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Abstract. The need to solve large saddle point systems within computational Earth sciences is ubiquitous. Physical processes

giving rise to these systems include porous flow (the Darcy equations), poroelasticity, elastostatics, and highly viscous flows

(the Stokes equations). The numerical solution of saddle point systems is non-trivial since the operators are indefinite.

Primary tools to solve such systems are direct solution methods (exact triangular factorization) or Approximate Block Fac-

torization (ABF) preconditioners. While ABF solvers have emerged as the state-of-the-art scalable option, they are invasive5

solvers requiring splitting of pressure and velocity degrees of freedom, a multigrid hierarchy with tuned transfer operators

and smoothers, machinery to construct complex Schur complement preconditioners, and the expertise to select appropriate

parameters for a given coefficient regime – they are far from being “black box” solvers. Modern direct solvers, which robustly

produce solutions to almost any system, do so at the cost of rapidly growing time and memory requirements for large problems,

especially in 3D. Incomplete LDLT (ILDL) factorizations, with symmetric maximum weighted matching preprocessing, used10

as preconditioners for Krylov (iterative) methods, have emerged as an efficient means to solve indefinite systems. These meth-

ods have been developed within the numerical linear algebra community but have yet to become widely used in non-trivial

applications, despite their practical potential; they can be used whenever a direct solver can, only requiring an assembled op-

erator, yet can offer comparable or superior to performance, with the added benefit of having a much lower memory footprint.

In comparison to ABF solvers, they only require the specification of a drop tolerance and thus provide an easy-to-use addition15

to the solver toolkit for practitioners.

Here, we present solver experiments employing incomplete LDLT factorization with symmetric maximum weighted match-

ing preprocessing to precondition operators, and compare these to direct solvers and ABF-preconditioned iterative solves.

To ensure the comparison study is meaningful for Earth scientists, we utilize matrices arising from two prototypical prob-

lems, namely Stokes flow and quasi-static (linear) elasticity, discretized using standard mixed finite element spaces. Our test20

suite targets problems with large coefficient discontinuities across non-grid-aligned interfaces, which represent a common,

challenging-for-solvers, scenario in Earth science applications. Our results show: (i) as the coefficient structure is made in-

creasingly challenging (high contrast, complex topology), the ABF solver can break down, becoming less efficient than the
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ILDL solver before breaking down entirely; (ii) ILDL is robust, with a time-to-solution that is largely independent of the co-

efficient topology and mildly dependent on the coefficient contrast; (iii) the time-to-solution obtained using ILDL is typically25

faster than that obtained from a direct solve, beyond 105 unknowns; (iv) ILDL always uses less memory than a direct solve.

1 Introduction

Saddle point systems frequently arise in the context of constrained minimization problems. Many physical processes relevant to

the Earth sciences fall within such a minimization framework. Possibly the most widely used relates to the variational statement

which seeks to constrain a vector field (e.g. displacement / velocity) to be divergence free. Such formulations naturally introduce30

a pressure-like (scalar) variable to constrain the displacement / flow (vector) field. Specific examples include: mixed Darcy

problems involving the unknowns Darcy flux and saturation pressure (porous flow, groundwater flow, oil and gas reservoirs);

poroelasticity (geomechanics, reservoirs engineering, bore hole stability); compressible / incompressible quasi-static linear

elasticity (crustal deformation targeting on inter-seismic periods); and incompressible viscous flow (dynamics of the mantle,

lithosphere, glaciers, ice sheets). Other relevant (but more generic) applications giving rise to discrete problems of saddle35

point type include PDE-constrained optimization, weak imposition of boundary conditions (e.g. contact, fault constitutive

behaviour) and matching conditions between different model domains (e.g. Beavers-Joseph matching conditions between fluid-

solid regions).

Solution techniques for saddle point systems have been extensively studied (Benzi et al., 2005; Benzi and Wathen, 2008;

Loghin and Wathen, 2004). Nevertheless, saddle point systems have a reputation for being challenging to solve - this is to a40

large part attributed to the fact that the discrete problem (e.g. the matrix), while often symmetric, is indefinite; this structure

precludes the use of many standard approaches (like classical multigrid).

Saddle point problems too large to be practically solved via sparse direct solution techniques (e.g. LU or LDLT factoriza-

tion) are deemed to require highly-specialized solvers. Indeed, if algorithmically optimal methods are sought, this opinion is

justified. As such, the development of highly scalable, optimal preconditioners for the solution of large-scale variable viscosity45

Stokes systems arising in ice sheet modeling (Isaac et al., 2015) and geodynamics (May et al., 2014; Rudi et al., 2015) is

mature.

However, the practical usage of saddle point solvers does not always favor the above agenda. Maximum problem sizes of

interest are typically fixed or modest (e.g. <O(108) DOFs); algorithmic or parallel scalability may not be to be prized to the

exclusion of all else; time-to-solution(s) may not dominate the time required to set up and tune (by hand) a specialized solver;50

or computational resources available may be modest (e.g. single compute node with 100 GB RAM and unlimited walltime,

or few low memory compute nodes with ∼ 400 cores with walltime restricted to < 24 hrs). Specialized, optimal solvers often

lack robustness as problem parameters or problem types are varied, though progress is being made in this regard (e.g. Rudi

et al., 2017).

Solvers can trade some algorithmic performance for robustness and/or ease of use. A striking example is the persistent use of55

incomplete LU (ILU) preconditioning (e.g. Wathen (2015) §6.1, Benzi (2002) §3). With the help of an easy-to-apply-and-store
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approximate inverse to the system matrix, obtained by discarding terms from a full factorization (as used in a direct solver),

the solution may be iteratively updated until it approaches the solution. While ILU-preconditioned Krylov methods are neither

algorithmically scalable nor completely robust, the method is ubiquitous for several reasons.

1. Only an assembled operator is required. Many efficient preconditioners require auxiliary information, typically concern-60

ing the physical domain of an underlying PDE. For example, multigrid solvers require a hierarchy of grids and transfer

operators and FETI-DP (Farhat et al., 2001) methods require access to finite element subdomains. However, purely al-

gebraic solvers, which only require an assembled operator (matrix), are always in demand, as they can be applied much

more broadly and allow for greater ease of algorithmic experimentation.

2. Reasonable performance is observed for a large class of relevant problems. Some variants of ILU preconditioning reduce65

the condition number of a standard second-order elliptic PDE, discretized with finite differences or finite elements, from

O(h2) to O(h) (Benzi, 2002) As such, the preconditioner has been used in many applications, alone or as a subdomain

preconditioner for a block-Jacobi preconditioner, for example in subsurface flow (Mills et al., 2007).

3. The methods are tunable, with a small number of parameters. ILU-preconditioned Krylov methods typically only expose

a small number of parameters to the user, depending on the variant employed (Saad, 2003, Ch. 10). For instance, in70

ILU(k) methods, the nonzero entries of the factors are restricted to those of Ak, one may drop any entries below a given

threshold, or use more complicated approaches such as ILUT (Saad, 1994). Multi-level inverse-based dropping strategies

(Bollhöfer and Saad, 2006) accept a drop tolerance for factorization as well as a potentially different drop tolerance.

Denser factors typically produce a better approximate inverse, which typically makes for a better preconditioner. Thus,

a simple trade-off exists between iteration counts and memory usage. This is in contrast to direct solvers, which do not75

offer the user any control over memory usage and which always (over-)solve to machine precision.

Often, an additional choice is available of an ordering strategy such as approximate minimum degree ordering, nested

dissection, reverse Cuthill-McKee (RCM), or others. Finally, a choice must be made of the Krylov method itself; this

study uses right-preconditioned GMRES or FGMRES, but this is rarely a critical choice and many options are usually

available, as Krylov methods are far simpler to implement than direct solvers or incomplete factorization preconditioners.80

4. Tools are widely available in software. Because of the conveniences described in points 1 and 3, ILU preconditioners

have made their way into numerous software packages, including MATLAB (MATLAB, 2019), ILUPACK (Bollhöfer

and Saad, 2006), UMFPACK (Davis, 2004), WSMP (Gupta et al., 1997), PETSC (Balay et al., 2019a, b), TRILINOS

(Heroux et al., 2005), and many others, as they often provide a reasonable default preconditioner.

5. The method is well-discussed in the practical literature. Potential users are likely to have access to a performance study85

which includes the effect of ILU preconditioning, with documentation of the parameter choices employed. A valid

criticism of ILU preconditioning is that part of its popularity is simply due to its heritage; it was studied early and hence

there is robust literature which directly demonstrates its use.
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Incomplete LDLT (ILDL) preconditioners arise as incomplete versions of direct solvers for indefinite systems, which use

the factorization A= LDLT , where L is lower-triangular and D is block diagonal. Here the term “incomplete” implies that90

factorization is only approximate. ILDL methods with symmetric maximum weighted-matching preprocessing (see Section 3)

have emerged in the numerical linear algebra community as an analogous method to ILU methods, but for symmetric indefinite

systems; they are more robust than ILU or previous incarnations of ILDL. Recently, comparison studies characterizing such

approaches have appeared: Hagemann and Schenk (2006) provide a study of the effectiveness of ILDL preconditioning with

respect to a matrix “zoo”; Greif et al. (2015) performed a similar study with their SYM-ILDL package; Multilevel ILDL pre-95

conditioners with symmetric weighted matching preprocessing have been shown to be effective when applied to the Helmholtz

equation (Bollhöfer et al., 2009); Schenk et al. (2008) showed that a similar approach can also be used to effectively compute

a few interior eigenvalues of a large indefinite matrix arising from the Anderson model of localization. Recent work on sparse

inverse covariance matrix estimation highlights how ILDL preconditioners can be preferable to highly efficient direct solvers,

due to their much lower memory footprints (Bollhöfer et al., 2019a).100

Despite these studies, the applicability of ILDL preconditioners is less well-known outside the numerical linear algebra

community. This is unfortunate, as these modern methods bring incomplete factorization approaches for indefinite symmetric

systems in line with other popular methods, in terms of robustness and ease of use. It should also be emphasized that points 1

and 3 hold for the ILDL method.

1.1 Motivations and Outline105

This paper addresses points 2, 4, and the beginnings of 5 in the context of using ILDL preconditioners with symmetric max-

imum weighted matching ordering applied to saddle point systems arising from the spatial discretization of a class of PDEs

relevant to the solid Earth.

In contrast to the previous ILDL studies previous mentioned above, which mostly focus on the robustness of preconditioners

across a corpus of matrices representing individual instances of different applications, here we focus on a deeper examination110

of a specific class of PDEs commonly used within the Earth sciences. Specifically, we wish to examine the saddle point

problems arising from stationary Stokes flow with highly heterogeneous viscosity structure, and systems arising from the static

linear elasticity, also with large coefficient jumps. Particular attention is paid to physical problems with challenging, non-grid-

aligned coefficient jumps, as these constitute some of the more challenging systems of interest within the Earth sciences. This

focus allows new insight into the effect of varying problem size and parameters (in particular, coefficient structure) on the115

performance of solvers. We only examine the scenario in which a given linear system need only be solved for a single right

hand side. This is typical when solving nonlinear systems of equations (often within time-stepping algorithms) when a Jacobian

and residual are assembled and used to compute a step.

The saddle point operators arising from the Stokes and static elasticity (in mixed form) systems are presented in Section 2.

Section 3 describes the incomplete ILDL factorization preconditioner with maximum symmetric weighted matching prepro-120

cessing. Section 4 describes an Approximate Block Factorization (ABF) preconditioner and a sparse direct solver, which serve

as representatives of the two classes of alternative approaches in common use and which we will compare ILDL against. Section
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5 presents experiments which characterize the performance of these ILDL-preconditioners, direct and the ABF-preconditioned

solves applied to the Stokes and elasticity problems for a variety of synthetic model configurations involving multiple inclu-

sions of differing material parameters (with respect to the surrounding medium).125

2 Prototypical problems and saddle point systems

2.1 Stokes flow

Conservation of momentum and mass for an incompressible creeping fluid in a domain Ω with boundary ∂Ω are given by

−∇ · τ +∇p= ρĝ,

−∇ ·u= 0, (1)

where u and p are the velocity and pressure, respectively. The forcing term is associated with buoyancy variations; ρ is a130

spatially-varying density and ĝ is the gravity vector. For the isotropic media we consider here, the deviatoric stress τ is related

to the strain rate ε̇[u] via

τ = 2ηε̇[u], ε̇[u] = 1
2

(
∇u+ (∇u)T

)
, (2)

where η is a spatially-varying effective shear viscosity. The system given by Eq. (1) is closed with appropriate boundary

conditions specified on the normal and tangential components of the velocity and stress (σ). In this work, we consider the135

following boundary conditions:

u ·n= 0, t · τ ·n = 0 x ∈ ΓD, (3)

n ·σ ·n= 0, t ·σ ·n = 0 x ∈ ΓF , (4)

where σ = τ − pI is the total stress, n,t are the normal (outward pointing) and tangent vector to the boundary ∂Ω, for which

ΓD ∩ΓF = ∅ and ΓD ∪ΓF = ∂Ω.140

2.1.1 Discrete problem

We use inf-sup stable mixed finite elements (FE) to obtain discrete solutions of Eq. (1). A full description of the variational

(weak) problem associated with incompressible Stokes flow can be found in Elman et al. (2005). The discrete Stokes problem

A is denoted by

K BT

B 0




u
p


=


F

0


 , or Av = F , (5)145

where K is the discrete gradient of the deviatoric stress tensor and B,BT are the discrete gradient and divergence operators

respectively. We note that the FE discretization results inK being symmetric positive definite, thusA is a symmetric, indefinite

operator.
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2.2 Static linear elasticity

The conservation of momentum for an elastic solid in static equilibrium in a domain Ω with boundary ∂Ω is given by150

−∇ · σ̂ = ρĝ, (6)

where ρ and ĝ were defined previously in Section 2.1, and σ̂ is the total stress, which we assume to obey the linear, isotropic

constitutive relation

σ̂ = 2µε[u] +λTr(ε[u])I

= 2µε[u] +λ∇ ·uI, (7)

where u is the displacement and the (linear) strain tensor ε[u] is given by155

ε[u] = 1
2

(
∇u+ (∇u)T

)
(8)

and Tr(·) denotes the trace operator. The particular form of the constitutive relationship adopted is defined in terms of the two

Lamé parameters (λ,µ). The first Lamé parameter, λ, characterizes compressibility; as λ→∞, the material becomes incom-

pressible. The second Lamé parameter, µ, is equivalent to the shear modulus (often denoted G) and characterizes resistance to

shearing.160

Describing materials which are incompressible in some or all of Ω is problematic with the formulation given in Eqs. (6)

and (7) since the last term in Eq. (7) behaves like ∞× 0 in the incompressible limit. The latter scenario is relevant when

considering plasticity models, or the presence of fluids (e.g. within a crack along the subduction interface). Even when large

but finite values for λ (e.g. the equivalent Poisson ratio ν = λ
2(λ+µ) > 0.49) are used, “locking” may occur when using standard

finite difference, finite volume, or finite element spatial discretizations (Brezzi and Fortin, 1991), rendering the displacement165

solutions meaningless. The issues in the incompressible limit can be resolved by grouping the problematic terms into a new

auxiliary pressure variable, p=−λ∇ ·u. Then, if we decompose the stress as σ̂ = τ − pI , Eqs. (6) and (7) can be cast as the

following mixed (u,p) problem (Brezzi and Fortin, 1991):

−∇ · τ +∇p= ρ(x)ĝ,

−∇ ·u− (1/λ)p= 0, (9)

with stress τ given by170

τ = 2µε[u]. (10)

One will observe that form is similar to the Stokes system described in Section 2.1; u now represents displacements, strain

is considered instead of strain rate, and pressure and divergence of u are now related by the material parameter λ. This implies

that the degree of coupling between u and p within the conservation of mass may be spatially variable as λ need not be constant

throughout Ω. One should also note that τ in Eq. (10) is only deviatoric in regions where λ→∞, cf. Stokes where τ is strictly175
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deviatoric everywhere in Ω since ∇ · v = 0 is imposed throughout the domain. The boundary conditions given by Eqs. (3), (4)

are valid for the mixed elasticity problem, with the velocity v interchanged for the displacement u, and σ interchanged with

σ̂. Additionally, since the stress decomposition in the mixed elasticity formulation is not strictly deviatoric-volumetric (e.g.

volumetric terms still live within σ̂), we replace τ in Eq. (3) with dev(σ̂).

2.2.1 Discrete problem180

The discrete mixed (u,p) static elasticity problem AL is denoted by

K BT

B −C




u
p


=


F

0


 , or ALv = F , (11)

whereK is the discrete gradient of the deviatoric stress tensor andB,BT are the discrete gradient and divergence operators, and

C is a 1/λ-weighted discrete mass matrix. The FE discretization results inK and C being symmetric positive definite and, thus

AL is again a symmetric, indefinite operator. To ensure the discrete problem is stable when the continuum is incompressible (or185

near to this limit), be it locally or globally (as determined by the value of λ), as per the discrete Stokes system (Section 2.1.1),

the FE basis functions used to discretize the displacement u and pressure p cannot be chosen arbitrarily. Rather an inf-sup

stable pair of FE basis functions must be used.

3 Incomplete LDLT (ILDL) preconditioning, with symmetric maximum weighted matching ordering, for saddle

point matrices190

Linear systems involving indefinite symmetric matrices are, in general, more difficult to solve than their positive-definite

counterparts. This is partially due to the lack of positive-definite (inner product) structure. Diagonal entries which are small,

zero, and/or not of constant sign make pivoting and numerical solution more challenging. Roughly speaking, though, if one can

cast them as block systems which are in some sense better behaved, grouping problematic diagonal entries with better-behaved

ones, robustness can be regained.195

ILDL preconditioners arose as incomplete versions of direct solvers for indefinite systems, which use factorization A=

LDLT , after permutation and scaling. Here, D is block diagonal with 1× 1 and 2× 2 blocks, and L is lower triangular (Duff

et al., 1991). Weighted matchings were first observed to be effective, static approximations to pivoting order by Olschowka

and Neumaier (Olschowka and Neumaier, 1996). Duff and Koster introduced fast algorithms (Duff and Koster, 1999) and with

the addition of Bunch-Kaufman pivoting (Bunch and Kaufman, 1977), highly efficient sparse direct solvers, both in terms of200

solution time and memory footprint, where made available (Duff and Pralet, 2005; Schenk and Gärtner, 2006). These have

become the standard for the direct solution of sparse indefinite systems (Li and Demmel, 2003; Schenk and Gärtner, 2006).

By limiting the number of non-zeros (the “fill”) in L, one can obtain an approximate factorization to be used as a precon-

ditioner for a Krylov method (Hagemann and Schenk, 2006). Wubs and Thies present results for the special case of Stokes
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F-matrices, arising from a simple finite-difference scheme (Wubs and Thies, 2011). A closely-related approach which we do205

not investigate here is that of signed incomplete Cholesky factorization preconditioners (Scott and Tůma, 2014).

Permutation and scaling based on symmetric maximum weighted matching algorithms have shown to nearly or completely

eliminate the need for pivoting in the factorization process, thus giving rise to very efficient methods (Duff and Pralet, 2005).

We thus describe these considerations in further detail, to give a flavor of the sophisticated methods which are now available.

Numerical stability of incomplete factorization can be enhanced by permuting large elements onto the diagonal of a matrix.210

One may pose this task as a (perfect) maximum weighted matching procedure, finding a permutation ( a map from rows to

columns) which maximizes the product of the absolute values of the diagonal entries. This can be accomplished via the Kuhn-

Munkres algorithm (Laird and Giles, 2002; Munkres, 1957) with a complexity of O(N1+α logN),α < 1 for sparse matrices

arising from finite difference or finite-element discretizations (Gupta and Ying, 1999); in practice, however the complexity

typically scales linearly with N (Schenk and Gärtner, 2006).215

If one wishes to find a symmetric permutation, one can only change the order of the diagonal entries. Nonetheless, one

can extract cycles from the maximum matching and apply these symmetrically to move large entries close to the diagonal, in

particular close to small or zero diagonal entries. If these cycles are decomposed into 1× 1 and 2× 2 cycles, one can then

define a blocking wherein diagonal entries may be small, leading to poor conditioning, but 2× 2 diagonal blocks have large

off-diagonal entries, making these blocks suitable pivots for a block elimination process (for more, and some useful diagrams,220

see (Bollhöfer et al., 2009, §2.2)).

This preprocessing is usually so effective as to not require any further pivoting (though additional Bunch-Kaufman pivoting is

included in implementations, for maximum robustness) and in practice, the algorithm to solve the weighted-matching problem

scales linearly in time, providing an extremely efficient method, far more attractive than methods without preprocessing steps.

Once this ordering preprocessing has been performed, a standard fill-reducing ordering may be performed on the full system.

Thus, the complete factorization of a matrix A may be represented as

ΠT P̂T D̂AD̂ P̂ Π =A′, A′ = LDLT +E,

Where Π is a fill-reducing permutation, P̂ and D̂ are a permutation and scaling arising from the symmetric maximum weighted225

matching preprocessing, and E is an error introduced by the incomplete factorization process, which produces the incomplete

factors L and D used in the preconditioner.

The ingredients in the preconditioner include the following components, each of which can be addressed separately in

software.

– A reordering and scaling preprocessing step to reduce fill and the need for pivoting.230

– An additional block-wise fill-reducing reordering

– A factorization stage which computes and stores L and D, with respect to some drop tolerance, estimate of ||L||, or

specified fill pattern.

– A routine to quickly solve LDLTx= b by (block) forward- and back-substitution.
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Despite the sophistication of the algorithms just discussed, practical usage of an ILDL preconditioner, given robust solver235

software, reduces to specification of only a few parameters; the user typically only needs to understand that there is a tradeoff

between fill and the strength of the preconditioner, which they can control with some simple parameters (here, a drop tolerance).

4 Approximate block factorization (ABF) preconditioning

Approximate Block Factorization (ABF) solvers provide a powerful class of methods for the solution of saddle point systems.

These solvers define preconditioners by exploiting a block LDU factorization of the saddle point matrix, with respect to the240

pressure and velocity blocks (Benzi et al., 2005, (5)). Approximately inverting the block-triangular or block-diagonal factors

(often with available scalable solvers) provides a natural way to define approximate inverses, constructed from approximate

solvers on a single field. For more, see details we refer to Elman et al. (2005).

We choose a particular ABF solver as a representative of this class. In particular, we consider an upper block-triangular

preconditioner245


 K B

Ŝ


 , (12)

where Ŝ is an approximation to the Schur complement S given by S =−C −BTK−1B (and noting that C = 0 in the Stokes

case). The approximate solver on the viscous block is a geometric multigrid method, with a direct solve via UMFPACK (Davis,

2004) on the coarse level. Smoothing is accomplished by 8 Chebyshev-Jacobi iterations (Hu et al., 2003), where GMRES is

used to estimate the maximum eigenvalue λmax of the preconditioned operator. The Chebyshev polynomial is tuned to the250

interval [0.2λmax,1.1λmax]. The approximate Schur complement solver Ŝ is a single application of an ILU preconditioner

formed from a scaled pressure mass matrix plus the (2,2) block (which is zero in the case of Stokes); this is simple but is

known to produce a spectrally-equivalent, hence scalable, preconditioner. This preconditioner was chosen based on experience

using these solvers for applications in geodynamics, where it has shown to be scalable and efficient. For problems with large

non-grid-aligned coefficient jumps, more elaborate Schur complement preconditioners have also been developed in recent years255

(Elman, 1999; May and Moresi, 2008; Rudi et al., 2015, 2017). The ABF solver chosen here often shows superior performance

for all but the smallest problem sizes, but relies on much more machinery set up in the application: the solver is aware of

pressure and velocity blocks and a hierarchy of grids, transfer operators, and rediscretized operators. In addition, auxiliary

operators must be defined to implement a Schur complement preconditioner, used here and in most competitive ABF solvers.

5 Numerical experiments260

To provide a concrete and reproducible set of experiments, we use a Q2−Q1 (Taylor-Hood) mixed finite element code1,

making use of the PETSC (Balay et al., 2019a, b) library. It solves the Stokes and elasticity systems in the unit square (2D) and

1Source code publicly available; see the “Code availability” section at the end of this paper, and the supplement on reproducibility.
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cube (3D). We focus on 3D problems, as in the 2D case, sparse direct solution methods are expected to be highly competitive,

with time to solution scaling as O(N3/2) (as opposed to O(N2) for 3-dimensional problems) and expected fill scaling as

O(N logN) (as opposed to O(N2) for 3-dimensional problems) (George, 1973). For Stokes flow tests, free slip boundary265

conditions are imposed everywhere (u ·n= 0, t · τ ·n= 0) except the top boundary of the domain, where a free surface is

prescribed (n ·σ ·n= t · τ ·n= 0); this implies a non-singular system matrix (Elman et al., 2005, Ch.5, p. 215). The elasticity

tests also include experiments with non-zero Dirichlet boundary conditions (specified displacements).

Experiments involving both Stokes and elasticity systems are defined by a “multiple inclusion” configuration. That is, the

domain is partitioned into a set of N non-overlapping spheres each with radius R. By providing parameters to control the270

(non-grid-aligned) coefficients (viscosity / Lamé parameters and density) contrast between the N spherical inclusions and the

surrounding medium, this model configuration provides a useful way to characterize two major factors which impact solver

performance: coefficient jumps across arbitrary interfaces and the geometric complexity of these interfaces. Dealing with these

factors is of primary important in designing solvers for realistic Earth science applications. This discontinuous coefficient field

is projected onto the quadrature points used to evaluate the bilinear / linear forms required by the finite element method. This275

projection has the effect of making the coefficient field vary on the length scale of a single finite elements; loosely speaking,

this makes the problem “harder” and less amenable to solution with higher-order methods as the mesh is refined, but this is

nonetheless consistent with the way that such problems are often solved in practice (Gerya and Yuen, 2003; May et al., 2015).

We compare three solver configurations: GMRES preconditioned with ILDL (see Section 3); sparse direct; and FGMRES

preconditioned with ABF (described in Section 4). We do not extensively compare to standard ILU preconditioning, or to ILDL280

preconditioning without symmetric maximum weighted matching preprocessing, as these preconditioners are very unreliable

for indefinite problems (Chow and Saad, 1997). This characteristically poor performance has likely contributed to the fact

that incomplete factorization preconditioners have not been championed, before this work, as a viable alternative for practical

preconditioning, even though software tools have now developed to the point of making them robust options.

All linear algebra is dispatched through the PETSC API. We use a wrapper2 to provide an interface between PETSC and285

internal functions in ILUPACK3 which perform symmetric maximum weighted matching permutation and scaling, prior to a

factorization step using a block elimination process with a simple threshold-based dropping strategy; entries in the L factors

less than a given value (after scaling and permutation) are dropped during the factorization process. Ordering with METIS

(Karypis and Kumar, 1998) by nodes, with respect to the blocked system, proved robust and is used everywhere in this work.

In these experiments, available multi-level ILDL options did not seem to offer enhanced performance.290

There are many packages for the sparse direct solution of linear systems; we choose PARDISO (Schenk and Gärtner, 2004;

Schenk and Gärtner, 2006; Kuzmin et al., 2013) based on the comparative study of Gould et al. (2007) examining performance

respect to total, serial (single-)solve time for symmetric indefinite systems with 10000 or more DOFs. Through a custom

2Source code publicly available; see the "Code availability" section at the end of this paper, and the supplement on reproducibility.
3Free academic licenses available; see the “Code availability" section at the end of this paper, and the supplement on reproducibility.
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interface4 we use PARDISO (Kuzmin et al., 2013) to provide a direct solver for symmetric indefinite systems, using the same

weighted-matching ordering used by ILUPACK and the ILDL preconditioners considered here.295

All iterative solves use right-preconditioned GMRES or FGMRES and share a common convergence criterion: a reduction

of 106 in the true residual 2-norm ‖b−Ax‖2. In practice, Krylov methods which take advantage of symmetric structure,

e.g. MINRES or QMR, may be attractive. The choice or norm allows is important because we consider ill-conditioned linear

operators for which convergence in a preconditioned norm often fails to imply convergence in the true residual norm. In

practice, different norms are usually used. These include preconditioned residual norms or a quasi-norm in the case of QMR300

(Freund and Nachtigal, 1991).

Most of the computations were performed on single compute node of the Euler II cluster at ETH Zurich. Each compute node

is a dual-socket Intel Xeon E5-2680v3 nodes, each with 64 GB of memory. Numerical experiments used a single MPI-rank

and a single OpenMP thread. Experiments as reported in Figure 4 were performed on the Leonhard cluster at ETH Zurich,

using dual-socket Intel Xeon E5-2697v4 nodes, with 128 GB or more memory. Experiments as reported in Section 5.3 were305

performed on Piz Daint at the Swiss National Supercomputing Center, using 6 MPI ranks per dual-socket Intel Xeon E5-2695v4

compute node with 64 GB of memory.

5.1 3D Stokes flow

Examples of 3-dimensional Stokes flow in cubic domains, for problem sizes ranging from 83 to 643 Q2−Q1 elements,

are presented in Table 1 and Figure 1. Here, one can see comparable performance between the direct solve and the ILDL-310

preconditioned solves, across all the problems tested; however, the ILDL-preconditioned solve requires less memory and has

the additional advantage of allowing for a loosening of the solve tolerance if desired. Due to its lower memory requirements,

we were able to solve larger problems with the ILDL-preconditioned approach. The ABF solver typically provides the best

time to solution, yet lacks robustness with respect to the problem parameters, in addition to relying on much more auxiliary

information and many more parameters (in particular, an auxiliary operator for the Schur complement preconditioner, and a315

grid hierarchy and tuned parameters for the multigrid hierarchy).

As shown in Figure 1, increasing the number of inclusions degrades the performance of the ABF solver. This trend con-

tinues until eventually the ABF solver fails to converge. Figure 2 demonstrates the effect of further increasing the number of

inclusions, with a viscosity contrast of η1/η0 = 106 (a typical cutoff value for even-higher contrasts arising in geodynamical

modeling). Here we can directly observe a regime in which ILDL-preconditioned iterative solves not only provide a simpler320

alternative to ABF solves, but a more robust one which also outperforms a direct solve in terms of time-to-solution and memory

footprint.

The iterative solver gives the user control over time-memory trade-offs by varying the drop tolerance. Table 2 shows the

effect of varying to drop tolerance with a 323 element experiment as pictured in Figure 1(a). Comparable times to solution are

4Source code publicly available; see the "Code availability" section at the end of this paper, and the supplement on reproducibility.

11

https://doi.org/10.5194/se-2020-79
Preprint. Discussion started: 19 May 2020
c© Author(s) 2020. CC BY 4.0 License.



(a) η1/η0 = 104.

(b) η1/η0 = 100.

(Vel. scaled 1/3×)

(c) η1/η0 = 104 .

(Vel. scaled 1/3×)

(d) η1/η0 = 104.
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Figure 1. Additional experiments, analogous to those in Table 1. Solver performance is assessed in terms of degrees of freedom solved to

the prescribed tolerance (10−6 relative error in the true residual norm) over the solution time, and by peak memory footprint.
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GMRES(60)/ILDL(1e-3) PARDISO FGMRES(30)/ABF

Els. Fill Its. Time [s] Mem. [MB] Time [s] Mem. [MB] Lvls. Its. Time [s] Mem. [MB]

83 2.0 14 2.27E+00 127 1.42E+00 163 2 22 2.46E+00 125

163 2.9 45 5.27E+01 851 3.78E+01 1743 3 24 2.71E+01 1104

243 3.7 112 4.77E+02 3076 2.98E+02 7289 3 19 7.74E+01 2330

323 4.6 226 1.96E+03 8100 1.55E+03 21856 4 17 2.04E+02 9587

403 4.5 420 6.41E+03 15513 6.67E+03 52376 4 17 3.10E+02 10426

483 5.5 568 1.31E+04 30126 - - 4 16 6.33E+02 17842

563 - - - - - - 4 15 7.01E+02 28219

643 - - - - - - 5 19 6.28E+03 40519

Table 1. 3D stationary Stokes flow, with 3 denser (relative density 1.2) spherical inclusions of viscosity η1 = 104 in a surrounding medium

of viscosity η0 = 1. Iteration counts accompany data points in the graph. Missing data correspond to runs which failed due to insufficient

available memory. See also Figure 1.

η1/η0 = 104

100 101 102

inclusions

10 1

do
f/s

ABF
ILDL
PARDISO

η1/η0 = 106

100 101 102

inclusions

10 2

10 1

do
f/s

ABF
ILDL
PARDISO

Figure 2. The effect of increasing the number of viscous inclusions on the effectiveness of solvers, for a 323 element simulation. ILDL

preconditioning becomes more competitive for more challenging structures, showing much greater robustness to viscosity structure than

ABF solvers while maintaining a lower memory footprint than direct solution. Missing ABF data indicate that the solver failed to converge.

Memory footprints are similar to those shown in Figure 1; the direct solve (red) requires approximately 4× as much memory as the ILDL-

preconditioned solve.
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drop tol. fill Solve Time [s] Iterations Max. Mem. [MB]

1 · 10−5 17 1.0696e+04 10 21072

5 · 10−5 13 6.2200e+03 22 16582

1 · 10−4 11 4.0494e+03 35 14321

5 · 10−4 6.1 1.9075e+03 134 9666

1 · 10−3 4.6 1.6031e+03 226 8433

5 · 10−3 2.1 1.1421e+03 652 6585

1 · 10−2 1.4 1.1657e+03 1015 6479

5 · 10−2 0.39 - (>10000) -

Table 2. The effect of varying the drop tolerance parameter (see Section 3) for a 323 element system and right-preconditioned GM-

RES(60)/ILDL solver as in Table 1. Loosening the drop tolerance increases the iteration count and reduces the fill and hence memory

footprint.

observed over a fairly broad range of drop tolerances, and experiments like this lead us to recommend default drop tolerances325

in the 10−3− 10−4 range5.

5.2 3D elasticity experiments

Figure 3 shows the results of similar experiments to those in Section 5.1 with spherical inclusions with different material

properties, here varying λ inside the inclusions, creating areas of near-incompressibility. This corresponds to a very high

Poisson ratio ν = λ
2(λ+µ) close to 1

2 , the challenging case where standard (non-mixed) finite element methods tend to exhibit330

locking. The effect of varying this parameter is markedly different to that of varying η in the Stokes case (analogous to µ in the

Lamé case); performance is not as dependent on this parameter for any of the solvers, and the attained dof/s for the ILDL solver

degrades much more slowly. Again, we observe marked reduction in memory consumption for the ILDL solver, as compared

to the direct solver, along with a notable performance gain from using ILDL preconditioning, relative to direct solution. ABF

preconditioning is still advantageous, but may not be available in practice and may require an expert to set up. We note that the335

ABF preconditioner is not identical to that used for the Stokes problem, with µ substituted for η; to achieve good performance,

the Schur complement preconditioner is different, due to the nonzero (2,2) block in the elasticity system. That is, to obtain

a spectrally equivalent preconditioner, we needed to build a preconditioner Ŝ (Cf. equation 12) as an approximate inverse of

Mµ−C, where Mµ is a finite element mass matrix weighted by µ and C is the term (depending on λ as in Eq. (9)).

The experiments in Figure 3 are chosen to emphasize the similarity of the elasticity and Stokes problems, yet elasticity prob-340

lems are commonly prescribed with non-zero boundary displacements, amounting to non-zero Dirichlet boundary conditions.

Figure 4 shows a similar experiment using a scenario which is perhaps more typical in applications. The results parallel those

in the previous set of experiments; the more-invasive ABF solver produces the fastest solution, but preconditioning with ILDL

5Note that dropping is performed on a system which has already been scaled, hence these values have meaning independent of the scaling of the system.
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(a) 3 inclusions,

λ1/λ0 = 104

(b) 1 inclusion,

λ1/λ0 = 102

(c) 1 inclusion,

λ1/λ0 = 104

(d) 8 inclusions,

λ1/λ0 = 104
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Figure 3. Experiments showing performance of ILDL preconditioning for the elasticity system, holding µ0 = µ1 = 1,λ0 = 1 constant and

varying λ1 inside inclusions. Arrows show displacement, and the pressure field is plotted volumetrically.
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→ | | ←

104 105 106

dof

103

104

do
f/s

ABF
PARDISO
ILDL

Figure 4. An experiment showing the performance of ILDL preconditioning for an elasticity problem with a heterogeneous medium in

compression; the outer box shows the reference (undeformed) state and the wire mesh shows the deformed state. The surrounding medium

has a Poisson ratio of 1/3 (λ= 2,µ= 1), and the originally-spherical inclusion is almost incompressible, with a Poisson ratio greater than

0.4999 (λ= 104,µ= 1). Boundary conditions are free-slip everywhere except the top, which is stress free. The results show that ILDL

preconditioning offers substantially better-scaling performance (with a lower memory footprint) than a direct solver, without the auxiliary

information, implementation, and tuning required for the even-better-scaling ABF solver. These experiments were run on a slightly different

cluster than the preceding ones (see Section 5, so solve times are not directly comparable.

and symmetric weighted matching preprocessing gives a vastly superior option to a direct solve, while using no additional

information beyond the specification of a single drop tolerance. Memory usage is very similar to the plots shown in Figure 3.345

5.3 Using ILDL within a parallel preconditioner

An obvious limitation of the results presented thus far, and of the particular implementation of the ILDL decomposition that

we have employed, is that they have focused on single-process (i.e. “sequential”) usage. However, most scientific computation

is now performed with some degree of multi-process (or multi-thread) parallelism.

A well-known and often-used approach to extend a sequential preconditioner to a parallel preconditioner is to employ a350

domain decomposition method (Smith et al., 2004) wherein the computational domain is decomposed into possibly-overlapping

patches where local preconditioners can be applied before the results are used to update the global solution. The simplest such

preconditioner is the block Jacobi method, with non-overlapping subdomains, and a natural extension is the Additive Schwarz

Method, wherein overlapping subdomains, here defined in terms of finite elements, are used to define subsolves.

16

https://doi.org/10.5194/se-2020-79
Preprint. Discussion started: 19 May 2020
c© Author(s) 2020. CC BY 4.0 License.



ILDL preconditioning can be used to provide approximate inverses to local subproblems, much as ILU preconditioning is355

commonly used in the corresponding positive-definite case. We note that this block Jacobi/ILU preconditioning is practical

useful for a wide range of problems despite, like ILU itself, it not being perfectly scalable or robust.

This is possible by leveraging the same software wrappers used in the sequential experiments in this paper, and indeed within

the code used here, amounts simply to specifiying a few command line options. As a proof of concept, table 3 compares iteration

counts and time-to-solution solving a Stokes problem with a block Jacobi or ASM preconditioner, with various choice of sub-360

preconditioner. As in the rest of this work, comparison is made with a well-tuned ABF solver. 6 No attempt has been made to

optimize the subdomain solvers here - the drop tolerance was simply adopted from the sequential case. For the isoviscous case

shown, the block Jacobi method and ASM method are comparable, but when a viscosity jump is added, the ASM solver can still

converge, albeit slowly, while the block Jacobi approach becomes much slower. These simple experiments demonstrate that

ILDL preconditioners can be used within parallel preconditioners to solve problems too large for a single computational node.365

As in the sequential case, one can sacrifice some performance, with respect to a complex solver relying on more machinery and

great expertise in tuning (ABF) to be able to quickly use a simpler (from the user’s perspective) and more widely applicable

solver.

6 Conclusions

The efficient solution of symmetric indefinite linear systems is an important task in many physical modelling applications in the370

Earth sciences and beyond, particularly solving PDE in mixed formulations. Approximate Block Factorization (ABF) precondi-

tioned solvers (or other scalable options) including nested multilevel solves are well-known to be efficient for sufficiently-large

problems, but require invasive code modifications and expertise in implementation and tuning, so might not be practical to

implement or evaluate. Further, these solvers may not be robust to challenging coefficient structures. The ABF solver we

used for comparison here, for example, performs extremely well for small numbers of viscous inclusions but fails to converge375

for larger numbers. Advances in algorithms and software for direct solution of symmetric indefinite systems have, in recent

years, brought direct solution for these systems to a level of performance and robustness on par with their counterparts for

definite systems. These advances carry over to incomplete factorization preconditioning, though this is much less well-known;

this work presents much-needed results on the effectiveness of these solvers in challenging parameter regimes. The Krylov

methods studied here, using ILDL preconditioning with a symmetric maximum weighted matching preprocessing step, require380

only a single drop tolerance parameter for the preconditioner, and can be useful across problem types, as seen here between

Stokes and elasticity, and indeed even across “matrix market”-style corpora (Hagemann and Schenk, 2006; Greif et al., 2015).

They also show useful robustness to viscosity structure, outperforming our representative ABF solver for larger numbers of

viscous inclusions. Further, ILDL-preconditioned Krylov methods can be a preferable choice to direct solves: one trades some

parameter selection and less-robust performance for a large reduction in memory footprint and often extra performance.385

6And note that the largest ABF solve here required the use of PCTELESCOPE (May et al., 2016) to define the coarsest grid on a subset of ranks, another

wrinkle in the effective use of multigrid solvers.
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GMRES(60)/Block Jacobi/ILDL(1e-3) GMRES(60)/ASM/ILDL(1e-3) FGMRES(30)/ABF

η1/η0 Els. MPI Ranks Its. Time [s] Its. Time [s] Lvls. Its. Time [s]

1

323 8 219 8.0564e+01 84 8.2991e+01 4 9 1.2685e+01

483 27 693 1.7149e+02 586 2.4185e+02 4 9 1.5954e+01

643 64 1310 2.6762e+02 1843 5.2592e+02 5 9 1.3151e+01

963 216 4668 7.6356e+02 7903 1.6136e+03 5 9 1.6056e+01

1283

125 4613 5.9810e+03

216 6587 3.6521e+03

512 6126 1.1899e+03 15396 4.8914e+03 5 9 1.3296e+01

729 19387 4.3029e+03

102

323 8 709 1.6289e+02 155 9.3547e+01 4 12 2.1862e+01

483 27 14892 2.5563e+03 832 2.8261e+02 4 12 2.6607e+01

643 64 - > 1.4e+04 17636 6.9489e+03 5 14 2.1098e+01

963 216 - > 2.8e+04 > 105 2.5548e+04 5 13 2.3065e+01

1283 512 - > 2.8e+04 > 105 2.6805e+04 5 14 2.3120e+01

Table 3. Data for MPI parallel solves, using a block Jacobi and 1-element overlapping ASM preconditioners, each with ILDL subdomain

preconditioners, compared with an ABF solver as used throughout this paper. These solves correspond to the single-sinker Stokes case as

in Figure 1(a)-(b), but now with larger problem sizes made possible by the distributed memory-environment. These show the feasibility of

using incomplete factorizations to create an simple-to-apply parallel preconditioner for symmetric saddle point systems, albeit one which

shows the same non-optimal scaling and parameter sensitivity familiar from the use of subdomain ILU or ICC preconditioners in parallel

for definite systems. The problem sizes and number of ranks are chosen to demonstrate weak scaling (constant problem size per rank), and

a strong scaling test is shown for one problem. Note that these experiments were conducted on a different cluster than those in previous

sections (see Section 5), so times to solution are not directly comparable.

The results in this paper show that if one is employing a direct solver for a symmetric, indefinite problem, such as a Stokes

or elasticity problem, an ILDL-preconditioned iterative solver is worth investigating. The preconditioner requires only an

assembled operator and can be quickly used in situations that an ABF solver must be arduously selected, integrated, and tuned,

and can offer greater robustness to coefficient structure. An ILDL-preconditioned iterative solver typically remains competitive

or even superior to direct solution, in terms of dof/s computed for larger problems while using 3×−5× less memory. This390

alternative can be investigated quickly as only an assembled operator and one or two parameters need be provided.

We have focused on single-level ILDL preconditioning, but ILUPACK includes a multilevel ILDL preconditioner (Bollhöfer

and Saad, 2006; Schenk et al., 2008), available through the same wrappers, and PARDISO (Schenk and Gärtner, 2004; Kuzmin

et al., 2013) also includes a multi-recursive iterative solver which uses multi-level ILDL preconditioning. These techniques are

related to an algebraic multigrid (AMG) approach; further investigation is warranted of these and other highly-automated AMG395

approaches (Metsch, 2013) which may provide the scalability associated with multilevel methods while retaining the robustness

and ease of use associated with factorization-based approaches. We have focused on sequential computation and application of
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ILDL factorizations, and shown how these may be extended to the parallel case by using simple domain-decomposition-based

preconditioners.

However, recent work has shown the promise of computing and applying incomplete LDLT factorizations directly in mod-400

ern parallel environments, taking advantage of multiple threads, distributed memory subdomains (MPI ranks), and/or GPUs

(Aliaga et al., 2014, 2016a, b, 2017; Bollhöfer et al., 2019b). As these developments make their way into software packages,

these algorithms will become even more attractive for applications in the Earth sciences and beyond.

Code availability. Our solvers utilize functionality from the following libraries: ILUPACK (http://ilupack.tu-bs.de); PARDISO (www.

pardiso-project.org); PETSC (www.mcs.anl.gov/petsc). PETSC is open-source under a BSD-2 license; ILUPACK and PARDISO are405

closed source and offer complimentary academic licenses.

PETSC represents the highest level within our solver stack; all underlying solver implementations are utilized through PETSC function

calls (e.g. KSPSolve()). To support this, we provide a wrapper around ILUPACK so that it can be used as a preconditioner (PC) implemen-

tation within PETSc (http://bitbucket.org/psanan/PCILUPACK). Through a custom interface we use PARDISO to provide a direct solver for

symmetric indefinite systems, using the same weighted-matching ordering )https://bitbucket.org/psanan/petsc/branch/psanan/pardiso-3.12.410

4). The code which performs the discretization of the Stokes and elasticity problems, configures the solvers and generates the post-processed

flow/displacements fields is available here: http://bitbucket.org/psanan/exsaddle.

Also see the supplement to this paper, which provides additional instructions and details to reproduce, extend, and apply the experiments

and tools discussed above.
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