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Author response to Referee #1 (anonymous) 

I am very impressed with the new version of the manuscript. The overall objectives of the paper are 

now much clearer and demonstrate the value of the present work much more clearly. The paper 

shows in an amazing way how the integrative use of different geophysical methods can provide a 

clearer picture of the conditions in the subsurface and thus also shed light on the processes taking 

place. In addition to the local results, the study also provides an excellent summary of the 

possibilities and limitations of the methods used. 

A: We thank the reviewer for having a second close look into our revised manuscript. We are 

particularly happy to know that our modifications meet the high expectations of the reviewer. We 

would like to reiterate our gratitude for the detailed feedback provided during the first review, 

which was a great help to substantially improve the manuscript. 

 

Author response to Referee #2 (Pritam Yogeshwar, University of Cologne) 

1. General Comments 

I have carefully re-reviewed the manuscript (MS). 

For my feeling, the authors have significantly improved the MS. The red line has become very clear 

and is worked out well now in the revised version. Furthermore, the authors have expanded the 

results and included various discussion points also to give a more general conclusion. The reader is 

guided clearly through the study now. 

Actually all my points were discussed in great detail and all suggestions were considered and 

followed where it was appropriate. I appreciate the very precise and clear answers of the authors in 

this revision round. Therefore, I do not have any more general comments. 

A: We thank Pritam Yogeshwar a lot for his continued work on this manuscript and the additional 

comments and corrections, which we address point by point below. Together with the detailed and 

constructive feedback provided during the first round of reviews, these hints helped us to further 

improve the manuscript! Thank you! 

2. Specific comments 

All technical comments where considered and answered in detail. Where appropriate the text was 

expanded and discussion points included. However, I do have a few more specific 

comments/suggestions that can be considered: 

• I do suggest to included a small overview Figure 1a with the boarders of Mexico. It is more 
convenient to start location description at a larger scale. 

A: We included an overview map as Fig. 1a showing the location of the study area with respect to 

the political boarders of Mexico and the neighboring Central American countries.  

• I found it quite interesting that the lakes have differing water conductivity. The chemical analysis 

of the sediments and the water are discussed in the MS later on. Maybe you can add some sentence 

if they do shed some light on the evolution of the lakes. 



A: The variation of water conductivity in the lakes still remains an open question. Limnological 

research to improve the understanding of these variations is underway. 

In order to account for this comment, we added the following sentence (L245 of the revised, marked 

manuscript): “However, a comprehensive understanding of the strong variation of water 

conductivity with respect to both sampling location and time is subject of ongoing limnological 

research in the study area.” 

3. Technical corrections 

Some few technical corrections remain: 

• L260 - TU – Vienna 

A: The institution´s own guidelines require to spell the name as it is “TU Wien”. However, we 

inserted “Vienna” as name of the city after the institution´s name. 

• L300 - local heights -> maybe better "...local rising of the ..." 

A: Done. 

• L315 - possibly include one sentence, e.g. "... which shows the benefit of evaluating the TD-IP 

phase". 

A: Done. We included the sentence “The capability to separate the pure sediments from the 

limestone-sediment mixture underlines the benefit of evaluating the TDIP phase.” 

• Figure 4 - it would be actually nice if the width of the subfigures are adjusted to that the profile 

meters are aligned to compare the structures better in a 1-1 way. 

A: Done as suggested. 

• Figure 8 b-d - include some reference in the text and short description. Please check also for other 

subfigures if they are referenced in the text. 

A: We included references to Figure 8b-d in the main text and added a sentence referring to the 

mixed material shown in Fig. 8 b and c (L345 and L349 of the revised manuscript). 

We also checked whether all subfigures were called out – either separately or as a part of the entire 

figure – in the main text. Where ever necessary, we included new or corrected erroneous 

references. 

• p14 - p16 - please check language. For me the language here can be improved, e.g. "underpinned", 

"were unplugged". 

A: In this context, we would rather substitute the word “underpinned” by “supported”, which we did 
in the revised version of the manuscript. 

We also checked the remaining parts of the new paragraphs on the indicated pages and made the 

following additional changes to improve the language (line numbers of the revised, marked 

manuscript): 

L403: “more considerable” -> “considerably higher” 

L410: “further of the shore” -> “farther offshore” 



L414: “Thus, where it is thick enough (up to 5-6 m across large areas), this layer acts…” -> “Thus, 
where this layer is thick enough (up to 5-6 m across large areas), it acts…” 

L444: waterbborne -> waterborne  

L463: “such” deleted 

L475: “alone” added 

L483: “image” -> “locate” 

L489: “5.3.2” -> “5.3.3” 

L540: Reorganized sentence: “The possibility to recollect additional data directly on the exposed lake 

floor after the sudden drainage of Lakes Metzabok and Tzibaná substantially benefitted the 

evaluation of the different methods.” 

L550: “only” -> “alone” 

 

Other relevant modifications 

Added reference to Przyklenk et al. (2016) in L135 and included bibliographic information in the 

references section (L709). 

 

All modifications made during this revision are marked in red on the following pages. 
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Abstract. Karst water resources play an important role in drinking water supply, but are highly vulnerable to even slight 

changes in climate. Thus, solid and spatially dense geological information is needed to model the response of karst hydrological 

systems to such changes. Additionally, environmental information archived in lake sediments can be used to understand past 

climate effects on karst water systems. In the present study, we carry out a multi-methodological geophysical survey to 15 

investigate the geological situation and sedimentary infill of two karst lakes (Metzabok and Tzibaná) of the Lacandon Forest 

in Chiapas, southern Mexico. Both lakes present large seasonal lake-level fluctuations and experienced an unusually sudden 

and strong lake-level decline in the first half of 2019, leaving Lake Metzabok (maximum depth ~25 m) completely dry and 

Lake Tzibaná (depth ~70 m) with a water level decreased by approx. 15 m. Before this event, during a lake-level high stand 

in March 2018, we collected water-borne seismic data with a sub-bottom profiler (SBP) and transient electromagnetic (TEM) 20 

data with a newly-developed floating single-loop configuration. In October 2019, after the sudden drainage event, we took 

advantage of this unique situation and carried out complementary measurements directly on the exposed lake floor of Lakes 

Metzabok and Tzibaná. During this second campaign, we collected time-domain induced polarization (TDIP) and seismic 

refraction tomography (SRT) data. By integrating the multi-methodological data set, we (1) identify 5-6 m thick, likely 

undisturbed sediment sequences on the bottom of both lakes, which are suitable for future paleoenvironmental drilling 25 

campaigns, (2) develop a comprehensive geological model implying a strong interconnectivity between surface water and karst 

aquifer, and (3) evaluate the potential of the applied geophysical approach for the reconnaissance of the geological situation 

of karst lakes. This methodological evaluation reveals that under the given circumstances, (i) SBP and TDIP phase images 

consistently resolve the thickness of the fine-grained lacustrine sediments covering the lake floor, (ii) TEM and TDIP resistivity 

images consistently detect the upper limit of the limestone bedrock and the geometry of fluvial deposits of a river delta, and 30 

(iii) TDIP and SRT images suggest the existence of a layer that separates the lacustrine sediments from the limestone bedrock 

and consists of collapse debris mixed with lacustrine sediments. Our results show that the combination of seismic methods, 

which are most widely used for lake-bottom reconnaissance, with resistivity-based methods such as TEM and TDIP can 
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significantly improve the interpretation by resolving geological units or bedrock heterogeneities, which are not visible from 

seismic data. Only the use of complementary methods provides sufficient information to develop comprehensive geological 35 

models of such complex karst environments 

1 Introduction 

About 7–12% of the world’s continental area is covered by karst (e.g., Hartmann et al., 2014) and up to one quarter of the 

earth’s population at least partially depends on drinking water from karst systems (e.g., Ford and Williams, 2007). Even though 

continued population growth and industrialization put pressure on these important resources in terms of both water quantity 40 

and quality, the response of karst systems to expected future climate change is still not well understood (Hartmann et al., 2014). 

Groundwater models offer one opportunity to estimate future changes in water availability, but heavily depend on reliable and 

spatially dense geological information. Where direct geological information, e.g., from drillings, is not dense enough or not 

available at all, geophysical methods can be used to provide quasi-continuous indirect information on the subsurface geology 

in karst areas (Bechtel et al., 2007).  45 

Another possibility to understand climatic effects on karst water systems relies on the analysis of paleoenvironmental records 

(e.g., Medina-Elizalde and Rohling, 2012; Vázquez-Molina et al., 2016). In particular, lake sediments are important archives 

of freshwater and terrestrial environmental information and sediment cores can be used to reconstruct past climate and 

ecological changes in the lakes (Cohen, 2003; Schindler, 2009; Pérez et al., 2020). Thus, paleoenvironmental studies give 

insight into the local links between climate variations and the availability (and quality) in lakes and the connected karst aquifer 50 

system. To identify suitable drilling locations providing continuous paleoenvironmental records at a high temporal resolution, 

knowledge about sediment thickness and composition, depth to bedrock, and possible heterogeneities within the lake sediments 

is needed (Last and Smol, 2002). 

Geophysical methods can efficiently provide such information from the local scale up to the lake-basin scale and can 

(principally) be employed on both land and water. Due to the usually sharp contrast between seismic velocities of sediment 55 

layers and the underlying bedrock, (reflection-) seismic methods are often given priority over other geophysical methods for 

lake-bottom reconnaissance (Scholz, 2002). In particular, low-frequency echo sounders (e.g., Dondurur, 2018), also referred 

to as sub-bottom profilers (SBP), allow to quickly map sediment deposits of several tens of meters based on single-channel 

seismic data. Nevertheless, electrical-resistivity images provided by electrical resistivity tomography (e.g., Binley and Kemna, 

2005) or electromagnetic soundings (e.g., Kaufman et al., 2014) complement the mostly geometrical information obtained 60 

from reflection-seismic or sub-bottom profiling measurements (Butler, 2009). Under certain conditions such as high lake-bed 

reflectivity and/or low reflectivity of targeted boundaries, seismic methods may, however, provide insufficient results and 

therefore alternative methods are needed. 

Recent studies using direct-current (DC) electrical resistivity for water-borne investigations on freshwater bodies include 

surveys with floating (e.g., Befus et al., 2012; Orlando, 2013; Colombero et al., 2014) or underwater electrode chains (e.g., 65 
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Toran et al., 2015) and provide evidence for the potential of this method for shallow-water applications. Electrical resistivity 

can also be assessed by electromagnetic methods, which, compared to DC resistivity measurements, offer a more compact 

experimental layout. Electromagnetic surveys are often carried out as transient electromagnetic (TEM) soundings with floating 

magnetic sources and receivers. Hatch et al. (2010), for example, used an in-loop configuration with a ~7.5 m x 7.5 m 

transmitter and a ~2.5 m x 2.5 m receiver to map river bed salinization in an Australian river with an average water depth of 70 

5-10 m. Mollidor et al. (2013) used a similar but slightly larger setup (~18 m x 18 m transmitter, ~6 m x 6 m receiver) to map 

a thick conductive sediment layer below the bottom of a 20-m deep maar lake in Germany. More recently, Yogeshwar et al. 

(2020) used the system developed by Mollidor et al. to image a volcanic lake hydrothermal system on the Azores; whereas 

Lane et al. (2020) introduced a compact floating TEM system, designed for the rapid electrical mapping of the subsurface of 

rivers and estuaries. Some older relevant case studies with shallow-water applications of both techniques, DC resistivity and 75 

electromagnetic soundings, were reviewed by Butler (2009). 

In a previous study, we successfully used geoelectrical and electromagnetic methods to investigate the sedimentary infill of 

two desiccated lakes in a volcanic area (Bücker et al., 2017; Lozano-García et al., 2017). To extend our investigations, in this 

study, we evaluate the potential of land and water-borne resistivity-imaging methods to complement seismic methods for the 

investigation of karst lakes in the Lacandon Forest, southern Mexico. Recent biological and abiotic studies have highlighted 80 

the great potential of sedimentary sequences from the lakes of this remote area as continuous paleoenvironmental and 

paleoclimatic records during the late Quaternary (e.g., Díaz et al., 2017; Echeverría-Galindo et al., 2019; Charqueño-Celis et 

al., 2020). In this study, we focus on Lakes Metzabok and Tzibaná, two of the largest lakes of the Lacandon Forest, which 

experienced a sudden and catastrophic lake-level drop in the first half of 2019. While large seasonal lake-level variations are 

part of the nature of both lakes, it remains unclear whether such particular events as the one observed in 2019, which left Lake 85 

Metzabok completely dry, are also recurrent with a frequency of several decades or rather linked to recent climate change. To 

better understand possible draining mechanisms and their triggers, besides further paleoenvironmental investigations, a 

comprehensive geological picture of the lakes´ geological situation is essential. 

In 2018, roughly one year before the drainage event and when the lakes were filled, we collected seismic data with a SBP and 

carried out TEM soundings to assess the electrical resistivity of the lake bottom and obtain information on the thickness of the 90 

sedimentary infill. The sudden drainage of the investigated lakes in 2019, provided us with the unique opportunity to collect 

additional data directly on the dry lake bed. Seismic data was then recollected with a seismic refraction tomographic (SRT) 

setup in order to provide information on both refractor geometry and seismic velocities of the different geophysical units. 

Additional electrical imaging data was measured with the time-domain induced polarization (TDIP) method, which has fewer 

limitations regarding the detectability of thin near-surface layers and heterogeneities than the transient electromagnetic method. 95 

Furthermore, the polarization properties of the subsurface materials assessed by TDIP measurements provide additional 

information and can improve the interpretation of TEM and TDIP resistivity results. 

Based on the above considerations, our study has three main objectives: (1) Identify suitable drilling locations to obtain 

undisturbed and far-reaching sedimentary sequences for paleoenvironmental reconstructs, (2) provide basic knowledge on the 
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geological situation of the studied lakes (sediment cover, limestone bedrock and possible connectivity with the karst aquifer), 100 

and (3) develop and apply a multi-methodological geophysical approach with a special focus on the evaluation of the potential 

of water-borne TEM soundings for lake-bottom reconnaissance. 

2 Study area 

The study area is located in the Lacandon Forest (16°–17.5° N; 90.5°–92° W; 500–1500 m.a.s.l.), which occupies the north-

eastern part of the State of Chiapas, Mexico (Fig. 1a). The region belongs to the Chiapas fold belt with its WNW-trending 105 

folds and thrusts (Fig. 1), which mainly developed in massive cretaceous limestone (García-Gil and Lugo Hupb, 1992). The 

orogeny of the Chiapas fold belt is related to the collision of the Tehuantepec Transform/Ridge on the Cocos plate with the 

Middle America Trench during the Middle Miocene (Mandujano-Velazquez and Keppie, 2009). The resulting anticlines and 

synclines dominate the topography in the study area forming long WNW-directed valleys and mountain ranges. The 

tectonically fractured limestone geology, in conjunction with the humid subtropical climate, favour an intensive karstification 110 

(García-Gil and Lugo Hupb, 1992). In the valleys, lakes formed by bedrock dissolution, such as dolines (or sinkholes), uvalas 

(formed by two or more dolines) and poljes (larger karst depressions), are mostly aligned in the main fold direction. 

The lake system of Metzabok (17°6'30''–17° 8'30'' N, 91°36'30''– 91°38'50'' W, ~550 m a.s.l.) consists of 21 lakes of different 

sizes, the majority of which are interconnected when water levels are high (Lozada Toledo, 2013). The two largest lakes of the 

system are Lake Tzibaná (area 1.24 km²; max. depth 70 m) and Lake Metzabok (0.83 km²; 25 m) (see Fig. 1b). The river Nahá 115 

is the principal superficial tributary connecting the lake system of Metzabok with the one of Nahá (~830 m a.s.l.); a superficial 

outlet of the lake system does not exist. Although the (additional) water supply and discharge through the underlying karst 

system is unknown, fast lake-level changes indicate substantial groundwater-surface water connections. Usually, seasonal 

lake-level changes amount to ~10 m and can be traced back to prehispanic times (Lozada Toledo, 2013). Between March and 

August 2019 an extreme lake-level drop occurred that left Lake Metzabok completely dry and decreased the water level of 120 

Lake Tzibaná by ~15 m. 

3 Data acquisition and processing 

With the primary goal of mapping sediment thicknesses below the lake floor of various lakes of the karst lake systems of 

Metzabok and Nahá, we carried out a first geophysical campaign employing seismic (SBP) and TEM methods, when lake 

levels were maximum in March 2018 (Fig. 2a). Immediately after the dramatic lake-level decline, we revisited the study site 125 

in October 2019 to collect refraction seismic tomography (SRT) data and perform TDIP measurements directly on the dry lake 

bottom (Fig. 2a, b). 
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3.1 Electrical resistivity measurements in the laboratory 

In October 2019, a total of six surface sediment samples (top 10 cm) and two water samples were collected at different locations 

for laboratory analyses (see sampling locations in Fig. 2a, b). On the dry lake bottom, sediment samples were collected using 130 

a small spade, whereas an Ekman grab sampler was used to retrieve sediment samples from water-covered areas. Sediment 

samples were stored in sealed plastic bags in order to prevent the loss of moisture; water samples were stored in plastic bottles. 

All samples were kept cool during transport and storage in order to prevent an increased degradation of organic matter. The 

electrical conductivity of the water samples (at 20°C) was measured with a laboratory probe. The frequency-dependent 

complex electrical resistivity of the samples was measured using a Chameleon I measuring device (Radic ResearchPrzyklenk 135 

et al., 2016) in the frequency range from 1 mHz to 240 kHz. To this end, the unconsolidated sediments were filled into four-

point measuring cells with non-polarizing potential electrodes as used by Kruschwitz (2007) and Bairlein et al. (2014). Prior 

to and during the measurement, the measuring cell was stored in a climate chamber to keep the sample at a constant temperature 

of 20°C. Measurements were repeated over a period of 4 to 5 days after filling the cell and inserting it into the climate chamber 

in order to assure equilibrium conditions in the sample. Measurements on relatively dry samples (MET19-A and TSI19-A) 140 

resulted in comparably high phase values. These samples were removed from the measuring cell, saturated with water of the 

corresponding lake (using one of the two water samples), and filled again into the measuring cell. This procedure led to more 

consistent phase measurements compared to the other samples. 

3.2 Collection of sub-bottom profiler (SBP) lines 

Low-frequency echo-sounders, often referred to as sub-bottom profilers (SBP), are single channel seismic reflection systems, 145 

which are used to obtain bathymetric profiles and provide a high-resolution stratigraphic display of the uppermost sediments 

(e.g., Dondurur, 2018). In March 2018, SBP lines were collected with the 10-kHz transducer StrataBox HD (SyQwest), which 

has an output power of 300 W, mounted on a motor boat. Data was recorded with a record length of 200 ms and a 1024 Hz 

sampling frequency. The SBP device was mounted mid-ships in a side mount configuration, with the transducer positioned at 

0.4 m below the water surface. Prior to each survey, the acoustic wave velocity profiles of the water columns of the two studied 150 

lakes were measured with a Digibar S (Odom Hydrographic). SBP lines were laid out in a regular NS- and EW-oriented grid 

with separations of 100 m and 300 m, respectively (see Fig. 1b). Navigation data was measured with a differential GPS and 

stored along with the SBP data. 

During processing, the SBP acoustic traces were read in using code provided by Kozola (2020) and visualized using a Matlab 

script available with this manuscript. The average value of the acoustic wave velocity of the water column (1486.6 m/s for 155 

both lakes) were used to convert the two-way travel time of the acoustic pulse into a depth scale for the seismic profiles. 
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3.3 Transient electromagnetic (TEM) soundings 

Transient electromagnetic (TEM) soundings were carried out from the water surface using a single-loop configuration in March 

2018. The loop with a diameter of 22.9 m (surface area: ~412 m²) consisted of a single, insulated copper wire attached to a 

floating ring made of twenty-four 1-inch PVC tubes. The ring was towed by an inflatable boat equipped with an electric motor, 160 

which was only turned on for navigation between sounding sites. During the measurements, the loop was separated by 5 m 

from the inflatable boat. Depending on the specific wind conditions, the unanchored system slowly drifted during the 

measurements resulting in maximum displacements of approximately two times the loop diameter (i.e., ~40 m). Due to the 

comparably low measurement velocity (ca. 3 min per sounding) and the poor maneuverability of the experimental setup, TEM 

data was acquired along a limited number of irregularly distributed lines of interest (Fig. 2a). 165 

A simple echo-sounder (Garmin Fishfinder series) was used to measure the water depth at each sounding site.  A TEM-FAST48 

(manufactured by Applied Electromagnetic Research) was used for the acquisition of TEM sounding data. Transients were 

recorded using a transmitter current of 1 A and 32 time gates between 3.6 μs and 1024 μs after current shut-off. For this 

transient length, the measuring device records 64 transients, which are analogously averaged by the hardware. For one 

sounding measurement, this basic measuring cycle is repeated 𝑛 × 13 times. For 𝑛 = 4, which we used for our measurements, 170 

this results in 52 repetitions of the basic cycle and a total of 3328 effective stacks, which are used to compute the impulse 

response by digital averaging and to determine the measurement error as the standard error of the mean (SEM). For times 

around 200 μs (the latest time gates used for the inversion), the SEM is ≲ 5 · 10−9 V/Am². For exemplary TEM data and 

errors, see Figure A1 of the appendix. 

During the processing, all transients were truncated to times from 21.4 and 174.5 μs and inverted using the software 175 

ZondTEM1d (A. Kaminsky, personal communication). A conventional 1D smoothness-constrained modelling approach was 

used to obtain a one-dimensional multilayer model (20 layers) for each sounding position separately. ZondTEM1d supports 

arbitrarily shaped loops, whose vertices can be defined independently for transmitter and receiver to ensure the correct 

interpretation of the coincident-loop data. The same software was also used to adjust layered models (5 layers). In both cases 

(smooth and layered model), the water depth measured with the echo-sounder was used as a-priori information by fixing the 180 

thickness of the first layer to this value. The electrical resistivity of the water layer was fixed to 25 Ωm. This value was 

manually adjusted to provide a good overall fit for all soundings. Especially for sites with shallow water depths and a resistive 

lake bed (i.e., bedrock not covered by conductive sediments), constraining the resistivity of the water layer significantly 

improved the imaging results. Multidimensional effects, as investigated in detail by Mollindor et al. (2013) for TEM data from 

a lake with steep bathymetric slopes, were not considered in the interpretation as the bathymetric variation along our survey 185 

lines was relatively gentle. Following the approach by Yogeshwar et al. (2020), which is based on the one by Spies (1989), we 

estimate the depth of investigation (DOI) of our TEM soundings based on transmitter area and current, average subsurface 

resistivity (of the smooth models), and late-time induced voltage. 
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3.4 Time-domain induced polarization (TDIP) 

Time-domain induced polarization (TDIP) data was acquired with a SyscalPro Switch 48 device (IRIS Instruments) using 48 190 

stainless-steel electrodes separated by 5 m or 10 m depending on the target. The soft and wet mud on the exposed lakebed 

provided a good contact between electrodes and ground. Where TDIP profiles crossed limestone outcrops, electrodes were 

inserted into sediment-filled fractures in order to keep contact resistances as low as possible. Measurements were carried out 

with injection currents between 0.5 A and 1 A, one single stack and a 50% duty cycle with 500 ms pulse length (i.e., duration 

of off time is also 500 ms). After an initial delay of 20 ms after current shut off, the voltage decay was sampled in 20 time 195 

windows with a constant length of 20 ms. We used a dipole-dipole configuration combining short dipole lengths of one 

electrode spacing for superficial measurements with longer dipole lengths of two and four times the electrode spacing for 

moderate and large depths, respectively. To prevent loss of data quality due to remnant electrode polarization (e.g., Dahlin et 

al., 2002), the measurement protocol avoids potential readings using electrodes that had been used as current electrodes before 

(Flores Orozco et al., 2012; 2018a). TDIP lines of varying length were laid out along (and parallel to) selected 2018 SBP and 200 

TEM lines on both lakes (Fig. 2a, b). In order to cover the full length of the north-south running SBP line L4 NS, TDIP lines 

MET19-1 and MET19-2 were carried out as a roll-along profile with an electrode spacing of 10 m and an overlap of 12 

electrodes. 

During the processing, we removed erroneous measurements defined as those associated with negative apparent resistivity 

and/or integral chargeability readings (Flores Orozco et al., 2018b). After the removal of erroneous measurements, raw-data 205 

pseudo sections were inspected and additional outliers were defined as those readings with integral chargeability values above 

8 mV/V. Based on an exemplary data set, this processing approach is further discussed the appendix. Integral chargeability 

values were then linearly converted to frequency-domain phase shifts assuming a constant phase angle response (i.e., no 

frequency dependence) following the approach outlined by Van Voorhis et al. (1973) and implemented by Kemna et al. (1999). 

Finally, 2D complex-resistivity sections were reconstructed from the filtered data using the smoothness-constrained least-210 

squares algorithm CRTomo (Kemna, 2000). 2D sections are only visualized down to an estimated depth of investigation by 

blanking model cells with cumulated sensitivity values two orders of magnitude smaller than the maximum cumulated 

sensitivity (i.e., the sum of absolute, data-error weighted, sensitivities of all considered measurements; e.g., Weigand et al., 

2017). 

3.5 Seismic refraction tomography (SRT) 215 

Seismic-refraction tomography (SRT) data was acquired with the 24-channel seismograph Geode (Geometrics) and twenty-

four 28-Hz geophones installed along a line at 5 m spacing in October 2019. To generate the seismic signal, a 7.5 kg 

sledgehammer hitting a steel plate was used at 25 shot points between the geophone positions as well as at distances of 2.5 m 

from the first and last geophone, respectively. At each shot point, five shots were stacked to improve the signal-to-noise ratio. 
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Due to the limited length (115 m between the first and the last geophone) and investigation depth, SRT data was only collected 220 

in the central parts of selected TDIP profiles (Fig. 2a, b). 

During the processing, we applied a 120 Hz low pass filter on the seismic traces to remove high frequency noise and allow for 

a more accurate picking of first break travel times. A tomographic inversion scheme then determines the two-dimensional 

velocity structure below the SRT profile based on the first-arrival travel times (e.g., White, 1989). For the filtering of the 

seismic traces and picking of the first arrivals, we used a Python toolbox developed at the TU-Wien. The observed travel times 225 

were inverted with the pyGIMLi framework (Rücker et al., 2017) following a smoothness-constrained scheme. Based on the 

ray paths computed for the resolved velocity model (e.g., Ronczka et al., 2017), we also determine the so-called ray coverage, 

which permits to illustrate the depth of investigation by blanking models cells that are not covered by any ray. 

4 Results and interpretation 

4.1 Laboratory measurements – electrical properties of sediment and water samples 230 

The complex-resistivity measurements on the six sediment samples carried out in the laboratory (Fig.ure 3a) show that most 

resistivity values vary within a relatively narrow range between 10 and 15 Ωm. Only the resistivity of one sample (TSI19-A) 

from the river delta in Lake Tzibaná reached values between 18 and 20 Ωm. Fig.ure 3b shows that phase values (here -φ) in 

the frequency range from 1 to 10 Hz, which is mainly tested by our TDIP measurements, are roughly comprised between 0.5 

and 4 mrad. Again, the only exception is sample TSI19-A with phase values of up to 6 mrad in the relevant frequency range. 235 

We attribute the atypical behavior of the sample TSI19-A to its fluvial nature (coarse grains and high organic content), while 

the remaining samples are clearly lacustrine (fine grains and lower organic content). The elevated phase values at high (>1 

kHz) frequencies, which can be observed for all six samples, are typical electromagnetic coupling effects (Pelton et al., 1978), 

but do not affect our TDIP measurements, due to the long initial delay before the sampling of the voltage decay starts. 

The resistivity of the two water samples from the remaining water bodies used to improve the readings of two dry samples 240 

(MET19-A and TSI19-A) were 11.9 Ωm (Metzabok) and 26.8 Ωm (Tzibaná), respectively. They are significantly lower than 

the average water resistivity of ~34.5 Ωm reported by Rubio Sandoval (2019) for water samples collected from Lake Metzabok 

during high lake-level stands in 2016. This reduction of electrical resistivity (i.e., increase of conductivity) is probably due to 

the larger effect of evaporation on the salinity of small (and shallow) water bodies. Indeed, the remaining water body in Lake 

Metzabok was much smaller (~50 m²) than the one in Lake Tzibaná (~5000 m²). However, a comprehensive understanding of 245 

the strong variation of water conductivity with respect to both sampling location and time is subject of ongoing limnological 

research in the study area.   

The average resistivity of the sediment samples for the frequency range between 1 and 117 Hz (and excluding sample TSI19-

A) is 12.25 Ωm, which is typical for saturated clayey sediments (e.g., Reynolds, 2011). Note that due to the contribution of 

surface conduction along the charged clay-mineral surfaces (Waxman and Smits, 1968), the bulk resistivity of the sediments 250 

is even lower than the average resistivity of the water (25-35 Ωm during high lake-level stands). In our case, this resistivity 



9 
 

contrast between lake water and sediments by a factor of 2 to 3 is of particular relevance as it allows us, in principle, to detect 

the two materials as separate units. To our best knowledge, this is the first time that the phase spectra of fresh lake-bed 

sediments have been measured in the laboratory. 

4.2 Field measurements on Lake Metzabok 255 

In October 2019, Lake Metzabok (average depth 15 m) was completely dry, except for some residual ponds. Its sediment-

covered bottom is mostly flat with steep walls (>50% slope) and some cliffs along the shore line (Fig. 4a). Only some drainage 

channels, steep limestone hillocks, and small ponds (Fig. 4a–d) eventually disrupt the smooth lake-bottom topography. 

4.2.1 Profile 1 – SBP and TDIP results reveal three distinct geological units  

The north-south oriented SBP line L4 NS on Profile 1 crosses various of these limestone hollocks and depressions, which are 260 

well resolved by the first reflector in the seismogram (Fig. 4e). Within the depressions between the limestone outcrops, a 

second reflector can be resolved, the geometry of which shows a certain consistency with the surface of the limestone outcrops. 

This reflector can be interpreted as the lower limit of the sediment cover. The SBP data shows that not only the elevations 

(outcrops) but also the depressions in the sediment cover are influenced by the topography of the underlying limestone: Both 

depressions, the drainage channel in the northern as well as the small pond in the southern part, are associated with local 265 

heights inrisings of the limestone surface. Based on the SBP images, the sediment thickness mostly varies between 5 and 7 m 

along Profile 1. 

Below the surface of the limestone outcrops and the lower limit of the sediment cover, respectively, we observe zones of 

diffuse reflectivity. These might be related to the heavily fractured and dissolved limestone. Particularly in the flat areas, the 

sediment cover might also be underlain by blocks of collapsed limestone with sediment filling the spaces between blocks and 270 

debris. The lakes of the study area show all characteristics of karst lakes, which are expected to originate from collapsed karst 

cavities, and the collapse debris should still be present below the sediment cover. 

The electrical images obtained from the co-located TDIP line (MET19-1 and 2) supports this interpretation: The resistivity 

image (Fig. 4f) shows a gross separation into two main units: The (i) sediments as well as the supposed limestone debris-

sediment mixture stand out with low resistivity values between 10 and 20 Ωm, while the (ii) limestone outcrops and the deep 275 

part of the section are characterized by higher resistivity values of up to 300 Ωm. The phase image (Fig. 4f4g) also shows a 

separation into units with low and intermediate phase values. Here, a much thinner top layer (compared to the conducting layer 

in Fig. 4f) stands out with phase values between 0 and 5 mrad, while the limestone bedrock shows phase values >5 mrad. The 

capability to separate the pure sediments from the limestone-sediment mixture underlines the benefit of evaluating the TDIP 

phase. Due to the relatively low data cover after outlier-removal for large dipole separations, we do not interpret the phase 280 

values at depths >50 m. 

For the sediment infill, both the resistivity values of 10-20 Ωm and the phase values below 5 mrad are in agreement with our 

laboratory measurements on the sediment samples of Lake Metzabok, corresponding to an average resistivity of ~12 Ωm and 
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phase values (here -φ) < 4 mrad. In contrast, resistivity and phase values associated with the limestone bedrock are significantly 

higher than those of the fine-grained sediment cover. The intermediate layer, which we interpret as mixture of fine-grained 285 

sediments and the collapse debris, seems to inherit the low resistivity of the supposed clay-rich matrix, while the phase or 

polarization response is increased by the limestone debris. 

4.2.2 Profile 2 – SRT measurements confirm the presence of three geological units identified in the TDIP images 

The north-south oriented Profile 2 runs parallel to the last part of Profile 1 but shifted ~10 m East. It is centered at the small 

pond (Fig. 4d) and has a smaller electrode spacing (5 m instead of 10 m) to better resolve the sediment-limestone contact below 290 

the bottom of the pond. The electrical images (Fig. 5a, b) show the same characteristics as seen in the corresponding part of 

Profile 1. Due to the higher resolution, here, we observe an internal layering of the shallow conductive units with a less 

conductive (30-50 Ωm) top layer of ~10 m thickness and a more conductive (<20 Ωm) layer that extends down to 30 m in the 

northern and southern parts of the line. The separation into two units becomes more obvious in the phase image, where the 

superficial layer is less polarizable (well below 4 mrad) than the deeper part. A few meters East of the center of the profile, the 295 

resistive limestone bedrock crops out, which might explain the significantly increased resistivity (>100 Ωm) and phase values 

(>6 mrad) over the first 20 m of depth below this part of the profile. 

The p-wave velocity structure in the SRT image (Fig. 5c) confirms the presence of these three units: The shallowest layer, 

corresponding with the sediment infill characterized by velocities between 200 and 1000 m/s, which is in agreement with 

values for unconsolidated fine-grained sediments reported in the literature (Uyanık, 2011). In the second layer, velocities 300 

increase to 1500-2000 m/s, and at depths between 15 and 20 m, a sudden increase to values >2500 m/s is observed. The p-

wave velocities of the deepest unit agree with the lower limit of typical ranges for limestone (Reynolds, 2011), which can be 

explained by the high degree of fracturing and dissolution of the karst bedrock. The seismic velocities of the intermediate layer 

do not provide any additional information on its nature, but could well be explained by limestone debris or heavily fractured 

and dissolved limestone with sediment-filled open spaces. 305 

4.2.3 Profile 3 – Comparison of SBP and TDIP corroborates low phase response of lake sediments 

The comparison of the SBP line along the west-east directed Profile 3 with the corresponding electrical resistivity images (Fig. 

6) confirms the interpretation of the electrical images: The step in the lower limit of the sediment layer around 490 m along 

the SBP profile, is also reflected in the resistivity structure and it is clearly resolved in the phase image. Again, the conductive 

unit extends far below the SBP reflector, in particular between 440-490 m along the profile. We interpret this reflector as the 310 

contact between pure sediments and the mixed sediment-collapse debris. Thus, the mixed layer has a lower resistivity than the 

superficial fine-grained sediment layer. Along this profile, both sediment-bearing layers are characterized by low phase values. 

The sediment-covered limestone bedrock between 440 and 530 m is characterized by high phase values, while phase values 

decrease as this unit approaches the surface and crops out at the end of the profile. The low phase values of the limestone 
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outcrop do not fit the previously stated general characteristics of this unit but might be related to variations in composition 315 

and/or degree of fracturing of the limestone bedrock. 

4.2.4 Profile 4 – Water-borne TEM and terrestrial TDIP measurements reveal consistent resistivity models  

Fig. 7a shows the electrical resistivity image reconstructed from 12 TEM soundings along the profile crossing Lake Metzabok 

from West to East. Both, smooth and layered models, recover a conductive layer of varying thickness below the lake floor 

indicating the presence of fine-grained sediment infill across the entire basin. This layer only disappears close to the shoreline 320 

(i.e., towards the eastern end of the profile), where the resistive limestone bedrock is in direct contact with the water body. 

According to the layered model, the resistive bedrock itself is encountered at depths of approx. 15-20 m below the lake bed 

and only disappears below sounding MET10, where a possible fracture zone might be responsible for a lower resistivity at 

depth. 

At both ends of the profile, and in particular at stations MET1 and MET2, a conductor is indicated below the resistive bedrock, 325 

this which could also point to a more fractured bedrock or a lithological contact, e.g., with a shaly geological unit. However, 

in absence of complementary information, such as a detailed geological map or bore hole data, we can also not discard artefacts 

due to distorted late-time transient data. Especially close to the shoreline, where the lake bottom rises steeply, the TEM 

transients might additionally be affected by multidimensional effects (e.g., Mollidor et al., 2013), which are not taken into 

account by the chosen one-dimensional inverse modelling approach. 330 

Due to the relatively high average resistivity of the subsurface along this profile, the depth of investigation (DOI) computed 

after Spies (1989) and Yogeshwar et al. (2020) is mostly larger than the 80 m shown here. Possibly due to the large resistivity 

and thickness of the limestone bedrock, no changes of the modelled resistivity have been observed at depths >80 m.  

Between stations MET3 and MET7, the TEM image recovers a resistivity distribution similar to the one of co-located TDIP 

profile (Fig. 7b). Taking into account that the water-borne TEM survey was carried out with an average of 15 m water column, 335 

the consistency with the TDIP resistivity results from the lake bed clearly indicates a good quality and reliability of the obtained 

TEM imaging results. 

As observed before, the phase image (Fig. 7c) shows a non-polarizable top layer, which at a depth of ~10 m is underlain by a 

unit with a higher polarization response (absolute phase values around 10 mrad and higher), corresponding with the debris-

sediment unit. The SRT tomogram (Fig. 7d) shows a sharp increase in p-wave velocity at depths between 20 m (in the western 340 

part) and 30 m (in the eastern part). This southeast-dipping surface correlates with a similar structure in the TDIP resistivity 

model, which we again interpret as the contact with the limestone bedrock. 

4.2.5 Geological interpretation of the geophysical survey on Lake Metzabok 

The schematic sketch presented in Fig. 8a summarizes our geological interpretation of the geophysical profiles of Lake 

Metzabok and the observations made on the exposed bed of the drained lake (Fig 4 a-d and Fig. 8b-d). The modelIt rests on 345 

the assumption that the lakes in the study area are formed by the coalescence of a number of dolines that resulted from the 
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collapse of karst cavities. The remains of the collapsed limestone are expected to have formed a debris layer covering the floor 

of the former caves. Subsequently, the fluvial input of fine-grained lake sediments has first filled up the interspaces between 

the blocks and then buried the collapse remains, forming the two uppermost units observed below all profiles. Fig. 8b and c 

show pictures of such mixed materials exposed on the surface of the drained Lake Metzabok. 350 

Table 1 summarises the physical properties of the main units of this geological interpretation. The electrical resistivity of the 

fine-grained sediments and the mixed collapse debris and sediment layer is comprised within a relatively narrow range. In the 

TEM and TDIP resistivity images, these two units may appear as one conductive unit (see red dotted lines in Fig. 8a). It is not 

clear, why the addition of the more resistive lime stone debris should decrease the resistivity of the mixed unit compared to 

the pure fine-grained sediments. In terms of the phase values, the distinction between these units is clearer and the increase of 355 

the phase response in the mixed layer is straightforward (because the limestone is more polarizable than the fine-grained 

sediments based on our field measurements). The clearest indication of the inner structure of the conductive unit comes from 

the collocated SBP sections, which show a clear seismic reflector at the corresponding depth. The limestone bedrock becomes 

detectable by its high p-wave velocity in the SRT images and its high resistivity (TEM and TDIP), while its phase response 

varies over a larger range and is, thus not as unambiguous. It is worth mentioning that wherever the fine-grained sediments are 360 

underlain by the collapse debris layer, the limestone bedrock does not appear as an additional reflector in the SBP sections. 

4.3 Field measurements on Lake Tzibaná 

While the 2019 lake-level decrease left Lake Metzabok (max. depth 25 m) completely drained, the deeper Lake Tzibaná (max. 

depth 70 m) always preserved a water cover on at least 2/3 of its maximum surface area. The long N-S oriented SBP section 

in Figure 9 crossing the entire Lake Tzibaná (Profile 5) shows a similar lake-bottom architecture as the one derived for Lake 365 

Metzabok: Steep limestone walls along the shoreline and flat parts with the typical 3-layer structure consisting of fine-grained 

sediment cover, collapse debris, and limestone bedrock. Unlike in the case of Lake Metzabok, the flat parts of Lake Tzibaná 

are found at two different levels, which are separated from one another by a steep limestone cliff. Additionally, the southern 

part of the profile crosses the delta of the Nahá river, where we expect a higher fraction of coarser material (sand/gravel) in 

the fluvial deposits in comparison to the well sorted sediments, mainly composed of clay and silt, covering the flat parts of the 370 

lake bottom. In the SBP profile, these delta deposits stand out by a highly reflective lake bottom, which results in strong 

multiple reflections between lake bottom and water surface. Yet, such reflections inhibit the recovery of any information on 

the internal structure of the delta. 

The TEM, TDIP, and SRT measurements carried out along Profile 6, which roughly covers the last 450 m of Profile 6 (see 

survey layout in Fig. 2b) fill in this missing information. The resistivity images of both TEM and TDIP measurements presented 375 

in Fig. 10a, b consistently show three main units: (1) the resistive (>100 Ωm) limestone bedrock at depth, (2) a highly 

conductive (<10 Ωm) clay layer on top, and (3) a layer of intermediate resistivity (~30-100 Ωm), in particular between 200 

and 400 m, corresponding to the sand banks and possible interbedded strata of clay, sand, and gravel associated with the delta 

deposits. As observed above along Profile 4, the resistivity model of TEM sounding TZI41 indicates a conducting unit below 



13 
 

the resistive limestone bedrock, which could be related to a lithological contact, a fracture zone, distorted late-time data, or 380 

multidimensional effects. The low average resistivity below soundings TZI13-44 result in a significantly reduced depth of 

investigation (approx. 55-60 m). The lack of borehole data hinders a conclusive interpretation of this conductive anomaly at 

depth. 

Probably due to the highly heterogeneous composition of the river delta, these deposits also show a heterogeneous distribution 

of phase values (Fig. 10c). As observed before, the clay and limestone units below the fluvial deposits show low and high 385 

phase values, respectively. The relatively high phase values in the clay layer below the fluvial deposits are probably inversion 

artefacts caused by the relatively noisy TDIP data along this line. 

The SRT image (Fig. 10d) shows p-wave velocities as low as 100-200 m/s within the fluvial deposits, which are in agreement 

with literature values for partially saturated, unconsolidated sand (e.g., Barrière et al., 2012). P-wave velocities increase with 

depth across the thick (and probably compacted) clay layer. According to the electrical images, the surface of the bedrock lies 390 

below the lower limit of the SRT image. Accordingly, the highest velocities of <2000 m/s, seen in the SRT image, do not reach 

the high values (>2500 m/s) typical for limestone bedrock. 

5. Discussion 

5.1 Identification of suitable drilling locations 

Our geophysical investigations delineate a 5-6 m thick and nearly undisturbed layer of fine-grained lacustrine sediments 395 

covering the flat parts of Lake Metzabok. Such a layer is relevant for the conduction of paleolimnological perforations. Suitable 

drilling locations can be defined between 450 and 550 m, as well as between 600 and 700 m along Profile 1 (SBP profile in 

Fig. 4e). The large variation of the sediment thickness observed along Profile 3, which is perpendicular to Profile 1, underlines 

the need for a comprehensive pre-drilling investigation and an accurate positioning of the drilling equipment. The sediment 

layer between 100 and 200 m along Profile 5 represents a suitable drilling location for Lake Tzibaná (sediment thickness also 400 

5-6 m). Although the deeper part of Lake Tzibaná is covered by sediments (between 400 and 600 m along Profile 5), too, 

sediment thicknesses in this part of the lake are smaller (only 3-4 m according to the SBP image) and drilling efforts would be 

more considerabley higher, due to the larger water column at this location (approx. 30 m during water-level high stand in 

2019). 

With a thickness of >40 m according to our electrical imaging results, the sedimentary cover along Profile 5 of Lake Tzibaná 405 

(particularly between 250 and 400 m) is much thicker than the sediments covering the flat parts of both lakes. However, our 

results also indicate that these sediments rather correspond to fluvial deposits of the river delta. In this depositional regime, we 

expect much higher rates of sedimentation and thus not necessarily an older paleoenvironmental record. Additionally, river 

deltas are much more dynamic systems, in which sediments are deposited, eroded, and redeposited repeatedly, which decreases 

the probability to obtain undistorted sediment records as encountered faurther off the shore. 410 
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5.2 Geological situation of the studied lakes and hydrogeological implications 

Our field observations and geophysical imaging results also have important implications for the general understanding of the 

geological situation of the two studied karst lakes: Large areas of both lakes are covered by a layer of clayey sediments, which 

have a low hydraulic permeability. Thus, where it this layer is thick enough (up to 5-6 m across large areas), this layerit acts 

as a hydrological barrier between the lakes and the underlying karst. However, the remaining heavily fractured and uncovered 415 

limestone outcrops (e.g., Fig. 8b-d) effectively connect the lakes with the karst water system. This conclusion is underscored 

by the high velocity at which the two lakes drained practically simultaneously between February and July 2019. Accordingly, 

the sudden drainage of both lakes might be related to the same hydrogeological process. 

While the interconnectivity between surface water and karst aquifer is well documented by field observations and further 

underpinned supported by the interpretation of our geophysical results (see Fig. 8), the specific cause(s) and mechanism(s) of 420 

the sudden drainage of Lakes Metzabok and Tzibaná remain unrevealed. The suddenness of the drainage, suggests that one or 

more previously clogged karst conduits were unplugged around these dates. Planned time-series analyses of hydrological and 

meteorological data in combination with paleoenvironmental studies on sediment cores will possibly provide more detailed 

insight into the mechanism and its triggers, and thus shed light on the question whether such catastrophic drainage events as 

the one observed during 2019 are linked to recent climate change or another geodynamic process. 425 

5.3 Lessons learned from implementing a multi-methodological approach for lake-bottom reconnaissance 

Only the combination of complementary methods employed in the present study allowed us to produce comprehensive 

geological models of the lake-bottom geology of the studied karst lakes. Table 2 summarizes the characteristics of the four 

field methods (SRT, TEM, TDIP, and SRT), the individual contributions of each method and their respective limitations 

identified in this study. In the following, we will discuss some important aspects of this overview in more detail. 430 

5.3.1 Sub-bottom profiler reflection seismic method 

For shallow-water applications, the compact and mobile experimental setup of the SBP technique offers clear advantages. 

Additionally, the high productivity and resolution in combination with the straight-forward interpretation of the SBP 

seismograms evidence that such reflection seismic methods are best suited for a first reconnaissance of the lake bottom. In 

comparison, water-borne TEM measurements are by far slower and more labour intensive (for both data collection and 435 

processing) and the resulting imaging results have a lower lateral resolution. In our study, the contact between fine-grained 

clay sediments and the underlying mixed layer (collapse debris and sediment) was clearly visible from the SBP data, which 

permits a straight-forward estimation of sediment thicknesses along SBP survey lines. The contact or transition between mixed 

layer and limestone bedrock was also noticeable in the SBP images but the interpretation was not as clear as in the case of the 

first two layers and mainly built on the availability of complementary TEM and TDIP data. The main limitations of the SBP 440 

survey consist in the low depth of penetration of this method, which hardly reached 10 m below the lake bottom, and in the 
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total lack of sub-bottom information as soon as the lakebed is covered by coarser sediments as observed in the deltaic region 

of Lake Tzibaná. Such “opaque seismic facies and high […] reflectivity” of fluvial sediments have been discussed before by 

Orlando (2013) for measurements on the river Tiber in central Italy. Hence, the combination of waterbborne TEM and SBP 

methods could offer a solution to improve the investigation of deep areas (resolved by TEM data), while lateral information 445 

can still be gained using SBP. The inclusion of SBP information for the interpretation of TEM data towards the inversion of 

an improved resistivity model, is an open area of research. 

 

5.3.2 Water-borne transient electromagnetic method 

The water-borne TEM sounding system developed for this study turned out to provide reliable resistivity images for water 450 

depths down to at least 20 m. This conclusion is supported by the agreement of the resistivity images obtained from water-

borne TEM and lake-floor TDIP measurements along both TEM profiles (Fig. 7 and Fig. 10). Previous shallow-water TEM 

studies (e.g., Butler, 2009; and references therein; Hatch et al., 2010; Mollidor et al., 2013) employed in-loop configurations 

with an outer transmitter loop and a smaller receiver loop or coil in the centre, while we used a light-weight single-loop 

configuration, which is quicker to assemble and easier to handle while navigating on the lake. It is worth mentioning that in 455 

terms of noise level and depth of investigation, our simple system consisting of one single circular loop provides comparable 

results as those obtained with more sophisticated systems consisting of separated transmitter and receiver square loops (e.g., 

Yogeshwar et al., 2020). 

Besides the use of a single-loop configuration, the use of small loops as employed in the present study can eventually result in 

distortions in the transient data. The measured curves (truncated to 21.4–174.5 μs) do not show any conspicuous features (see 460 

data example in the appendix) and can be adjusted by reasonable resistivity models with an overall low root-mean-square 

(RMS) deviation. Thus, we discard the presence of such adverse effects in our data set. The good agreement between TEM 

and TDIP-derived resistivity models along collocated survey lines further supports this conclusion. 

In the present study, TEM resistivity images clearly delineate the top of the bedrock and reveal the inner structure of the deltaic 

deposits of the river Nahá, which are not resolved by the SBP seismograms. The interpretation of the layered resistivity 465 

structure below the flat parts of the lake bottom is only possible by combining TEM resistivity images with complementary 

information from other methods. In particular, the SBP seismograms (and TDIP phase images) imply that the thickness of the 

fine-grained lakebed sediments does not exceed 5-7 m in Lake Metzabok, while conductive units extend down to depths of 

20-30 m (below the lake bottom) and more. We resolve this apparent contradiction by postulating an intermediate layer made 

of limestone debris from collapsed karst cavities and fine-grained sediments filling the spaces between the limestone blocks. 470 

This mixed layer seems to be characterized by a much higher seismic velocity compared to the fine sediments but a similar or 

slightly lower electrical resistivity. Consequently, the small resistivity contrast between the fine-grained lakebed sediments 

and the underlying mixed layer hinders an unambiguous estimation of sediment thickness from TEM (and TDIP) resistivity 

data alone. 
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Our results also show the advantages in the interpretation of the sounding data after the incorporation of water depth and 475 

eventually water resistivity into the inversion of TEM data as a-priori information. Water depth is readily measured during the 

TEM sounding using a standard echo sounder. Further investigations can consider the addition of fluid conductivity and 

temperature measurements using conductivity-temperature-depth (CTD) probes to improve the inversion of waterborne 

measurements and, thus, the investigations of the lakebed by electrical methods. Such information can also be obtained from 

the analysis of water samples.  480 

We have adjusted smooth and layered models to the TEM sounding data, both recovering similar sub-bottom structures along 

the two lines discussed here. While the smooth models facilitate a direct comparison with the (smooth) 2D TDIP resistivity 

images, the layered models are more appropriate to image locate sharp geological contacts. The average fit quality (as assessed 

by the percentage RMS), which is slightly better for the layered models, could point to rather sharp contacts. However, it is 

not at all straight forward to decide whether sharp resistivity contrasts exist between the main lithological units (i.e., sediment 485 

cover and limestone) or not. As our interpretation of the Metzabok data suggests, e.g., within the mixed layer, there might be 

a smooth transition due to a continuously increasing volume content of limestone with depth. The same is true for contacts 

between different, eventually interbedded sedimentary units (e.g., fine-grained lake sediments/sandy delta deposits).  

5.3.2 3 Induced-polarization imaging of the lake floor 

The fact that the studied lakes drained provided us with the unique opportunity to carry out TDIP measurements directly on 490 

the lake floor. The low contact resistances and the easy installation of electrodes on the soft ground represent ideal conditions 

for electrical imaging measurements. Furthermore, the evaluation of both phase data for sediment samples analysed in the 

laboratory and for the in-situ measurements on the exposed lake floor is unprecedented or at least very rare in geophysical 

literature. In the present study, the TDIP phase results permitted to significantly improve the obtained geological model of the 

lake-bottom. In particular, the IP images showed a low phase response of the lake sediments on one hand and a comparably 495 

high phase response of the limestone bedrock and the collapse-debris layer on the other hand. The interpretation of the field 

TDIP phases is sustained by our laboratory measurements on sediment samples and the good overall agreement of the shallow 

low-phase layer with the corresponding reflector in the SBP images. 

Larger variations in the phase response of sediments (especially the increased phase values of sample TZI19-A) are likely 

related to different depositional regimes: Preliminary geochemical analyses of the sediment samples imply significantly 500 

increased total organic carbon (TOC) and carbon-to-nitrogen ratio (C/N) of the sample TSI19-A compared to the other five 

samples (P. Hoelzmann, personal communication). High values of TOC and C/N point to a larger fraction of organic matter 

from terrestrial sources in sample TZI19-A, while the smaller amount of organic matter of the other five samples probably 

stems from algal plants. A strong control of TOC on the phase response has been reported earlier for other materials (e.g., 

Schwartz and Furman, 2015; Flores Orozco et al., 2020). 505 

Based on the encouraging findings of the present study, the application of TDIP imaging for the lake-bottom characterization 

emerges as an interesting complementary method for the characterization of lake-bottom sediments. Although promising for 
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desiccated or shallow lakes, there are some limitations for TDIP measurements to be carried out on water-filled lakes: In 

principle, TDIP data could be collected with floating electrode arrays as used for water-borne direct-current resistivity surveys. 

However, the collection of deep IP data - as needed to investigate the sediments below a water column of, e.g., 20 m – often 510 

suffers from a low S/N ratio. This limitation could be overcome by bringing the electrodes closer to the lake bottom, which is 

possible but logistically more effortful (e.g., Baumgartner and Christensen, 2006). 

5.3.4 Seismic refraction tomography of the lake floor 

In the present study, the land SRT measurements carried out on the exposed lake floor confirmed the layered structure of the 

flat parts of the bottom of Lake Metzabok inferred from the preceding three methods. In those cases, where the depth of 515 

investigation of the SRT images was large enough to cover the top of the limestone bedrock (i.e., Profiles 2 and 4), this 

geological contact was delineated clearly by a steep increase in the SRT velocity model. The main limitations regarding the 

applicability of SRT measurement on the lake floor, which we identified in this study, are related to the specific surface 

conditions: On the one hand, the generation of seismic pulses was excessively labour intensive, as the steel plate bogged down 

into the soft lake-bottom and had to be dug out after every single hit. On the other hand, the low signal-to-noise (S/N) ratio of 520 

some data collected on the muddy lake floor (e.g., along Profile 2, see appendix), rendered the processing and interpretation 

of SRT results challenging. We attribute the low S/N to the difficult coupling of seismic energy into the ground, a high energy 

loss of seismic signals in soft sediments, and a higher level of ambient noise (e.g., induced by wind). Although the picking 

percentages of noisy SRT profiles (here, Profile 2) were much lower and RMS deviations significantly increased in comparison 

to data collected on firm ground (e.g. Profile 5), the depth of investigation only decreased by approx. 20% (see Figs. 5c and 525 

7d). 

6. Conclusions 

Based on the combination of different geophysical techniques, the present study provides important insight into the geological 

situation of two hydraulically highly dynamic karst lakes. The comparison of water-borne and land surveys (carried out after 

the sudden drainage of the lakes) permits a detailed evaluation of the potential and limitations of different seismic, electrical, 530 

and electromagnetic geophysical methods for the investigation of such lakes. One principal outcome of this study is that only 

the combination of complementary methods provides sufficient information to develop a comprehensive geological model of 

complex karst environments. In this sense, the present systematic field study paves the way towards an improved geophysical 

characterization, which is needed to better understand surface-groundwater interactions in karst systems and, more importantly, 

to evaluate climate-change related effects on karst water resources. In this regard, the interpretation of our results permitted to 535 

determine suitable drilling locations for future paleoenvironmental drilling campaigns, which are characterized by thick (5-6 

m), undisturbed fine-grained lake sediments covering the flat parts of both studied lakes. The recovery of continuous and far-
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reaching sedimentary records is another important element for the understanding of the impact of climate change on the 

availability and quality of water in karst systems. 

The evaluation of the different methods derived substantial benefit from the possibility to recollect additional data directly on 540 

the exposed lake floor after the sudden drainage of Lakes Metzabok and Tzibaná substantially benefitted the evaluation of the 

different methods. The good agreement of electrical resistivity data collected with a new water-borne TEM system, TDIP 

resistivity data from the dry lake bottom, and electrical measurements on sediment samples in the laboratory demonstrates that 

the new TEM system works well down to water depths of at least 20 m. Furthermore, there is no reason to assume that the 

system should not work as well in even deeper water (>20 m) depending on the water conductivity. TDIP phase images turned 545 

out to provide relevant complementary information – here, in particular about the inner structure of the conductive units 

covering the lake bottom. Seismic data from a water-borne SBP and a SRT survey on the dry lake floor provided 

complementary information and allowed to interpret the two conductive units as a top layer of fine-grained sediments and an 

intermediate layer of debris from collapsed cavities in the heavily karstified limestone bedrock. At the same time, the 

delineation of the upper limit of the buried limestone bedrock was not possible from the seismic data onlyalone. Thus, the final 550 

interpretation was only possible by combining electrical and seismic data sets and by incorporating geological and 

geomorphological constraints, showing – once again – the strength of a multi-methodological and interdisciplinary approach. 

Appendix A: Data quality and filtering 

TEM. Figure A.1a shows the TEM raw data of selected soundings along Profile 6 of Lake Tzibaná in terms of the induced 

voltage (normalized to loop area and transmitter current). As described in the main text, all sounding curves were truncated to 555 

a unit time window between 21.4 and 174.5 μs. Earlier times were ignored to minimize the effect of distorted early-time data. 

At the latest time window, the SEM of the induced voltage is approximately 5 · 10−9 V/Am2 for all soundings (except for 

TZI44) and about 1–2 orders magnitude smaller than the corresponding induced voltage. Figure A.1b shows the measured and 

calculated apparent resistivity curves of the same soundings. As indicated by the overall small root-mean-square error 

(RMS<5%), the measured curves are all recovered well by the adjusted smooth resistivity models, which are visualised in Fig. 560 

10.  

TDIP. TDIP data was filtered based on the apparent resistivity and apparent chargeability data. In a first step, TDIP readings 

with apparent resistivity values ≤0 Ωm and/or apparent chargeability values ≤0 mV/V were removed as outliers. In a second 

step, based on the visual assessment of the raw data pseudo sections and histograms (see Fig. A2 for an exemplary data set), 

measurements with apparent chargeability values >8 mV/V were removed as further outliers. The selection of the limit of 8 565 

mV/V for the apparent chargeability values is based on the observation of a narrow distribution of physically meaningful 

values in the corresponding histograms (see Fig. A2 d and h). In the case of the data set shown in Fig A2, which corresponds 

to the second part of the roll-along profile 1 of Lake Metzabok, this filtering results in a reduction to 57% of the unfiltered data 

set. This high loss of data is related to a comparably poor data quality of the chargeability measurements along this long line 



19 
 

(470 m length, 10 m electrode spacing). Shorter profiles with half the electrode spacing (5 m in the case of profiles 2-4 and 6) 570 

are less affected by noisy chargeability data as reflected in a higher percentage of useful data (up to ~88% in the case of Profile 

3 of Lake Metzabok). 

SRT. Collected with 24 geophones and 25 shot positions, each tomographic data set consists of a total of 600 seismic traces. 

Fig. A3 shows exemplary seismic traces for one central shot positions and the travel-time curves (constructed from the picked 

first arrivals of all 25 shot positions) for one relatively noisy (Profile 2) and one relatively clean (Profile 4) data set. The picking 575 

percentage displayed along with the travel-time curves reflects the number of traces, for which a first arrival could be identified, 

and serves as a measure of overall data quality. The low data quality of Profile 2 data results in a low picking percentage (341 

out of a total of 600 traces) and mainly affects long-offset data, which clearly reduces the depth of investigation (~40 m, Fig. 

5c). In comparison, SRT data collected along Profile 4 is cleaner (552 first out of 600 first arrivals picked) and, thus, results 

in a larger depth of exploration (>50 m, Fig. 7d). 580 
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 750 

Table 1: Ranges of physical properties of the geological units interpreted from our geophysical profiles and laboratory 
measurements. Resistivity data based on TEM, TDIP resistivity and laboratory measurements; phase data (absolute value) 
according to TDIP images and laboratory data between 1 und 10 Hz; p-wave velocity from SRT images. 

Material / geological unit 
Resistivity 

(Ωm) 
Phase 

(mrad) 
P-wave velocity 

(m/s) 

Fine-grained sediments 5–30 <4 200–1500 

Collapse debris & fine-grained sediments 5–20 >5–6 1500–2000 

Limestone bedrock >100 >4–5 >2000 

 

  755 
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Table 2: Methods used to image the sub-bottom structure of the studied lakes. Summary of physical properties resolved, typical 
parameter ranges in the study area as well as setup and characteristics of the measurements. Typical depths of investigations depend 

on the specific instrumental setup used; main contributions and limitations mostly refer to the present study and the specific 

geological situation. 

Method 

Physical 

property and 

typical range  

Setup and 

characteristics  

DOI 

(m) 
Main contribution Main limitations 

SBP 
𝑣p* 

only reflection 
patterns resolved 

Water borne; 10-kHz 
transducer, 300 W 
output power, boat 

10 

Resolves contact 
between fine-grained 
sediments and 
underlying mixed layer 
(e.g., Fig. 4e) 

– Penetration depth ≤10 m below lake bottom 
(e.g., Fig. 4e) 
– No penetration in coarse 
delta sediments  
(e.g., Fig. 10a) 

TEM 
𝜌** 

5–500 Ωm 

Water borne; 
unanchored single-loop 
system, 412 m² loop 
area, 1 A transmitter 
current, rubber boat 

50–100 

Delineates top of 
bedrock (e.g., Fig. 7a) 
and coarse delta deposits 
(e.g., Fig. 10a) 

– Low acquisition 
velocity/productivity 
compared to SBP 

      

TDIP 

𝜌  
5–500 Ωm 

 𝜑*** 

2–6 mrad 

Terrestrial; 5–10 m 
spacing, 48 electrodes, 
dipole-dipole, 0.5–1 A 
transmitter current,  
500 ms pulse 

50–70 

𝜌: Delineates coarse 
delta deposits 
(e.g., Fig. 10b) 𝜑: Improved delineation 
of fine-grained sediments 
(e.g., Fig. 5b) 

– No clear distinction 
between lake sediments 
and limestone bedrock if 
only 𝜌 is considered  
(e.g., Fig. 4f) 

      

SRT 
𝑣p  

200 – 3000 m/s 

Terrestrial; 5 m 
spacing, 24 geophones 
(28 Hz), energy source: 
7.5 kg sledge hammer 

40–50 
Delineates top of 
bedrock (e.g., Fig. 7d) 

– Eventually low quality 
of data acquired on muddy 
lake floor  

*p-wave velocity, **electrical resistivity, ***resistivity phase 760 
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Figure 1: (a) Location of the study area in Southern Mexico (from d-maps.com). (b) Layout of the geophysical survey on lakes 
Metzabok and Tzibaná during high-level stands in March 2018. Black lines show the sub-bottom profiler (SBP) survey grid, bold 765 
lines highlight those profiles discussed in detail in this manuscript, white circles represent individual transient electromagnetic 

soundings (TEM). The optical satellite image in the background (source: Bing Maps data base) shows lake water surface similar to 
the high-level stands encountered during March 2018. 
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Figure 2: Layout of the geophysical survey on lakes Metzabok (a) and Tzibaná (b) in October 2019 (after the sudden lake-level drop) 770 
including sub-bottom profiler (SBP), transient electromagnetic (TEM), time-domain induced polarization (TDIP), and seismic 

refraction tomography (SRT) measurements. The geophysical measurements discussed here are grouped into five profiles; black 
triangles next to the profile names indicate the profile orientations. Yellow and blue triangles indicate sampling locations for 
sediment and water samples analysed in the laboratory, respectively. The dashed black line in (b) indicates the dry part of the river 
delta exposed during October 2019. 775 
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Figure 3: Frequency-dependent complex resistivity of six lake-bottom sediment samples retrieved from Lake Metzabok (triangles) 

and Lake Tzibaná (crosses). Complex-resistivity values are given in terms of (a) magnitude and (b) phase. The highlighted 
frequencies between 1 and 10 Hz roughly correspond to the range tested by our time-domain induced polarization measurements in 
the field. 780 
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Figure 4: Topographic features and geophysical sections along Profile 1 of Lake Metzabok. Photographs of topographical features 
taken in October 2019: (a) lake basin with flat bottom, (b) drainage channel, (c) limestone hillock, (d) deep fracture and pond next 
to shallow limestone outcrop. (e) Sub-bottom profiler (SBP) section with dashed lines highlighting the main reflector encountered 785 
below the lake floor and dotted lines outlining a zone of high diffuse reflectivity, (f) and (g) electrical resistivity and phase images, 

respectively, including electrode positions (black dots along the surface) and dotted lines taken from SBP section. Electrical sections 
are shifted by 25 m with respect to the SPB section. Labels in the lower left corners of (f) and (g) represent the amount of data points 
used for the inversion compared to the total measured data (same for resistivity and phase) and the respective percentage root mean 
square deviations (RMS) of the inversion. 790 
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Figure 5: Geophysical sections along Profile 2 of Lake Metzabok (same coordinates as in Fig. 4): (a) and (b) electrical resistivity and 
phase images, respectively, including electrode positions (black dots along the surface), sampling locations of sediment samples (red 

diamonds at the surface), and the main lithological units interpreted from the SBP image (dotted lines). Labels in the lower left 
corners represent the amount of data points used for the inversion compared to the total measured data (same for resistivity and 795 
phase) and the respective percentage root mean square deviations (RMS) of the inversion. (c) Seismic refraction tomogram with 
main lithological units including picking percentage (PP) and RMS of the inversion. 
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Figure 6: Geophysical sections along Profile 3 of Lake Metzabok: (a) sub-bottom profiler section with dashed lines highlighting the 
main reflector found below the lake floor, dotted lines outlining a zone of high diffuse reflectivity including main reflectors and the 800 
dashed box showing the section with TDIP resistivity and phase data, (b) electrical-resistivity image and (c) phase image including 

electrode positions (black dots along the surface) and lines taken from SBP seismogram. Labels in the lower left corners represent 
the amount of data points used for the inversion compared to the total measured data (same for resistivity and phase) and the 
respective percentage root mean square deviations (RMS) of the inversion. 
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Figure 7: Geophysical sections along Profile 4 of Lake Metzabok: (a) Interpolated TEM image based on smooth 1D models, left bar 
graphs show layered, right bar graphs smooth models; individual percentage RMS deviations are given for layered and smooth 
models, respectively. The black solid line in the section indicates the water-sediment contact, the dotted line the top of the limestone 

bedrock inferred from this image. (b) Electrical resistivity and (c) phase images including electrode positions (black dots along the 

surface), and the main lithological units as interpreted from the SRT image in (d) (dotted lines). Labels in the lower left corners of 810 
(b) and (c) represent the amount of data points used for the inversion compared to the total measured data (same for resistivity and 
phase) and the respective percentage RMS of the inversion. (d) Seismic refraction tomogram with main lithological units including 
picking percentage (PP) and RMS of the inversion. 
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Figure 8: (a) Schematic sketch summarizing the geological conditions below Lake Metzabok interpreted from the geophysical survey 
(details not drawn to scale). The limit between the fine-grained lake sediments and the collapse debris with sediment-filled 

interspaces indicated by the white dashed line stands out as a strong reflector in all sub-bottom profiler images. All units containing 
fine-grained sediment are characterized by low electrical resistivity values; a strong resistivity increase marks the upper limit of the 

limestone bedrock as indicated by the red dotted line. Photographs show (b) and (c) limestone debris with fine-grained sediment as 820 
well as (d) fractured limestone and fine lake sediments exposed during the low-level stands in October 2019. 
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Figure 9: Long N-S oriented sub-bottom profiler section crossing the entire lake Tzibaná (Profile 5). The last approx. 450 m roughly 
coincide with the TEM section along Profile 6 in Fig. 10a (indicated by the dotted rectangle). The white dashed lines highlight the 825 
main reflector below the lake floor, which is interpreted as the lower limit of a fine-grained sediment layer. The white dotted lines 
enclose the zone of diffuse reflectivity associated with the collapsed, sediment-filled limestone. The black dashed line indicates the 
approximate lake level during the second field season in October 2020. The last 500 m of the profile correspond to the delta of the 
Nahá river, where a high reflectivity of the sand-covered lake floor results in the occurrence of strong multiples in the seismogram. 

 830 
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Figure 10: Geophysical sections along Profile 6 of Lake Tzibaná: (a) Interpolated TEM image based on smooth 1D models, left bar 
graphs show layered, right bar graphs smooth models; individual percentage RMS deviations are given for layered and smooth 
models, respectively. The black solid line indicates the water-sediment contact, the dashed line the main lithological contacts inferred 
from this image. (b) Electrical resistivity and (c) phase images including electrode positions (black dots along the surface) and main 835 
lithological units. Red diamonds on the surface indicate the location of the sediments sampled for laboratory analyses. Labels in the 
lower left corners of (b) and (c) represent the amount of data points used for the inversion compared to the total measured data 
(same for resistivity and phase) and the respective percentage root mean square deviations (RMS) of the inversion. (d) Seismic 
refraction tomogram including picking percentage (PP) and RMS of the inversion, contacts of main lithological units (white dashed 

lines) taken from TDIP resistivity image. 840 
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Figure A1. a) Induced-voltage data of selected TEM soundings along Profile 6 of Lake Tzibaná. Induced voltages are normalized 
with the injected current and the loop area. The mean values of the stacked signal per time gate are shown in blue (circles) the 
standard error of the mean in red (squares). Dashed lines indicate almost constant (exception: sounding TZI44) late-time error level 845 
of 𝟓 · 𝟏𝟎−𝟗 V/Am² (horizontal lines) at 174.5 μs (vertical lines). b) Observed (blue circles) and calculated (red squares) apparent 

resistivity curves of the same TEM soundings. The root-mean-square (RMS) errors of the individual model fits are indicated, too. 
The corresponding inverted models (smooth models with 20 layers) are visualized in Fig. 9. 
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Figure A2. Apparent resistivity and apparent chargeability pseudo sections (left column) and histograms (right column) of the TDIP 850 
measurement corresponding to the second part of roll-along Profile 1 of Lake Metzabok. The first two lines (a-d) show the unfiltered 
raw data set consisting of 1308 individual measurements, the last two lines (e-h) visualize the remaining 747 measurements after the 
application of the filters described in the main text. 
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Figure A3. Exemplary seismic traces (wiggle traces with variable density plots in the background) corresponding (a) to Profile 2 855 
with a high noise level and (b) to Profile 4 with a much lower noise level. As a direct result of data quality, the travel-time curves (c) 
of Profile 2 (picking percentage 57%) are much less populated than those (d) of Profile 4 (92%). The loss of information particularly 
affects late travel times and thus significantly reduces the depth of investigation along noisy profiles. 

 


