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Abstract. The need to solve large saddle point systems within computational Earth sciences is ubiquitous. Physical processes

giving rise to these systems include porous flow (the Darcy equations), poroelasticity, elastostatics, and highly viscous flows

(the Stokes equations). The numerical solution of saddle point systems is non-trivial since the operators are indefinite.

Primary tools to solve such systems are direct solution methods (exact triangular factorization) or Approximate Block Fac-

torization (ABF) preconditioners. While ABF solvers have emerged as the state-of-the-art scalable option, they are invasive5

solvers requiring splitting of pressure and velocity degrees of freedom, a multigrid hierarchy with tuned transfer operators

and smoothers, machinery to construct complex Schur complement preconditioners, and the expertise to select appropriate

parameters for a given coefficient regime – they are far from being “black box” solvers. Modern direct solvers, which robustly

produce solutions to almost any system, do so at the cost of rapidly growing time and memory requirements for large problems,

especially in 3D. Incomplete LDLT (ILDL) factorizations, with symmetric maximum weighted matching preprocessing, used10

as preconditioners for Krylov (iterative) methods, have emerged as an efficient means to solve indefinite systems. These meth-

ods have been developed within the numerical linear algebra community but have yet to become widely used in applications,

despite their practical potential. They can be used whenever a direct solver can, only requiring an assembled operator, yet

can offer comparable or superior performance with a much lower memory footprint. In comparison to ABF solvers, they only

require the specification of a drop tolerance and thus provide an easy-to-use addition to the solver toolkit for practitioners.15

Here, we present solver experiments employing incomplete LDLT factorization with symmetric maximum weighted match-

ing preprocessing to precondition operators, and compare these to direct solvers and ABF-preconditioned iterative solves.

To ensure the comparison study is meaningful for Earth scientists, we utilize matrices arising from two prototypical prob-

lems, namely Stokes flow and quasi-static (linear) elasticity, discretized using standard mixed finite element spaces. Our test

suite targets problems with large coefficient discontinuities across non-grid-aligned interfaces, which represent a common,20

challenging-for-solvers, scenario in Earth science applications. Our results show: (i) as the coefficient structure is made in-

creasingly challenging, by introducing high contrast and complex topology with a multiple-inclusion benchmark, the ABF

solver can break down, becoming less efficient than the ILDL solver before breaking down entirely; (ii) ILDL is robust, with

1



a time-to-solution that is largely independent of the coefficient topology and mildly dependent on the coefficient contrast; (iii)

the time-to-solution obtained using ILDL is typically faster than that obtained from a direct solve, beyond 105 unknowns; (iv)25

ILDL always uses less memory than a direct solve.

1 Introduction

Saddle point systems frequently arise in the context of constrained minimization problems. Many physical processes relevant to

the Earth sciences fall within such a minimization framework. Possibly the most widely used relates to the variational statement

which seeks to constrain a vector field (e.g. displacement / velocity) to be divergence free. These statements can be viewed,30

both numerically and physically, as limiting cases of scenarios in which volume change is penalized. Such formulations natu-

rally introduce a pressure-like (scalar) variable to constrain the displacement / flow (vector) field. Specific examples include:

mixed Darcy problems involving the unknowns Darcy flux and saturation pressure (porous flow, groundwater flow, oil and gas

reservoirs); poroelasticity (geomechanics, reservoirs engineering, bore hole stability); compressible / incompressible quasi-

static linear elasticity (crustal deformation targeting on inter-seismic periods); and incompressible viscous flow (dynamics of35

the mantle, lithosphere, glaciers, ice sheets). Other relevant (but more generic) applications giving rise to discrete problems of

saddle point type include PDE-constrained optimization, weak imposition of boundary conditions (e.g. contact, fault constitu-

tive behaviour) and matching conditions between different model domains (e.g. Beavers-Joseph matching conditions between

fluid-solid regions).

Solution techniques for saddle point systems have been extensively studied (Benzi et al., 2005; Benzi and Wathen, 2008;40

Loghin and Wathen, 2004). Nevertheless, a saddle point system may be challenging to solve because the discrete problem (i.e.

the matrix), while often symmetric, is indefinite; this structure precludes the use of many standard approaches (like classical

multigrid).

Saddle point problems too large to be practically solved via sparse direct solution techniques (e.g. LU or LDLT factoriza-

tion)(Davis et al., 2016) can be solved with highly-specialized solvers which exhibit better scaling in both time and memory45

required. The development of highly scalable, optimal preconditioners for the solution of large-scale variable viscosity Stokes

systems arising in ice sheet modeling (Isaac et al., 2015) and geodynamics (May et al., 2014; Rudi et al., 2015) is mature.

However, the practical usage of saddle point solvers does not always favor these approaches. Maximum problem sizes of

interest are typically fixed or modest (e.g. <O(108) DOFs); algorithmic or parallel scalability may not be to be prized to the

exclusion of all else; time-to-solution(s) may not dominate the time required to set up and tune (by hand) a specialized solver;50

or computational resources available may be modest (e.g. single compute node with 100 GB RAM and unlimited walltime,

or few low memory compute nodes with ∼ 400 cores with walltime restricted to < 24 hrs). Specialized, optimal solvers often

lack robustness as problem parameters or problem types are varied, though progress is being made in this regard (e.g. Rudi

et al., 2017).

Solvers can trade some algorithmic performance for robustness and/or ease of use. A striking example is the persistent use of55

incomplete LU (ILU) preconditioning (e.g. Wathen (2015) §6.1, Benzi (2002) §3). With the help of an easy-to-apply-and-store
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approximate inverse to the system matrix, obtained by discarding terms from a full factorization (as used in a direct solver),

the solution may be iteratively updated until it approaches the solution. While ILU-preconditioned Krylov methods are neither

algorithmically scalable nor completely robust, the method is ubiquitous for several reasons.

1. Only an assembled operator is required. Many efficient preconditioners require auxiliary information, typically concern-60

ing the physical domain of an underlying PDE. For example, multigrid solvers require a hierarchy of grids and transfer

operators and FETI-DP (Farhat et al., 2001) methods require access to finite element subdomains. However, purely al-

gebraic solvers, which only require an assembled operator (matrix), are always in demand, as they can be applied more

broadly and allow for greater ease of algorithmic experimentation.

2. Reasonable performance is observed for a large class of relevant problems. Some variants of ILU preconditioning reduce65

the condition number of a standard second-order elliptic PDE, discretized with finite differences or finite elements, from

O(h2) to O(h) (Benzi, 2002) As such, the preconditioner has been used in many applications, alone or as a subdomain

preconditioner for a block-Jacobi preconditioner, for example in subsurface flow (Mills et al., 2007).

3. The methods are tunable, with a small number of parameters. ILU-preconditioned Krylov methods typically only expose

a small number of parameters to the user, depending on the variant employed (Saad, 2003, Ch. 10). For instance, in70

ILU(k) methods, the nonzero entries of the factors are restricted to those of Ak+1. One may also drop entries below a

given threshold or use more complicated approaches such as ILUT (Saad, 1994) or multi-level inverse-based dropping

strategies (Bollhöfer and Saad, 2006).

Denser factors typically produce a better approximate inverse, which typically makes for a better preconditioner. Thus,

a simple trade-off exists between iteration counts and memory usage. This is in contrast to direct solvers, which do not75

offer the user any control over memory usage and which always (over-)solve to machine precision.

Often, an additional choice is available of an ordering strategy such as approximate minimum degree ordering, nested

dissection, reverse Cuthill-McKee (RCM), or others. Finally, a choice must be made of the Krylov method itself; this

study uses right-preconditioned GMRES or FGMRES.

4. Tools are widely available in software. Because of the conveniences described in points 1 and 3, ILU preconditioners80

have made their way into numerous software packages, including MATLAB (MATLAB, 2019), ILUPACK (Bollhöfer

and Saad, 2006), UMFPACK (Davis, 2004), WSMP (Gupta et al., 1997), PETSC (Balay et al., 2019a, b), TRILINOS

(Heroux et al., 2005), and many others, as they often provide a reasonable default preconditioner.

5. The method is well-discussed in the practical literature. Potential users are likely to have access to a performance study

which includes the effect of ILU preconditioning, with documentation of the parameter choices employed.85

Incomplete LDLT (ILDL) preconditioners arise as incomplete versions of direct solvers for indefinite systems, which use

the factorization A= LDLT , where L is lower-triangular and D is block diagonal. Here the term “incomplete” implies that

factorization is only approximate. ILDL methods with symmetric maximum weighted-matching preprocessing (see Section 3)
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have emerged in the numerical linear algebra community as an analogous method to ILU methods, but for symmetric indefinite

systems; they are more robust than ILU or previous incarnations of ILDL. Recently, comparison studies characterizing such90

approaches have appeared: Hagemann and Schenk (2006) provide a study of the effectiveness of ILDL preconditioning with

respect to a matrix “zoo”; Greif et al. (2015) performed a similar study with their SYM-ILDL package; Multilevel ILDL pre-

conditioners with symmetric weighted matching preprocessing have been shown to be effective when applied to the Helmholtz

equation (Bollhöfer et al., 2009); Schenk et al. (2008) showed that a similar approach can also be used to effectively compute

a few interior eigenvalues of a large indefinite matrix arising from the Anderson model of localization. Recent work on sparse95

inverse covariance matrix estimation highlights how ILDL preconditioners can be preferable to highly efficient direct solvers,

due to their much lower memory footprints (Bollhöfer et al., 2019a).

Despite these studies, the applicability of ILDL preconditioners is less well-known outside the numerical linear algebra

community, even though these modern methods bring incomplete factorization approaches for indefinite symmetric systems in

line with other popular methods, in terms of robustness and ease of use. It should also be emphasized that points 1 and 3 hold100

for the ILDL method.

1.1 Motivations and Outline

This paper addresses points 2, 4, and the beginnings of 5 in the context of using ILDL preconditioners with symmetric max-

imum weighted matching ordering applied to saddle point systems arising from the spatial discretization of a class of PDEs

relevant to the solid Earth.105

In contrast to the previous ILDL studies mentioned above, which mostly focus on the robustness of preconditioners across

a corpus of matrices representing individual instances of different applications, here we focus on a deeper examination of a

specific class of PDEs commonly used within the Earth sciences. Specifically, we wish to examine the saddle point problems

arising from stationary Stokes flow with highly heterogeneous viscosity structure, and systems arising from the static linear

elasticity, also with large coefficient jumps. Particular attention is paid to physical problems with large, non-grid-aligned110

coefficient jumps, as these constitute challenging systems of interest within the Earth sciences. This focus allows new insight

into the effect of varying problem size and parameters on the performance of solvers. In particular, the spatial distribution of

material parameters, which we refer to as “coefficient structure”, is highlighted.

We only examine the scenario in which a given linear system need only be solved for a single right hand side. This is

typical when solving nonlinear systems of equations (often within time-stepping algorithms) when a Jacobian and residual are115

assembled and used to compute a step.

The saddle point operators arising from the Stokes and static elasticity (in mixed form) systems are presented in Section 2.

Section 3 describes the incomplete ILDL factorization preconditioner with maximum symmetric weighted matching prepro-

cessing. Section 4 describes an Approximate Block Factorization (ABF) preconditioner and a sparse direct solver, which serve

as representatives of the two classes of alternative approaches in common use and which we will compare ILDL against. Section120

5 presents experiments which characterize the performance of these ILDL-preconditioners, direct and the ABF-preconditioned
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solves applied to the Stokes and elasticity problems for a variety of synthetic model configurations involving multiple inclu-

sions of differing material parameters (with respect to the surrounding medium).

2 Prototypical problems and saddle point systems

2.1 Stokes flow125

Conservation of momentum and mass for an incompressible creeping fluid in a domain Ω with boundary ∂Ω are given by

−∇ · τ +∇p= ρĝ,

−∇ ·u= 0, (1)

where u and p are the velocity and pressure, respectively. The forcing term is associated with buoyancy variations; ρ is a

spatially-varying density and ĝ is the gravity vector. For the isotropic media we consider here, the deviatoric stress τ is related

to the strain rate ε̇[u] via130

τ = 2ηε̇[u], ε̇[u] = 1
2

(
∇u+ (∇u)T

)
, (2)

where η is a spatially-varying effective shear viscosity. The system given by Eq. (1) is closed with appropriate boundary

conditions specified on the normal and tangential components of the velocity and stress (σ). In this work, we consider the

following boundary conditions, partitioning the boundary into free-slip and free surface (zero stress) regions:

u ·n= 0, t · τ ·n = 0 x ∈ ΓD, (3)135

n ·σ ·n= 0, t ·σ ·n = 0 x ∈ ΓF , (4)

where σ = τ − pI is the total stress, n,t are the normal (outward pointing) and tangent vector to the boundary ∂Ω, for which

ΓD ∩ΓF = ∅ and ΓD ∪ΓF = ∂Ω.

2.1.1 Discrete problem

We use inf-sup stable mixed finite elements (FE) to obtain discrete solutions of Eq. (1). A full description of the variational140

(weak) problem associated with incompressible Stokes flow can be found in Elman et al. (2005). The discrete Stokes problem

AStokes is denoted byK BT

B 0

u
p

=

F
0

 , or AStokesv = b, (5)

whereK is the discrete gradient of the deviatoric stress tensor andB andBT are the discrete gradient and divergence operators,

respectively. The FE discretization results in K being symmetric positive definite; thus, AStokes is a symmetric, indefinite145

operator.
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2.2 Static linear elasticity

The conservation of momentum for an elastic solid in static equilibrium in a domain Ω with boundary ∂Ω is given by

−∇ · σ̂ = ρĝ, (6)

where ρ and ĝ were defined previously in Section 2.1, and σ̂ is the total stress, which we assume to obey the linear, isotropic150

constitutive relation

σ̂ = 2µε[u] +λTr(ε[u])I

= 2µε[u] +λ∇ ·uI, (7)

where u is the displacement and the (linear) strain tensor ε[u] is given by

ε[u] = 1
2

(
∇u+ (∇u)T

)
(8)

and Tr(·) denotes the trace operator. The particular form of the constitutive relationship adopted is defined in terms of the two155

Lamé parameters (λ,µ). The first Lamé parameter, λ, characterizes compressibility; as λ→∞, the material becomes incom-

pressible. The second Lamé parameter, µ, is equivalent to the shear modulus (often denoted G) and characterizes resistance to

shearing.

Describing materials which are incompressible in some or all of Ω is problematic with the formulation given in Eqs. (6)

and (7) since the last term in Eq. (7) behaves like ∞× 0 in the incompressible limit. The latter scenario is relevant when160

considering plasticity models, or the presence of fluids (e.g. within a crack along the subduction interface). Even when large

but finite values for λ (e.g. the equivalent Poisson ratio ν = λ
2(λ+µ) > 0.49) are used, “locking” may occur when using standard

finite difference, finite volume, or finite element spatial discretizations (Brezzi and Fortin, 1991), rendering the displacement

solutions meaningless. The issues in the incompressible limit can be resolved by grouping the problematic terms into a new

auxiliary pressure variable, p=−λ∇ ·u. Then, if we decompose the stress as σ̂ = τ − pI , Eqs. (6) and (7) can be cast as the165

following mixed (u,p) problem (Brezzi and Fortin, 1991):

−∇ · τ +∇p= ρ(x)ĝ,

−∇ ·u− 1

λ
p= 0, (9)

with stress τ given by

τ = 2µε[u]. (10)

One will observe that form is similar to the Stokes system described in Section 2.1; u now represents displacements, strain170

is considered instead of strain rate, and pressure and divergence of u are now related by the material parameter λ. This implies

that the degree of coupling between u and p within the conservation of mass may be spatially variable as λ need not be constant

throughout Ω. One should also note that τ in Eq. (10) is only deviatoric in regions where λ→∞, cf. Stokes where τ is strictly
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deviatoric everywhere in Ω since ∇ · v = 0 is imposed throughout the domain. The boundary conditions given by Eqs. (3), (4)

are valid for the mixed elasticity problem, with the velocity v interchanged for the displacement u, and σ interchanged with σ̂.175

We also consider an inhomogeneous version of Eq. (3) to specify a normal displacement.

2.2.1 Discrete problem

The discrete mixed (u,p) static elasticity problem AElasticity is denoted byK BT

B −C

u
p

=

F
0

 , or AElasticityv = b, (11)

whereK is the discrete gradient of the deviatoric stress tensor,B andBT are the discrete gradient and divergence operators, and180

C is a 1
λ -weighted discrete pressure mass matrix. The FE discretization results in K and C being symmetric positive definite

and thus AElasticity is again a symmetric, indefinite operator. To ensure the discrete problem is stable when the continuum is

incompressible (or near to this limit), be it locally or globally (as determined by the value of λ), as per the discrete Stokes

system (Section 2.1.1), the FE basis functions used to discretize the displacement u and pressure p cannot be chosen arbitrarily.

Rather, an inf-sup stable pair of FE basis functions must be used.185

3 Incomplete LDLT (ILDL) preconditioning, with symmetric maximum weighted matching ordering, for saddle

point matrices

Linear systems involving indefinite symmetric matrices are, in general, more difficult to solve than their positive-definite

counterparts. This is partially due to the lack of positive-definite (inner product) structure. Diagonal entries which are small,

zero, and/or not of constant sign make pivoting and numerical solution more challenging. Roughly speaking, though, if one can190

cast them as block systems which are in some sense better behaved, grouping problematic diagonal entries with better-behaved

ones, robustness can be regained.

ILDL preconditioners arose as incomplete versions of direct solvers for indefinite systems, which use factorization A=

LDLT , after permutation and scaling. Here, D is block diagonal with 1× 1 and 2× 2 blocks, and L is lower triangular (Duff

et al., 1991). Weighted matchings were first observed to be effective, static approximations to pivoting order by Olschowka195

and Neumaier (Olschowka and Neumaier, 1996). Duff and Koster introduced fast algorithms (Duff and Koster, 1999) and with

the addition of Bunch-Kaufman pivoting (Bunch and Kaufman, 1977), highly efficient sparse direct solvers, both in terms of

solution time and memory footprint, where made available (Duff and Pralet, 2005; Schenk and Gärtner, 2006). These have

become the standard for the direct solution of sparse indefinite systems (Li and Demmel, 2003; Schenk and Gärtner, 2006).

By limiting the number of non-zeros (the “fill”) in L, one can obtain an approximate factorization to be used as a precon-200

ditioner for a Krylov method (Hagemann and Schenk, 2006). In this work, we consider “fill” to be the ratio of the number

of nonzero entries in L, relative to in the strictly upper-triangular part of the matrix being factored. Wubs and Thies present

results for the special case of Stokes F-matrices, arising from a simple finite-difference scheme (Wubs and Thies, 2011). A

7



closely-related approach which we do not investigate here is that of signed incomplete Cholesky factorization preconditioners

(Scott and Tůma, 2014).205

Permutation and scaling based on symmetric maximum weighted matching algorithms have shown to nearly or completely

eliminate the need for pivoting in the factorization process, thus giving rise to very efficient methods (Duff and Pralet, 2005).

Numerical stability of incomplete factorization can be enhanced by permuting large elements onto the diagonal of a matrix. One

may pose this task as a (perfect) maximum weighted matching procedure, producing a matrix permutation which maximizes

the product of the absolute values of the diagonal entries. This can be accomplished via the Kuhn-Munkres algorithm (Laird210

and Giles, 2002; Munkres, 1957) with a complexity ofO(N1+α logN),α < 1 for sparse matrices arising from finite difference

or finite-element discretizations (Gupta and Ying, 1999); in practice, however the complexity typically scales linearly with N

(Schenk and Gärtner, 2006).

If one wishes to find a symmetric permutation, one can only change the order of the diagonal entries. Nonetheless, one

can extract cycles from the maximum matching and apply these symmetrically to move large entries close to the diagonal, in215

particular close to small or zero diagonal entries. If these cycles are decomposed into 1× 1 and 2× 2 cycles, one can then

define a blocking wherein diagonal entries may be small, leading to poor conditioning, but 2× 2 diagonal blocks have large

off-diagonal entries, making these blocks suitable pivots for a block elimination process (for more, and some useful diagrams,

see (Bollhöfer et al., 2009, §2.2)).

This preprocessing is usually so effective as to not require any further pivoting (though additional Bunch-Kaufman pivoting is220

included in implementations, for maximum robustness) and in practice, the algorithm to solve the weighted-matching problem

scales linearly in time, providing an extremely efficient method, far more attractive than methods without preprocessing steps.

Once this ordering preprocessing has been performed, a standard fill-reducing ordering may be performed on the full system.

Thus, the complete factorization of a matrix A may be represented as

ΠT P̂T D̂AD̂ P̂ Π =A′, A′ = LDLT +E, (12)225

Where Π is a fill-reducing permutation, P̂ and D̂ are a permutation and scaling arising from the symmetric maximum weighted

matching preprocessing, and E is an error introduced by the incomplete factorization process, which produces the incomplete

factors L and D used in the preconditioner.

The ingredients in the preconditioner include the following components, each of which can be addressed separately in

software.230

– A reordering and scaling preprocessing step to reduce fill and the need for pivoting.

– An additional block-wise1 fill-reducing reordering

– A factorization stage which computes and stores L and D, with respect to some drop tolerance, estimate of ||L||, or

specified fill pattern.

1meaning the 1× 1 and 2× 2 blocks as used in the previous step, not any other, physically-inspired blocking
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– A routine to quickly solve LDLTx= b by (block) forward- and back-substitution.235

Despite the sophistication of the algorithms just discussed, practical usage of an ILDL preconditioner, given robust solver

software, reduces to specification of only a few parameters; the user typically only needs to understand that there is a tradeoff

between fill and the strength of the preconditioner, which they can control with some simple parameters (here, a drop tolerance).

4 Approximate block factorization (ABF) preconditioning

Approximate Block Factorization (ABF) solvers provide a powerful class of methods for the solution of saddle point systems.240

These solvers define preconditioners by exploiting a block LDU factorization of the saddle point matrix, with respect to the

pressure and velocity blocks (Benzi et al., 2005, (5)). Approximately inverting the block-triangular or block-diagonal factors

(often with available scalable solvers) provides a natural way to define approximate inverses, constructed from approximate

solvers on a single field. For more, see details we refer to Elman et al. (2005).

We choose a particular ABF solver as a representative of this class. In particular, we consider an upper block-triangular245

preconditioner K B

Ŝ

 , (13)

where Ŝ is an approximation to the Schur complement S given by S =−C −BTK−1B (and noting that C = 0 in the Stokes

case). The approximate solver on the viscous block is a geometric multigrid method, with a direct solve via UMFPACK (Davis,

2004) on the coarse level. Smoothing is accomplished by 8 Chebyshev-Jacobi iterations (Hu et al., 2003), where GMRES is250

used to estimate the maximum eigenvalue λmax of the preconditioned operator. The Chebyshev polynomial is tuned to the

interval [0.2λmax,1.1λmax]. The approximate Schur complement solver Ŝ is a single application of an ILU preconditioner

formed from a− 1
λ -weighted pressure mass matrix plus the (2,2) block (which is zero in the case of Stokes); this is simple but is

known to produce a spectrally-equivalent, hence scalable, preconditioner (Grinevich and Olshanskii, 2009). This preconditioner

was chosen based on experience using these solvers for applications in geodynamics, where it has shown to be scalable and255

efficient. For problems with large non-grid-aligned coefficient jumps, more elaborate Schur complement preconditioners have

also been developed in recent years (Elman, 1999; May and Moresi, 2008; Rudi et al., 2015, 2017). The ABF solver chosen

here often shows superior performance for all but the smallest problem sizes, but relies on much more machinery set up in the

application: the solver is aware of pressure and velocity blocks and a hierarchy of grids, transfer operators, and rediscretized

operators. In addition, auxiliary operators must be defined to implement a Schur complement preconditioner, used here and in260

most competitive ABF solvers.
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5 Numerical experiments

To provide a concrete and reproducible set of experiments, we use a Q2−Q1 (Taylor-Hood) mixed finite element code2,

making use of the PETSC (Balay et al., 2019a, b) library. It solves the Stokes and elasticity systems in the unit square (2D) and

cube (3D). We focus on 3D problems, as in the 2D case, sparse direct solution methods are expected to be highly competitive,265

with time to solution scaling as O(N3/2) (as opposed to O(N2) for 3-dimensional problems) and expected fill scaling as

O(N logN) (as opposed to O(N2) for 3-dimensional problems) (George, 1973). For Stokes flow tests, free slip boundary

conditions are imposed everywhere (u ·n= 0, t · τ ·n= 0) except the top boundary of the domain, where a free surface is

prescribed (n ·σ ·n= t · τ ·n= 0); this implies a non-singular system matrix (Elman et al., 2005, Ch.5, p. 215). The elasticity

tests also include experiments with non-zero Dirichlet boundary conditions (specified displacements).270

Experiments involving both Stokes and elasticity systems are defined by a “multiple inclusion” configuration. That is, the

domain is partitioned into a set of N non-overlapping spheres each with radius R. By providing parameters to control the

(non-grid-aligned) coefficients (viscosity / Lamé parameters and density) contrast between the N spherical inclusions and the

surrounding medium, this model configuration provides a useful way to characterize two major factors which impact solver

performance: coefficient jumps across arbitrary interfaces and the geometric complexity of these interfaces. Dealing with these275

factors is of primary important in designing solvers for realistic Earth science applications. This discontinuous coefficient field

is projected onto the quadrature points used to evaluate the bilinear / linear forms required by the finite element method. This

projection has the effect of making the coefficient field vary on the length scale of a single finite element; loosely speaking,

this makes the problem “harder” and less amenable to solution with higher-order methods as the mesh is refined, but this is

nonetheless consistent with the way that such problems are often solved in practice (Gerya and Yuen, 2003; May et al., 2015).280

We compare three solver configurations: GMRES preconditioned with ILDL (see Section 3); sparse direct; and FGMRES

preconditioned with ABF (described in Section 4). We do not extensively compare to standard ILU preconditioning, or to ILDL

preconditioning without symmetric maximum weighted matching preprocessing, as these preconditioners are very unreliable

for indefinite problems (Chow and Saad, 1997). This characteristically poor performance has likely contributed to the fact that

incomplete factorization preconditioners for indefinite mechanical problems have not been championed, before this work, as a285

viable practical approach, even though software tools have now developed to the point of making them robust options. We note

that when using a mixed finite element space with a discontinuous pressure space, along with an appropriate penalty (or bulk

viscosity) term C, one can in some cases transform and solve a symmetric positive definite problem, for which incomplete

Cholesky preconditioning is effective and robust (Dabrowski et al., 2008).

All linear algebra is dispatched through the PETSC API. We use a wrapper3 to provide an interface between PETSC and290

internal functions in ILUPACK4 which perform symmetric maximum weighted matching permutation and scaling, prior to a

factorization step using a block elimination process with a simple threshold-based dropping strategy; entries in the L factors

less than a given value (after scaling and permutation) are dropped during the factorization process. Ordering with METIS

2Source code publicly available; see the “Code availability” section at the end of this paper, and the supplement on reproducibility.
3Source code publicly available; see the "Code availability" section at the end of this paper, and the supplement on reproducibility.
4Free academic licenses available; see the “Code availability" section at the end of this paper, and the supplement on reproducibility.
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(Karypis and Kumar, 1998) by nodes, with respect to the blocked system, proved robust and is used everywhere in this work.

In these experiments, available multi-level ILDL options did not seem to offer enhanced performance. Note that, as mentioned295

in Section 1.1, we focus on applications where a given system is solved only once, and hence report solve times which include

the setup (factorization) and Krylov (iterative) solve. The setup time is typically the majority of the solve time; Table 1 reports

these times directly.

For direct solution of sparse linear systems, we choose PARDISO (Schenk and Gärtner, 2004; Schenk and Gärtner, 2006;

Kuzmin et al., 2013) as a highly-competitive package, for instance as demonstrated in the comparative study of Gould et al.300

(2007) examining performance respect to total, serial (single-)solve time for symmetric indefinite systems with 10000 or more

DOFs. Through a custom interface5 this provides a direct solver for symmetric indefinite systems, using the same weighted-

matching ordering used by ILUPACK and the ILDL preconditioners considered here.

All iterative solves use right-preconditioned GMRES or FGMRES and share a common convergence criterion: a reduction

of 106 in the true residual 2-norm ‖b−Ax‖2, whereA isAStokes orAElasticity. In practice, Krylov methods which take advantage305

of symmetric structure, e.g. MINRES or QMR, may be attractive. The choice of norm is important because we consider ill-

conditioned linear operators for which convergence in a preconditioned norm often fails to imply convergence in the true

residual norm. In practice, different norms are usually used. These include preconditioned residual norms or a quasi-norm in

the case of QMR (Freund and Nachtigal, 1991).

Most of the computations were performed on single compute node of the Euler II cluster at ETH Zurich. Each compute node310

is a dual-socket Intel Xeon E5-2680v3 nodes, each with 64 GB of memory. Numerical experiments used a single MPI-rank

and a single OpenMP thread. Experiments as reported in Figure 4 were performed on the Leonhard cluster at ETH Zurich,

using dual-socket Intel Xeon E5-2697v4 nodes, with 128 GB or more memory. Experiments as reported in Section 5.3 were

performed on Piz Daint at the Swiss National Supercomputing Center, using 6 MPI ranks per dual-socket Intel Xeon E5-2695v4

compute node with 64 GB of memory.315

5.1 3D Stokes flow

Examples of 3-dimensional Stokes flow in cubic domains, for problem sizes ranging from 83 to 643 Q2−Q1 elements,

are presented in Table 1 and Figure 1. Here, one can see comparable performance between the direct solve and the ILDL-

preconditioned solves, across all the problems tested; however, the ILDL-preconditioned solve requires less memory and has

the additional advantage of allowing for a loosening of the solve tolerance if desired. Due to its lower memory requirements,320

we were able to solve larger problems with the ILDL-preconditioned approach. The ABF solver typically provides the best

time to solution, yet lacks robustness with respect to the problem parameters, in addition to relying on much more auxiliary

information and many more parameters (in particular, an auxiliary operator for the Schur complement preconditioner, and a

grid hierarchy and tuned parameters for the multigrid hierarchy).

As shown in Figure 1, increasing the number of inclusions degrades the performance of the ABF solver. This trend continues,325

as additional inclusions are added, until eventually the ABF solver fails to converge; Figure 2 demonstrates this effect, with

5Source code publicly available; see the "Code availability" section at the end of this paper, and the supplement on reproducibility.
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(a) η1/η0 = 104.

(b) η1/η0 = 100.

(c) η1/η0 = 104.

(d) η1/η0 = 104.
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Figure 1. Additional experiments, corresponding to coefficient structures labelled (a)-(d), analogous to those in Table 1. Inclusion radii are

0.25 for single inclusions, and 0.1 otherwise, in the unit cube. Solver performance is assessed in terms of degrees of freedom solved to the

prescribed tolerance (10−6 relative error in the true residual norm) over the solution time, and by peak memory footprint.
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GMRES(60)/ILDL(1e-3) PARDISO FGMRES(30)/ABF

Els. DOFs Fill Its. Tot. Time [s] Setup Time [s] Mem. [MB] Time [s] Mem. [MB] Lvls. Its. Time [s] Mem. [MB]

83 15,468 2.0 14 2.27E+00 1.96E+00 127 1.42E+00 163 2 22 2.46E+00 125

163 112,724 2.9 45 6.18E+01 5.30E+01 851 3.78E+01 1743 3 24 2.71E+01 1104

243 368,572 3.7 112 4.77E+02 2.72E+02 3076 2.98E+02 7289 3 19 7.74E+01 2330

323 859,812 4.6 226 1.96E+03 1.07E+03 8100 1.55E+03 21856 4 17 2.04E+02 9587

403 1,663,244 4.5 420 6.41E+03 2.63E+03 15513 6.67E+03 52376 4 17 3.10E+02 10426

483 2,855,668 5.5 568 1.31E+04 9.61E+03 30126 - - 4 16 6.33E+02 17842

563 4,513,884 - - - - - - - 4 15 7.01E+02 28219

643 6,714,692 - - - - - - - 5 19 6.28E+03 40519

Table 1. 3D stationary Stokes flow, with 3 denser (relative density 1.2) spherical inclusions of radius 0.1 viscosity η1/η0 = 104 times higher

than in a surrounding medium in the unit cube. Iteration counts accompany data points in the graph. Missing data correspond to runs which

failed due to insufficient available memory. See also Figure 1.
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Figure 2. The effect of increasing the number of viscous inclusions on the effectiveness of solvers, for a 323 element simulation. Up to 140

non-overlapping inclusions of radius 0.05 are placed randomly in the unit cube. ILDL preconditioning becomes more competitive for more

challenging structures, showing much greater robustness to viscosity structure than ABF solvers while maintaining a lower memory footprint

than direct solution. Missing ABF data indicate that the solver failed to converge. Memory footprints are similar to those shown in Figure 1;

the direct solve (red) requires approximately 4× as much memory as the ILDL-preconditioned solve.

a viscosity contrast of η1/η0 = 106 (a typical cutoff value for even-higher contrasts arising in geodynamical modeling). Here

we can directly observe a regime in which ILDL-preconditioned iterative solves not only provide a simpler alternative to ABF

solves, but a more robust one which also outperforms a direct solve in terms of time-to-solution and memory footprint.

The iterative solver gives the user control over time-memory trade-offs by varying the drop tolerance. Table 2 shows the330

effect of varying the drop tolerance with a 323 element experiment as pictured in Figure 1(a). Comparable times to solution are
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drop tol. fill Solve Time [s] Iterations Max. Mem. [MB]

1 · 10−5 17 1.0696e+04 10 21072

5 · 10−5 13 6.2200e+03 22 16582

1 · 10−4 11 4.0494e+03 35 14321

5 · 10−4 6.1 1.9075e+03 134 9666

1 · 10−3 4.6 1.6031e+03 226 8433

5 · 10−3 2.1 1.1421e+03 652 6585

1 · 10−2 1.4 1.1657e+03 1015 6479

5 · 10−2 0.39 - (>10000) -

Table 2. The effect of varying the drop tolerance parameter (see Section 3) for a 323 element system and right-preconditioned GM-

RES(60)/ILDL solver as in Table 1. Loosening the drop tolerance increases the iteration count and reduces the fill and hence memory

footprint.

observed over a fairly broad range of drop tolerances, and experiments like this lead us to recommend default drop tolerances

in the 10−3− 10−4 range6.

5.2 3D elasticity experiments

Figure 3 shows the results of similar experiments to those in Section 5.1 with spherical inclusions with different material335

properties, here varying λ inside the inclusions, creating areas of near-incompressibility. This corresponds to a very high

Poisson ratio ν = λ
2(λ+µ) close to 1

2 , the challenging case where standard (non-mixed) finite element methods tend to exhibit

locking. The effect of varying this parameter is markedly different to that of varying η in the Stokes case (analogous to µ

in the Lamé case); performance is not as dependent on this parameter for any of the solvers, and the attained DOF/s for the

ILDL solver degrades much more slowly. Again, we observe marked reduction in memory consumption for the ILDL solver,340

as compared to the direct solver, along with a notable performance gain from using ILDL preconditioning, relative to direct

solution. ABF preconditioning is still advantageous, but may not be available in practice and may require an expert to set up.

The ABF preconditioner is not identical to that used for the Stokes problem, with µ substituted for η. To obtain a spectrally

equivalent preconditioner, we build Ŝ (Cf. equation 13) to include the −C term in the Schur complement, where −C arises

from the finite element discretization of the − 1
λp term in Eq. (9). Thus, Ŝ is a −

(
1
µ + 1

λ

)
-weighted pressure mass matrix.345

The experiments in Figure 3 are chosen to emphasize the similarity of the elasticity and Stokes problems, yet elasticity

problems are commonly prescribed with non-zero boundary displacements, amounting to non-zero Dirichlet boundary con-

ditions. Figure 4 shows a similar experiment using a scenario which is perhaps more typical in applications. Inhomogeneous

Dirichlet boundary conditions are used to specify non-zero normal displacements on two opposing boundaries; the top bound-

ary is stress-free and the remaining boundaries are free-slip. The results parallel those in the previous set of experiments; the350

more-invasive ABF solver produces the fastest solution, but preconditioning with ILDL and symmetric weighted matching
6Dropping is performed on a scaled and permuted system, as in Eq. (12). Hence, these values have meaning independent of the original scaling of the

system.
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Figure 3. Experiments showing performance of ILDL preconditioning for the elasticity system, holding µ0 = µ1 = 1,λ0 = 1 constant and

varying λ1 inside inclusions or radius 0.25 (single inclusions) or 0.1. Arrows show displacement, and the pressure field is plotted volumetri-

cally.
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Figure 4. An experiment showing the performance of ILDL preconditioning for an elasticity problem with a heterogeneous medium in

compression; the outer box shows the reference (undeformed) state and the wire mesh shows the deformed state. The surrounding medium

has a Poisson ratio of 1/3 (λ= 2, µ= 1), and the originally-spherical (radius 0.25) inclusion is almost incompressible, with a Poisson ratio

greater than 0.4999 (λ= 104, µ= 1). Boundary conditions are free-slip everywhere except the top, which is stress free. The results show

that ILDL preconditioning offers substantially better-scaling performance (with a lower memory footprint) than a direct solver, without the

auxiliary information, implementation, and tuning required for the even-better-scaling ABF solver. These experiments were run on a slightly

different cluster than the preceding ones (see Section 5), so solve times are not directly comparable.

preprocessing gives a vastly superior option to a direct solve, while using no additional information beyond the specification

of a single drop tolerance. Memory usage is very similar to the plots shown in Figure 3.

5.3 Using ILDL within a parallel preconditioner

An obvious limitation of the results presented thus far, and of the particular implementation of the ILDL decomposition that355

we have employed, is that they have focused on single-process (i.e. “sequential”) usage. However, most scientific computation

is now performed with some degree of multi-process (or multi-thread) parallelism.

A well-known and often-used approach to extend a sequential preconditioner to a parallel preconditioner is to employ a

domain decomposition method (Smith et al., 2004) wherein the computational domain is decomposed into possibly-overlapping

patches where local preconditioners can be applied before the results are used to update the global solution. The simplest such360

preconditioner is the block Jacobi method, with non-overlapping subdomains, and a natural extension is the Additive Schwarz

Method (ASM), wherein overlapping subdomains, here defined in terms of finite elements, are used to define subsolves.
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ILDL preconditioning can be used to provide approximate inverses to local subproblems, much as ILU preconditioning is

commonly used in the corresponding positive-definite case. We note that this block Jacobi/ILU preconditioning is practical

useful for a wide range of problems despite, like ILU itself, it not being perfectly scalable or robust.365

This is possible by leveraging the same software wrappers used in the sequential experiments in this paper, and indeed within

the code used here, amounts simply to specifying a few command line options. As a proof of concept, table 3 compares iteration

counts and time-to-solution solving a Stokes problem with a block Jacobi or ASM preconditioner, with various choice of sub-

preconditioner. As in the rest of this work, comparison is made with a well-tuned ABF solver. 7 No attempt has been made to

optimize the subdomain solvers here - the drop tolerance was simply adopted from the sequential case. For the isoviscous case370

shown, the block Jacobi method and ASM method are comparable, but when a viscosity jump is added, the ASM solver can still

converge, albeit slowly, while the block Jacobi approach becomes much slower. These simple experiments demonstrate that

ILDL preconditioners can be used within parallel preconditioners to solve problems too large for a single computational node.

As in the sequential case, one can sacrifice some performance, with respect to a complex solver relying on more machinery and

great expertise in tuning (ABF) to be able to quickly use a simpler (from the user’s perspective) and more widely applicable375

solver.

6 Conclusions

The efficient solution of symmetric indefinite linear systems is an important task in many physical modeling applications in the

Earth sciences and beyond, particularly solving PDE in mixed formulations. Approximate Block Factorization (ABF) precondi-

tioned solvers (or other scalable options) including nested multilevel solves are well-known to be efficient for sufficiently-large380

problems, but require invasive code modifications and expertise in implementation and tuning, so might not be practical to

implement or evaluate. Further, these solvers may not be robust to challenging coefficient structures. The ABF solver we

used for comparison here, for example, performs extremely well for small numbers of viscous inclusions but fails to converge

for larger numbers. Advances in algorithms and software for direct solution of symmetric indefinite systems have, in recent

years, brought direct solution for these systems to a level of performance and robustness on par with their counterparts for385

definite systems. These advances carry over to incomplete factorization preconditioning, though this is much less well-known;

this work presents much-needed results on the effectiveness of these solvers in challenging parameter regimes. The Krylov

methods studied here, using ILDL preconditioning with a symmetric maximum weighted matching preprocessing step, require

only a single drop tolerance parameter for the preconditioner, and can be useful across problem types, as seen here between

Stokes and elasticity, and indeed even across “matrix market”-style corpora (Hagemann and Schenk, 2006; Greif et al., 2015).390

They also show useful robustness to viscosity structure, outperforming our representative ABF solver for larger numbers of

viscous inclusions. Further, ILDL-preconditioned Krylov methods can be a preferable choice to direct solves: one trades some

parameter selection and less-robust performance for a large reduction in memory footprint and often extra performance.

7And note that the largest ABF solve here required the use of PCTELESCOPE (May et al., 2016) to define the coarsest grid on a subset of ranks, another

wrinkle in the effective use of multigrid solvers.
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GMRES(60)/Block Jacobi/ILDL(1e-3) GMRES(60)/ASM/ILDL(1e-3) FGMRES(30)/ABF

η1/η0 Els. MPI Ranks Its. Time [s] Its. Time [s] Lvls. Its. Time [s]

1

323 8 219 8.0564e+01 84 8.2991e+01 4 9 1.2685e+01

483 27 693 1.7149e+02 586 2.4185e+02 4 9 1.5954e+01

643 64 1310 2.6762e+02 1843 5.2592e+02 5 9 1.3151e+01

963 216 4668 7.6356e+02 7903 1.6136e+03 5 9 1.6056e+01

1283

125 4613 5.9810e+03

216 6587 3.6521e+03

512 6126 1.1899e+03 15396 4.8914e+03 5 9 1.3296e+01

729 19387 4.3029e+03

102

323 8 709 1.6289e+02 155 9.3547e+01 4 12 2.1862e+01

483 27 14892 2.5563e+03 832 2.8261e+02 4 12 2.6607e+01

643 64 - > 1.4e+04 17636 6.9489e+03 5 14 2.1098e+01

963 216 - > 2.8e+04 > 105 2.5548e+04 5 13 2.3065e+01

1283 512 - > 2.8e+04 > 105 2.6805e+04 5 14 2.3120e+01

Table 3. Data for MPI parallel solves, using a block Jacobi and 1-element overlapping ASM preconditioners, each with ILDL subdomain

preconditioners, compared with an ABF solver as used throughout this paper. These solves correspond to the single-sinker Stokes case as

in Figure 1(a)-(b), but now with larger problem sizes made possible by the distributed memory-environment. These show the feasibility of

using incomplete factorizations to create an simple-to-apply parallel preconditioner for symmetric saddle point systems, albeit one which

shows the same non-optimal scaling and parameter sensitivity familiar from the use of subdomain ILU or ICC preconditioners in parallel

for definite systems. The problem sizes and number of ranks are chosen to demonstrate weak scaling (constant problem size per rank), and

a strong scaling test is shown for one problem. Note that these experiments were conducted on a different cluster than those in previous

sections (see Section 5), so times to solution are not directly comparable.

The results in this paper show that if one is employing a direct solver for a symmetric, indefinite problem, such as a Stokes

or elasticity problem, an ILDL-preconditioned iterative solver is worth investigating. The preconditioner requires only an395

assembled operator and can be quickly used in situations that an ABF solver must be arduously selected, integrated, and tuned,

and can offer greater robustness to coefficient structure. An ILDL-preconditioned iterative solver typically remains competitive

or even superior to direct solution, in terms of DOF/s computed for larger problems while using 3×−5× less memory. This

alternative can be investigated quickly as only an assembled operator and one or two parameters need be provided.

To conclude, we mention avenues for further development. Firstly, we have focused on single-level ILDL preconditioning,400

but ILUPACK includes a multilevel ILDL preconditioner (Bollhöfer and Saad, 2006; Schenk et al., 2008), available through

the same wrappers, and PARDISO (Schenk and Gärtner, 2004; Kuzmin et al., 2013) also includes a multi-recursive iterative

solver which uses multi-level ILDL preconditioning. These techniques are related to an algebraic multigrid (AMG) approach;

further investigation is warranted of these and other highly-automated AMG approaches (Metsch, 2013) which may provide

the scalability associated with multilevel methods while retaining the robustness and ease of use associated with factorization-405

based approaches.
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Secondly, we have focused on sequential computation and application of ILDL factorizations, and shown how these may be

extended to the parallel case by using simple domain-decomposition-based preconditioners. However, recent work has shown

the promise of computing and applying ILDL factorizations directly in modern parallel environments, taking advantage of

multiple threads, distributed memory subdomains (MPI ranks), and/or GPUs (Aliaga et al., 2014, 2016a, b, 2017; Bollhöfer410

et al., 2019b). As these developments make their way into software packages, these algorithms will become even more attractive

for applications in the Earth sciences and beyond.

Code availability. Our solvers utilize functionality from ILUPACK 8, PARDISO 9, and PETSC 10. PETSC is open-source under a BSD-2

license; ILUPACK and PARDISO are closed source and offer complimentary academic licenses.

PETSC represents the highest level within our solver stack; all underlying solver implementations are utilized through PETSC function415

calls (e.g. KSPSolve()). To support this, we provide a public, open source wrapper around ILUPACK so that it can be used as a precon-

ditioner (PC) implementation within PETSc 11. Through a custom interface (again public and open source) we use PARDISO to provide a

direct solver for symmetric indefinite systems, using the same weighted-matching ordering 12. The code which performs the discretization

of the Stokes and elasticity problems, configures the solvers and generates the post-processed flow/displacements fields is publicly available,

open source13. Also see the supplement to this paper, which provides additional instructions and details to reproduce, extend, and apply the420

experiments and tools discussed above.
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