

irregular subhorizontal zone of fine marly sediment filling the lower part of a fracture that cross-cuts an earlier calcite vein 

(EV), whilst the upper part of the cavity is filled by a later calcite vein (LV). The sediment is crudely bedded and forms a 

geopetal fill that youngs upwards, as indicated by the inverted Y symbol. 
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Figure 9. Thin sections of sediment fills from Selwicks Bay Frontal Fault zone taken in plane polarised light unless indicated 

otherwise. (a) Chalk wall rocks (WR) and earlier calcite vein fills (V1, V2) unconformably overlain by sediment fill (FF3) cut 

by slightly later vein (V4); note that the mineral cement in the graded sediment grows in optical continuity with the V4 vein. 

Note also the line of inclusions separating V1 and V2. (b) Details of calcite-cemented sediment fill showing dark wall-rock 640 

clasts, hematite staining, clastic qtz grains (arrowed) and pale sub-angular clasts of earlier calcite. (c-d) As (b), showing 

included clasts of chert (ch) and glauconite (g) and sponge spicule (arrowed). (e-f) Cockade-style cementation of graded or 

complex sediment fills where the calcite cements are in optical continuity with the overlying vein fills. (f) is taken with crossed 

polars. 


