
se-2020-79
Author’s Response

Patrick Sanan, for all authors

We again thank the reviewers and everyone involved in the adiminstration of SED for an illuminating

and enjoyable review process.

Here, we include full responses to the two reviewers, and a version of our revised manuscript with all

di↵erences automatically highlighted.

The reviewer responses include line number references to all important changes, but note that these line

numbers are with respect to the revised article PDF submitted, not the marked-up version at the end of this

document (which has additional lines due to the di↵ notation).

1

se-20200-79-RC1
Response to Reviewer Comments

Patrick Sanan, for all authors

We deeply thank the reviewer, Marcin Dabrowski, for insightful and thorough comments. We reproduce
these comments here and provide our own comments and responses inline. Line numbers in our responses
refer to the revised manuscript.

General comments

The paper addresses problems relevant to the scope of SE and includes some interesting novel concepts
regarding the numerical solution of 3D mechanical problems. The scientific methods and assumptions
are sound and the presented conclusions are justified. The authors give credit to previous related work
and they clearly delineated their contribution. The paper is well written and properly structured,
the title is informative and clear, and the abstract provides a good summary of the work. Below I
present my specific comments and technical corrections. I would encourage the author to include a
more detailed presentation of the studied numerical setups within the main body of the manuscript,
according to my detailed suggestions below.

Specific comments
For the Taylor-Hood element, the static elasticity in the mixed finite element formulation produces
a symmetric indefinite system. It is maybe worth noting that for FEM discretization with piecewise
discontinuous pressure field such as in the case of the Crouzeix-Raviart element family, the pressure
mass matrix can be easily inverted on the element level and by performing block Guassian elimination
a positive definite system can be obtained that allows for using the highly robust sparse Cholesky
factorization.

In the discussion of the ine↵ectiveness of ILU preconditioning (line 289), we have added a citation to
Dabrowski et al., 2008 to highlight this approach, which indeed needed to be mentioned.

The author claimed that the previous incarnations of ILDL’ were not necessarily robust(l.93-94).
Could the authors just briefly mentioned the major improvements within the recent ILDL’ imple-
mentation? What improvements exactly have made them robust in the recent years?

This mainly refers to ILDL preconditioning without the weighted-matching step, or just applying ILU
or incomplete Cholesky factorizations directly. As in the Chow and Saad 1997 reference cited on line 284,
ILU factorizations perform very unreliably. Hagemann and Schenk’s 2006 paper presents some experiments
which compare the e↵ect of di↵erent pivoting strategies.

What is exactly meant by “coe�cient structure” (for example l. 115)? I guess that this is not just
the sparsity pattern.

This is intended to refer to the functional form of the coe�cients, that is how the material properties vary
over the domain. Of interest in the context of solver robustness is whether these coe�cients have large global

1

variation, large local variations, and geometrically simple (roughly, “low frequency”) or complex distribution
of these variations.

We’ve further clarified the use of this term on line 113.

1x1 and 2x2 blocks are mentioned in the context of pivoting for both LDL’ and ILDL’. I am actually
wondering whether the natural blocking inherent to the problem due to its dimensionality is retained
during this operation? It is stated that fill-reducing reordering is performed block-wise. Which blocks
are exactly meant here? I would guess that the ones related to the problem dimensional (say 3x3
blocks in the case of 3D problems). How is it ensure that the blocking due to the symmetric maximum
weighted matching preprocessing is retained during the subsequent fill-in reducing reordering? I would
suggest that this issue could be clarified in the manuscript.

The natural blocking (2 + 1 or 3 + 1) is not directly retained during the factorization. All blocking and
ordering at the level of the preconditioner is done with 2⇥ 2 and 1⇥ 1 blocks.

This has the advantage of requiring less information from the user, which is extremely desirable in the
context of providing widely-applicable and robust methods. However, methods which take the specific saddle
point structure of the problem into account do exist; for instance, the paper from Wubs and Thies (in the
paper’s references) takes into account what they call F-matrix structure.

We have added a footnote (line 233) to emphasize which blocking is being discussed.

So what is exactly used as the Schur complement preconditioner for large coe�cient jumps? The
author mention “a scaled pressure mass matrix” in this context. What (viscosity) scaling is exactly
used? If there is not enough space for explaining it, maybe the authors could refer to some other
work here.

This has been clarified in the text (line 345) to note the exact scaling, �
⇣

1
µ + 1

�

⌘
. As suggested by

Reviewer 2, we have added a reference (line 254) to Grinevich and Olshanskii’s 2009 paper, which discusses
this preconditioner. Also see the response below to the comments about the C term.

The authors claim that sparse direct solution methods for indefinite systems using LDL’ are expected
to be highly competitive for 2D cases (l. 263). Is there any recent study showing their real performance
(not just the theoretical scaling) that could be referred here?

We include a 2D study, from an earlier draft of this paper, which hopefully gives a direct example of this,
in Figure 1 of this response.

The authors make statements that variable coe�cients on the level of individual elements (non-grid
aligned coe�cient jumps) are, loosely speaking, harder to solve. In what sense? Solution accuracy or
solution time, or maybe both?

With sharply-varying fields, higher order convergence is harder to obtain. In practice, solution times are
likely longer, both due to this lower convergence order requiring a finer mesh, or by the fact that multigrid
methods appear to converge less quickly.

I would guess that referring to incomplete factorization preconditioners in l. 283, the authors specif-
ically mean ILDL’ rather than ILU or ICHOL, and that they perhaps make this statement in the
context of geodynamics or, in general, geosciences.

Yes - this sentence was only meant to refer to incomplete factorization preconditioners for indefinite
problems in geosciences (or even more generally in computational mechanics). We have updated it in the
discussion around line 284.

2

GMRES(60)/ILDL(1e-3) PARDISO FGMRES(30)/ABF

Els. Fill Its. Time [s] Mem. [MB] Time [s] Mem. [MB] Lvls. Its. Time [s] Mem. [MB]
322 2.9 36 4.34E-01 27 1.89E-01 <1024 3 19 6.43E-01 <1024
1282 4.4 229 2.37E+01 324 3.27E+00 404 5 15 5.68E+00 335.00
5122 5.7 1480 2.29E+03 5879 8.37E+01 7059 7 17 1.04E+02 5292.00
10242 6.28E+02 31266 8 18 3.90E+02 20846.00

Figure 1: Experiments comparing solvers for a 2D stationary Stokes flow problem with dense (1.1⇥), viscous
(⌘1 = 104, ⌘0 = 1) inclusions, discretized with Q2 �Q1 finite elements. Extremely short runs do not always
report accurate memory usage on the test system.

3

The comparative study of Gould (2007) is mentioned in line 292 to justify the choice of PARDISO. I
am wondering where there could be any more up-to-date performance studies for sparse direct solvers
of symmetric indefinite systems.

Unfortunately, we couldn’t find a good, more-recent study (though this would also be of great interest
to us). We hope that the older study at least convinces the reader that we have chosen a highly-competitive
direct solver, to provide a meaningful comparison with other options. We have slightly modified the statement
in the paper (line 300), to imply that we choose it as a competitive solver in general, and that the cited
paper o↵ers some concrete, though not complete, evidence of this.

I totally agree with the authors that the choice of norm is important for matrices characterized by
large condition numbers such as in the case of the studied Stokes problem with strongly variable
viscosities. In this respect, the authors choose to use the true residual 2-norm rather than the norm
induced by the preconditioning. It is perhaps outside the scope of this study, but, in my view, given
that the authors have access to highly accurate solutions obtained using the direct solver approach,
it would be quite interesting to check and compare the solution error between GMRES(60)/ILDL &
FGMRES(30)/ABF, say in the energy norm.

Choosing a norm is usually a compromise, and here we chose one that we thought would be the most
representative of something like “actual solver performance”, in terms of minimizing a quantity (true residual
norm) which most people would agree corresponds well to minimization of the quantity of actual interest.
However, as noted in the paper (line 308), in practice a di↵erent (quasi-)norm would likely be used, either
because of computational expedience or because it better represented the application’s idea of an accurate
solution. We do think it’s probably outside the scope of the paper to present the results in additional norms,
but agree that it would be interesting to interrogate and should be, if a practitioner relies on a specific norm.

As a related point here, we have devoted considerable e↵ort to making the experiments here reproducible,
with publicly-available (and usable under a BSD-2 license) source code, to help address the problem that
users will often want or need to further interrogate the experiments presented. Here, additional norms could
be examined by running the application code (with the help of our reproduction supplement), and using
PETSc command line options to monitor a di↵erent norm or (if the desired norm is not supported), even
modifying the C code. While obviously the investment of time and e↵ort to run any code is non-trivial,
as readers we very much appreciate the ability to examine source code to answer the common question of
how a description in a paper ultimately translates to the implementation, and if interested in extending
the method, to be able to directly compare to an existing implementation. As scientific software becomes
more and more complex and relies on larger and larger software stacks, the notion that reproducibility (and
re-implementability) is implied by a technically-complete description of algorithms becomes less and less
valid.

Do the solve times reported in the tables for the ILDL’ preconditioning include the time spent on
computing the ILDL’ preconditioner? Actually, it would interesting to see how this time compares
to the time spent on iterations.

The solve times include both the setup and solve time. The motivation for this is as mentioned on on
line 114 - for most of the applications we envision being relevant (3-dimensional nonlinear problems with
large-enough memory footprints that direct solvers become problematic), the system is only solved once.

The setup time usually dominates the application time, very roughly requiring 50 � 90% of the total
solve time, for the experiments in this paper. If running the included code, one can observe this by using
PETSc’s logging feature (use -log view as an option), and then can observe the amount of time spent in
PCSetUp, where the factorization is computed.

We agree that this is under-reported in the paper (especially given the prevalence of reporting these times
separately in computational science literature, whether or not is really relevant). Thus, we have added a

4

note on line 297 and a new column of setup times in Table 1.

Regarding the numerical setup, I would claim that what really matters is the fraction of the inclusion.
With increasing inclusion fraction, as in the case of the setup studied in Fig. 2, a natural transition
towards porous media like systems occurs (technically speaking, I am wondering how well 100 inclu-
sions can be resolved using a 32ˆ3 computational mesh). Such physical systems are characterized by
strongly localized flows, which might be harder to solve compared to the suspension type of flow typ-
ically obtained for low concentration. It would be actually interesting to see how well the presented
methods work when the gravity load is replaced by an ambient pressure gradient prescribed through
boundary traction.

None of the experiments presented here includes a particularly high volume fraction of inclusions.
The intent of these benchmarks is not to stress the solvers by imposing a complex domain (as for instance

would be the case for a high volume fraction of rigid inclusions, with only the interstitial space meshed).
Rather, it is to explore the solver performance on a simple domain, but with coe�cient structures which
vary across non-grid-aligned discontinuities. The multiple sinker benchmark is convenient, but one could
also have explored, say, a sinusoidal boundary between two materials, varying the coe�cient jump across
the boundary, and the frequency of the boundary.

Technical corrections

l. 11-14 This sentence seems a bit convoluted. I would actually guess that something might be missing
here.

A typo (extra “to”) has been fixed and this sentence (line 11) has been simplified and split into two.

l. 22-23...the coe�cient structure is made increasingly challenging – I would suggest formulating it
more precisely; What “complex topologies” have been addressed in this study?

We have changed this sentence to specifically mention the multiple-inclusion scenario (line 24).

l. 33 This is maybe not so critical, but compressible quasi-static linear elasticity is not exactly an
example of a problem with a divergence free displacement field. In addition, it may indeed represent
a saddle point problem, but in some numerical formulations it may be straightforwardly cast as a
positive-definite problem.

This was indeed incorrectly expressed - to amend this, we have added a sentence to mention the interesting
and computationally-relevant fact that systems requiring divergence-free flow/displacement fields can be seen
as limiting cases of systems which penalize volume changes (line 30).

We have chosen to focus on incompressible or nearly-so examples in this work, as outside of this context,
there is less motivation to introduce elasticity in mixed form (even at the continuous level).

l.71...the nonzero entries of the factors are restricted to those for Aˆk – This could be stated a bit
more precisely.

Fixed to “Ak+1” and wording clarified (line 71).

l.72-73 I find the end part of this sentence unclear.

The has been reworded to be more concise (line 72), as the point of this passage is simply to point out
that only a small number of parameters are required for various variants of ILU preconditioning.

5

l. 109 In contrast to the previous ILDL studies previous mentioned above...- please remove the second
instance of “previous”

Fixed.

l. 134 One could consider using the transpose for one of the vectors in n ⇤ � ⇤ n, etc in eq. 3 & 4.

We opt not to do this, to try to keep the notation uncluttered. We believe it is at least consistent
notation, in the sense that u · v = uT v for two vectors, u ·A = ATu for a vector and a tensor (thought of as
a matrix) and similarly T · u = Tu.

To make this section more clear, we have added a description of the boundary conditions as a partition
of the boundary into free-slip and free surface (zero stress) regions (line 134).

l. 179 Is it really necessary to replace ⌧ with dev(�) in eq. 3? Given that the t and n vectors are
perpendicular (ht, ni = 0), t0 ⇤ � ⇤ n = t0 ⇤ (⌧ � p ⇤ I) ⇤ n = t0 ⇤ ⌧ ⇤ n� p ⇤ tn = t0 ⇤ ⌧ ⇤ n

This is true, and indeed this requires no special treatment in our code, so we have removed this statement.

l. 210 permutation (a map from rows to columns) – I would think that the permutation operates
within the rows and within the columns, and not from rows to column.

This was confusingly written and we’ve removed the mention of the row-column map (line 209), as the
interested reader is better served by reading about the details of the matching in the references. Briefly, the
problem of permuting the matrix is re-cast as a matching problem: the matrix is interpreted as a weighted
bipartite graph, where entries correspond to edges between rows and columns. The maximum weighted
matching gives (for a nonsingular matrix) a subset of the edges such that each row and column is involved
exactly once, which can thus be interpreted as a permutation. This subset is sought which maximizes an
objective (the product of the entries).

l. 215 If one wishes to find a symmetric permutation, one can only change the order oft he diag-
onal entries. – If I am getting it right, a symmetric permutation preserves the symmetry of the
matrix. I guess that with changing the order of the diagonal entries,the order of the entire rows and
columns is also changes (not just the order of the diagonal entries). Anyway, could “non-symmetric”
permutations be considered in the current context?

A symmetric permutation of a square matrix M is indeed of the form PMPT , where P is a permutation
matrix, and preserves the symmetry of the matrix while moving entire rows and columns.

We have not considered non-symmetric permutations in this context, but we do not categorically disregard
them. The aim of the permutations is to provide a good pivoting strategy, and the current approach seems
to scale close to optimally in practice while still retaining system symmetry (thus allowing one to store only
L and D, as opposed to two triangular factors, and allowing the use of methods like QMR or MINRES which
require symmetric systems). Thus, exploring non-symmetric permutations becomes less appealing.

However, the question of relaxing the symmetry requirements is a very interesting one! On the practical
level, this would be highly desirable for applications, for instance finite di↵erence schemes (including finite
volume schemes on orthogonal grids) for the Stokes equations, which don’t produce a symmetric system.

Interesting future work could address the usage algorithms which can extend the approaches presented
here (for instance, exploring the use of the multi-level ILU as implemented in ILUPACK) to non-symmetric,
indefinite systems which arise in computational geosciences.

6

l. 293-4 Through a custom interface we use PARDISO (Kuzmin et al., 2013) – This looks a bit
repetitive with respect to the previous sentence.

Modified to be more concise (line 299).

l. 298 The choice or norm allows is...- Please fix.

Fixed.

Table 1 - I would suggest that the volume fraction of the inclusions could be given. The viscosity is
shown without the unit, and this problem could be easily solved by showing the viscosity ratio. Is
the relative density dimensionless? Is it defined as (⇢incl � ⇢host)/⇢host? Is it actually relevant given
that the model is linear? I would suspect that changing the relative density should only result in a
rescaled velocity, and it should, hopefully, produce no appreciable changes to the course of numerical
iterations. Is “fill” defined as the ratio between the non-zero entries in the ILDL’ factor with respect
to the non-zero entries of the original matrix (the triangular part of it, including the diagonal)? Is
it necessary to use the scientific notation when time is reported? Maybe giving the total dof count
could be useful.

We haven’t focused on volume ratio (though several are computed in the remainder of this response),
because these ratios are low and we don’t believe that this is a factor stressing the solver. We choose the
multiple-inclusion problem as a benchmark not because of its direct relevance in application (where higher
volume fractions are a key consideration) but because of its usefulness as an abstraction of di�cult coe�cient
structure. See also our response to Reviewer 2’s general comments.

However, the presentation wasn’t clear enough to make the volume fraction obvious to the reader. As
such, we’ve added the inclusion radius to the captions of Figures 1,3, and 4. This information was also
available at the very end of our reproduction supplement, where we have updated the command-line options
to include the default (0.1) inclusion radius.

We have changed the caption of Table 1 to mention only the viscosity ratio, and added a column for
total DOFs. The relative density is dimensionless, and is defined as ⇢incl/⇢host. Indeed, as this is a linear
problem, most simple scalings of any of the parameters have little e↵ect on the solver performance, which
motivates the fact that we do not focus heavily on units or scalings in this paper, but on variations in the
material coe�cients.

“Fill” is defined as the number of nonzeros in the L factor in the LDLT factorization, relative to the
number of nonzeros in the strictly upper-triangular part of the matrix being factored. We have added a
note in the paper to make this concrete (line 201). Fill is not reported with scientific notation, though drop
tolerance is (which we thought was more readable).

Figure 1 - I would suggest a more detailed description of the numerical setups, both in the caption
and in the main body of the manuscript. What is the volume fraction of the inclusions? What is
meant by (Vel. scaled 1/3x)? Isn’t it that the scaling of the quiver lengths is in no obvious way
absolute? I think that it would be useful to show gridlines in the plots. I guess that the dashed line
in the Peak Memory Footprint shows the maximum available RAM during the numerical tests, but
it would be useful to explain it in the caption. The curve styles are not well visible in the legend. It
could also be explicitly explained in the caption that ABF(a), ABF(b),...refer to setups a, b, c...(at
a first glance it may look as if it were some variants of the solvers).

The volume fractions of the inclusions can be computed from the inclusion count and radius (which are
specified in Section 1.7 in the reproduction supplement).

• Single sinker of radius 0.25 =) volume fraction of 0.06

7

• 3 sinkers of radius 0.1 =) volume fraction of 0.01

• 8 sinkers of radius 0.1 =) volume fraction of 0.03

These are of course low volume fractions, in the context of problems concerned with interstitial flow (where
indeed, other models than a pure Stokes model may be appropriate, e.g. including a Darcy-type term). Our
use of the multiple-inclusion problem is motivated by its usefulness as an abstraction of coe�cient structure
which can a↵ect solver performance, as further discussed in our response to the general comments from the
second reviewer.

The captions about the velocity scaling are meant to signify that the first two plots have the same scaling,
and the second two a di↵erent one, but as pointed out, the absolute scaling of these velocities is not very
meaningful, so we have removed these notes to reduce clutter.

Grid lines have been added to all graphs in the paper. The flow plots already have grid lines, though one
has to zoom in to see them.

Notes have added to the plots specifying that the dashed black lines are indeed the maximum RAM
available.

All legend entries have been modified to hopefully make the line styles more clear. The caption of Figure
1 has been changed to refer directly to the coe�cient structures (a)-(d).

l. 317-8...the ABF solver fails to converge. – It is not clear to me where this can be seen in Fig. 1 (I
can’t really see any missing data for ABF)

This was intended to mean that when using even more inclusions than are presented in Figure 1 are
added, the performance continues to degrade, and thus there are missing ABF entries in Figure 2 (right).
This has been clarified (line 326).

Figure 2 - What is the volume fraction of the inclusions as their number is increase? Given that
the numerical resolution is kept constant (32ˆ3) I would guess that it is increased. In my opinion,
this should be explicitly stated in the caption and also in the main body of the manuscript. In fig.
1 for 32ˆ3 the overall solver performance in terms of dof/s fell in to the range between 5*10ˆ3 and
10ˆ4, which is consistent with the time reported in table 1. However, in fig. 2, even in the previously
studied case of the viscosity ratio of 10ˆ4, the performance is between 10ˆ-2 and 10ˆ-1. I would guess
that this could be some technical mistake. In my opinion, it would be useful to show gridlines and
maybe use a slightly large font for the legend entries.

The volume fraction indeed increases with the number of inclusions. The inclusion are of radius 0.05 (in
the unit cube), and as such for the maximum of 140 inclusions, representing about 7% of the volume. We’ve
added a note to this e↵ect in the caption of Figure 2.

There was indeed an error in our plotting script (an error in the calculation for the total number of
DOFs). We have fixed the error and made the y axes uniform between the two sub-plots in Figure 2.

The legends have been increased in size in Figure 2, and grid lines have been added to all graphs in the
paper.

l.324 “...varying to drop tolerance” – Please fix.

Fixed.

l. 326 System scaling is mentioned in the footnote. Please explain what system scaling(physical,
algebraic, ..) is exactly meant here.

This has been clarified (line 333) to refer to a (newly-numbered) equation in Section 3, describing the
preprocessing performed before the drop tolerance is applied.

8

l.339.. and C is the term (depending on � as in Eq.(9)). – I would guess that the outer brackets are
not necessary here. Could the author hint what they actually use for the C term?

The parentheses were indeed a typo, and we agree that the presentation was unclear.
The matrix �C arises from a term in the weak form like �

R
⌦ qT 1

�pdv, hence is just another scaled
pressure mass matrix, scaled with coe�cient � 1

� , which is ultimately added to the mass matrix scaled with
� 1

µ , that arises in the same way that the � 1
⌘ term does for the Stokes problem (as an easy to compute yet

spectrally equivalent approximation for the �BTK�1B term in the Schur complement).
This passage has been reworded in the manuscript (line 343), and more explicit descriptions of the

weightings for pressure mass matrices have been added elsewhere (e.g. line 253).
Readers who may be interested in reimplementing the method, or simply wanting to see the direct

expression of the formulae in C code, can also examine the source code (at the time of this writing, see
femixedspace.c:2987 at bitbucket.org/psanan/exsaddle).

l. 340 Figure 4 shows a similar experiment using a scenario which is perhaps more typical in ap-
plications. – Please explain the boundary conditions used in this setup in the main body of the
manuscript.

We have added this description and a short note in the initial description of the elasticity problem to
highlight that in this case we use inhomogeneous boundary conditions; these are a simple modification of the
free-slip conditions, adding terms to the righthand side to specify a given normal displacement as opposed
to a zero normal displacement.

Figure 3 – Maybe the Lame parameters µ and � could be scaled by ⇢ ⇤ g ⇤ L. A colorbar for the
color-coded pressure and gridlines would be a nice addition to this figure.

We have not focused on scaling parameters, as global scalings of these do not a↵ect linear solves, and
only relative scalings a↵ects the solvers considered here; indeed, it is one of the great advantages of the ILDL
preconditioners, shared with the direct solvers, that they can largely automatically address scaling issues.
In each case, the maximum pressure (red) is about 1, and the minimum is a small number (corresponding
to a zero pressure at the top, free surface). We have added color bars for the pressure fields, and grid lines
for the graphs. There are already grid lines (albeit faint) in the 3d plots.

Figure 4 – It is of small relevance to the studied topic, but the deformed wire mesh implies a substantial
deformation that could hardly be accommodated elastically by any geomaterial. But maybe this could
be treated as an exaggerated mesh deformation.The elastic moduli are given with no units.

This being a linear problem, it is indeed hopefully still a relevant (and easier to visualize) experiment,
even when using an unrealistically-large deformation.

We have not emphasized the units or absolute values of the parameters, as while these are obviously of
great importance in actual applications, the applicability and e↵ectiveness of the solvers discussed in this
paper are crucially dependent on relative coe�cient variability, and essentially invariant to scalings.

Marcin Dabrowski

9

https://bitbucket.org/psanan/exsaddle/src/4aab80130ab8c322007a2875f8d688e94da656b2/femixedspace.c#lines-2897

se-20200-79-RC2
Response to Reviewer Comments

Patrick Sanan, for all authors

We thank the reviewer, Mikito Furuichi, very much for detailed and thoughtful comments. We reproduce
these comments here and provide our own comments and responses. Line numbers in our responses refer to
the revised manuscript.

General comments:

This paper presents the benchmark experiment with the direct and iterative solvers for the Stokes
flow and elastic problems targeted by the solid earth simulation. The authors especially focus on the
ILDL factorization which is not yet commonly used in the numerical solid earth community. Their
performance test showed the tradeo↵ relations among the robustness, time to solution, and memory
cost. This paper is well organized and presented results may motivate the computational geoscientist
to utilize ILDL in their own geodynamics and seismic applications. Thus, this paper essentially
fits the scope of the method paper of Solid Earth (SE). On the other hand, there is some room
for improvement in presentation and experimental design. The author claims that the robustness
of ILDL is the advantage over the iterative ABF solver, but supporting experimental data is found
only in the extreme case which solves 10 inclusions of 10ˆ6 viscosity contrast within 32ˆ3 elements
simulation. In other cases, iterative ABF solver shows better results in time-to-solution, memory
usage, parallel performance. On the other hand, ILDL shows practical advantages against direct
solver in memory cost. Thus, in conclusion, the ILDL solver is found to be the potentially good
alternative of direct solver rather than an iterative solver. So, the expected reader would be the user
of direct solver. However, their performance analysis is presented mainly for ILDL vs iterative ABF
solver rather than vs direct solver, especially in the parallel performance section. I encourage the
author to continue this work, but the presentation should be improved and more detailed performance
analysis should be addressed before I recommend this for publication in SE.

We argue that these “extreme” cases are in fact those of greatest interest to many practitioners, in partic-
ular in geodynamics. It’s become fairly common practice to abstract and characterize some of the di�culties
of challenging heterogeneous coe�cient structures with multiple-sinker problems, as they conveniently o↵er
two “knobs” for contrast and geometrical complexity (number of sinkers). Each parameter tends to stress
solvers in di↵erent ways.

We have attempted to stress in the paper (e.g. lines 257, 321, and 396) that in addition to the lower
memory footprint, a perhaps even greater advantage of tools like ILDL preconditioning is their relative ease
and robustness of use compared to an ABF solver.

The ABF solver presented here took years to tune, for experts. While they do indeed provide “optimal”
solvers in many of the ways optimality is defined, they certainly have not shown themselves to be optimal
in terms of solvers that most practitioners can understand and implement enough to incorporate. As stated
above, the readers with the most to gain from ILDL preconditioning are those who rely on direct solvers,
but who run into a memory limitation. Whereas before, the only good option was a risky exploration of
solvers like ABF (or monolithic multigrid solvers), we aim to demonstrate the availability and performance
of a far more incremental change to the solver stack.

1

It would have been tempting to not include the ABF solves at all - again, we agree that the most likely
user of ILDL preconditioners would be those for whom this solver is practically out of reach, and we agree
that the closer comparison is with direct solvers. However, we feel that it is important to clearly show what
is attainable with a more invasive and complex implementation, particularly as we also believe strongly in
the value of composable and hierarchical solver frameworks (such as the PETSc-based one used here) which
o↵er a way forward to making such solvers easier to use, though there is clearly a long way to go.

The parallel section certainly leaves many things to future work. Our main objective, in analogy to
existing work (and practice) which uses ILU subdomain solves within a block Jacobi or additive Schwarz
preconditioner, is to simply demonstrate that a similar approach is available (with many of the same draw-
backs) for indefinite problems, and the within a composable software environment, this is in many ways
easier than one might expect to experiment with. Also see the response to point 17, below.

Detail comments:

1. In introduction: Several sentences sound your opinion rather than the objective view (e.g. “This
is unfortunate” in line 102). Such phrases are not appropriate for the research paper.

We agree that we veered too far into this territory, and have thus edited the introduction to remove
several opinion-based statements, and have made others more objective.

2. In introduction: Please more review the progress and di�culty in direct solvers, although the
author mainly reviews the recent progress of iterative solver.

While there is certainly still research going on, the field of direct solvers could be considered to be much
more mature, and is extensive. As such we’ve added a comprehensive review article, Davis et al. 2016, for
the interested reader. We also note that the references specifically on incomplete LDLT factorization can
guide the interested reader to that subset of the direct solver literature which is most relevant (methods
using complete LDLT factorizations).

3. In line 45: The hieratical grid system with such as AMR [Rudi et.al. 2015] worked well as the
solution of highly variable viscosity problem with controlling the coe�cient.

We note that the referenced work uses smoothed viscous inclusions in their benchmarks, so while address-
ing the problem of large viscosity contrasts, does not involve actual discontinuities in the coe�cient field, so
that coe�cient always varies sharply across a single finite element - this is currently mentioned in the paper
on line 277.

Nevertheless, AMR-based methods show great promise. However, on a practical level, AMR methods are
very challenging to implement, perhaps even more so than ABF methods. In contrast, we believe that the
approaches highlighted in this work o↵er a tool which promises to be more useful to the large class of users
who may want to move beyond using a direct solver, but only have the time or resources to experiment with
something like ILDL preconditioners, which correspond to the ILU preconditioners which practitioners have
been successfully using, albeit only for the positive-definite problems for which they are designed, for many
years.

4. In line 95: Since expected readers of this journal are not specialists in linear algebra, a more
comprehensive review is needed. For example, how much memory was saved against direct solver
with increasing/decreasing the time-to-solution in the past successful application?

While this paper attempts to give some detailed information on the algorithms being used, we ultimately
hope that the experiments (and provided source code) will be intelligible to readers without much linear
algebra background, in the comparisons they o↵er to direct solvers, especially.

2

Some of the included references contain some information (Hagemann and Schenk 2006, for example),
but a key part of the contribution of this paper is to address a general lack of this sort of information in the
literature. Indeed, there aren’t as many past successful applications as we believe there should be, and this
paper is one step to try to expose these solvers. We perform a study of the relevant tradeo↵s in the context
of a set of physical applications, as opposed to in the context of a set of fixed-sized matrices representing a
wide array of applications, which are more typical in the published work on these solvers.

5. In line 211: Delete the space after “(”

This sentence has been reworded in response to comments from another reviewer.

6. In line 253: The spectral analysis for scaled pressure mass matrix can cite [1]

This citation has been added.

7. In Numerical experiment: I think that the experiment starts with x=0. This problem setting
is suitable for steady-state solution. But in practice, we solve the timestepping/nonlinear problems.
Thus, it is interesting if ILDL largely outperforms the direct solver from the second step. The solution
of the previous step will be a good initial gauss for reducing the iteration of ABF and ILDL.

A simple motivation for using zero initial guesses is that this represents a uniformly-available and in some
sense “worst-case” setup, which would be interpretable in the context of the most readers’ problems.

In the case of a nonlinear solve, one is typically computing an update step (e.g. in Newton’s method).
There is no obviously generally useful initial guess for the linear solves; for example, the previous step would
not be useful, as the solver has just updated the approximate solution with what it considers to be a good
multiple of this search direction.

For nonlinear problems solved at each timestep, it is common practice to use a previous solution as an
initial condition, but this is an orthogonal issue to the one of initializing solutions to the linear solves which
may be performed within the nonlinear solver.

In the case of providing starting guesses for linear, time-dependent problems, an initial guess might
provide faster convergence if one were relying on an absolute convergence tolerance. However, this approach
is sensitive to scaling of the equations and as such the definition of an absolute tolerance is problem-dependent
and must be carefully chosen, if used at all. The results in this paper are intended to be robust to system
scaling (and as such we do not emphasize scalings or units - for more see the response to Reviewer 1, which
is another motivation for not considering absolute convergence tolerances here.

8. In line 264: In practice, direct solver is mainly used in 2D problems. Also, in memory capacity,
the di↵erence in maximum element size in 3D (40ˆ3 for PARADISO < 48ˆ3 for ILDL) seems to be
trivial but that in 2D (252ˆ2 < 332ˆ2) is significant in scientific application. Then, the experiment
in 2D should worth considering in SE.

We very much agree that 2D problems with large memory footprints are relevant in practice. We per-
formed these experiments (and note that they can also be performed using our included, open source code),
but did not believe that they would be as interesting to the reader as the 3D problems which we’ve chosen
to devote manuscript space to. This was not unexpected, as direct solvers exhibit better scaling for 2D
problems than 3D ones, in particular with regards to memory footprint. This implies that far fewer readers
would benefit from a deeper look at the 2D case, as there are fewer gains to be made over a direct solver.
Those readers who have run into the limits of direct solver performance for 2D problems would likely be
better served by investigating the more complex alternatives: ABF solvers, monolithic multigrid solvers, and
emerging nonlinear solvers based on pseudotransient continuation.

3

Also see Figure 1 in our response to Reviewer 1, for a 2D experiment which we removed from an earlier
draft.

9. In line 317: It is confusing that ABF does not fail to converge in Figure 1. Why not plot the case
with contrast = 10ˆ6 with 8 inclusions?

This has been clarified in the text (line 325, and see also our response to a similar concern from Reviewer
1).

The plot resulting from changing the viscosity contrast 104 to 106 would look very similar.

10. In line 318: Do we really need to solve the problem with over 10 inclusions in 32ˆ3? The accuracy
of such a setting seems to be a useless solution in physics. In addition, to check the robustness,
SINKER box test of [May and Moresi, 2008] is better than this setting.

It is true that at these grid resolutions, the inclusions may well be under-resolved, and if one were
interested in physically-relevant flow fields for these problems, finer grids should be used. We note that
in applications, particularly those like geodynamics wherein coe�cient structure emerges and changes with
time, solvers must be able to handle under-resolved cases gracefully.

We use the multiple-sinker problem not because of its direct physical relevance, but because it presents
a very useful abstraction of di�cult coe�cient structures that can appear in practice.

The advantages of this benchmark over something like SINKER are

• Distribution of interface alignment is uniformly distributed, so e↵ects of grid alignment are less of a
concern

• By changing the number of sinkers, the geometric complexity of the coe�cient structure is quantifiable
and adjustable.

On this second point, it can be observed that the spectrum of the operator, on which the convergence of the
solver depends critically (See Elman, Silvester, Wathen 2005, Chapter 5) has a wider range of eigenvalues
(worse conditioning) when the viscosity contrast is increased, and less tightly-cluster eigenvalues when the
number of inclusions is increased. Since conditioning and spectral clustering are (for symmetric systems)
key predictors of convergence for Krylov methods, this provides a very useful benchmark.

The SINKER benchmark might be an interesting complement, because of the complexity of flow induced
by the corners of the rectangular inclusion.

11. In Figure 1: Sample glyphs are di�cult to see.

These glyphs are only intended to give an impression of the flow field, and note that the images are high
resolution and can be zoomed in on in a PDF file.

12. In Figure 1: What is the message from the peak memory foot point? Why memory size in Table
2 is not enough?

Table 1 only covers a single coe�cient structure. We include the memory plot in Figure 1 in order to
show, in a quick-to-see way, that the memory behavior is insensitive to the coe�cient structure and to make
the scaling behavior (the slope of the curves) apparent, hopefully giving the reader a clear idea of the memory
footprint gains available over a range of problems.

13. In Table 2: For a fair performance comparison, it should be noted that the number of iterations
independent from the DOF for ABF.

4

Table 2 is concerned with the e↵ect of the drop tolerance on the ILDL-preconditioned solve, but Table 1
includes iterations counts for the ABF solver. This independence of iteration count on problem size for the
ABF preconditioned solves isn’t explicitly noted elsewhere, as the scalability of the full solves implies this.

14. In line 320: Since your ABF is based on Jacobi smoother and Arnoldi type Krylov method, more
smoothing iteration or avoiding rounding error of GMRES are promising to gain the convergence
even with 10ˆ6 problem. It is interesting to see the performance of ABF with increasing the number
of inner smoothing iterations to converge 10ˆ6 problem (I argue that such simple tuning is out of the
expertise.). Whether such robust ABF can solve the 10ˆ6 problem faster than the ILDL method or
not, is the matter for ILDL to be the alternative of ABF.

It is indeed true that ABF solvers can be tuned to deal with large viscosity contrasts by increasing the
amount of computational work done by the inner multigrid solver. For a given problem, which solver o↵ers
the fastest time-to-solution can indeed depend on the amount of e↵ort spent in tuning the solver. The
main point we wish to make, though, is that ILDL-preconditioned solves are less sensitive to changes in the
coe�cient structure than any given ABF solver. It is our anecdotal observation that the performance of
the ILDL-preconditioned solves tends to at least degrade incrementally with viscosity contrast, whereas the
ABF solve can completely stagnate at a certain contrast, requiring the sorts of tunings mentioned.

15. In line 297: Please write Eqs. (5), (11), and the norm should be a consistent form.

We have changed the notation in the mentioned equations and added a note on line 305.

16. In line 353: Additive Schwarz Method (ASM) should be noted.

Fixed.

17. In “Using ILDL within a parallel preconditioner”: Since ILDL is worth investigating as an
alternative of direct solver PRADISO rather than ABF solver, the performance on SMP system
(openMP) is more interesting than distributed memory parallelization (MPI). Please reconsider the
way of presentation. Since ABF is inherently suitable for the distributed memory parallelization,
Table 3 did not show any advantage of ILDL.

We agree that this is a very interesting future avenue, and is an ongoing project in terms of research and
software development. There are a few references at the end of the paper (line 410) on recent work, which
we more properly introduce as mentioned in the next comment. Implementations of ILDL preconditioners
which function in shared memory parallel environments (e.g. OpenMP) or fine-grained parallel environments
(e.g. on GPUs) show obvious promise in terms of reducing the time-to-solution of the ILDL-preconditioned
solves presented here, by parallelizing operations (though not notably a↵ecting algorithmic properties like
number of iterations). Most importantly, we note that future parallel implementations will not notably
impact memory usage, which we have emphasized as the key limiting resource for practitioners relying on
direct solvers.

18. In lines in 400-404: These lines seem to be a jump in the context. Please introduce them in more
detail if you want to address them. By the way, “incomplete LDL” should be ILDL

We have tried to reword the concluding statements (line 407 and onwards) on extensions to the algorithms
to make the presentation flow better.

ILDL is a synonym for “incomplete LDLT ”, but we have made this change.

5

[1] P. P. Grinevich and M. A. Olshanskii, An iterative method for the Stokes-type problem with
variable viscosity, SIAM Journal on Scientific Computing, 31 (2009), pp. 3959– 3978

6

Pragmatic Solvers for 3D Stokes and Elasticity Problems with
Heterogeneous Coefficients: Evaluating Modern Incomplete LDLT

Preconditioners
Patrick Sanan1, Dave A. May2, Matthias Bollhöfer3, and Olaf Schenk4

1Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, Zürich 8092, Switzerland
2Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom
3Institute for Computational Mathematics, TU Braunschweig, D-38106 Braunschweig, Germany
4Advanced Computing Laboratory, Università della Svizzera italiana, Via Buffi 6, Lugano 6900, Switzerland

Correspondence: Patrick Sanan (patrick.sanan@erdw.ethz.ch)

Abstract. The need to solve large saddle point systems within computational Earth sciences is ubiquitous. Physical processes

giving rise to these systems include porous flow (the Darcy equations), poroelasticity, elastostatics, and highly viscous flows

(the Stokes equations). The numerical solution of saddle point systems is non-trivial since the operators are indefinite.

Primary tools to solve such systems are direct solution methods (exact triangular factorization) or Approximate Block Fac-

torization (ABF) preconditioners. While ABF solvers have emerged as the state-of-the-art scalable option, they are invasive5

solvers requiring splitting of pressure and velocity degrees of freedom, a multigrid hierarchy with tuned transfer operators

and smoothers, machinery to construct complex Schur complement preconditioners, and the expertise to select appropriate

parameters for a given coefficient regime – they are far from being “black box” solvers. Modern direct solvers, which robustly

produce solutions to almost any system, do so at the cost of rapidly growing time and memory requirements for large problems,

especially in 3D. Incomplete LDL
T (ILDL) factorizations, with symmetric maximum weighted matching preprocessing, used10

as preconditioners for Krylov (iterative) methods, have emerged as an efficient means to solve indefinite systems. These meth-

ods have been developed within the numerical linear algebra community but have yet to become widely used in non-trivial

applications, despite their practical potential; they .
:::::
They

:
can be used whenever a direct solver can, only requiring an assem-

bled operator, yet can offer comparable or superior to performance , with the added benefit of having
::::::::::
performance

::::
with

:
a much

lower memory footprint. In comparison to ABF solvers, they only require the specification of a drop tolerance and thus provide15

an easy-to-use addition to the solver toolkit for practitioners.

Here, we present solver experiments employing incomplete LDL
T factorization with symmetric maximum weighted match-

ing preprocessing to precondition operators, and compare these to direct solvers and ABF-preconditioned iterative solves. To

ensure the comparison study is meaningful for Earth scientists, we utilize matrices arising from two prototypical problems,

namely Stokes flow and quasi-static (linear) elasticity, discretized using standard mixed finite element spaces. Our test suite tar-20

gets problems with large coefficient discontinuities across non-grid-aligned interfaces, which represent a common, challenging-

for-solvers, scenario in Earth science applications. Our results show: (i) as the coefficient structure is made increasingly chal-

lenging(high contrast , complex topology),
:::
by

::::::::::
introducing

::::
high

:::::::
contrast

::::
and

:::::::
complex

::::::::
topology

:::::
with

:
a
::::::::::::::::

multiple-inclusion

1

:::::::::
benchmark, the ABF solver can break down, becoming less efficient than the ILDL solver before breaking down entirely; (ii)

ILDL is robust, with a time-to-solution that is largely independent of the coefficient topology and mildly dependent on the25

coefficient contrast; (iii) the time-to-solution obtained using ILDL is typically faster than that obtained from a direct solve,

beyond 105 unknowns; (iv) ILDL always uses less memory than a direct solve.

1 Introduction

Saddle point systems frequently arise in the context of constrained minimization problems. Many physical processes relevant to

the Earth sciences fall within such a minimization framework. Possibly the most widely used relates to the variational statement30

which seeks to constrain a vector field (e.g. displacement / velocity) to be divergence free.
:::::
These

:::::::::
statements

:::
can

:::
be

:::::::
viewed,

::::
both

::::::::::
numerically

:::
and

:::::::::
physically,

::
as

:::::::
limiting

:::::
cases

::
of

::::::::
scenarios

::
in

::::::
which

::::::
volume

::::::
change

::
is

:::::::::
penalized. Such formulations natu-

rally introduce a pressure-like (scalar) variable to constrain the displacement / flow (vector) field. Specific examples include:

mixed Darcy problems involving the unknowns Darcy flux and saturation pressure (porous flow, groundwater flow, oil and gas

reservoirs); poroelasticity (geomechanics, reservoirs engineering, bore hole stability); compressible / incompressible quasi-35

static linear elasticity (crustal deformation targeting on inter-seismic periods); and incompressible viscous flow (dynamics of

the mantle, lithosphere, glaciers, ice sheets). Other relevant (but more generic) applications giving rise to discrete problems of

saddle point type include PDE-constrained optimization, weak imposition of boundary conditions (e.g. contact, fault constitu-

tive behaviour) and matching conditions between different model domains (e.g. Beavers-Joseph matching conditions between

fluid-solid regions).40

Solution techniques for saddle point systems have been extensively studied (Benzi et al., 2005; Benzi and Wathen, 2008;

Loghin and Wathen, 2004). Nevertheless, saddle point systems have a reputation for being
:
a
::::::
saddle

:::::
point

::::::
system

::::
may

:::
be

challenging to solve - this is to a large part attributed to the fact that the
::::::
because

:::
the

:
discrete problem (e.g.

:::
i.e. the matrix),

while often symmetric, is indefinite; this structure precludes the use of many standard approaches (like classical multigrid).

Saddle point problems too large to be practically solved via sparse direct solution techniques (e.g. LU or LDL
T factor-45

ization)are deemed to require
::::::::::::::::
(Davis et al., 2016)

::
can

:::
be

::::::
solved

::::
with

:
highly-specialized solvers . Indeed, if algorithmically

optimal methods are sought, this opinion is justified. As such, the
:::::
which

::::::
exhibit

:::::
better

:::::::
scaling

::
in

::::
both

:::::
time

:::
and

::::::::
memory

:::::::
required.

::::
The development of highly scalable, optimal preconditioners for the solution of large-scale variable viscosity Stokes

systems arising in ice sheet modeling (Isaac et al., 2015) and geodynamics (May et al., 2014; Rudi et al., 2015) is mature.

However, the practical usage of saddle point solvers does not always favor the above agenda
::::
these

:::::::::
approaches. Maximum50

problem sizes of interest are typically fixed or modest (e.g. <O(108) DOFs); algorithmic or parallel scalability may not be

to be prized to the exclusion of all else; time-to-solution(s) may not dominate the time required to set up and tune (by hand)

a specialized solver; or computational resources available may be modest (e.g. single compute node with 100 GB RAM and

unlimited walltime, or few low memory compute nodes with ⇠ 400 cores with walltime restricted to < 24 hrs). Specialized,

optimal solvers often lack robustness as problem parameters or problem types are varied, though progress is being made in this55

regard (e.g. Rudi et al., 2017).

2

Solvers can trade some algorithmic performance for robustness and/or ease of use. A striking example is the persistent use of

incomplete LU (ILU) preconditioning (e.g. Wathen (2015) §6.1, Benzi (2002) §3). With the help of an easy-to-apply-and-store

approximate inverse to the system matrix, obtained by discarding terms from a full factorization (as used in a direct solver),

the solution may be iteratively updated until it approaches the solution. While ILU-preconditioned Krylov methods are neither60

algorithmically scalable nor completely robust, the method is ubiquitous for several reasons.

1. Only an assembled operator is required. Many efficient preconditioners require auxiliary information, typically concern-

ing the physical domain of an underlying PDE. For example, multigrid solvers require a hierarchy of grids and transfer

operators and FETI-DP (Farhat et al., 2001) methods require access to finite element subdomains. However, purely al-

gebraic solvers, which only require an assembled operator (matrix), are always in demand, as they can be applied much65

more broadly and allow for greater ease of algorithmic experimentation.

2. Reasonable performance is observed for a large class of relevant problems. Some variants of ILU preconditioning reduce

the condition number of a standard second-order elliptic PDE, discretized with finite differences or finite elements, from

O(h2) to O(h) (Benzi, 2002) As such, the preconditioner has been used in many applications, alone or as a subdomain

preconditioner for a block-Jacobi preconditioner, for example in subsurface flow (Mills et al., 2007).70

3. The methods are tunable, with a small number of parameters. ILU-preconditioned Krylov methods typically only expose

a small number of parameters to the user, depending on the variant employed (Saad, 2003, Ch. 10). For instance, in

ILU(k) methods, the nonzero entries of the factors are restricted to those of Ak, one may drop any
:::::
A

k+1.
::::
One

::::
may

::::
also

::::
drop entries below a given threshold , or use more complicated approaches such as ILUT (Saad, 1994) . Multi-level

::
or

:::::::::
multi-level inverse-based dropping strategies (Bollhöfer and Saad, 2006)accept a drop tolerance for factorization as well75

as a potentially different drop tolerance.

Denser factors typically produce a better approximate inverse, which typically makes for a better preconditioner. Thus,

a simple trade-off exists between iteration counts and memory usage. This is in contrast to direct solvers, which do not

offer the user any control over memory usage and which always (over-)solve to machine precision.

Often, an additional choice is available of an ordering strategy such as approximate minimum degree ordering, nested80

dissection, reverse Cuthill-McKee (RCM), or others. Finally, a choice must be made of the Krylov method itself; this

study uses right-preconditioned GMRES or FGMRES, but this is rarely a critical choice and many options are usually

available, as Krylov methods are far simpler to implement than direct solvers or incomplete factorization preconditioners.

:
.

4. Tools are widely available in software. Because of the conveniences described in points 1 and 3, ILU preconditioners85

have made their way into numerous software packages, including MATLAB (MATLAB, 2019), ILUPACK (Bollhöfer

and Saad, 2006), UMFPACK (Davis, 2004), WSMP (Gupta et al., 1997), PETSC (Balay et al., 2019a, b), TRILINOS

(Heroux et al., 2005), and many others, as they often provide a reasonable default preconditioner.

3

5. The method is well-discussed in the practical literature. Potential users are likely to have access to a performance study

which includes the effect of ILU preconditioning, with documentation of the parameter choices employed. A valid90

criticism of ILU preconditioning is that part of its popularity is simply due to its heritage; it was studied early and hence

there is robust literature which directly demonstrates its use.

Incomplete LDL
T (ILDL) preconditioners arise as incomplete versions of direct solvers for indefinite systems, which use

the factorization A= LDL
T , where L is lower-triangular and D is block diagonal. Here the term “incomplete” implies that

factorization is only approximate. ILDL methods with symmetric maximum weighted-matching preprocessing (see Section 3)95

have emerged in the numerical linear algebra community as an analogous method to ILU methods, but for symmetric indefinite

systems; they are more robust than ILU or previous incarnations of ILDL. Recently, comparison studies characterizing such

approaches have appeared: Hagemann and Schenk (2006) provide a study of the effectiveness of ILDL preconditioning with

respect to a matrix “zoo”; Greif et al. (2015) performed a similar study with their SYM-ILDL package; Multilevel ILDL pre-

conditioners with symmetric weighted matching preprocessing have been shown to be effective when applied to the Helmholtz100

equation (Bollhöfer et al., 2009); Schenk et al. (2008) showed that a similar approach can also be used to effectively compute

a few interior eigenvalues of a large indefinite matrix arising from the Anderson model of localization. Recent work on sparse

inverse covariance matrix estimation highlights how ILDL preconditioners can be preferable to highly efficient direct solvers,

due to their much lower memory footprints (Bollhöfer et al., 2019a).

Despite these studies, the applicability of ILDL preconditioners is less well-known outside the numerical linear algebra com-105

munity. This is unfortunate, as
:
,
::::
even

::::::
though

:
these modern methods bring incomplete factorization approaches for indefinite

symmetric systems in line with other popular methods, in terms of robustness and ease of use. It should also be emphasized

that points 1 and 3 hold for the ILDL method.

1.1 Motivations and Outline

This paper addresses points 2, 4, and the beginnings of 5 in the context of using ILDL preconditioners with symmetric max-110

imum weighted matching ordering applied to saddle point systems arising from the spatial discretization of a class of PDEs

relevant to the solid Earth.

In contrast to the previous ILDL studies previous mentioned above, which mostly focus on the robustness of preconditioners

across a corpus of matrices representing individual instances of different applications, here we focus on a deeper examination

of a specific class of PDEs commonly used within the Earth sciences. Specifically, we wish to examine the saddle point115

problems arising from stationary Stokes flow with highly heterogeneous viscosity structure, and systems arising from the static

linear elasticity, also with large coefficient jumps. Particular attention is paid to physical problems with challenging
::::
large, non-

grid-aligned coefficient jumps, as these constitute some of the more challenging systems of interest within the Earth sciences.

This focus allows new insight into the effect of varying problem size and parameters (in particular, coefficient structure) on the

performance of solvers.
::
In

::::::::
particular,

:::
the

::::::
spatial

:::::::::
distribution

::
of

:::::::
material

::::::::::
parameters,

:::::
which

:::
we

::::
refer

::
to

::
as

::::::::::
“coefficient

:::::::::
structure”,120

:
is
::::::::::
highlighted.

:

4

We only examine the scenario in which a given linear system need only be solved for a single right hand side. This is

typical when solving nonlinear systems of equations (often within time-stepping algorithms) when a Jacobian and residual are

assembled and used to compute a step.

The saddle point operators arising from the Stokes and static elasticity (in mixed form) systems are presented in Section 2.125

Section 3 describes the incomplete ILDL factorization preconditioner with maximum symmetric weighted matching prepro-

cessing. Section 4 describes an Approximate Block Factorization (ABF) preconditioner and a sparse direct solver, which serve

as representatives of the two classes of alternative approaches in common use and which we will compare ILDL against. Section

5 presents experiments which characterize the performance of these ILDL-preconditioners, direct and the ABF-preconditioned

solves applied to the Stokes and elasticity problems for a variety of synthetic model configurations involving multiple inclu-130

sions of differing material parameters (with respect to the surrounding medium).

2 Prototypical problems and saddle point systems

2.1 Stokes flow

Conservation of momentum and mass for an incompressible creeping fluid in a domain ⌦ with boundary @⌦ are given by

�r · ⌧ +rp= ⇢ĝ,

�r ·u= 0, (1)135

where u and p are the velocity and pressure, respectively. The forcing term is associated with buoyancy variations; ⇢ is a

spatially-varying density and ĝ is the gravity vector. For the isotropic media we consider here, the deviatoric stress ⌧ is related

to the strain rate "̇[u] via

⌧ = 2⌘"̇[u], "̇[u] = 1
2

�
ru+(ru)T

�
, (2)

where ⌘ is a spatially-varying effective shear viscosity. The system given by Eq. (1) is closed with appropriate boundary140

conditions specified on the normal and tangential components of the velocity and stress (�). In this work, we consider the

following boundary conditions,
::::::::::
partitioning

:::
the

::::::::
boundary

::::
into

:::::::
free-slip

:::
and

::::
free

::::::
surface

:::::
(zero

:::::
stress)

:::::::
regions:

u ·n= 0, t · ⌧ ·n = 0 x 2 �D, (3)

n ·� ·n= 0, t ·� ·n = 0 x 2 �F , (4)

where � = ⌧ � pI is the total stress, n,t are the normal (outward pointing) and tangent vector to the boundary @⌦, for which145

�D \�F = ; and �D [�F = @⌦.

2.1.1 Discrete problem

We use inf-sup stable mixed finite elements (FE) to obtain discrete solutions of Eq. (1). A full description of the variational

(weak) problem associated with incompressible Stokes flow can be found in Elman et al. (2005). The discrete Stokes problem

5

A
:::::
AStokes:is denoted by150

2

4K B
T

B 0

3

5

2

4u
p

3

5=

2

4F
0

3

5 , or AAStokes
:::::

v = Fb, (5)

where K
:
K

:
is the discrete gradient of the deviatoric stress tensor and B,B

T
:
B

::::
and

:::
B

T are the discrete gradient and divergence

operatorsrespectively. We note that the ,
:::::::::::
respectively.

:::
The

:
FE discretization results in K

::
K being symmetric positive definite,

thusA
:
;
::::
thus,

::::::
AStokes:is a symmetric, indefinite operator.

2.2 Static linear elasticity155

The conservation of momentum for an elastic solid in static equilibrium in a domain ⌦ with boundary @⌦ is given by

�r · �̂ = ⇢ĝ, (6)

where ⇢ and ĝ were defined previously in Section 2.1, and �̂ is the total stress, which we assume to obey the linear, isotropic

constitutive relation

�̂ = 2µ"[u] +�Tr("[u])I

= 2µ"[u] +�r ·uI, (7)160

where u is the displacement and the (linear) strain tensor "[u] is given by

"[u] = 1
2

�
ru+(ru)T

�
(8)

and Tr(·) denotes the trace operator. The particular form of the constitutive relationship adopted is defined in terms of the two

Lamé parameters (�,µ). The first Lamé parameter, �, characterizes compressibility; as �!1, the material becomes incom-

pressible. The second Lamé parameter, µ, is equivalent to the shear modulus (often denoted G) and characterizes resistance to165

shearing.

Describing materials which are incompressible in some or all of ⌦ is problematic with the formulation given in Eqs. (6)

and (7) since the last term in Eq. (7) behaves like 1⇥ 0 in the incompressible limit. The latter scenario is relevant when

considering plasticity models, or the presence of fluids (e.g. within a crack along the subduction interface). Even when large

but finite values for � (e.g. the equivalent Poisson ratio ⌫ = �
2(�+µ) > 0.49) are used, “locking” may occur when using standard170

finite difference, finite volume, or finite element spatial discretizations (Brezzi and Fortin, 1991), rendering the displacement

solutions meaningless. The issues in the incompressible limit can be resolved by grouping the problematic terms into a new

auxiliary pressure variable, p=��r ·u. Then, if we decompose the stress as �̂ = ⌧ � pI , Eqs. (6) and (7) can be cast as the

following mixed (u,p) problem (Brezzi and Fortin, 1991):

�r · ⌧ +rp= ⇢(x)ĝ,

�r ·u� 1

�
p= 0, (9)175

6

with stress ⌧ given by

⌧ = 2µ"[u]. (10)

One will observe that form is similar to the Stokes system described in Section 2.1; u now represents displacements, strain

is considered instead of strain rate, and pressure and divergence of u are now related by the material parameter �. This implies

that the degree of coupling between u and p within the conservation of mass may be spatially variable as � need not be constant180

throughout ⌦. One should also note that ⌧ in Eq. (10) is only deviatoric in regions where �!1, cf. Stokes where ⌧ is strictly

deviatoric everywhere in ⌦ since r · v = 0 is imposed throughout the domain. The boundary conditions given by Eqs. (3), (4)

are valid for the mixed elasticity problem, with the velocity v interchanged for the displacement u, and � interchanged with

�̂. Additionally, since the stress decomposition in the mixed elasticity formulation is not strictly deviatoric-volumetric (e.g.

volumetric terms still live within �̂), we replace ⌧ in
::
We

::::
also

::::::::
consider

::
an

::::::::::::::
inhomogeneous

::::::
version

::
of

:
Eq. (3) with dev(�̂)

::
to185

::::::
specify

:
a
::::::
normal

:::::::::::
displacement.

2.2.1 Discrete problem

The discrete mixed (u,p) static elasticity problem AL :::::::
AElasticity:is denoted by

2

4K B
T

B �C

3

5

2

4u
p

3

5=

2

4F
0

3

5 , or ALAElasticity
::::::

v = Fb, (11)

where K is the discrete gradient of the deviatoric stress tensorand B,B
T

:
,
::
B

:::
and

:::
B

T
:
are the discrete gradient and divergence190

operators, and C is a 1/�
::

1
�-weighted discrete

::::::
pressure

:
mass matrix. The FE discretization results in K

::
K and C being

symmetric positive definite and , thus AL :::
thus

:::::::
AElasticity:is again a symmetric, indefinite operator. To ensure the discrete problem

is stable when the continuum is incompressible (or near to this limit), be it locally or globally (as determined by the value of

�), as per the discrete Stokes system (Section 2.1.1), the FE basis functions used to discretize the displacement u and pressure

p cannot be chosen arbitrarily. Rather,
:
an inf-sup stable pair of FE basis functions must be used.195

3 Incomplete LDLT (ILDL) preconditioning, with symmetric maximum weighted matching ordering, for saddle
point matrices

Linear systems involving indefinite symmetric matrices are, in general, more difficult to solve than their positive-definite

counterparts. This is partially due to the lack of positive-definite (inner product) structure. Diagonal entries which are small,

zero, and/or not of constant sign make pivoting and numerical solution more challenging. Roughly speaking, though, if one can200

cast them as block systems which are in some sense better behaved, grouping problematic diagonal entries with better-behaved

ones, robustness can be regained.

ILDL preconditioners arose as incomplete versions of direct solvers for indefinite systems, which use factorization A=

LDL
T , after permutation and scaling. Here, D is block diagonal with 1⇥ 1 and 2⇥ 2 blocks, and L is lower triangular (Duff

7

et al., 1991). Weighted matchings were first observed to be effective, static approximations to pivoting order by Olschowka205

and Neumaier (Olschowka and Neumaier, 1996). Duff and Koster introduced fast algorithms (Duff and Koster, 1999) and with

the addition of Bunch-Kaufman pivoting (Bunch and Kaufman, 1977), highly efficient sparse direct solvers, both in terms of

solution time and memory footprint, where made available (Duff and Pralet, 2005; Schenk and Gärtner, 2006). These have

become the standard for the direct solution of sparse indefinite systems (Li and Demmel, 2003; Schenk and Gärtner, 2006).

By limiting the number of non-zeros (the “fill”) in L, one can obtain an approximate factorization to be used as a precon-210

ditioner for a Krylov method (Hagemann and Schenk, 2006).
:
In

::::
this

:::::
work,

:::
we

::::::::
consider

::::
“fill”

:::
to

::
be

:::
the

:::::
ratio

::
of

:::
the

:::::::
number

::
of

:::::::
nonzero

::::::
entries

::
in

::
L,

:::::::
relative

::
to

::
in

:::
the

::::::
strictly

::::::::::::::
upper-triangular

::::
part

::
of

:::
the

::::::
matrix

:::::
being

::::::::
factored. Wubs and Thies present

results for the special case of Stokes F-matrices, arising from a simple finite-difference scheme (?)
:::::::::::::::::::
(Wubs and Thies, 2011). A

closely-related approach which we do not investigate here is that of signed incomplete Cholesky factorization preconditioners

(Scott and Tůma, 2014).215

Permutation and scaling based on symmetric maximum weighted matching algorithms have shown to nearly or completely

eliminate the need for pivoting in the factorization process, thus giving rise to very efficient methods (Duff and Pralet, 2005).

We thus describe these considerations in further detail, to give a flavor of the sophisticated methods which are now available.

Numerical stability of incomplete factorization can be enhanced by permuting large elements onto the diagonal of a matrix.

One may pose this task as a (perfect) maximum weighted matching procedure, finding a permutation (a map from rows220

to columns)
::::::::
producing

:
a
::::::

matrix
:::::::::::

permutation which maximizes the product of the absolute values of the diagonal entries.

This can be accomplished via the Kuhn-Munkres algorithm (Laird and Giles, 2002; Munkres, 1957) with a complexity of

O(N1+↵ logN),↵< 1 for sparse matrices arising from finite difference or finite-element discretizations (Gupta and Ying,

1999); in practice, however the complexity typically scales linearly with N (Schenk and Gärtner, 2006).

If one wishes to find a symmetric permutation, one can only change the order of the diagonal entries. Nonetheless, one225

can extract cycles from the maximum matching and apply these symmetrically to move large entries close to the diagonal, in

particular close to small or zero diagonal entries. If these cycles are decomposed into 1⇥ 1 and 2⇥ 2 cycles, one can then

define a blocking wherein diagonal entries may be small, leading to poor conditioning, but 2⇥ 2 diagonal blocks have large

off-diagonal entries, making these blocks suitable pivots for a block elimination process (for more, and some useful diagrams,

see (Bollhöfer et al., 2009, §2.2)).230

This preprocessing is usually so effective as to not require any further pivoting (though additional Bunch-Kaufman pivoting is

included in implementations, for maximum robustness) and in practice, the algorithm to solve the weighted-matching problem

scales linearly in time, providing an extremely efficient method, far more attractive than methods without preprocessing steps.

Once this ordering preprocessing has been performed, a standard fill-reducing ordering may be performed on the full system.

Thus, the complete factorization of a matrix A may be represented as235

⇧T
P̂

T
D̂AD̂ P̂ ⇧=A

0
, A

0 = LDL
T +E,

⇧T
P̂

T
:::::

D̂
:
A
:
D̂
:
P̂ ⇧=
:::::

A
:
0
,
:::

A
:
0 = LDL

T +E,
:::::::::::::

(12)

8

Where ⇧ is a fill-reducing permutation, P̂ and D̂ are a permutation and scaling arising from the symmetric maximum weighted

matching preprocessing, and E is an error introduced by the incomplete factorization process, which produces the incomplete240

factors L and D used in the preconditioner.

The ingredients in the preconditioner include the following components, each of which can be addressed separately in

software.

– A reordering and scaling preprocessing step to reduce fill and the need for pivoting.

– An additional block-wise1 fill-reducing reordering245

– A factorization stage which computes and stores L and D, with respect to some drop tolerance, estimate of ||L||, or

specified fill pattern.

– A routine to quickly solve LDL
T
x= b by (block) forward- and back-substitution.

Despite the sophistication of the algorithms just discussed, practical usage of an ILDL preconditioner, given robust solver

software, reduces to specification of only a few parameters; the user typically only needs to understand that there is a tradeoff250

between fill and the strength of the preconditioner, which they can control with some simple parameters (here, a drop tolerance).

4 Approximate block factorization (ABF) preconditioning

Approximate Block Factorization (ABF) solvers provide a powerful class of methods for the solution of saddle point systems.

These solvers define preconditioners by exploiting a block LDU factorization of the saddle point matrix, with respect to the

pressure and velocity blocks (Benzi et al., 2005, (5)). Approximately inverting the block-triangular or block-diagonal factors255

(often with available scalable solvers) provides a natural way to define approximate inverses, constructed from approximate

solvers on a single field. For more, see details we refer to Elman et al. (2005).

We choose a particular ABF solver as a representative of this class. In particular, we consider an upper block-triangular

preconditioner
2

4 K B

Ŝ

3

5 , (13)260

where Ŝ is an approximation to the Schur complement S given by S =�C �B
T
K

�1
B (and noting that C = 0 in the Stokes

case). The approximate solver on the viscous block is a geometric multigrid method, with a direct solve via UMFPACK (Davis,

2004) on the coarse level. Smoothing is accomplished by 8 Chebyshev-Jacobi iterations (Hu et al., 2003), where GMRES is

used to estimate the maximum eigenvalue �max of the preconditioned operator. The Chebyshev polynomial is tuned to the

interval [0.2�max,1.1�max]. The approximate Schur complement solver Ŝ is a single application of an ILU preconditioner265

formed from a scaled
::::::::::::
� 1

�-weighted
:

pressure mass matrix plus the (2,2) block (which is zero in the case of Stokes); this

1
:::::
meaning

:::
the

::::
1⇥ 1

::
and

::::
2⇥ 2

:::::
blocks

::
as

:::
used

::
in

::
the

::::::
previous

:::
step,

:::
not

::
any

::::
other,

:::::::::::::
physically-inspired

::::::
blocking

9

is simple but is known to produce a spectrally-equivalent, hence scalable, preconditioner
:::::::::::::::::::::::::::
(Grinevich and Olshanskii, 2009).

This preconditioner was chosen based on experience using these solvers for applications in geodynamics, where it has shown

to be scalable and efficient. For problems with large non-grid-aligned coefficient jumps, more elaborate Schur complement

preconditioners have also been developed in recent years (Elman, 1999; May and Moresi, 2008; Rudi et al., 2015, 2017). The270

ABF solver chosen here often shows superior performance for all but the smallest problem sizes, but relies on much more

machinery set up in the application: the solver is aware of pressure and velocity blocks and a hierarchy of grids, transfer

operators, and rediscretized operators. In addition, auxiliary operators must be defined to implement a Schur complement

preconditioner, used here and in most competitive ABF solvers.

5 Numerical experiments275

To provide a concrete and reproducible set of experiments, we use a Q2 �Q1 (Taylor-Hood) mixed finite element code2,

making use of the PETSC (Balay et al., 2019a, b) library. It solves the Stokes and elasticity systems in the unit square (2D) and

cube (3D). We focus on 3D problems, as in the 2D case, sparse direct solution methods are expected to be highly competitive,

with time to solution scaling as O(N3/2) (as opposed to O(N2) for 3-dimensional problems) and expected fill scaling as

O(N logN) (as opposed to O(N2) for 3-dimensional problems) (George, 1973). For Stokes flow tests, free slip boundary280

conditions are imposed everywhere (u ·n= 0, t · ⌧ ·n= 0) except the top boundary of the domain, where a free surface is

prescribed (n ·� ·n= t · ⌧ ·n= 0); this implies a non-singular system matrix (Elman et al., 2005, Ch.5, p. 215). The elasticity

tests also include experiments with non-zero Dirichlet boundary conditions (specified displacements).

Experiments involving both Stokes and elasticity systems are defined by a “multiple inclusion” configuration. That is, the

domain is partitioned into a set of N non-overlapping spheres each with radius R. By providing parameters to control the285

(non-grid-aligned) coefficients (viscosity / Lamé parameters and density) contrast between the N spherical inclusions and the

surrounding medium, this model configuration provides a useful way to characterize two major factors which impact solver

performance: coefficient jumps across arbitrary interfaces and the geometric complexity of these interfaces. Dealing with these

factors is of primary important in designing solvers for realistic Earth science applications. This discontinuous coefficient field

is projected onto the quadrature points used to evaluate the bilinear / linear forms required by the finite element method. This290

projection has the effect of making the coefficient field vary on the length scale of a single finite elements
:::::::
element; loosely

speaking, this makes the problem “harder” and less amenable to solution with higher-order methods as the mesh is refined, but

this is nonetheless consistent with the way that such problems are often solved in practice (Gerya and Yuen, 2003; May et al.,

2015).

We compare three solver configurations: GMRES preconditioned with ILDL (see Section 3); sparse direct; and FGMRES295

preconditioned with ABF (described in Section 4). We do not extensively compare to standard ILU preconditioning, or to ILDL

preconditioning without symmetric maximum weighted matching preprocessing, as these preconditioners are very unreliable

for indefinite problems (Chow and Saad, 1997). This characteristically poor performance has likely contributed to the fact that
2Source code publicly available; see the “Code availability” section at the end of this paper, and the supplement on reproducibility.

10

incomplete factorization preconditioners
::
for

::::::::
indefinite

::::::::::
mechanical

::::::::
problems have not been championed, before this work, as a

viable alternative for practical preconditioning
:::::::
practical

::::::::
approach, even though software tools have now developed to the point300

of making them robust options.
:::
We

::::
note

::::
that

::::
when

:::::
using

::
a
::::::
mixed

::::
finite

:::::::
element

:::::
space

:::::
with

:
a
::::::::::::
discontinuous

:::::::
pressure

::::::
space,

::::
along

:::::
with

::
an

::::::::::
appropriate

::::::
penalty

:::
(or

::::
bulk

::::::::
viscosity)

::::
term

:::
C,

:::
one

::::
can

::
in

::::
some

:::::
cases

::::::::
transform

::::
and

:::::
solve

:
a
:::::::::
symmetric

:::::::
positive

::::::
definite

::::::::
problem,

::
for

::::::
which

:::::::::
incomplete

::::::::
Cholesky

:::::::::::::
preconditioning

::
is
::::::::
effective

:::
and

::::::
robust

:::::::::::::::::::
(Dabrowski et al., 2008)

:
.

All linear algebra is dispatched through the PETSC API. We use a wrapper3 to provide an interface between PETSC and

internal functions in ILUPACK4 which perform symmetric maximum weighted matching permutation and scaling, prior to a305

factorization step using a block elimination process with a simple threshold-based dropping strategy; entries in the L factors

less than a given value (after scaling and permutation) are dropped during the factorization process. Ordering with METIS

(Karypis and Kumar, 1998) by nodes, with respect to the blocked system, proved robust and is used everywhere in this work.

In these experiments, available multi-level ILDL options did not seem to offer enhanced performance.
::::
Note

::::
that,

::
as

:::::::::
mentioned

::
in

::::::
Section

::::
1.1,

::
we

:::::
focus

:::
on

::::::::::
applications

:::::
where

::
a

::::
given

::::::
system

::
is
::::::
solved

::::
only

:::::
once,

:::
and

:::::
hence

:::::
report

:::::
solve

:::::
times

:::::
which

:::::::
include310

::
the

:::::
setup

::::::::::::
(factorization)

:::
and

:::::::
Krylov

::::::::
(iterative)

:::::
solve.

::::
The

::::
setup

::::
time

::
is
::::::::
typically

:::
the

:::::::
majority

::
of

:::
the

:::::
solve

::::
time;

:::::
Table

::
1

::::::
reports

::::
these

:::::
times

:::::::
directly.

There are many packages for the sparse
:::
For

:
direct solution of linear systems;

:::::
sparse

:::::
linear

::::::::
systems, we choose PAR-

DISO (Schenk and Gärtner, 2004; Schenk and Gärtner, 2006; Kuzmin et al., 2013) based on
:
as

::
a

:::::::::::::::
highly-competitive

::::::::
package,

::
for

::::::::
instance

::
as

::::::::::::
demonstrated

::
in

:
the comparative study of Gould et al. (2007) examining performance respect to total, se-315

rial (single-)solve time for symmetric indefinite systems with 10000 or more DOFs. Through a custom interface5 we use

PARDISO (Kuzmin et al., 2013) to provide
::
this

::::::::
provides

:
a direct solver for symmetric indefinite systems, using the same

weighted-matching ordering used by ILUPACK and the ILDL preconditioners considered here.

All iterative solves use right-preconditioned GMRES or FGMRES and share a common convergence criterion: a reduction

of 106 in the true residual 2-norm kb�Axk2:,:::::
where

::
A

::
is

::::::
AStokes ::

or
:::::::
AElasticity. In practice, Krylov methods which take advantage320

of symmetric structure, e.g. MINRES or QMR, may be attractive. The choice or norm allows
::
of

::::
norm

:
is important because

we consider ill-conditioned linear operators for which convergence in a preconditioned norm often fails to imply convergence

in the true residual norm. In practice, different norms are usually used. These include preconditioned residual norms or a

quasi-norm in the case of QMR (Freund and Nachtigal, 1991).

Most of the computations were performed on single compute node of the Euler II cluster at ETH Zurich. Each compute node325

is a dual-socket Intel Xeon E5-2680v3 nodes, each with 64 GB of memory. Numerical experiments used a single MPI-rank

and a single OpenMP thread. Experiments as reported in Figure 4 were performed on the Leonhard cluster at ETH Zurich,

using dual-socket Intel Xeon E5-2697v4 nodes, with 128 GB or more memory. Experiments as reported in Section 5.3 were

performed on Piz Daint at the Swiss National Supercomputing Center, using 6 MPI ranks per dual-socket Intel Xeon E5-2695v4

compute node with 64 GB of memory.330

3Source code publicly available; see the "Code availability" section at the end of this paper, and the supplement on reproducibility.
4Free academic licenses available; see the “Code availability" section at the end of this paper, and the supplement on reproducibility.
5Source code publicly available; see the "Code availability" section at the end of this paper, and the supplement on reproducibility.

11

GMRES(60)/ILDL(1e-3) PARDISO FGMRES(30)/ABF
Els.

::::
DOFs

:
Fill Its.

::
Tot. Time [s]

::::
Setup

::::
Time [

:
s] Mem. [MB] Time [s] Mem. [MB] Lvls. Its. Time [s] Mem. [MB]

83
:::::
15,468 2.0 14 2.27E+00

::::::
1.96E+00 127 1.42E+00 163 2 22 2.46E+00 125

163
:::::
112,724 2.9 45 5.27

:::
6.18E+01

::::::
5.30E+01 851 3.78E+01 1743 3 24 2.71E+01 1104

243
:::::
368,572 3.7 112 4.77E+02

::::::
2.72E+02 3076 2.98E+02 7289 3 19 7.74E+01 2330

323
:::::
859,812 4.6 226 1.96E+03

::::::
1.07E+03 8100 1.55E+03 21856 4 17 2.04E+02 9587

403
:::::::
1,663,244 4.5 420 6.41E+03

::::::
2.63E+03 15513 6.67E+03 52376 4 17 3.10E+02 10426

483
:::::::
2,855,668 5.5 568 1.31E+04

::::::
9.61E+03 30126 - - 4 16 6.33E+02 17842

563
:::::::
4,513,884 - - - - - - -

:
4 15 7.01E+02 28219

643
:::::::
6,714,692 - - - - - - -

:
5 19 6.28E+03 40519

Table 1. 3D stationary Stokes flow, with 3 denser (relative density 1.2) spherical inclusions of
:::::
radius

:::
0.1 viscosity ⌘1 = 104

::::::::::
⌘1/⌘0 = 104

::::
times

:::::
higher

:::
than

:
in a surrounding medium of viscosity ⌘0 = 1

:
in
:::
the

:::
unit

::::
cube. Iteration counts accompany data points in the graph. Missing

data correspond to runs which failed due to insufficient available memory. See also Figure 1.

5.1 3D Stokes flow

Examples of 3-dimensional Stokes flow in cubic domains, for problem sizes ranging from 83 to 643 Q2 �Q1 elements,

are presented in Table 1 and Figure 1. Here, one can see comparable performance between the direct solve and the ILDL-

preconditioned solves, across all the problems tested; however, the ILDL-preconditioned solve requires less memory and has

the additional advantage of allowing for a loosening of the solve tolerance if desired. Due to its lower memory requirements,335

we were able to solve larger problems with the ILDL-preconditioned approach. The ABF solver typically provides the best

time to solution, yet lacks robustness with respect to the problem parameters, in addition to relying on much more auxiliary

information and many more parameters (in particular, an auxiliary operator for the Schur complement preconditioner, and a

grid hierarchy and tuned parameters for the multigrid hierarchy).

As shown in Figure 1, increasing the number of inclusions degrades the performance of the ABF solver. This trend continues
:
,340

::
as

::::::::
additional

:::::::::
inclusions

::
are

::::::
added,

:
until eventually the ABF solver fails to converge. ;

:
Figure 2 demonstrates the effectof further

increasing the number of inclusions
:::
this

:::::
effect, with a viscosity contrast of ⌘1/⌘0 = 106 (a typical cutoff value for even-higher

contrasts arising in geodynamical modeling). Here we can directly observe a regime in which ILDL-preconditioned iterative

solves not only provide a simpler alternative to ABF solves, but a more robust one which also outperforms a direct solve in

terms of time-to-solution and memory footprint.345

The iterative solver gives the user control over time-memory trade-offs by varying the drop tolerance. Table 2 shows the effect

of varying to
:::
the drop tolerance with a 323 element experiment as pictured in Figure 1(a). Comparable times to solution are

observed over a fairly broad range of drop tolerances, and experiments like this lead us to recommend default drop tolerances

in the 10�3 � 10�4 range6.
6Note that dropping

::::::
Dropping is performed on a system which has already been scaled

:::
and

::::::
permuted

:::::
system, hence

::
as

:
in
:::
Eq. (12).

:::::
Hence,

:
these values

have meaning independent of the
:::::

original scaling of the system.

12

(a) ⌘1/⌘0 = 104.

(b) ⌘1/⌘0 = 100.

(c) ⌘1/⌘0 = 104.

(d) ⌘1/⌘0 = 104.

Figure 1. Additional experiments,
:::::::::::
corresponding

::
to

::::::::
coefficient

:::::::
structures

::::::
labelled

::::::
(a)-(d), analogous to those in Table 1.

::::::
Inclusion

::::
radii

:::
are

:::
0.25

:::
for

:::::
single

::::::::
inclusions,

:::
and

:::
0.1

::::::::
otherwise,

::
in

::
the

::::
unit

::::
cube.

:
Solver performance is assessed in terms of degrees of freedom solved to the

prescribed tolerance (10�6 relative error in the true residual norm) over the solution time, and by peak memory footprint.

13

⌘1/⌘0 = 104 ⌘1/⌘0 = 106

Figure 2. The effect of increasing the number of viscous inclusions on the effectiveness of solvers, for a 323 element simulation.
:::
Up

:
to
::::
140

::::::::::::
non-overlapping

::::::::
inclusions

::
of

::::
radius

::::
0.05

:::
are

:::::
placed

:::::::
randomly

::
in
:::
the

:::
unit

:::::
cube. ILDL preconditioning becomes more competitive for more

challenging structures, showing much greater robustness to viscosity structure than ABF solvers while maintaining a lower memory footprint

than direct solution. Missing ABF data indicate that the solver failed to converge. Memory footprints are similar to those shown in Figure 1;

the direct solve (red) requires approximately 4⇥ as much memory as the ILDL-preconditioned solve.

drop tol. fill Solve Time [s] Iterations Max. Mem. [MB]

1 · 10�5 17 1.0696e+04 10 21072

5 · 10�5 13 6.2200e+03 22 16582

1 · 10�4 11 4.0494e+03 35 14321

5 · 10�4 6.1 1.9075e+03 134 9666

1 · 10�3 4.6 1.6031e+03 226 8433

5 · 10�3 2.1 1.1421e+03 652 6585

1 · 10�2 1.4 1.1657e+03 1015 6479

5 · 10�2 0.39 - (>10000) -

Table 2. The effect of varying the drop tolerance parameter (see Section 3) for a 323 element system and right-preconditioned GM-

RES(60)/ILDL solver as in Table 1. Loosening the drop tolerance increases the iteration count and reduces the fill and hence memory

footprint.

14

5.2 3D elasticity experiments350

Figure 3 shows the results of similar experiments to those in Section 5.1 with spherical inclusions with different material

properties, here varying � inside the inclusions, creating areas of near-incompressibility. This corresponds to a very high

Poisson ratio ⌫ = �
2(�+µ) close to 1

2 , the challenging case where standard (non-mixed) finite element methods tend to exhibit

locking. The effect of varying this parameter is markedly different to that of varying ⌘ in the Stokes case (analogous to µ in

the Lamé case); performance is not as dependent on this parameter for any of the solvers, and the attained dof
::::
DOF/s for the355

ILDL solver degrades much more slowly. Again, we observe marked reduction in memory consumption for the ILDL solver,

as compared to the direct solver, along with a notable performance gain from using ILDL preconditioning, relative to direct

solution. ABF preconditioning is still advantageous, but may not be available in practice and may require an expert to set up.

We note that the
:::
The

:
ABF preconditioner is not identical to that used for the Stokes problem, with µ substituted for ⌘; to achieve

good performance, the Schur complement preconditioner is different, due to the nonzero (2,2) block in the elasticity system.360

That is, to .
:::
To obtain a spectrally equivalent preconditioner, we needed to build a preconditioner

::::
build

:
Ŝ (Cf. equation 13) as

an approximate inverse of Mµ �C, where Mµ is a finite element mass matrix weighted by µ and C is the term (depending on

� as
:
to

:::::::
include

:::
the

:::
�C

::::
term

::
in

:::
the

:::::
Schur

:::::::::::
complement,

::::::
where

:::
�C

:::::
arises

:::::
from

::
the

:::::
finite

:::::::
element

:::::::::::
discretization

::
of

:::
the

:::::
� 1

�p ::::
term

in Eq. (9)).
:
.
:::::
Thus,

::
Ŝ

:
is
::
a
:::::::::::::::::::
�
�
1
µ+ 1

�
�
-weighted

:::::::
pressure

:::::
mass

::::::
matrix.

The experiments in Figure 3 are chosen to emphasize the similarity of the elasticity and Stokes problems, yet elasticity prob-365

lems are commonly prescribed with non-zero boundary displacements, amounting to non-zero Dirichlet boundary conditions.

Figure 4 shows a similar experiment using a scenario which is perhaps more typical in applications.
:::::::::::::
Inhomogeneous

::::::::
Dirichlet

::::::::
boundary

:::::::::
conditions

:::
are

::::
used

::
to
:::::::

specify
::::::::
non-zero

::::::
normal

::::::::::::
displacements

:::
on

::::
two

::::::::
opposing

::::::::::
boundaries;

:::
the

:::
top

:::::::::
boundary

::
is

::::::::
stress-free

::::
and

:::
the

::::::::
remaining

::::::::::
boundaries

:::
are

:::::::
free-slip.

:
The results parallel those in the previous set of experiments; the more-

invasive ABF solver produces the fastest solution, but preconditioning with ILDL and symmetric weighted matching prepro-370

cessing gives a vastly superior option to a direct solve, while using no additional information beyond the specification of a

single drop tolerance. Memory usage is very similar to the plots shown in Figure 3.

5.3 Using ILDL within a parallel preconditioner

An obvious limitation of the results presented thus far, and of the particular implementation of the ILDL decomposition that

we have employed, is that they have focused on single-process (i.e. “sequential”) usage. However, most scientific computation375

is now performed with some degree of multi-process (or multi-thread) parallelism.

A well-known and often-used approach to extend a sequential preconditioner to a parallel preconditioner is to employ a

domain decomposition method (Smith et al., 2004) wherein the computational domain is decomposed into possibly-overlapping

patches where local preconditioners can be applied before the results are used to update the global solution. The simplest such

preconditioner is the block Jacobi method, with non-overlapping subdomains, and a natural extension is the Additive Schwarz380

Method
:::::
(ASM), wherein overlapping subdomains, here defined in terms of finite elements, are used to define subsolves.

15

0
<latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit>

1.2<latexit sha1_base64="kMzw4VCpAWcxhtxGe2DZ5CN8zKo=">AAACzHichVFLS8NAEJ7GV1tfVY9egkXwFJIi6LH4wotS0T6gFknSbVyaF5ttoZZevXnV36a/xYNf1lTQIt2wmdlvvvl2ZseJfZ5I03zPaQuLS8sr+UJxdW19Y7O0td1IooFwWd2N/Ei0HDthPg9ZXXLps1YsmB04Pms6/dM03hwykfAovJOjmHUC2wt5j7u2BHRrGZWHUtk0TLX0WcfKnDJlqxaVPuieuhSRSwMKiFFIEr5PNiX42mSRSTGwDo2BCXhcxRlNqIjcAVgMDBtoH38Pp3aGhjinmonKdnGLjy2QqdM+9oVSdMBOb2XwE9hP7CeFef/eMFbKaYUjWAeKBaV4BVzSIxjzMoOMOa1lfmbalaQeHatuOOqLFZL26f7onCEigPVVRKdzxfSg4ajzEC8QwtZRQfrKUwVdddyFtZVlSiXMFG3oCdj09VEPxmz9Heqs06gYlmlYN4fl6kk28Dzt0h4dYKpHVKVLqqEOF9W90Cu9adea1Mba5Juq5bKcHfq1tOcvlRePNg==</latexit><latexit sha1_base64="kMzw4VCpAWcxhtxGe2DZ5CN8zKo=">AAACzHichVFLS8NAEJ7GV1tfVY9egkXwFJIi6LH4wotS0T6gFknSbVyaF5ttoZZevXnV36a/xYNf1lTQIt2wmdlvvvl2ZseJfZ5I03zPaQuLS8sr+UJxdW19Y7O0td1IooFwWd2N/Ei0HDthPg9ZXXLps1YsmB04Pms6/dM03hwykfAovJOjmHUC2wt5j7u2BHRrGZWHUtk0TLX0WcfKnDJlqxaVPuieuhSRSwMKiFFIEr5PNiX42mSRSTGwDo2BCXhcxRlNqIjcAVgMDBtoH38Pp3aGhjinmonKdnGLjy2QqdM+9oVSdMBOb2XwE9hP7CeFef/eMFbKaYUjWAeKBaV4BVzSIxjzMoOMOa1lfmbalaQeHatuOOqLFZL26f7onCEigPVVRKdzxfSg4ajzEC8QwtZRQfrKUwVdddyFtZVlSiXMFG3oCdj09VEPxmz9Heqs06gYlmlYN4fl6kk28Dzt0h4dYKpHVKVLqqEOF9W90Cu9adea1Mba5Juq5bKcHfq1tOcvlRePNg==</latexit><latexit sha1_base64="kMzw4VCpAWcxhtxGe2DZ5CN8zKo=">AAACzHichVFLS8NAEJ7GV1tfVY9egkXwFJIi6LH4wotS0T6gFknSbVyaF5ttoZZevXnV36a/xYNf1lTQIt2wmdlvvvl2ZseJfZ5I03zPaQuLS8sr+UJxdW19Y7O0td1IooFwWd2N/Ei0HDthPg9ZXXLps1YsmB04Pms6/dM03hwykfAovJOjmHUC2wt5j7u2BHRrGZWHUtk0TLX0WcfKnDJlqxaVPuieuhSRSwMKiFFIEr5PNiX42mSRSTGwDo2BCXhcxRlNqIjcAVgMDBtoH38Pp3aGhjinmonKdnGLjy2QqdM+9oVSdMBOb2XwE9hP7CeFef/eMFbKaYUjWAeKBaV4BVzSIxjzMoOMOa1lfmbalaQeHatuOOqLFZL26f7onCEigPVVRKdzxfSg4ajzEC8QwtZRQfrKUwVdddyFtZVlSiXMFG3oCdj09VEPxmz9Heqs06gYlmlYN4fl6kk28Dzt0h4dYKpHVKVLqqEOF9W90Cu9adea1Mba5Juq5bKcHfq1tOcvlRePNg==</latexit><latexit sha1_base64="kMzw4VCpAWcxhtxGe2DZ5CN8zKo=">AAACzHichVFLS8NAEJ7GV1tfVY9egkXwFJIi6LH4wotS0T6gFknSbVyaF5ttoZZevXnV36a/xYNf1lTQIt2wmdlvvvl2ZseJfZ5I03zPaQuLS8sr+UJxdW19Y7O0td1IooFwWd2N/Ei0HDthPg9ZXXLps1YsmB04Pms6/dM03hwykfAovJOjmHUC2wt5j7u2BHRrGZWHUtk0TLX0WcfKnDJlqxaVPuieuhSRSwMKiFFIEr5PNiX42mSRSTGwDo2BCXhcxRlNqIjcAVgMDBtoH38Pp3aGhjinmonKdnGLjy2QqdM+9oVSdMBOb2XwE9hP7CeFef/eMFbKaYUjWAeKBaV4BVzSIxjzMoOMOa1lfmbalaQeHatuOOqLFZL26f7onCEigPVVRKdzxfSg4ajzEC8QwtZRQfrKUwVdddyFtZVlSiXMFG3oCdj09VEPxmz9Heqs06gYlmlYN4fl6kk28Dzt0h4dYKpHVKVLqqEOF9W90Cu9adea1Mba5Juq5bKcHfq1tOcvlRePNg==</latexit>

(a) 3 inclusions,

�1/�0 = 104

0
<latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit>

0.9
<latexit sha1_base64="9eWz3mIdTZBWe0GW9jB2QlpxvA0=">AAACzXichVFLS8NAEJ7GV1tfVY9egkXwFBIR1FvxhRexgn1ALZKk27o0L5JNoVa9evOqf01/iwe/XVNBi3TDZma/+ebbmR0n8ngiTPM9p83Mzs0v5AvFxaXlldXS2no9CdPYZTU39MK46dgJ83jAaoILjzWjmNm+47GG0z+W8caAxQkPg2sxjFjbt3sB73LXFhIyjcPibalsGqZa+qRjZU6ZslUNSx90Qx0KyaWUfGIUkIDvkU0JvhZZZFIErE0jYDE8ruKMHqmI3BQsBoYNtI9/D6dWhgY4S81EZbu4xcOOkanTNvaZUnTAlrcy+AnsJ/a9wnr/3jBSyrLCIawDxYJSvAAu6A6MaZl+xhzXMj1TdiWoSweqG476IoXIPt0fnRNEYmB9FdHpVDF70HDUeYAXCGBrqEC+8lhBVx13YG1lmVIJMkUbejGsfH3UgzFbf4c66dR3Dcs0rKu9cuUoG3ieNmmLdjDVfarQOVVRh4uuX+iV3rRLLdUetKdvqpbLcjbo19KevwDh1o9Q</latexit><latexit sha1_base64="9eWz3mIdTZBWe0GW9jB2QlpxvA0=">AAACzXichVFLS8NAEJ7GV1tfVY9egkXwFBIR1FvxhRexgn1ALZKk27o0L5JNoVa9evOqf01/iwe/XVNBi3TDZma/+ebbmR0n8ngiTPM9p83Mzs0v5AvFxaXlldXS2no9CdPYZTU39MK46dgJ83jAaoILjzWjmNm+47GG0z+W8caAxQkPg2sxjFjbt3sB73LXFhIyjcPibalsGqZa+qRjZU6ZslUNSx90Qx0KyaWUfGIUkIDvkU0JvhZZZFIErE0jYDE8ruKMHqmI3BQsBoYNtI9/D6dWhgY4S81EZbu4xcOOkanTNvaZUnTAlrcy+AnsJ/a9wnr/3jBSyrLCIawDxYJSvAAu6A6MaZl+xhzXMj1TdiWoSweqG476IoXIPt0fnRNEYmB9FdHpVDF70HDUeYAXCGBrqEC+8lhBVx13YG1lmVIJMkUbejGsfH3UgzFbf4c66dR3Dcs0rKu9cuUoG3ieNmmLdjDVfarQOVVRh4uuX+iV3rRLLdUetKdvqpbLcjbo19KevwDh1o9Q</latexit><latexit sha1_base64="9eWz3mIdTZBWe0GW9jB2QlpxvA0=">AAACzXichVFLS8NAEJ7GV1tfVY9egkXwFBIR1FvxhRexgn1ALZKk27o0L5JNoVa9evOqf01/iwe/XVNBi3TDZma/+ebbmR0n8ngiTPM9p83Mzs0v5AvFxaXlldXS2no9CdPYZTU39MK46dgJ83jAaoILjzWjmNm+47GG0z+W8caAxQkPg2sxjFjbt3sB73LXFhIyjcPibalsGqZa+qRjZU6ZslUNSx90Qx0KyaWUfGIUkIDvkU0JvhZZZFIErE0jYDE8ruKMHqmI3BQsBoYNtI9/D6dWhgY4S81EZbu4xcOOkanTNvaZUnTAlrcy+AnsJ/a9wnr/3jBSyrLCIawDxYJSvAAu6A6MaZl+xhzXMj1TdiWoSweqG476IoXIPt0fnRNEYmB9FdHpVDF70HDUeYAXCGBrqEC+8lhBVx13YG1lmVIJMkUbejGsfH3UgzFbf4c66dR3Dcs0rKu9cuUoG3ieNmmLdjDVfarQOVVRh4uuX+iV3rRLLdUetKdvqpbLcjbo19KevwDh1o9Q</latexit><latexit sha1_base64="9eWz3mIdTZBWe0GW9jB2QlpxvA0=">AAACzXichVFLS8NAEJ7GV1tfVY9egkXwFBIR1FvxhRexgn1ALZKk27o0L5JNoVa9evOqf01/iwe/XVNBi3TDZma/+ebbmR0n8ngiTPM9p83Mzs0v5AvFxaXlldXS2no9CdPYZTU39MK46dgJ83jAaoILjzWjmNm+47GG0z+W8caAxQkPg2sxjFjbt3sB73LXFhIyjcPibalsGqZa+qRjZU6ZslUNSx90Qx0KyaWUfGIUkIDvkU0JvhZZZFIErE0jYDE8ruKMHqmI3BQsBoYNtI9/D6dWhgY4S81EZbu4xcOOkanTNvaZUnTAlrcy+AnsJ/a9wnr/3jBSyrLCIawDxYJSvAAu6A6MaZl+xhzXMj1TdiWoSweqG476IoXIPt0fnRNEYmB9FdHpVDF70HDUeYAXCGBrqEC+8lhBVx13YG1lmVIJMkUbejGsfH3UgzFbf4c66dR3Dcs0rKu9cuUoG3ieNmmLdjDVfarQOVVRh4uuX+iV3rRLLdUetKdvqpbLcjbo19KevwDh1o9Q</latexit>

(b) 1 inclusion,

�1/�0 = 102

0
<latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit>

1.1<latexit sha1_base64="X22DQvQn0eF8mIPU1NualVm6s8U=">AAACzXichVFLS8NAEJ7GV1tfVY9egkXwFBIR9Fh84UWsYFuhFknSbQzNi82mUKtevXnVv6a/xYPfrqmgRbphM7PffPPtzI6TBH4qTPO9oM3Mzs0vFEvlxaXlldXK2nozjTPusoYbBzG/duyUBX7EGsIXAbtOOLNDJ2Atp38k460B46kfR1dimLBOaHuR3/NdW0jIMqzybaVqGqZa+qRj5U6V8lWPKx90Q12KyaWMQmIUkYAfkE0pvjZZZFICrEMjYByer+KMHqmM3AwsBoYNtI+/h1M7RyOcpWaqsl3cEmBzZOq0jX2qFB2w5a0Mfgr7iX2vMO/fG0ZKWVY4hHWgWFKK58AF3YExLTPMmeNapmfKrgT16EB146O+RCGyT/dH5xgRDqyvIjqdKKYHDUedB3iBCLaBCuQrjxV01XEX1laWKZUoV7Shx2Hl66MejNn6O9RJp7lrWKZhXe5Va4f5wIu0SVu0g6nuU43OqI46XHT9Qq/0pl1omfagPX1TtUKes0G/lvb8BdEHj0k=</latexit><latexit sha1_base64="X22DQvQn0eF8mIPU1NualVm6s8U=">AAACzXichVFLS8NAEJ7GV1tfVY9egkXwFBIR9Fh84UWsYFuhFknSbQzNi82mUKtevXnVv6a/xYPfrqmgRbphM7PffPPtzI6TBH4qTPO9oM3Mzs0vFEvlxaXlldXK2nozjTPusoYbBzG/duyUBX7EGsIXAbtOOLNDJ2Atp38k460B46kfR1dimLBOaHuR3/NdW0jIMqzybaVqGqZa+qRj5U6V8lWPKx90Q12KyaWMQmIUkYAfkE0pvjZZZFICrEMjYByer+KMHqmM3AwsBoYNtI+/h1M7RyOcpWaqsl3cEmBzZOq0jX2qFB2w5a0Mfgr7iX2vMO/fG0ZKWVY4hHWgWFKK58AF3YExLTPMmeNapmfKrgT16EB146O+RCGyT/dH5xgRDqyvIjqdKKYHDUedB3iBCLaBCuQrjxV01XEX1laWKZUoV7Shx2Hl66MejNn6O9RJp7lrWKZhXe5Va4f5wIu0SVu0g6nuU43OqI46XHT9Qq/0pl1omfagPX1TtUKes0G/lvb8BdEHj0k=</latexit><latexit sha1_base64="X22DQvQn0eF8mIPU1NualVm6s8U=">AAACzXichVFLS8NAEJ7GV1tfVY9egkXwFBIR9Fh84UWsYFuhFknSbQzNi82mUKtevXnVv6a/xYPfrqmgRbphM7PffPPtzI6TBH4qTPO9oM3Mzs0vFEvlxaXlldXK2nozjTPusoYbBzG/duyUBX7EGsIXAbtOOLNDJ2Atp38k460B46kfR1dimLBOaHuR3/NdW0jIMqzybaVqGqZa+qRj5U6V8lWPKx90Q12KyaWMQmIUkYAfkE0pvjZZZFICrEMjYByer+KMHqmM3AwsBoYNtI+/h1M7RyOcpWaqsl3cEmBzZOq0jX2qFB2w5a0Mfgr7iX2vMO/fG0ZKWVY4hHWgWFKK58AF3YExLTPMmeNapmfKrgT16EB146O+RCGyT/dH5xgRDqyvIjqdKKYHDUedB3iBCLaBCuQrjxV01XEX1laWKZUoV7Shx2Hl66MejNn6O9RJp7lrWKZhXe5Va4f5wIu0SVu0g6nuU43OqI46XHT9Qq/0pl1omfagPX1TtUKes0G/lvb8BdEHj0k=</latexit><latexit sha1_base64="X22DQvQn0eF8mIPU1NualVm6s8U=">AAACzXichVFLS8NAEJ7GV1tfVY9egkXwFBIR9Fh84UWsYFuhFknSbQzNi82mUKtevXnVv6a/xYPfrqmgRbphM7PffPPtzI6TBH4qTPO9oM3Mzs0vFEvlxaXlldXK2nozjTPusoYbBzG/duyUBX7EGsIXAbtOOLNDJ2Atp38k460B46kfR1dimLBOaHuR3/NdW0jIMqzybaVqGqZa+qRj5U6V8lWPKx90Q12KyaWMQmIUkYAfkE0pvjZZZFICrEMjYByer+KMHqmM3AwsBoYNtI+/h1M7RyOcpWaqsl3cEmBzZOq0jX2qFB2w5a0Mfgr7iX2vMO/fG0ZKWVY4hHWgWFKK58AF3YExLTPMmeNapmfKrgT16EB146O+RCGyT/dH5xgRDqyvIjqdKKYHDUedB3iBCLaBCuQrjxV01XEX1laWKZUoV7Shx2Hl66MejNn6O9RJp7lrWKZhXe5Va4f5wIu0SVu0g6nuU43OqI46XHT9Qq/0pl1omfagPX1TtUKes0G/lvb8BdEHj0k=</latexit>

(c) 1 inclusion,

�1/�0 = 104

0
<latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit><latexit sha1_base64="6NRpHCjXBU5DJMJ3TQrn9bOPCpc=">AAACynichVFLS8NAEJ7GV1tfVY9egkXwVBIR9Fh84UGhBfuAWmSTbuPSvNikhVq8efOqP05/iwe/XVNBi3TDZma/mfnm5cS+SFLLes8ZC4tLyyv5QnF1bX1js7S13UyioXR5w438SLYdlnBfhLyRitTn7VhyFjg+bzmDM2VvjbhMRBTepuOYdwPmhaIvXJYCqlv3pbJVsfQxZxU7U8qUnVpU+qA76lFELg0pIE4hpdB9YpTg65BNFsXAujQBJqEJbef0REXEDuHF4cGADvD38OpkaIi34kx0tIssPq5EpEn7uJea0YG3ysqhJ5CfuI8a8/7NMNHMqsIxpAPGgma8AZ7SAzzmRQaZ57SW+ZGqq5T6dKK7Eagv1ojq0/3hOYdFAhtoi0kX2tMDh6PfI0wghGygAjXlKYOpO+5BMi25ZgkzRgY+Cammj3qwZvvvUmeV5mHFtip2/ahcPc0Wnqdd2qMDbPWYqnRFNdThIs8LvdKbcW1IY2xMvl2NXBazQ7+O8fwFYESOwQ==</latexit>

1.2<latexit sha1_base64="kMzw4VCpAWcxhtxGe2DZ5CN8zKo=">AAACzHichVFLS8NAEJ7GV1tfVY9egkXwFJIi6LH4wotS0T6gFknSbVyaF5ttoZZevXnV36a/xYNf1lTQIt2wmdlvvvl2ZseJfZ5I03zPaQuLS8sr+UJxdW19Y7O0td1IooFwWd2N/Ei0HDthPg9ZXXLps1YsmB04Pms6/dM03hwykfAovJOjmHUC2wt5j7u2BHRrGZWHUtk0TLX0WcfKnDJlqxaVPuieuhSRSwMKiFFIEr5PNiX42mSRSTGwDo2BCXhcxRlNqIjcAVgMDBtoH38Pp3aGhjinmonKdnGLjy2QqdM+9oVSdMBOb2XwE9hP7CeFef/eMFbKaYUjWAeKBaV4BVzSIxjzMoOMOa1lfmbalaQeHatuOOqLFZL26f7onCEigPVVRKdzxfSg4ajzEC8QwtZRQfrKUwVdddyFtZVlSiXMFG3oCdj09VEPxmz9Heqs06gYlmlYN4fl6kk28Dzt0h4dYKpHVKVLqqEOF9W90Cu9adea1Mba5Juq5bKcHfq1tOcvlRePNg==</latexit><latexit sha1_base64="kMzw4VCpAWcxhtxGe2DZ5CN8zKo=">AAACzHichVFLS8NAEJ7GV1tfVY9egkXwFJIi6LH4wotS0T6gFknSbVyaF5ttoZZevXnV36a/xYNf1lTQIt2wmdlvvvl2ZseJfZ5I03zPaQuLS8sr+UJxdW19Y7O0td1IooFwWd2N/Ei0HDthPg9ZXXLps1YsmB04Pms6/dM03hwykfAovJOjmHUC2wt5j7u2BHRrGZWHUtk0TLX0WcfKnDJlqxaVPuieuhSRSwMKiFFIEr5PNiX42mSRSTGwDo2BCXhcxRlNqIjcAVgMDBtoH38Pp3aGhjinmonKdnGLjy2QqdM+9oVSdMBOb2XwE9hP7CeFef/eMFbKaYUjWAeKBaV4BVzSIxjzMoOMOa1lfmbalaQeHatuOOqLFZL26f7onCEigPVVRKdzxfSg4ajzEC8QwtZRQfrKUwVdddyFtZVlSiXMFG3oCdj09VEPxmz9Heqs06gYlmlYN4fl6kk28Dzt0h4dYKpHVKVLqqEOF9W90Cu9adea1Mba5Juq5bKcHfq1tOcvlRePNg==</latexit><latexit sha1_base64="kMzw4VCpAWcxhtxGe2DZ5CN8zKo=">AAACzHichVFLS8NAEJ7GV1tfVY9egkXwFJIi6LH4wotS0T6gFknSbVyaF5ttoZZevXnV36a/xYNf1lTQIt2wmdlvvvl2ZseJfZ5I03zPaQuLS8sr+UJxdW19Y7O0td1IooFwWd2N/Ei0HDthPg9ZXXLps1YsmB04Pms6/dM03hwykfAovJOjmHUC2wt5j7u2BHRrGZWHUtk0TLX0WcfKnDJlqxaVPuieuhSRSwMKiFFIEr5PNiX42mSRSTGwDo2BCXhcxRlNqIjcAVgMDBtoH38Pp3aGhjinmonKdnGLjy2QqdM+9oVSdMBOb2XwE9hP7CeFef/eMFbKaYUjWAeKBaV4BVzSIxjzMoOMOa1lfmbalaQeHatuOOqLFZL26f7onCEigPVVRKdzxfSg4ajzEC8QwtZRQfrKUwVdddyFtZVlSiXMFG3oCdj09VEPxmz9Heqs06gYlmlYN4fl6kk28Dzt0h4dYKpHVKVLqqEOF9W90Cu9adea1Mba5Juq5bKcHfq1tOcvlRePNg==</latexit><latexit sha1_base64="kMzw4VCpAWcxhtxGe2DZ5CN8zKo=">AAACzHichVFLS8NAEJ7GV1tfVY9egkXwFJIi6LH4wotS0T6gFknSbVyaF5ttoZZevXnV36a/xYNf1lTQIt2wmdlvvvl2ZseJfZ5I03zPaQuLS8sr+UJxdW19Y7O0td1IooFwWd2N/Ei0HDthPg9ZXXLps1YsmB04Pms6/dM03hwykfAovJOjmHUC2wt5j7u2BHRrGZWHUtk0TLX0WcfKnDJlqxaVPuieuhSRSwMKiFFIEr5PNiX42mSRSTGwDo2BCXhcxRlNqIjcAVgMDBtoH38Pp3aGhjinmonKdnGLjy2QqdM+9oVSdMBOb2XwE9hP7CeFef/eMFbKaYUjWAeKBaV4BVzSIxjzMoOMOa1lfmbalaQeHatuOOqLFZL26f7onCEigPVVRKdzxfSg4ajzEC8QwtZRQfrKUwVdddyFtZVlSiXMFG3oCdj09VEPxmz9Heqs06gYlmlYN4fl6kk28Dzt0h4dYKpHVKVLqqEOF9W90Cu9adea1Mba5Juq5bKcHfq1tOcvlRePNg==</latexit>

(d) 8 inclusions,

�1/�0 = 104

Figure 3. Experiments showing performance of ILDL preconditioning for the elasticity system, holding µ0 = µ1 = 1,�0 = 1 constant and

varying �1 inside inclusions
:
or

:::::
radius

::::
0.25

:::::
(single

::::::::
inclusions)

::
or
:::
0.1. Arrows show displacement, and the pressure field is plotted volumetri-

cally.

16

! | |

Figure 4. An experiment showing the performance of ILDL preconditioning for an elasticity problem with a heterogeneous medium in

compression; the outer box shows the reference (undeformed) state and the wire mesh shows the deformed state. The surrounding medium

has a Poisson ratio of 1/3 (�= 2,µ= 1
::::
�= 2,

:::::
µ= 1), and the originally-spherical

:::::
(radius

:::::
0.25) inclusion is almost incompressible, with

a Poisson ratio greater than 0.4999 (�= 104,µ= 1
::::::
�= 104,

:::::
µ= 1). Boundary conditions are free-slip everywhere except the top, which

is stress free. The results show that ILDL preconditioning offers substantially better-scaling performance (with a lower memory footprint)

than a direct solver, without the auxiliary information, implementation, and tuning required for the even-better-scaling ABF solver. These

experiments were run on a slightly different cluster than the preceding ones (see Section 5), so solve times are not directly comparable.

ILDL preconditioning can be used to provide approximate inverses to local subproblems, much as ILU preconditioning is

commonly used in the corresponding positive-definite case. We note that this block Jacobi/ILU preconditioning is practical

useful for a wide range of problems despite, like ILU itself, it not being perfectly scalable or robust.

This is possible by leveraging the same software wrappers used in the sequential experiments in this paper, and indeed385

within the code used here, amounts simply to specifiying
::::::::
specifying

:
a few command line options. As a proof of concept, table

3 compares iteration counts and time-to-solution solving a Stokes problem with a block Jacobi or ASM preconditioner, with

various choice of sub-preconditioner. As in the rest of this work, comparison is made with a well-tuned ABF solver. 7 No

attempt has been made to optimize the subdomain solvers here - the drop tolerance was simply adopted from the sequential

case. For the isoviscous case shown, the block Jacobi method and ASM method are comparable, but when a viscosity jump is390

added, the ASM solver can still converge, albeit slowly, while the block Jacobi approach becomes much slower. These simple
7And note that the largest ABF solve here required the use of PCTELESCOPE (May et al., 2016) to define the coarsest grid on a subset of ranks, another

wrinkle in the effective use of multigrid solvers.

17

GMRES(60)/Block Jacobi/ILDL(1e-3) GMRES(60)/ASM/ILDL(1e-3) FGMRES(30)/ABF
⌘1/⌘0 Els. MPI Ranks Its. Time [s] Its. Time [s] Lvls. Its. Time [s]

1

323 8 219 8.0564e+01 84 8.2991e+01 4 9 1.2685e+01

483 27 693 1.7149e+02 586 2.4185e+02 4 9 1.5954e+01

643 64 1310 2.6762e+02 1843 5.2592e+02 5 9 1.3151e+01

963 216 4668 7.6356e+02 7903 1.6136e+03 5 9 1.6056e+01

1283

125 4613 5.9810e+03

216 6587 3.6521e+03

512 6126 1.1899e+03 15396 4.8914e+03 5 9 1.3296e+01

729 19387 4.3029e+03

102

323 8 709 1.6289e+02 155 9.3547e+01 4 12 2.1862e+01

483 27 14892 2.5563e+03 832 2.8261e+02 4 12 2.6607e+01

643 64 - > 1.4e+04 17636 6.9489e+03 5 14 2.1098e+01

963 216 - > 2.8e+04 > 105 2.5548e+04 5 13 2.3065e+01

1283 512 - > 2.8e+04 > 105 2.6805e+04 5 14 2.3120e+01

Table 3. Data for MPI parallel solves, using a block Jacobi and 1-element overlapping ASM preconditioners, each with ILDL subdomain

preconditioners, compared with an ABF solver as used throughout this paper. These solves correspond to the single-sinker Stokes case as

in Figure 1(a)-(b), but now with larger problem sizes made possible by the distributed memory-environment. These show the feasibility of

using incomplete factorizations to create an simple-to-apply parallel preconditioner for symmetric saddle point systems, albeit one which

shows the same non-optimal scaling and parameter sensitivity familiar from the use of subdomain ILU or ICC preconditioners in parallel

for definite systems. The problem sizes and number of ranks are chosen to demonstrate weak scaling (constant problem size per rank), and

a strong scaling test is shown for one problem. Note that these experiments were conducted on a different cluster than those in previous

sections (see Section 5), so times to solution are not directly comparable.

experiments demonstrate that ILDL preconditioners can be used within parallel preconditioners to solve problems too large for

a single computational node. As in the sequential case, one can sacrifice some performance, with respect to a complex solver

relying on more machinery and great expertise in tuning (ABF) to be able to quickly use a simpler (from the user’s perspective)

and more widely applicable solver.395

6 Conclusions

The efficient solution of symmetric indefinite linear systems is an important task in many physical modelling
::::::::
modeling appli-

cations in the Earth sciences and beyond, particularly solving PDE in mixed formulations. Approximate Block Factorization

(ABF) preconditioned solvers (or other scalable options) including nested multilevel solves are well-known to be efficient for

sufficiently-large problems, but require invasive code modifications and expertise in implementation and tuning, so might not400

be practical to implement or evaluate. Further, these solvers may not be robust to challenging coefficient structures. The ABF

solver we used for comparison here, for example, performs extremely well for small numbers of viscous inclusions but fails to

18

converge for larger numbers. Advances in algorithms and software for direct solution of symmetric indefinite systems have, in

recent years, brought direct solution for these systems to a level of performance and robustness on par with their counterparts for

definite systems. These advances carry over to incomplete factorization preconditioning, though this is much less well-known;405

this work presents much-needed results on the effectiveness of these solvers in challenging parameter regimes. The Krylov

methods studied here, using ILDL preconditioning with a symmetric maximum weighted matching preprocessing step, require

only a single drop tolerance parameter for the preconditioner, and can be useful across problem types, as seen here between

Stokes and elasticity, and indeed even across “matrix market”-style corpora (Hagemann and Schenk, 2006; Greif et al., 2015).

They also show useful robustness to viscosity structure, outperforming our representative ABF solver for larger numbers of410

viscous inclusions. Further, ILDL-preconditioned Krylov methods can be a preferable choice to direct solves: one trades some

parameter selection and less-robust performance for a large reduction in memory footprint and often extra performance.

The results in this paper show that if one is employing a direct solver for a symmetric, indefinite problem, such as a Stokes

or elasticity problem, an ILDL-preconditioned iterative solver is worth investigating. The preconditioner requires only an

assembled operator and can be quickly used in situations that an ABF solver must be arduously selected, integrated, and tuned,415

and can offer greater robustness to coefficient structure. An ILDL-preconditioned iterative solver typically remains competitive

or even superior to direct solution, in terms of dof
::::
DOF/s computed for larger problems while using 3⇥�5⇥ less memory. This

alternative can be investigated quickly as only an assembled operator and one or two parameters need be provided.

We
::
To

:::::::::
conclude,

:::
we

:::::::
mention

:::::::
avenues

:::
for

::::::
further

::::::::::::
development.

::::::
Firstly,

:::
we

:
have focused on single-level ILDL precondi-

tioning, but ILUPACK includes a multilevel ILDL preconditioner (Bollhöfer and Saad, 2006; Schenk et al., 2008), available420

through the same wrappers, and PARDISO (Schenk and Gärtner, 2004; Kuzmin et al., 2013) also includes a multi-recursive

iterative solver which uses multi-level ILDL preconditioning. These techniques are related to an algebraic multigrid (AMG)

approach; further investigation is warranted of these and other highly-automated AMG approaches (Metsch, 2013) which

may provide the scalability associated with multilevel methods while retaining the robustness and ease of use associated with

factorization-based approaches. We425

::::::::
Secondly,

:::
we have focused on sequential computation and application of ILDL factorizations, and shown how these may be

extended to the parallel case by using simple domain-decomposition-based preconditioners.

However, recent work has shown the promise of computing and applying incomplete LDL
T

:::::
ILDL factorizations directly

in modern parallel environments, taking advantage of multiple threads, distributed memory subdomains (MPI ranks), and/or

GPUs (Aliaga et al., 2014, 2016a, b, 2017; Bollhöfer et al., 2019b). As these developments make their way into software430

packages, these algorithms will become even more attractive for applications in the Earth sciences and beyond.

Code availability. Our solvers utilize functionality from ILUPACK 8, PARDISO 9, and PETSC 10. PETSC is open-source under a BSD-2

license; ILUPACK and PARDISO are closed source and offer complimentary academic licenses.

8http://ilupack.tu-bs.de
9www.pardiso-project.org

10www.mcs.anl.gov/petsc

19

http://ilupack.tu-bs.de
www.pardiso-project.org
www.mcs.anl.gov/petsc

PETSC represents the highest level within our solver stack; all underlying solver implementations are utilized through PETSC function

calls (e.g. KSPSolve()). To support this, we provide a public, open source wrapper around ILUPACK so that it can be used as a precon-435

ditioner (PC) implementation within PETSc 11. Through a custom interface (again public and open source) we use PARDISO to provide a

direct solver for symmetric indefinite systems, using the same weighted-matching ordering 12. The code which performs the discretization

of the Stokes and elasticity problems, configures the solvers and generates the post-processed flow/displacements fields is publicly available,

open source13. Also see the supplement to this paper, which provides additional instructions and details to reproduce, extend, and apply the

experiments and tools discussed above.440

Author contributions. All authors contributed collaboratively to the development of the project. P. Sanan, D. May and O. Schenk contributed

to the writing of the manuscript. P. Sanan and D. May conceived and designed the scope and experiments presented, including the demon-

stration code. M. Bollhöfer provided code and support to interface with ILUPACK.

Competing interests. We declare there are no competing or conflicts of interest.

Acknowledgements. P. Sanan acknowledges financial support from the Swiss University Conference and the Swiss Council of Federal445

Institutes of Technology through the Platform for Advanced Scientific Computing (PASC) program. D. May acknowledges financial support

from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant Agreement

Number 279925 and the Alfred P. Sloan Foundation through the Deep Carbon Observatory (DCO) Modeling and Visualization Forum. P.

Sanan acknowledges Radim Janalik who helped developed the PETSC interface to PARDISO.

11http://bitbucket.org/psanan/PCILUPACK
12https://bitbucket.org/psanan/petsc/branch/psanan/pardiso-3.12.4
13http://bitbucket.org/psanan/exsaddle

20

http://bitbucket.org/psanan/PCILUPACK
https://bitbucket.org/psanan/petsc/branch/psanan/pardiso-3.12.4
http://bitbucket.org/psanan/exsaddle

References450

Aliaga, J. I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., and Quintana-Ortí, E. S.: Leveraging Data-Parallelism in ILUPACK us-

ing Graphics Processors, in: 2014 IEEE 13th International Symposium on Parallel and Distributed Computing, pp. 119–126,

https://doi.org/10.1109/ISPDC.2014.19, 2014.

Aliaga, J. I., Badia, R. M., Barreda, M., Bollhöfer, M., Dufrechou, E., Ezzatti, P., and Quintana-Ortí, E. S.: Exploiting Task and Data

Parallelism in ILUPACK’s Preconditioned CG Solver on NUMA Architectures and Many-Core Accelerators, Parallel Computing, 54,455

97–107, 2016a.

Aliaga, J. I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., and Quintana-Ortí, E. S.: A Data-Parallel ILUPACK for Sparse General and Symmetric

Indefinite Linear Systems, in: European Conference on Parallel Processing, pp. 121–133, Springer, 2016b.

Aliaga, J. I., Barreda, M., Flegar, G., Bollhöfer, M., and Quintana-Ortí, E. S.: Communication in Task-Parallel ILU-Preconditioned CG

Solvers using MPI+ OmpSs, Concurrency and Computation: Practice and Experience, 29, e4280, 2017.460

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev,

D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S.,

Zhang, H., and Zhang, H.: PETSc Web page, https://www.mcs.anl.gov/petsc, https://www.mcs.anl.gov/petsc, 2019a.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev,

D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S.,465

Zhang, H., and Zhang, H.: PETSc Users Manual, Tech. Rep. ANL-95/11 - Revision 3.12, Argonne National Laboratory, https://www.mcs.

anl.gov/petsc, 2019b.

Benzi, M.: Preconditioning Techniques for Large Linear Systems: A Survey, Journal of Computational Physics, 182, 418–477,

https://doi.org/10.1006/jcph.2002.7176, 2002.

Benzi, M. and Wathen, A. J.: Some Preconditioning Techniques for Saddle Point Problems, in: Model Order Reduction: Theory, Research470

Aspects and Applications, edited by Schilders, W. H., van der Vorst, H. A., and Rommes, J., pp. 195–211, Springer Berlin Heidelberg,

2008.

Benzi, M., Golub, G. H., and Liesen, J.: Numerical Solution of Saddle Point Problems, Acta Numerica, 14, 1–137,

https://doi.org/10.1017/S0962492904000212, 2005.

Bollhöfer, M. and Saad, Y.: Multilevel Preconditioners Constructed from Inverse-Based ILUs, SIAM Journal on Scientific Computing, 27,475

1627–1650, 2006.

Bollhöfer, M., Grote, M., and Schenk, O.: Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media, SIAM

J. Sci. Comput., 31, 2009.

Bollhöfer, M., Eftekhari, A., Scheidegger, S., and Schenk, O.: Large-Scale Sparse Inverse Covariance Matrix Estimation, SIAM Journal on

Scientific Computing, 41, A380–A401, 2019a.480

Bollhöfer, M., Schenk, O., and Verbosio, F.: High Performance Block Incomplete LU Factorization, 2019b.

Brezzi, F. and Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer, New York, https://doi.org/10.1007/978-1-4612-3172-1, 1991.

Bunch, J. R. and Kaufman, L.: Some Stable Methods for Calculating Inertia and Solving Symmetric Linear Systems, Mathematics of

Computation, 31, 163–179, 1977.

Chow, E. and Saad, Y.: Experimental Study of ILU Preconditioners for Indefinite Matrices, Journal of Computational and Applied Mathe-485

matics, 86, 387–414, 1997.

21

https://doi.org/10.1109/ISPDC.2014.19
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.1006/jcph.2002.7176
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1007/978-1-4612-3172-1

Dabrowski, M., Krotkiewski, M., and Schmid, D. W.: MILAMIN: MATLAB-Based Finite Element Method Solver for Large Problems,

Geochemistry, Geophysics, Geosystems, 9, 2008.

Davis, T. A.: Algorithm 832: UMFPACK V4. 3—An Unsymmetric-Pattern Multifrontal Method, ACM Transactions on Mathematical Soft-

ware (TOMS), 30, 196–199, 2004.490

Davis, T. A., Rajamanickam, S., and Sid-Lakhdar, W. M.: A Survey of Direct Methods for Sparse Linear Systems, Acta Numerica, 25,

383–566, https://doi.org/10.1017/S0962492916000076, 2016.

Duff, I., Gould, N., Reid, J., Scott, J., and Turner, K.: The Factorization of Sparse Symmetric Indefinite Matrices, JIMA, 11, 181–204, 1991.

Duff, I. S. and Koster, J.: The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices, SIAM Journal

on Matrix Analysis and Applications, 20, 889–901, https://doi.org/doi:10.1137/S0895479897317661, 1999.495

Duff, I. S. and Pralet, S.: Strategies for Scaling and Pivoting for Sparse Symmetric Indefinite Problems, SIMAX, 27, 313–340, 2005.

Elman, H. C.: Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity, SIAM J. Sci. Comput., 20, 1299–1316,

https://doi.org/10.1137/S1064827596312547, 1999.

Elman, H. C., Silvester, D. J., and Wathen, A. J.: Finite Elements and Fast Iterative Solvers : with Applications in Incompressible Fluid

Dynamics, Numerical mathematics and scientific computation, Oxford University Press, Oxford, New York, 2005.500

Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., and Rixen, D.: FETI-DP: A Dual–Primal Unified FETI Method-Part I: A Faster Alternative

to the Two-Level FETI Method, International Journal for Numerical Methods in Engineering, 50, 1523–1544, 2001.

Freund, R. W. and Nachtigal, N. M.: QMR: a Quasi-Minimal Residual Method for Non-Hermitian Linear Systems, Numerische Mathematik,

60, 315–339, 1991.

George, A.: Nested Dissection of a Regular Finite Element Mesh, SIAM J. Numer. Anal., 10, 1973.505

Gerya, T. V. and Yuen, D. A.: Characteristics-Based Marker-in-Cell Method with Conservative Finite-Differences Schemes for Modeling

Geological Flows with Strongly Variable Transport Properties, Physics of the Earth and Planetary Interiors, 140, 293–318, 2003.

Gould, N. I. M., Scott, J. A., and Hu, Y.: A Numerical Evaluation of Sparse Direct Solvers for the Solution of Large Sparse Symmetric Linear

Systems of Equations, ACM Transactions on Mathematical Software, 33, 10–es, https://doi.org/10.1145/1236463.1236465, 2007.

Greif, C., He, S., and Liu, P.: SYM-ILDL: Incomplete LDLT Factorization of Symmetric Indefinite and Skew-Symmetric Matrices, CoRR,510

abs/1505.07589, 2015.

Grinevich, P. P. and Olshanskii, M. A.: An Iterative Method for the Stokes-Type Problem with Variable Viscosity, SIAM Journal on Scientific

Computing, 31, 3959–3978, 2009.

Gupta, A. and Ying, L.: On Algorithms for Finding Maximum Matchings in Bipartite Graphs (RC 21576), Tech. rep., IBM Research, 1999.

Gupta, A., Karypis, G., and Kumar, V.: Highly Scalable Parallel Algorithms for Sparse Matrix Factorization, IEEE Transactions on Parallel515

and Distributed systems, 8, 502–520, 1997.

Hagemann, M. and Schenk, O.: Weighted Matchings for Preconditioning Symmetric Indefinite Linear Systems, SIAM J. Sci. Comput., 28,

403–420, 2006.

Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps,

E. T., Salinger, A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M., Williams, A., and Stanley, K. S.: An Overview of the Trilinos520

Project, ACM Trans. Math. Softw., 31, 397–423, https://doi.org/http://doi.acm.org/10.1145/1089014.1089021, 2005.

Hu, J., Tuminaro, R., Adams, M. F., and Brezina, M.: Parallel Multigrid Smoothing: Polynomial versus Gauss-Seidel, Journal of Computa-

tional Physics, 188, 593–610, 2003.

22

https://doi.org/10.1017/S0962492916000076
https://doi.org/doi:10.1137/S0895479897317661
https://doi.org/10.1137/S1064827596312547
https://doi.org/10.1145/1236463.1236465
https://doi.org/http://doi.acm.org/10.1145/1089014.1089021

Isaac, T., Stadler, G., and Ghattas, O.: Solution on Nonlinear Stokes Equations Discretized by High-Order Finite Elements on Nonconforming

and Anisotropic Meshes, with Application to Ice Sheet Dynamics, SIAM J. Sci. Comput., 37, 804–833, 2015.525

Karypis, G. and Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific

Computing, 20, 359–392, 1998.

Kuzmin, A., Luisier, M., and Schenk, O.: Fast Methods for Computing Selected Elements of the Greens Function in Massively Parallel

Nanoelectronic Device Simulations, in: Euro-Par 2013 Parallel Processing, edited by Wolf, F., Mohr, B., and Mey, D., vol. 8097 of

Lecture Notes in Computer Science, pp. 533–544, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-40047-6_54, 2013.530

Laird, A. L. and Giles, M.: Preconditioned Iterative Solution of the 2D Helmholtz Equation, Tech. rep., University of Oxford, http://eprints.

maths.ox.ac.uk/1216/, 2002.

Li, X. S. and Demmel, J. W.: SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct Solver for Unsymmetric Linear Systems, ACM

Transactions on Mathematical Software (TOMS), 29, 110–140, https://doi.org/10.1145/779359.779361, 2003.

Loghin, D. and Wathen, A. J.: Analysis of Preconditioners for Saddle-Point Problems, SIAM Journal on Scientific Computing, 25, 2029–535

2049, 2004.

MATLAB: 9.6 (R2019a), The MathWorks Inc., Natick, Massachusetts, 2019.

May, D. A. and Moresi, L.: Preconditioned Iterative Methods for Stokes Flow Problems Arising in Computational Geodynamics, Physics of

the Earth and Planetary Interiors, 171, 33–47, https://doi.org/10.1016/j.pepi.2008.07.036, 2008.

May, D. A., Brown, J., and Le Pourheit, L.: pTatin3D : High-Performance Methods for Long-Term Lithospheric Dynamics, in: SC14, pp.540

274–284, https://doi.org/10.1109/SC.2014.28, 2014.

May, D. A., Brown, J., and Le Pourhiet, L.: A Scalable, Matrix-Free Multigrid Preconditioner for Finite Element Discretizations of Heteroge-

neous Stokes Flow, Computer Methods in Applied Mechanics and Engineering, 290, 496–523, https://doi.org/10.1016/j.cma.2015.03.014,

2015.

May, D. A., Sanan, P., Rupp, K., Knepley, M. G., and Smith, B. F.: Extreme-Scale Multigrid Components Within PETSc, in: PASC ’16:545

Proceedings of the Platform for Advanced Scientific Computing Conference, https://doi.org/10.1145/2929908.2929913, 2016.

Metsch, B.: Algebraic Multigrid (AMG) for Saddle Point Systems, Ph.D. thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn, 2013.

Mills, R. T., Lu, C., Lichtner, P. C., and Hammond, G. E.: Simulating Subsurface Flow and Transport on Ultrascale Computers using

PFLOTRAN, Journal of Physics: Conference Series, 78, 012 051, https://doi.org/10.1088/1742-6596/78/1/012051, 2007.

Munkres, J.: Algorithms for the Assignment and Transportation Problems, Journal of the Society for Industrial and Applied Mathematics, 5,550

32–38, https://doi.org/10.1137/0105003, http://dx.doi.org/10.1137/0105003, 1957.

Olschowka, M. and Neumaier, A.: A New Pivoting Strategy for Gaussian Elimination, Linear Algebra and Its Applications, 240, 131–151,

https://doi.org/10.1016/0024-3795(94)00192-8, 1996.

Rudi, J., Ghattas, O., Malossi, A. C. I., Isaac, T., Stadler, G., Gurnis, M., Staar, P. W. J., Ineichen, Y., Bekas, C., and Curioni, A.: An Extreme-

Scale Implicit Solver for Complex PDEs, Proceedings of the International Conference for High Performance Computing, Networking,555

Storage and Analysis on - SC ’15, pp. 1–12, https://doi.org/10.1145/2807591.2807675, 2015.

Rudi, J., Stadler, G., and Ghattas, O.: Weighted BFBT Preconditioner for Stokes Flow Problems with Highly Heterogeneous Viscosity, SIAM

Journal on Scientific Computing, 39, S272–S297, 2017.

Saad, Y.: ILUT: A Dual Threshold Incomplete LU Factorization, Numerical Linear Algebra with Applications, 1, 387–402,

https://doi.org/10.1002/nla.1680010405, 1994.560

Saad, Y.: Iterative Methods for Sparse Linear Systems, SIAM, 2nd edn., https://doi.org/10.1016/S1570-579X(01)80025-2, 2003.

23

https://doi.org/10.1007/978-3-642-40047-6_54
http://eprints.maths.ox.ac.uk/1216/
http://eprints.maths.ox.ac.uk/1216/
http://eprints.maths.ox.ac.uk/1216/
https://doi.org/10.1145/779359.779361
https://doi.org/10.1016/j.pepi.2008.07.036
https://doi.org/10.1109/SC.2014.28
https://doi.org/10.1016/j.cma.2015.03.014
https://doi.org/10.1145/2929908.2929913
https://doi.org/10.1088/1742-6596/78/1/012051
https://doi.org/10.1137/0105003
http://dx.doi.org/10.1137/0105003
https://doi.org/10.1016/0024-3795(94)00192-8
https://doi.org/10.1145/2807591.2807675
https://doi.org/10.1002/nla.1680010405
https://doi.org/10.1016/S1570-579X(01)80025-2

Schenk, O. and Gärtner, K.: Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO, Future Generation Computer Sys-

tems, 20, 475–487, 2004.

Schenk, O. and Gärtner, K.: On Fast Factorization Pivoting Methods for Sparse Symmetric Indefinite Systems, Electronic Transactions on

Numerical Analysis, 23, 158–179, 2006.565

Schenk, O., Bollhöfer, M., and Römer, R. A.: On Large-Scale Diagonalization Techniques for the Anderson Model of Localization, SIAM

review, 50, 91–112, 2008.

Scott, J. and Tůma, M.: On Signed Incomplete Cholesky Factorization Preconditioners for Saddle-Point Systems, SIAM Journal on Scientific

Computing, 36, A2984–A3010, https://doi.org/10.1137/140956671, 2014.

Smith, B., Bjorstad, P., and Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations,570

Cambridge University Press, 2004.

Wathen, A. J.: Preconditioning, Acta Numerica, 24, 329–376, https://doi.org/10.1017/S0962492915000021, 2015.

Wubs, F. W. and Thies, J.: A Robust Two-Level Incomplete Factorization for (Navier-)Stokes Saddle Point Matrices, SIAM Journal on Matrix

Analysis and Applications, 32, 1475–1499, https://doi.org/10.1137/100789439, 2011.

24

https://doi.org/10.1137/140956671
https://doi.org/10.1017/S0962492915000021
https://doi.org/10.1137/100789439

