Response to the reviewer #1

Formatted: Heading 2

#	Comments from Referees #1	Author's response	Author's changes in manuscript
1	In data processing, when you work on	As the sensors used in	
-	amplitude and phase of the signal, the	infrasound investigations are	
	frequency	broadband the correction for	
	response of both seismic and infrasonic	the frequency response is not	
	sensors is a crucial point. This is especially	applied applied when prior	
	true in this work, where frequency range of	PMCC processing. For the data	
	signals that you are analysing, is at the	of the	
	bound of the linear frequency response of	ABKAR, KKAR, and MKAR, it is	
	some of the used sensors. As you show in	assumed that the frequency	
	Figures 3 and 6, you hold the frequency	response of all sensors of a	
	response curve of Microbarometers MB2000.	same array are identical. As	
	and GS-21 and CMG-3V seismic sensors. I was	PMCC is a correlation based	
	wondering, did you correct the signal	method, identical phase shift	
	for the frequency response?	should not affect the detection.	
		However, to get reliable	
		amplitude measurements,	
		should be corrected for the	
		instrumental response. For the	
		purpose of this study, ,	
		this is not a critical point as the	
		phase responses of the CMG-21	
		are stable and the absence	
		of the correction doesn't affect	
		the accuracy of the azimuth	
		determination using PMCC.	
		Surely the absolute amplitudes	
		are measured with a large error.	
		However, the absolute	
		amplitude determination is not	
		essential, only relative	
		amplitudes	
		are compared with modeling	
		<u>results.</u>	
<u>2</u>	I order to make the overall structure of the	Accepted	Lines 34-36 and lines 69-76 are moved to the methods section.
	paper clearer, I believe that few paragraphs		Lines 36-40 are moved to the discussion section.
	of the introduction section could be moved		
	into the method section (for example lines		
	34-36 and lines 69-76), or in the discussion		
	section (e.g. lines 36-40). I think this would		

	also help to streamline the introduction		
2	section.	The second second second second second	
2	you could better highlight: I) the contribution	To our knowledge, multi-year	One sentence has been added in the introduction.
	of this paper to the	ampient noise comparisons	
	literature and II) the goal of your study and	between co-located seismic and	
	how you try to reach it. You mention that	Infrasound sensors have not	
	you analysed a long-time interval with	been performed before.	
	simultaneous seismic and infrasonic recording,		
	but it is not so clear if this kind of study, using		
	dense network and lots of data, has been		
	already done in literature.	-	
4	I suggest that you try to use Rose Diagrams,	Accepted	Figures 13 and 14 are reshaped as the rose diagrams (the new
	they could help you representing better		numbers are 15 and 16).
	the results (both azimuth and frequency of		
	each class) of Figures 13 and 14.		
<u>5</u>	I suggest an English revision, in order to make	Accepted	The English has carefully been revised
	the manuscript reading more fluent.		
<u>6</u>	The bibliography is not cited uniformly	Accepted	TODO
	throughout the manuscript		Citations has carefully been checked throughout the paper
<u>7</u>	Figure 3: x labels are wrong	Accepted	Figure 3 is reconstructed altogether with the labels.
<u>8</u>	Figure 7, 8 and 9: Can you put the legend out	Accepted	The legends are moved out (new numbers are 8, 9 and 10).
	of the plot? They overwrite the results.		
<u>9</u>	Insert in all the different plot of figures 13 and	Accepted	The letters are inserted (new numbers are 15 and 16).
	<u>14 the letters (e.g. a, b etc).</u>		
<u>10</u>	Line 49-50: Specify which kind of algorithm do	Accepted	This has been clarified
	<u>you refer to.</u>		
<u>11</u>	Line 53: were	Accepted	
<u>12</u>	Line 58: measured instead of "measuring"	Accepted	
<u>13</u>	Line 64-65: "These agreements have been	Accepted	The reference to the Hupe et al 2018 is inserted.
	improved using more accurate wind profiles		
	obtained from high resolution LIDAR middle		
	atmospheric sounding". It is not clear that		
	this work has been done by Hupe et al 2018.		
<u>14</u>	Line 66-67: "In this paper, we further extend	Accepted	This has been clarified
	the approach developed by Hupe at al.		
	(2018) using microbarom recorded by the		
	dense Kazakhstani network". Specify in		
	which sense you extended the work, only in		
	terms of number of station/network?		
<u>15</u>	Line 70: rephrase "For microseisms, the	Accepted	The bathymetry strongly affects the source intensity in
	bathymetry strongly affects the source		microseism modelling
	intensity"		

	in "The bathymetry strongly affects the source			
	intensity in microseism modelling"			
<u>16</u>	Line 72: "angles lower than 40" instead of	Accepted		
	"angles lower the 40"			
17	Line 74: typing error	Corrected		
18	Line 83: "as it contains a five seismic and three	The BVAR was not shown at		
	infrasound arrays". In the abstract and	Figure 1. There are 5 arrays now.		
	later on into the text and figure 1 you say four			
	seismic arrays.			
19	Line 89: "MKIAR (9 elements), and in	Corrected	The infrasound networ	consists of the IMS infrasound station
	Makanchi village" is not clear. MKIAR is in		IS31 located in north-w	est Kazakhstan (2.1 km aperture, 8
	Makanchi village?		elements), two nationa	arrays of 1 km aperture: KURIS (4
			elements) near the Kur	chatoy, MKIAR (9 elements) near the
			Makanchi village	
20	Line 83: "as it contains a five seismic and three	Corrected	Five seismic	
_	infrasound arrays". In the abstract and			
	later on into the text and figure 1 you say four			
	seismic arrays			
21	Line 92: cut Figure 3	Corrected	It is Figure 1 now.	
22	Line 101: cut Figure 5	Corrected	It is Figure 1 now.	
23	Line 120-121: Add references			
24	Line 132-134: Understanding this point is	Accepted and deleted as the		
_	difficult in this part of the text, maybe you	same is stated again in the		
	could move it into the results or discussion	discussion section.		
	section, where you can refer to the figures.			
	Or add here that it would be clarified later			
	into the text.			
25	Line 147-151: Specify that you are describing Fig. 7	Accepted	The reference to Picture	e 8 is added
26	Line 155: "amplitude increases from 0.001 to 0.03	No, these are the maximal	the maximal signal amo	litude increases from 0.001 to 0.03 Pa
	Pa" are those average values?	values.		
27	Line 156: I suspect that "repeatable" means	No. actually it is the repetitive.	"with repetitive season	al variations"
	replicable.			
<u>28</u>	Line 171: "a decrease in amplitude is observed	The amplitude scales are		
	early January 2017 at all stations." It is difficult	uniform now. The effect must		
	to see this decreasing trend.	be more visible.		
<u>29</u>	Line 182-183: "As the used source model was	Accepted	This has been clarified	
	developed for microseisms (Ardhuin et			
	al., 2011), an empirical scaling factor (F =			
	1:10000) must be applied for comparing the			
	observed to the predicted amplitudes". Could			
	you give further details?			

<u>30</u>	Line 187-190. Could you explain better the reason of the discrepancy? And comment	Accepted	This has been clarified
	the quantitative estimations of the prediction quality?		
<u>31</u>	Line 192-194: I think it is important here to highlight the further data you analyse in your work, both in terms of time interval and number of stations	Accepted	This has been mentioned in the discussion
32	Line 200: Do you mean the comparison between observations and simulations?	No, we mean but not the comparison but both of them do.	Observations as well as simulations, show large temporal variations in the dominating microbarom source regions explained by the seasonal reversals of the prevailing stratospheric winds, which in turn, cause the migration of storm activity area to the winter hemisphere (Stutzmann et al., 2012).
<u>33</u>	Line 200-202: I suggest that you explain better this point.	Accepted	This has been clarified
<u>34</u>	Line 208: "Simulating microbaroms predicts signals" maybe Simulated microbaroms predict signals.	Accepted	
<u>35</u>	Line 208-210: Refer to the figures	The reference is added	"observed only at IS31 and MKAR, Figure 15 c."
<u>36</u>	Line 222: Could you specify here the expanded form of SSW (beside the abstract)?	Accepted	
<u>37</u>	Line 222-227: As you write here, this topic seems to be one of the findings of the paper.	Yes, as stated in the text	
<u>38</u>	Line 243-244: This is not reported elsewhere in the text, maybe you could highlight this aspect even in other section, if you believe that it is an important point of your work.	Accepted	This result is expanded in the discussion.

Formatted: Normal

Response to the reviewer #2

Formatted: Heading 2

<u>#</u>	Comments from Referees #2	Author's response	Author's changes in manuscript
<u>1</u>	I missed in the abstract and introduction	Accepted	To our knowledge, systematic comparisons between observed and
	some discussion on the novelty of this study:		predicted microseisms and microbaroms were not carried out.
	e.g. what the added value is of a		This paper confirms the pioneer findings of Donn by considering
	characterisation with seismic and acoustic		several years of observations at a dense regional seismo-acoustic
	arrays that are part of a dense network.		network. Such comparisons confirm a common source mechanism
			of seismic and acoustic ocean ambient noise while highlighting the
			influence of long-range atmospheric propagation on microbarom
			nrediction. This has been clarified in the text
2	In the conclusion, the authors claim that	Accepted	The issue is excluded from the conclusion
-	analyzing multivoar archivos of continuous	Accepted	The issue is excluded from the conclusion
	recordings violds additional information		
	about the spatial and temporal variability of		
	the ambient poice originating from two		
	hemispheres. This is an interacting accest		
	het is my spicion the menuteriat data not		
	but in my opinion the manuscript does not		
2	provide sufficient evidence for that.		
3	A shortcoming is the lack of microseism	Accepted	The microseism predictions are inserted. This is done via the
	predictions. Certainly since these		addition of Figures $12 - 14$. The predictions calculation is
	simulations can be produced by the same		described in the method section. The results are discussed in the
	model. Please add these to a revised		section results and discussions.
	manuscript.		
<u>4</u>	<u>I also missed a more direct comparison of</u>	Accepted	The comparison is done via the placement of figures 19 and 20.
	microseism and microbarom observations,		The comparison is described in the discussion section.
	e.g. MKIAR/MKAR and KURIS/Kurchatov		
<u>5</u>	Figures 1, 2, 4 and 5 could be combined in	Accepted	The figures are combined into the new version of figure 1.
	one single figure.		
<u>6</u>	missed figures that:	Accepted	These maps are inserted as figures 6 and 7 for microbarom and
	(1) show a map of the distribution and		microseism sources accordingly. The description is done in the
	characteristics (amplitude/dominant		methods section.
	frequency) of microbarom and microseism		
	sources that are considered in this study		
	(also from the southern hemisphere?)		
<u>7</u>	missed figures that:	Accepted	The PSDs are shown in picture 4. The description is at the
	(2) spectral characteristics of the		observation network section.
	observations, i.e. Probability Density		
	Functions of the Power Spectral Densities		
	for winter and summer months, for all		
	arrays considered.		

8	I would like the authors to address spelling	Accepted and checked where		
-	and grammatical errors. I have included	possible.		
	a few suggestions and have included a	·		
	rephrasing occasionally.			
9	I would like the authors to discuss the	Accepted	This limitation is now cle	arly addressed in the conclusion
-	shortcomings in the current method (data	<u>necepted</u>		any dual cosed in the conclusion.
	processing range-independence) in a			
	revised version of the manuscrint. In			
	particular, the used array processing method			
	is known to produce biased results when the			
	signal consists of multiple, concurrent			
	sources (the case when studying			
	microbarons).			
10	Line 10 In the asbtract:	Accepted	The outcomes of this stu	dy were reformulated (see point 1).
_	- describe the results in more detail			
	- what are the differences between			
	modeling and observations?			
	- not much emphasis on the microseism			
	signals			
	- what is the broader perspective of this			
	characterization using seismic and acoustic			
	arrays?			
	Line 14 that are part	Accepted		
<u>11</u>	Line 25 Microseism and microbarom	Accepted	Reviews of pioneer work	on microseism microbaroms have been
	modeling techniques were preceded by		added in the introductio	<u>n.</u>
	years of observations.			
	Add a paragraph on the history observations			
	of microseisms and microbaroms to			
	introduce the topic of this paper; e.g. the			
	work by Benioff and Gutenberg.			
	I also missed a review of the work by Donn			
	and Rind from the 1970s which is important			
	to mention. Rind also published a study in			
	1980 discussing the joint observation of			
	microseisms and microbaroms.			
<u>12</u>	Line 29 Microbaroms and microseisms are	Accepted	See point 11.	
	not only generated in the middle of the			
	ocean by opposing wavetrains but also near			
	ocean by opposing wavetrains but also near coastlines (coastal reflection). Discuss this			
<u>13</u>	ocean by opposing wavetrains but also near coastlines (coastal reflection). Discuss this Line 29 Introduce primary and secondary	Accepted	See point 11.	
<u>13</u>	ocean by opposing wavetrains but also near coastlines (coastal reflection). Discuss this Line 29 Introduce primary and secondary microseisms. The primary microseisms do	Accepted	See point 11.	
<u>13</u>	ocean by opposing wavetrains but also near coastlines (coastal reflection). Discuss this Line 29 Introduce primary and secondary microseisms. The primary microseisms do not have a counterpart in the atmosphere.	Accepted	See point 11.	

<u>14</u>	Line 29 This study would certainly benefit	Accepted	The comparison is shown by new figures (19 and 20) and
	from a Figure that shows probability density		described in the discussion section.
	functions of the power spectral density of		
	co-located microbarom and microseism		
	arrays, in particular KURIS/Kurchatov and		
	MKAR/MKIAR		
<u>15</u>	Line 31 Explain how the Rayleigh waves are	Accepted	One reference is added.
	predicted by the acoustic pressure source.		
	Are there also homogenous P-waves		
	generated?		
16	Line 32 I would move this paragraph after	Accepted	The paragraph moved to the method section.
	(KNMI network, Evers and Haak 2001).		
17	Line 35 this is a major assumption. Why is	Accepted	We agree.
-	the impedance condition not taken into		The bathymetry effect plays an important role when calculating
	account?		the microseism source intensity as resonance effects occur leading
			to a modulation of the pressure fluctuations at the ocean bottom
			This effect has been modeled using compressible amplification
			factor of Stutzmann et al. (2012)
			This has been clarified in the manuscrint
18	Line 41 Lwould move this paragraph after	Accented	The paragraph is moved to the recommended place
10	(KNMI potwork, Evers and Haak 2001)	Accepted	The paragraph is moved to the recommended place.
10	Line 46 peods an introduction how	Accontod	See point 11
	microbaroms relate to microsoisms	Accepted	
20	Line 40 Include a paragraph to review recent	Accorted	This has been addressed in the capelusian. See point 0
20	Line 49 include a paragraph to review recent	Accepted	This has been addressed in the conclusion. See point 9.
	articles on high-resolution beamforming		
	methods for microseisms (Gal et al., 2016)		
	and microbaroms (Ouden et al., 2020). Such		
	methods are absolutely needed to resolve		
	the complex infrasonic wavefield at		
	microseism/microbarom frequencies as		
	classical Bartlett and PMCC type methods		
	fall short due to biases.		
<u>21</u>	Line 53 Microseism modeling	Accepted	Microseism modelling was
<u>22</u>	Line 57 have been	Accepted	Have been
<u>23</u>	Line 57 Going back to the Garcés et al., 2004	Accepted	The sentence has been deleted.
	study, I don't see any modeled		
	microbaroms. The authors did compare		
	observations with wind directions at		
	different altitudes.		
<u>24</u>	Line 61 operational	Accepted	
<u>25</u>	Line 64 Northern	Accepted	
<u>26</u>	Line 64 It is not at all clear that high-	Accepted	This has been suppressed.
	resolution atmospheric sounding methods		

			n	
	would improve microbarom observations; as			
	the wavelengths of microbaroms are large			
	(1.7 km), it is only sensitive to the larger			
	scale structure that is well captured in			
	atmospheric models. Moreover, the Hupe			
	study does not provide evidence that the			
	agreement actually gets better. I would like			
	the authors to address this.			
<u>27</u>	Line 66 explain how you extend the method	Accepted	This has been clarified.	
	and what the point is of this paper.			
<u>28</u>	Line 68 includes both seismic and infrasound	Accepted	both seismic and infraso	und arrays
	arrays.			
<u>29</u>	Line 70 In contrast to the microseism work,	Accepted		
	the influence of bathymetry on			
	microbaroms has only been studied			
	theoretically. There is no data yet to support			
	this claim. Please describe this as such.			
	Something like, "A recently modeling study			
	by De Carlo (2020) suggests that bathymetry			
	has negligible impact on microbarom source			
	strength in contrast to predictions from the			
	model by Waxler (2007)".			
<u>30</u>	Line 73 propagation angles through the	Accepted		
	atmosphere and a second			
<u>31</u>	Line 74 already stated above	Accepted	The sentence has been o	leleted.
<u>32</u>	Line 75 Rewrite.	Accepted	This has been clarified.	
	This sentence reads as if microbaroms are			
	not affected by geometrical spreading and			
	attenuation but by "the strong spati-			
	temporal variation of the middle			
	atmosphere". Indeed, in both cases the			
	propagation conditions (propagation path			
	with its geometrical spreading and			
	attenuation) are determined by the medium			
	properties (which are temperature/wind for			
	infrasound and elastic parameters for			
	seismic waves). In the case of seismic waves,			
	these medium properties do not vary in			
	time.			
<u>33</u>	Line 75 Microseism modeling should also be	Accepted	The microseism prediction	ons is considered. This is done via the
	considered in this paper; it would make the		addition of Figures 12 -	14. The predictions calculation is
	story much stronger as both waveform		described in the method	s section. The results are discussed in the
		1	1	

<u>34</u>	Line 80 After reading this section, it is not		This has been clarified. S	bee point 1.
	clear to me what this paper adds to the			
	existing knowledge. This should be stated,			
	for example in the forelast paragraph.			
<u>35</u>	Line 80 studies	Accepted		
<u>36</u>	Line 80 I count four in Figure 1?	The BVAR is added to figure 1.	Figure 1 is changed	
	From reading the manuscript, it looks like	There are 5 now.		
	you have not plotted BVAR.			
37	Line 85 not relevant for scientific paper.	Accepted	The sentences are delete	ed.
38	Line 85 and	Accepted	and	
39	Line 91 which type?	Accepted	Model 25	
40	Line 92 double	Accepted	Deleted	
41	Line 93 This station is not used so it is	Accepted	Deleted	
	irrelevant to mention	<u>Necepteu</u>	Deleteu	
42	Line 94 discriminating between	Accepted	hetween	
43	Line 97 consists of	Accepted	Consists of	
44		Accepted	<u>ln n</u>	
44		Accepted		I take the second state of Change 4
45	Line 98 it appears to me that Figures 1, 2, 4,	Accepted	The figures are combine	d into the new version of figure 1.
	and 5 can be combined to snow the			
	overview map and the array layouts in one			
	single figure. This will reduce the large			
	number of figures in this paper (15).			
	Alternatively, the seismic arrays can be			
	combined similarly as Figure 2 for			
	infrasound.			
	It would be useful to plot the seismic arrays			
	in Cartesian coordinates so that the array			
	layouts can easily be compared to the			
	infrasound arrays (Figure 2).			
<u>46</u>	Line 98 Manufacturer?	Accepted	Guralp CMG-3v, also Ge	otech Instruments GS-21 at the line 101
47	Line 99 Figure 6 suggests that it is a	Accepted	This has been clarified.	
	broadband sensor why would it be at the			
	edge of the response?			
48	Line 99 sensor's	Accepted		
49	Line 100 The ABKAR	Accepted		
50	Line 101 Figure 5	Accepted	Deleted	
51	Line 101 a flat	Accepted		
52	Line 103 Perhaps better to show the	Accepetd	Figures 2 and 3 have bee	en modified
_	frequency response with a logarithmic x-axis			
	and include higher frequencies so that you			
	can show the behavior of the GS-21 sensors			
	above 1 Hz			
	above 1 HZ.	1		

	More realistic / smoother response plots will		
	result from more points in the calculation of		
	the response curves.		
<u>53</u>	Line 107 This point is an important added	Accepted	This has been highlighted in the introduction.
	value of the paper and should be brought		
	out in a revised version.		
	Comparisons of co-located seismic and		
	acoustic arrays would be novel.		
<u>54</u>	Line 113 Similar processing configurations	Accepted	This setting for seismic processing has been chosen as it yields
	should be used, including the same		more stable detection results compared with the log-scaling
	frequency band and window lengths.		configuration used for microbaroms. Further studies are needed
			to investigate the most suitable processing scheme as addressed
			in the conclusion.
55	Line 116 The authors should include array	Accepted	This has been addressed in the conclusion as further work to
	response functions and estimate for all		estimate realistic uncertainties in the wave parameter estimates.
	arrays so that the resolution can be		
	estimation from the lobe width.		
<u>56</u>	Line 118 Can you explain the calculations	Accepted	This has been mentioned. See point above.
	more? The errors are quite dependent on		
	SNR conditions and it may be that the		
	current estimates are slightly optimistic, if		
	for example a sigma tau of 0.05 s is chosen		
	(following Szuberla & Olson, 2004).		
	Another way of looking at this is to consider		
	the array response function and consider		
	the lobe width.		
<u>57</u>	Line 123 Microbarom sources are	Accepted	
<u>58</u>	Line 124 which frequency band is		This has been clarified.
	considered?		
<u>59</u>	Line 127 scenarios	Accepted	
<u>60</u>	Line 127 using the high-resolution forecast	Accepted	using the high-resolution forecast (HRES) that is part of ECMWF's
	(HRES) that is part of ECMWF's Integrated		Integrated Forecast System (IFS) cycle 38r2
	Forecast System (IFS) cycle 38r2		
<u>61</u>	Line 130 Good is qualitative. Can you further	Accepted	Quantitative measures are given.
	quantify this? Within how many standard		
	deviations can the model explain the data,		
	for example?		
<u>62</u>	Line 131 Results should not be part of the	Accepted	Deleted
	methods section.		
<u>63</u>	Line 132 This interpretation should be saved	Accepted and deleted as the	
	for the discussion and not be part of the	same is stated again in the	
	methods section.	discussion section.	

	1			
	Moreover, it should be supported by data,			
	for example by looking at variations in the			
	effective sound speed along the various			
	great circle paths that are studied.			
	It should also be investigated what the			
	differences in distance for a "southern" vs			
	"N Atlantic source" would be			
64	N. Atlantic source would be.	Accorded	As suggested, surprising on since in the sevel size. Can also	
04	Line 134 Looking anead at the observations,	Accepted	As suggested, explanations are given in the conclusion. See also	1
	It seems like sources are more distributed in			
	the south.			
	There are two things to consider:			
	(1) From the array processing perspective:			
	As PMCC cannot detect more than one			
	microbarom source per time-window, it			
	could be that the resolution of such			
	microbaroms is limited. This motivates the			
	use of high-resolution methods such as			
	discussed by den Ouden et al. 2020			
	(2) From the propagation perspective there			
	(2) From the propagation perspective, there			
	could be multiple paths/ducts from which			
	microbarom energy can reach the array,			
	leading to the observations of multiple			
	infrasound sources (e.g., Assink et al., 2014).			
	Thus, the paradigm of only observing			
	propagation down-wind is challenged at			
	microbarom frequencies.			
<u>65</u>	Line 143 Separate microbarom and	Accepted	The paragraph was separated on two subparagraphs:	
	microseism observations in two		1.3.1 Source modeling for microbaroms and	
	subparagraphs, this will make it easier to		1.3.2 Source modeling for microseisms	
	read.			
<u>66</u>	Line 143 Start with 2.1.1: microbaroms	Accepted		
67	Line 144 suggest rephrase:	Accepted		
	Figures 7 through 9			
68	Line 145 suggest rephrase:	Accepted	of the dominant microbarom signals for infrasound arrays IS31.	
	of the dominant microbarom signals for		KURIS and MKIAR, respectively.	
	infrasound arrays IS31_KURIS and MKIAR			
	respectively			
69	Line 145 suggest renhrase:	Accepted	The amplitudes and back azimuths from the dominant	
<u><u> </u></u>	The amplitudes and back azimuths from the	Accepted	microbarom signals are selected from the DMCC bulleting and a	iro
	dominant microbarom signals are selected		niciosaroni signais are selected from the Pivice bulletins and a	10
	from the DMCC bulleting and are related as		piorreu as oralige dors.	
	from the PIVICC bulletins and are plotted as			
1	orange dots.			

<u>70</u>	Line 147 Save this for the modeling	Accepted	Deleted
	paragraph.		
<u>71</u>	Line 148 back azimuths	Accepted	
<u>72</u>	Line 153 azimuthal ranges of	Accepted	
<u>73</u>	Line 154 the KURIS	Accepted	
<u>74</u>	Line 154 shows	Accepted	
<u>75</u>	Line 155 Is there a reason why amplitudes		We have no explanation.
	would not increase to 0.1 Pa?		
<u>76</u>	Line 157 Discuss how these distributions are	Accepted	This is the standard deviation around the dominant detected
	<u>computed</u>		azimuths
<u>77</u>	Line 158 Suggest to have this in 2.1.2:	Accepted	
	microseisms		
<u>78</u>	Line 161 rephrase. A 'detection system' is	Accepted	reworded
	not appropriate.		
<u>79</u>	Line 161 Same.	Accepted	Same
<u>80</u>	Line 164 Is this related to the larger aperture	Accepted	This could be explained by higher noise level or a loss of signal
	of Kurchatov Cross and the loss of		coherency. We don't see clear shift in frequency from summer to
	<u>coherency?</u>		winter.
	Can you identify a shift in frequency from		
	winter to summer?		
<u>81</u>	Line 168 could this be related with the	Accepted	This is suggested.
	southern location of these arrays?		
<u>82</u>	Line 173 can you explain why MKAR shows		We have no explanation.
	so much scatter, relatively?		
<u>83</u>	Line 173 Can you explain why the Kurchatov	Accepted	The vertical scale is adjusted.
	array appears noisier than the other sites?		
	Perhaps because the seismometers are not		
	installed in boreholes? Or is it related to the		
	instrument?		
	The amplitudes also seem higher than the		
	other sites. Can you adjust the vertical scale		
	so that all are equal?		
<u>84</u>	Line 175 The microbaroms simulations have	Accepted	The back-azimuths and amplitudes have been calculated for the
	been computed for the sea states around		expected microbarom sources at IS31, KURIS, and MKIAR. The
	the infrasound arrays, not for the		expected distances to the source regions vary with season. For
	microbarom recordings.		example at IS31, simulations predict in winter three source
	Please provide more detail about the		regions (Figure 6 a); distances to North Atlantic regions range
	computation, which distances are		between 3500 to 7000 km while the distance to the North Pacific
	considered? Are very low amplitudes cut off		region is around 7000 km. In summer, additional microbarom
	from the computation? There is a large		sources are located in the southern hemisphere at distances larger
	difference between the simulations and		than 11000 km (Figure 6 b).
	observations in the summer at all arrays.		

<u>85</u>	Line 175 Figures 7 through 9	Accepted	Figures 8 through 10
<u>86</u>	Line 176 This, in a way, is not so spectacular,		We think that the relation between the scattering and the relative
	given the large distance to this source,		distance to the source is not clear, as large scattering is also noted
	making it appear to come from one		for the farthermost source regions in the southern hemisphere.
	dominant azimuth.		
	I would discuss that the scatter of		
	microbarom sources tells something about		
	the relative distance to the source. This can		
	also be seen in Den Ouden et al.,2020		
	(compare for example IS42 with IS48).		
<u>87</u>	Line 178 Can you quantify the deviation?	Accepted	
<u>88</u>	Line 182 I note that the model that is used	Accepted	As the used source model was developed for microseisms
	for microbarom modeling could indeed be		(Ardhuin et al., 2011), an empirical scaling factor (F = 1:10000) has
	used to simulate microseisms.		been applied to account for wave coupling effect in the
	Please explain why amplitudes need an		atmosphere, thus allowing qualitative comparisons between the
	emperical factor and do not follow from the		observed and predicted temporal variations of the microbarom
	physics.		amplitudes.
	Furthermore, does this mean that amplitude		
	is a free parameter?		
<u>89</u>	Line 185 could one not equally argue that		We believe that microbarom modeling is not correct for long
	summer amplitudes are correct while winter		propagation range as atmospheric model taken at the station
	amplitudes are underestimated?		likely predicts more favorable propagation conditions compared
			with situation involving waves crossing the equator line.
<u>90</u>	Line 188 where would these sources be?	Accepted	Figures 6 and 7 are devoted to the microbarom and microseism
	please further explain. It would be good if a		sources accordingly. The descriptions are in the methods section.
	Figure would be devoted to microbarom /		
	microseism sources during summer and		
	during winter.		
<u>91</u>	Line 191 I would like the authors to discuss	Accepted	This study provides a first characterization of the seasonal
	the shortcomings in the current method		patterns of microbarom and microseisms recorded by the IGR
	(data processing, range-independence) in a		seismo-acoustic network. The chosen detection algorithm and
	revised version of the manuscript.		propagation model offer a good trade-off between low calculation
			effort and propagation accuracy. Identified shortcoming is the
			limitation of PMCC to detect overlapping microbarom sources
			originating from different directions. Furthermore, the approach
			assuming range-independent atmosphere may lead to erroneous
			interpretations for situations involving long propagation ranges
			where significant along-path variability of wind and temperature
			profiles may occur, in particular when modeling the relative
			strength of microbarom sources located in different hemispheres.
			This has been clarified in the manuscript.

92	Line 194 Explain how the number of	Rejected misunderstanding is a	Figure 15 shows the azimuthal distribution of infrasound
<u> </u>	detections can be quantified and be directly	result of mistranslation. The	detections having the maximum amplitudes
	compared to a simulated value. Are the	translation was improved	detections having the maximum amplitudes.
	compared to a simulated value. Are the	translation was improved.	
	number of detections averaged over o nours		
	to be directly compared with the		
	SIMULATIONS?		
00	What is the role of wind hoise?		
93	Line 198 Repeat from above:	Accepted.	We agree with this limitation. This has been clarified in the
	Looking ahead at the observations, it seems		conclusion. See also points 20 and 64.
	like sources are more distributed in the		
	south.		
	There are two things to consider:		
	(1) From the array processing perspective:		
	As PMCC cannot detect more than one		
	microbarom source per time-window, it is		
	likely that the ability to resolve microbaroms		
	is limited and biased. This motivates the use		
	of high-resolution methods such as		
	discussed by den Ouden et al., 2020.		
	(2) From the propagation perspective, there		
	could be multiple paths/ducts from which		
	microbarom energy can reach the array,		
	leading to the observations of multiple		
	infrasound sources (e.g., Assink et al., 2014).		
	Thus, the paradigm of only observing		
	propagation down-wind is challenged at		
	microbarom frequencies.		
<u>94</u>	Line 206 I suppose this is identified using	Yes, it is true.	These peaks could likely be explained by body and surface seismic
	trace velocity. Could the authors clarify?		phases judging by its trace velocity.
<u>95</u>	Line 214 Please include information the	Accepted	The maps are in figure 6 and 7
	typical distances to microbarom/microseism		
	sources and a map showing the typical		
	locations of sources that are likely to be		
	detected.		
96	Line 228 given the large number of	Accepted	We suppressed this statement.
	assumptions in this paper, I would be careful		
	with placing the inaccuracy with the ECMWF		
	model.		
97	Line 231 This would rather be a transient	Accepted	We suppressed this statement.
_	signal: how would that lead to such a large		
	mismatch?		
98	Line 237 please provide evidence for this	Accepted	The sentence has been reworded.
	statement.		
	Statement		

<u>99</u>	Line 239 During minor SSWs, bi-directional conditions may occur which may have strong impacts on the retrieved microbarom cignals (see Assink et al. 2014; ICP)	Accepted	This has been added.
100	Line 243 but the wavelength is also 10 times larger, so I cannot imagine how the azimuthal errors would decrease. this also assumes that microbaroms and microseisms originate from the same location.	Accepted	The sentence has been suppressed.
<u>101</u>	Line 389 BVAR is not plotted	Accepted	
<u>102</u>	Line 411 - Make the vertical size larger so you can see more detail. - Include more tick marks for the back azimuth values.	Accepted	<u>The vertical size is enlarged. A bigger amount of the tick marks are</u> <u>included.</u>
<u>103</u>	Line 418 - Make the vertical size larger so you can see more detail. - Include more tick marks for the back azimuth values.	<u>Accepted</u>	The vertical size is enlarged. A bigger amount of the tick marks are included.
<u>104</u>	Line 421 - Make the vertical size larger so you can see more detail. - Include more tick marks for the back azimuth values.	Accepted	The vertical size is enlarged. A bigger amount of the tick marks are included.
<u>105</u>	Line 427 Can you make the y-axis scale the same?	Accepted	Y-axis scales are made uniform.
<u>106</u>	Line 432 Can you make the y-axis scale the same?	Accepted	Y-axis scales are made uniform.
		·	Formatted: English (United States)

Characterizing the global ocean ambient noise as recorded by the dense seismo-acoustic Kazakh network

Alexandr Smirnov^{1,2}, Marine De Carlo³, Alexis Le Pichon³, Nikolai M. Shapiro^{2,4,5}, Sergey Kulichkov⁶

10	¹ Institute of Geophysical Research, Almaty, 050020, Kazakhstan ² Institut de Physique du Globe de Paris, Sorbonne Paris Cité, F-75005 Paris, France	
	³ CEA, DAM, DIF, F- <u>91297</u> Arpajon, France	 Deleted: 91680
	⁴ Institut de Sciences de la Terre, Université Grenoble Alpes, CNRS (UMR5275), Grenoble, France.	Formatted: French (France)
15	⁵ Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia ⁶ A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, 119017, Russia	 Formatted: English (United Kingdom)
	Correspondence to: Alexandr Smirnov (smirnov@ipgp.fr)	

Abstract. The dense seismo-acoustic network of the Institute of Geophysical Research (IGR), National Nuclear Center of the Republic of Kazakhstan, has been operating in Kazakhstan since the late nineties of the last century. It consists of five seismic and three infrasonic arrays. The IGR network includes stations that are part of several national and global monitoring systems. 20 Infrasonic and seismic data are processed using the Progressive Multi-Channel Correlation (PMCC) detector to characterize the temporal variability of microbarom and microseism signals from 2014 to 2017. The non-linear interaction of ocean waves is simulated using the microseism source model distributed by the French Research Institute for Exploitation of the Sea (IFREMER). The wave attenuation is calculated using a semi-empirical propagation law in a range independent atmosphere.

The observed and predicted infrasonic and seismic signals are compared, confirming a common source mechanism for both 25 microbaroms and microseisms. This study reveals the dominating directions of arrivals at each station of the IGR network and the associated source regions. Multi-year and intra-seasonal parameter variations are analysed, revealing the strong influence of long-range atmospheric propagation on microbarom predictions. In winter, dominating sources of microbaroms are mainly located in the North Atlantic and in the North Pacific during Sudden Stratospheric Warming (SSW) events while signals 30 observed in summer, likely originate from source regions in the southern hemisphere,

Deleted: four

Formatted: English (United States)

_	Deleted: Comparing
-	Deleted: t
\searrow	Deleted:

Deleted: reveals the dominating directions of arrivals at each station of the IGR network and the associated source regions. Both

	multi-year and intra-seasonal parameter variations are analysed. The level of low-frequency noise is significantly higher in winter than in summer.
$\langle \rangle$	Deleted: infrasound ambient noise
$\langle \rangle$	Deleted: . S
()	Deleted: ,
	Deleted: ing
	Deleted: , are discussed

Introduction

35 Pressure fluctuations of ocean infra-gravity gravity waves are primarily at the origin of seismic ambient noise categorized as seismic hum (1-20 mHz), primary microseisms (0.02-0.1 Hz), and secondary microseisms (0.1-1 Hz). The theory to predict microseisms and microbarom source regions was developed by Longuett-Higgins (1950). This theory explains how counter propagating ocean waves can generate propagating acoustic waves and create secondary microseisms by exciting the sea floor. Gutenberg (1953) first pointed out the relation between microseisms, meteorological conditions, ocean waves, and

- 55 microbaroms. Hasselmann (Hasselmann, 1963, 1966) generalized Longuett-Higgins' theory to random waves by investigating non-linear forcing of acoustic waves. Donn and Naini (1973) suggested a common source mechanism of microbaroms and microseisms from the same ocean storms demonstrating that the only mechanism capable of transmitting energy into both the atmosphere and the sea bottom is associated with the surface waves in a storm area. Microseism modelling was introduced by Kedar et al. (2008). The good correlation between the observed microseism amplitudes and their predicted values according
- 60 to the Longuett-Higgins theory was shown, demonstrating that microseism source locations can be tracked using numerical modeling (Shapiro, 2005; Shapiro and Campillo, 2004; Stehly et al., 2006; Stutzmann et al., 2012; Weaver, 2005). A radiation model of microbaroms from the motion of the air/water interface was later proposed by Waxler and Gilbert (2006). Ardhuin and Herbers (Ardhuin and Herbers, 2013a) developed a numerical model based on Longuett-Higgins-Hasselmann theory for the generation of Rayleigh waves, considering an equivalent pressure source at the undisturbed ocean surface. The
- 65 different patterns between microseismic body and surface waves resulting from distinctive amplification of ocean waveinduced pressure perturbation and different seismic attenuation have been studied with implications for seismic imaging and climate studies (Obrebski et al., 2013). Coastal reflections also play an important role in the generation of microbaroms and microseisms but modelling the reflection of ocean waves off the coast still remains a major source of model uncertainty (Ardhuin et al., 2013b).
- 70 As for microseisms, microbaroms are not the impulsive signals but quasi-monochromatic sequences of permanent waves (Olson and Szuberla, 2005); therefore, it is not possible to detect their onset and identify their propagation paths. However, these signals are well detected using standard processing techniques, such as beamforming methods used from the sixties (Capon, 1972; Haubrich and McCamy, 1969; ToksoZ and Lacoss, 1968). Several studies demonstrated the efficiency of beamforming approaches (e.g. Evers and Haak, 2001) or correlation-based methods (e.g. Garcès, 2004; Landès et al., 2012).

75 to detect and characterize microbarom signals globally.

- The microbarom frequency band is at the lower edge of the frequency band of interest to monitor nuclear tests. Recent global scale microbarom observations recorded by the International Monitoring System (IMS) network of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO) confirm that its detection capability is highly variable in space and time (Ceranna et al., 2019). Thus, in order to assess the microbarom source intensity accurately, it is necessary to take into account a realistic
- 80 description of the middle atmosphere. Other studies have been conducted to characterize the ambient infrasound noise. Smets et al. (2014) compared three months of microbarom observations with the expected values to study the life cycle of Sudden Stratospheric Warming events. Landès et al. (2014) compared the modelled source region with microbarom observations at <u>operational IMS</u> stations. Le Pichon et al. (2015) compared observations and modelling over a 7-month period to assess middle atmospheric wind and temperature models distributed by European Centre for Medium-Range Weather Forecasts (ECMWF).

-{	Deleted: this
1	Deleted: ,
1	Deleted: resulting acoustic frequency is twice the frequency of the ocean waves
М	Deleted:

Dele	ted: such
Com	mented [ALP1]: Check name, strange spelling
Dele	ted: More
Delet	ted: ; Hupe et al., 2018
Dele	ted: .recent algorithms are efficient
Dele	ted: continuous and global
Dele	ted:
Dele	ted: (Evers and Haak, 2001
Form	natted: English (United Kingdom)
Delet infrase (e.g.]	ted: The above mentioned studies were conducted using IMS ound data as well as infrasound records from national networks KNMI network, Evers and Haak, 2001).
Dele	ted: nuclear
Dele	ted: 8
Dele	ted: were
Dele	ted' operating

More recently, Hupe at al. (2018) showed a first order agreement between the modelled and observed microbarom backazimuth and amplitude in the Northern Atlantic.

In this paper, we further extend the approach developed by Hupe at al. (2018) by densifying the monitoring network. The considered dense seismo-acoustic Kazakhstani network is operated by the Institute of Geophysical Research (IGR) of the National Nuclear Center of the Republic of Kazakhstan and includes both seismic and infrasound arrays, Using such experimental setting, we aim at developing synergetic approaches to better constrain microbarom source and evaluate

110 propagation effects. Since the pioneer work of Donn and Naini (1973), this study is to our knowledge the first multi-year comparisons between observed and modelled microbaroms and microseisms at co-located seismo-acoustic arrays Jn the first part, we present the observation network and methods used in this study. In the second part, the processing and modelling results of microseism and microbarom signals recorded by the IGR seismo-acoustic network from 2014 to 2017. In the last part, comparisons between microbarom predictions and observed microbaroms and microseisms signals are discussed.

115 1 Observation network and methods

1.1 Observation network

105

The Kazakhstani seismo-acoustic network (KNDC, 2019) is unique for microbarom and microseism studies, as it contains a five seismic and three infrasound arrays (Figure 1).

- The infrasound network consists of the IMS infrasound station IS31 located in north-west Kazakhstan (2.1 km aperture, 8 elements), two national arrays of 1 km aperture: KURIS (4 elements) near the Kurchatov and MKIAR (9 elements) near the 120 Makanchi village (Belyashov et al., 2013), (Figure 1). KURIS and MKIAR have been operating since 2010 and 2016, respectively. Microbarometers MB2000 and MB2005 are used at IS31 and KURIS, and Chaparral Physics Model 25 microbarometers are installed at MKIAR. Figure 2Figure 3, shows the frequency response of the microbarometers. These stations form a unique dense regional infrasound network. Combining infrasound observables recorded by this network allows
- 125 discriminating between regional natural and anthropogenic sources (Smirnov, 2015; Smirnov et al., 2011, 2018). The seismic network consists of Kurchatov Cross array and MKAR part of the IMS network, ABKAR and KKAR part of the Air Force Technical Applications Center (AFTAC, USA) network (Figure 1 and Table 1). The Kurchatov cross array consists of 20 elements arranged in a cross with an aperture of 22 km (Figure 1), It consists of Guralp CMG-3V sensors. While in the 0.1-0.3 Hz band, MKAR, ABKAR and KKARsensors are at out of the frequency band of interest (0.1-0.3 Hz), the frequency
- 130 response of the Kurchatov cross array is flat within the secondary microseismic band. The configuration of ABKAR, BVAR, KKAR and MKAR are similar with nine elements and an aperture of ~5 km. The ABKAR array configuration is shown as callouts in Figure 1 Figure 5, These arrays are equipped with Geotech Instruments GS21 short period vertical sensors with a flat response for frequencies above 1 Hz. Figure 3 Figure 6 shows the frequency response of GS-21 and CMG-3V sensors within the frequency range of 0.1-0.4 Hz. Surface waves from the ocean storms are well recorded by broad band seismometers.

accurate wind profiles obtained from high resolution LIDAR middle atmospheric sounding (Hupe et al., 2018).		
Deleted: using microbarom recorded		
Deleted: by the dense Kazakhstani network		
Deleted: This		

Deleted: These agreements have been improved using more

Deleted: network
Deleted:
Deleted: not only infrasound but also seismic arrays
Deleted: With
Deleted: this network
Deleted: can be used to

Deleted: ¶

Deleted: study

Deleted: Stations in the network are part of other global networks such as the IMS (CTBTO), IRIS consortium, etc. KNDC closely cooperates with the institutions responsible for these networks and leading seismic and infrasound centers such as the International Data Center (IDC, Austria) of the CTBTO, AFTAC and Com issariat à

	Deleted: in
	Deleted: ,
	Deleted: , and
	Deleted: in
/	Deleted: callouts at the (Figure 2
/	Deleted:)
	Deleted: Figure 3
	Deleted: MB2000
	Deleted: The frequency responses of other sensors are flat from 0.01 to 5.0 Hz. Together with the IMS station IS46, t
	Deleted: differs from the others with
	Deleted: as a
	Deleted: callout at the
	Deleted: (Figure 4)
	Deleted: Although
	Deleted: frequency
	Deleted:
1	Deleted: is
/	Deleted: the
//	Deleted: edge of the sensor's frequency response, they can record
	Deleted: s
	Deleted: Figure 5
	Deleted: Figure 6

Body waves are also registered on GS21 short period sensors. Although, in the frequency band of interest the signal attenuation is about 30 dB, all stations detect microseisms effectively due to their large amplitude above the background noise. A 180 peculiarity of the network is that infrasound and seismic arrays are collocated at two sites (KURIS and Kurchatov Cross;

MKIAR and MKAR) or installed relatively close to each other (IS31 and ABKAR are 220 km apart, Figure 1). Figure 4 and Figure 5 show typical power spectral density (PSD) of the ambient noise for the infrasound and seismic arrays, respectively. The PSD calculation was carried out using one-hour time window during calm periods on October 23 and July 15. The microbarom peak clearly appears at all infrasound arrays only in October. In the summertime, this peak is visible only at IS31, As opposed to the infrasound noise, the seismic noise spectra exhibit the microseismic peak in both seasons with an overall

185 noise level in October approximately 10 dB higher than in July. This effect is most pronounced at the Kurchatov Cross array,

1.2 Processing method

Microseisms are detected using the Progressive Multichannel Correlation Method (PMCC) (Cansi, 1995; Cansi and Klinger, 1997; Smirnov et al., 2011) in 10 linearly spaced frequency bands between 0.05 and 0.4 Hz. A fixed time window length of

190 200 s is used for each sub-band. For infrasound processing, the frequency band is broadened to 0.01-4 Hz using fifteen logarithmically scaled sub-bands, and time window length varying from 30 s to 200 s (Matoza et al., 2013). Only detections with a mean frequency ranging in the 0.1-0.4 Hz microbarom band are considered.

It is important to take into account uncertainties in azimuth and apparent velocity estimations identified in microbarom studies. The uncertainties of the estimated wave parameters of microseisms can be large due to the relatively small aperture of the

195 seismic arrays. Uncertainties in wave parameter estimates are calculated considering the array geometry of the above mentioned infrasound and seismic arrays (Szuberla and Olson, 2004) (Table 1). For the infrasound arrays, the horizontal velocity is set to 340 m/s. For the seismic arrays, the value of 3000 m/s is chosen corresponding to the average speed of the Rayleigh wave. The uncertainties for the seismic arrays are significantly higher for the body waves due to higher velocities. It should be noted that these errors are optimistic as the estimation do not take into account site and time dependent signal-to-200 noise ratio.

1.3 Source modelling

Sources of microseisms are distributed by IFREMER (IFREMER, 2018) referred to as 'p2l' - as a composite calculated from . the wave-action WaveWatch III model (WW3) developed by the National Oceanic and Atmospheric Administration (NOAA). While the bathymetry strongly affects the source intensity in microseism modelling (Ardhuin et al., 2011; Ardhuin and Herbers,

205 2013a; Kedar et al., 2008), a recently modeling study by De Carlo (2020) suggests that bathymetry has negligible impact on microbarom source strength in contrast to predictions from the model by Waxler (2007). In this study, the source term at the ocean surface for microseisms ('p2l') which does not include coupling with the bathymetry is taken as a proxy to model, microbaroms). To model microbarom signals, the WW3 wave action model developed by NOAA and distributed by

-	Deleted: (0.1-0.3 Hz),
	Deleted: ¶ Figure 4
λ	Deleted: s
1	Deleted: the
	Deleted: noise
	Deleted: and Figure 5 Figure 5 shows the same for the seismic stations
Ϊ	Deleted: on the
ľ,	Deleted: one-hour-long interval of the
Ì	Deleted: record
()	Deleted: m
Ù	Deleted: the records of the
V	Deleted: in the
	Deleted: records
	Deleted: T
	Deleted: for the seismic stations differ strongly from that on
	Deleted: appears clearly
	Deleted: . However, it should be noted that the
N	Deleted: is
	Deleted: in the records of the
$\left(\right)$	Formatted: English (United States)
	Formatted: Normal
4	Deleted: These nonlinear interactions also generate waves
-	Deleted: microbaroms efficiently propagate at shallow propagat
-	Deleted: ,
-	Deleted: and
_	Deleted: are assumed identical (Ardhuin and Herbers 2013)

245 IFREMER was used. While microseisms propagate through the static structure of the solid Earth, microbaroms are primarily affected by the strong spatio-temporal variability of the temperature and wind structure of the atmosphere. Therefore, the geometrical spreading and seismic attenuation are the main effects to account for microseism modelling (e.g. Kanamori and Given, 1981; Stutzmann et al., 2012), while the dynamical properties of the middle atmosphere should be taken into account for microbarom modelling.

1.3.1 Source modeling for microbaroms

250

Microbarom sources are computed following the approach developed by De Carlo et al. (2018, 2020). Simulations are carried out using the microbarom generation theory at the microseismic secondary peak (0.1-1 Hz) based on the non-linear oceanic wave interaction (Ardhuin and Herbers, 2013a). Input data are calculated over a global grid of resolution 0.5° in space and 6 hours in time. For the attenuation, we use a semi-empirical frequency dependent attenuation relation derived from massive parabolic equation simulations and consider realistic propagation scenarios. Atmospheric specifications are given by the high-resolution forecast (HRES) that is part of ECMWF's Integrated Forecast System (IFS) cycle 38r2 (Le Pichon et al., 2012).

Atmospheric <u>profiles</u> are given at the station and are assumed to be constant along the propagation path. This approach shows <u>overall first order agreement between microbarom observations and predictions generated</u> in the northern hemisphere similar to those described by De Carlo et al. (2018) and Hupe et al. (2018) (in a range of ~10° for the back-azimuths).

260 The correlation coefficient between the observed and predicted seasonal patterns is calculated following metrics elaborated by Landès (Landès et al., 2014). There are two different metrics: (i) S_{corr_Az} which defines the correlation between the observed (N_{obs}) and predicted (N_{pred}) marginal detection number in the direction θ_{Amax} versus time (t):

and (ii) S_{corr Amp} for the correlation between the predicted and observed amplitude Amax.

265 $S_{corr_Amp} = C_{corr} [N_{obs} (A_{max}, t), N_{pred} (A_{max}, t)]$

 $S_{corr Az} = C_{corr} [N_{obs} (\theta_{Amax}, t), N_{pred} (\theta_{Amax}, t)]$

(2)

(1)

Figure 6 shows the distribution of the epicenters of the expected microbarom sources from January to February 2017. The map shows regions of the globe from where signals recorded at IS31 with the largest amplitude originate. The calculation was carried out for two winter and two summer months. The distribution of the epicenters is not uniform, appearing as several aggregations shown on the maps as coloured surfaces according to the dominant frequencies of the predicted sources and expected amplitudes at the station. The digits on the map indicate the mean amplitude and frequency of the corresponding clusters.

1.3.2 Source modeling for microseisms

The bathymetry effect plays an important role when calculating the microseism source intensity. Longuet-Higgins (1950) showed that the pressure fluctuations do not attenuated with depth but are transmitted to the ocean bottom as acoustic waves.

Deleted: The bathymetry strongly affects the source intensity in
microseism modelling (Ardhuin et al., 2011; Kedar et al., 2008);
however, it has negligible impact on microbarom source strength (D
Carlo et al., 2020). Microseisms propagate through the sea floor
while Microbaroms are primarily affected by the temperature and
wind structure of the atmosphere, whereas

Deleted: (Garcès, 2004).								
Deleted:								
Deleted: strong spatio-temporal variability								
Deleted:								
Deleted: ¶								
Formatted: Font color: Auto								
Formatted: Indent: Left: 1.27 cm								
Deleted: I								
Deleted: <#>¶ <#>The m								
Formatted: Font color: Auto, English (United Sta	ites)							
Deleted: <#>model is								
Deleted: <#>,								
Deleted: <#> using								
Deleted: <#>through the HRES IFS cycle 38r2 EC	MWF							
Deleted: specifications								
Deleted: good								
Deleted: results								
Deleted: for								
Deleted:								
Deleted: However, such an approach does not explai	n the obser							
Formatted: English (United Kingdom)								
Formatted: English (United Kingdom)								
Formatted: English (United Kingdom)								
Formatted: English (United Kingdom)								
Formatted: English (United States)								
Deleted: 1								
Formatted: English (United States)								
Formatted: English (United States)								
Deleted: I								
Formatted: English (United States)								
Formatted: English (United States)								
Formatted: English (United States)								
Formatted: Font: 10 pt								
Deleted: Longuet-Higgins,								
Deleted: are								

Depending on the ratio between the wavelength of the acoustic waves and the ocean depth, resonance effects can occur leading to a modulation of the pressure fluctuations at the sea floor (Stutzmann et al., 2012). The corresponding seismic source power spectral density at the ocean bottom is:

315 $S_{DF}(f_s = f_2) = \frac{2\pi f_s}{a^2 R^5} [\sum_{m=1}^{m=N} c_m^2] F_p(\mathbf{K} \cong 0, f_2 = 2f)$ _____

(3)

Equation (3) is derived from Longuet-Higgins equation (186). S_{DF} is in m/Hz, ρ_s and β are respectively the density and S-wave velocity in the crust. f_s is the seismic frequency which is equal to the pressure fluctuation frequency f_2 and it is the double of the ocean wave frequency $\underline{\mathcal{L}}$ Coefficients c_m correspond to the compressible ocean amplification factor. c_m are non-dimensional numbers which vary between 0 and 1 as a function of the ratio $2\pi/2h/\beta$, where h is the water depth (Longuet-Higgins, 1950). 320 Considering the crustal density $\rho_s = 2600 \text{ kg m}^{-3}$ and S-wave velocity $\beta = 2800 \text{ m/s}$. Figure 7 shows the map of the sources of microseism distribution for ABKAR,

2 Results

2.1 Processing results

- Signals from the ocean storms are successfully extracted from the records at all JGR infrasound and seismic arrays. Diagrams 325 in this section show the back-azimuths of the signals as a function on time. Distributions of the maximum amplitudes are included as well. The amplitude maxima are found in the PMCC bulletins each 6 hours of the entire period of 2014-2017. 2.1.1 Microbaroms Signals from ocean storms recorded at infrasound and seismic arrays are successfully identified. Figure & to 10 show the temporal variation of the dominant microbarom signals for infrasound arrays IS31, KURIS and MKIAR, respectively. The amplitudes and back-azimuths of the dominant microbarom signals are selected from the PMCC bulletins 330 and are plotted as orange dots_

The graphs show pronounced seasonal variations for both back-azimuths and amplitudes. The largest amplitudes are observed during the winter months, when signals with back-azimuths of 320±20° prevail (Figure 8). Few detections with back-azimuths of $35\pm15^{\circ}$ are also detected in winter. During the summer months, low-frequency signals with back-azimuths of $210\pm50^{\circ}$ dominate. In winter, the amplitudes range from ~ 0.001 to ~ 0.1 Pa, the largest values being observed in winter.

- 335 Figure 9 shows the observational data for KURIS. The back-azimuths measured at this station are similar to those recorded at IS31, with slightly higher values in winter (325±15°). In summer, two regimes are distinguished in the azimuthal ranges of 230±30° and 130±30°. Detections near 50° are also observed in winter. Similarly to IS31 data, KURIS data shows that maximum microbarom amplitudes are observed in winter. From summer to winter, the maximal signal amplitude increases from 0.001 to 0.03 Pa.
- 340 MKIAR started recording microbaroms in August 2016 with repetitive seasonal variations (Figure 10). One cluster of detections dominates in winter at ~330° and two clusters in summer at 230° and 110° with a corresponding standard deviation of ±10°, 25° and 25°, respectively.

	Deleted: ocean bottomea floor (Stutzmann et al., 2012). TThe	
	Deleted: 2	
	Deleted:ation (2	
	Deleted: z^{-1} ρ_s and β are respectively the density and S-war velocity in the crust f_i is the seismic frequency which is equal to th pressure fluctuation frequency f_2 and it is the double of the ocean wave frequency f	ve ne
	Formatted: Font: 10 pt	
	Formatted	—
/	Deleted: -1	
//	Deleted: Figure 7	
	Formatted: Font: 10 pt	
-	Formatted	
	Formatted: Font: 10 pt	
	Deleted: . the map is calculated or the BKAR seismic array	
)	Formatted: Normal	_
	Deleted: oft all theGR infrasound and seismic arrays. Diagrams in this section show the back-azimuths of the signals as a function on time. Distributions of the maximum amplitudes on tim are included as well. The amplitude maxima are found in the PMC bulletins each 6 hours of the entire investigation	a e C
	Deleted: ¶	
	Deleted: Figure 8Figure 7,	\equiv
	Formatted: English (United States)	
	Formatted: English (United States)	
	Deleted: through	
$\overline{}$	Formatted: English (United States)	
	Deleted: Figure 9Figure 8 and Figure 10Figure 9	
	Deleted:zimuths from	
	Deleted: of the azimuths of signals with maximum amplitudes extracted from the PMCC bulletins for each six-hour interval between 2014 and 2017Figure 7 shows the results for station IS	
$\langle \rangle \rangle$	Deleted: In addition to these results, the expected microbarom	
$\langle \rangle \rangle$	Formatted	
	Deleted:	
$\langle \rangle \rangle$	Formatted: English (United States)	
$\langle \rangle$	Formatted: English (United States)	
$\langle \rangle$	Deleted:	
\backslash	Deleted: Figure 9Figure 8 shows the observational data for	
	Deleted: the	
-	Deleted: repeatable	
H	Deleted: Figure 10Figure 9	
~	Deleted : system ominates in winter at330°+10° is observed	

2.1.2 Microseisms

Figure 11 shows results for ABKAR seismic array. In addition to the observations, the diagrams represent the simulated microseism parameters. Amplitudes are the largest in winter where detections with back-azimuths of 340±20° prevail. During

- 435 summer months, signals with back-azimuths of 290±20° dominate. The amplitudes range from ~0.4 to ~20 nm/s varying from the largest values in winter to minimum values in summer. Figure 12 shows results for KKAR. Two clusters of detections at 330±20° and 5±5° is observed in winter while in summer there are clusters at 160±20° and 190±15°. The seas onal amplitude variation is 0.5-7.0 pm/s. Figure 13 shows the results for Kurchatov Cross. In winter, back-azimuths of microseisms are 300±20°. A small amount of signals with 50±50° is observed in summer. Amplitudes reach their maximum in winter and
- 440 minimum in summer, ranging from 8 to 200 nm/s. This is significantly higher than for all other arrays because Kurchatov Cross array is equipped with broad-band seismometers while all the other arrays register signals with short period sensors, showing amplitude frequency response falloff within the surveyed frequency range. Figure 14 shows results for MKAR. Two clusters at 310±20° and 5±5° are observed in winter while in summer there are clusters at 130±10° and 180±10°. The seasonal amplitude variation is 0.7-7.3 nm/s. The seasonal trend of the maximum microseism amplitudes recorded at all seismic stations
- 445 is similar, with a maximum observed in winter. At MKAR and KKAR, microseism amplitudes are characterized by a slight increase in the middle of summer which could be related with the southern location of these arrays. Such a peak is not observed at ABKAR. At the Kurchatov Cross station, there are a small amount of detections in summer which could be explained by higher noise level or a loss of signal coherency at this site. The graphs clearly show that the amplitudes vary synchronously even at smaller time scale (Figure 17). However, a decrease in amplitude is observed early January 2017 at all stations. As
- 450 expected, the maximum amplitudes in winter decrease with increasing distance from the stations to the North Atlantic region (about 10, 8, and 4 nm/s for ABKAR, KKAR, and MKAR, respectively). At Kurchatov, the amplitude is significantly higher in winter (in the order of 80 nm/s).

2.2 Modelling results 2

The back-azimuths and amplitudes have been calculated for the expected microbarom sources at IS31, KURIS, and MKIAR.
The expected distances to the source regions vary with season. For example at IS31, simulations predict in winter three source regions (Figure 6 a); distances to North Atlantic regions range between 3500 to 7000 km while the distance to the North Pacific region is around 7000 km. In summer, additional microbarom sources are located in the southern hemisphere at distances larger than 11000 km (Figure 6 b). Figure 8 to 10 compare the observed and predicted arrivals at these stations. During winter months, a good agreement is found: IS31 records microbaroms with back-azimuths of 320±20° within the predicted range (Figure & a and c). A good agreement is also observed at KURIS (Figure 9 a, c) and MKIAR (Figure 10 a, c). During the summer months, the agreement in azimuths remains satisfactory at all stations within a range of ±30°. IS31 records microbaroms with the predicted system (185±50°). At KURIS, the observed systems 230±30° and 130±30° are different compared with the predicted ones (±10° and 160±10°). At MKIAR, during the

-	Formatted: English (United States)
1	Formatted: English (United States)
-{ 1	Deleted: highest
	Deleted:
1	Deleted: of detections
ļ	Formatted: Font: Not Bold
Ŋ	Formatted: Font: Not Bold
1	Formatted: Font: Not Bold

Deleted: As for microbaroms, microseism systems are extracted in the 0.1-0.4 Hz band within a six-hour interval time window from January 1, 2014, to December 31, 2017. Figure 10 shows the azimuths of low-frequency signals at four seismic IGR stations: (a) ABKAR, (b) KKAR, (c) Kurchatov Cross, and (d) MKAR stations. In winter, the graphs show similar features at all stations A dominant detection system corresponds to signals from northwestern and northern directions. Other systems are identified: 340±15° (ABKAR), 350±25° (KKAR), 305±15° (Kurchatov Cross), and 320±10° and 5±5° (MKAR). In summer, the situation varies from one station to another. At ABKAR, one system at 290±15° is observed. At KKAR and MKAR, two systems with azimuths of 160±20°, 90±15° and 190±10°, 145±15°, respectively, are distinguished. Finally, at Kurchatov Cross array, it is impossible to identify a prevailing direction in summer. Figure 11 shows the maximum amplitudes at the four seismic arrays. The seasonal trend of the maximum microseism amplitudes recorded at all seismic stations is similar, with a maximum observed in winter. At MKAR and KKAR, microseism amplitudes are characterized by a slight increase in the middle of summer which could be related with the southern location of these array

Formatted: Indent: Left: 1.27 cm								
Deleted: . ¶								
Formatted: Font: Not Bold								
Formatted: Font: Not Bold								
Deleted: Modelling results								
Deleted: Expected The back-azimuths and amplitudes have been								
Formatted: Highlight								
Formatted: Highlight								
Formatted: Highlight								
Deleted: The back-azimuths and amplitudes have been calculate								
Deleted: Figure 7								
Deleted: , Figure 8 and								
Deleted: Figure 9through								
Deleted:								
Deleted: simulated								
Deleted: Figure 7								
Deleted: Figure 9Figure 8								
Deleted: Figure 10Figure 9								

545 summer months, microbaroms within the predicted range of 60-270° are consistent with the observed systems (230±25° and 110±25°). As the used source model was developed for microseisms (Ardhuin et al., 2011), an empirical scaling factor (F = 1:10000) has been applied to account for wave coupling effect in the atmosphere, thus allowing gualitative comparisons / between the observed and predicted temporal variations of the microbarom amplitudes. At all stations, there is good agreement / between the predicted and observed amplitudes during the winter months (Figure & d, Figure 9, d and Figure 10, d), but in / 550 summer the predicted amplitudes are overestimated when compared to the observed ones (Table 2).

To summarize, both amplitudes and azimuths are well predicted in winter as opposed to summer months. The observed discrepancies are explained here by unrealistic simulated <u>wave</u> attenuation for <u>dominating</u> sources located in the southern hemisphere <u>due to the assumed range independent atmosphere</u>. Quantitative estimations of the prediction quality (S_{corr}) calculated according to equations (1) and (2)) are summarized in Table 2.

555 3 Discussions

Where previous studies analysed microbarom signals at a single station (Hupe et al., 2018), further investigations are conducted in this study by considering a multi-year dataset of continuous records collected by the IGR network. Regional features of both microbaroms and microseisms are highlighted.

- Figure 15, shows the azimuthal distribution of infrasound detections <u>laving</u> maximum amplitudes. The histograms of the azimuthal distribution of microbaroms clearly show the dominating direction of arrivals in winter with prevailing directions ranging from 270 to 350° (Figure 15, b). The predicted azimuths are in good agreement with the observed ones (Figure 8, c, Figure 9, c, Figure 10, c, Figure 15, b and Table 2). Observations, as well as simulations, show large temporal variations in the dominating microbarom source regions explained by the seasonal reversals of the prevailing stratospheric winds, which in turn, cause the migration of storm activity area to the winter hemisphere (Stutzmann et al., 2012).
- 565 Figure 16 shows similar histograms for seismic stations. One can distinguish seasonal trends for both infrasonic and seismic observations. In winter, microbaroms and microseisms are detected from northern and north-western directions (Figure 15 b and Figure 16 b). In summer, southern, southwestern and south-eastern directions dominate (Figure 15 c and Figure 16 c). Signals from north-western direction are also recorded at ABKAR, KKAR, and MKAR in summer. Azimuths differ from one station to another depending on the strongest microbarom and microseism source regions relative to the station locations. As
- 570 for microbaroms, during winter months, microseism observations exhibit a similar pattern with a larger spreading (250-360°), and an additional peak (0-20°) at KKAR and MKAR (Figure 16 Error! Reference source not found.). These peaks are explained by body and seismic surface waves. In winter, microseisms exhibit similar trends with some difference as shown by Figure 11, c, Figure 12, c, Figure 13, c, Figure 14, c and Figure 16, b. The dominant directions are comparable with a larger spreading: from 250° to 360° and from 0° to 20°. For KKAR and MKAR, two peaks are seen in the histograms, with a second
- 575 peak at 0-20°. These peaks could likely be explained by body and surface seismic phases identified by high trace velocity values. Microbaroms are predicted mainly from the southern direction (180-200°). Such a peak is observed only at IS31 and

1	Deleted: must as been be applied to account for wave coupi	۹
	Deleted: Figure 8Figure 7	
//	Deleted: Figure 9Figure 8	
//	Deleted: Figure 10Figure 9	
	Deleted: signal ave attenuation for dominating sources locate	·()
h	Formatted	<u> </u>
1	Deleted: Figure 15	
	Formatted	()
	Deleted: with	
	Formatted	<u></u>
	Formatted	
	Deleted: Figure 15	
	Formatted	<u></u>
	Deleted: Figure 8	
	Formatted	<u></u>
	Deleted: Figure 9	
$\ $	Formatted	<u></u>
$\ $	Deleted: Figure 10	
$\parallel \mid$	Formatted	<u></u>
1)	Deleted: Figure 15	
//	Formatted	<u></u>
1	Formatted	<u></u>
	Deleted: Figure 16	
//	Formatted	<u></u>
Ŋ	Deleted: Figure 15	
X	Formatted	<u></u>
/	Deleted: Figure 16	
Χ	Formatted	<u></u>
	Deleted: Figure 15	
-	Formatted	<u></u>
	Deleted: Figure 16	
Ζ	Formatted	<u></u>
Ι	Deleted: Figure 16	
1	Formatted	<u></u>
Ζ	Deleted: Figure 11	
	Formatted	<u></u>
1	Deleted: Figure 12	
	Formatted	<u></u>
	Deleted: Figure 13	_
1	Formatted	(
	Deleted: Figure 14	
	Formatted	(
	Deleted: Figure 16	
	Formatted	(

<u>____</u>

MKAR (Figure 15 c). The closest peak observed at KURIS and MKIAR is shifted northwards by ~50°. The dominant backazimuths are close to 90°. At MKIAR the peak is around 100°.

- 635 Thus, in winter, signals from ocean storms in the North Atlantic region dominate at all stations, This is supported by the <u>microbarom and microseism</u> simulation results which account for the predicted source regions, <u>bathymetry</u>, and propagation effects. More complicated picture is observed at summer months. Some stations detect signals from regions along the peri-Antarctic belt while simulations predict microbaroms with larger amplitude summer. Other stations detect signals from the south, but the detected back-azimuths disagree with the predictions.
- 640 Using historical IGR datasets, the spatiotemporal variability of microbarom signals due to changes in the source location and the structure of the atmospheric waveguides can be studied. There is a clear seasonal trend in the directions and amplitudes of microbaroms and microseisms (Figure 8, Figure 9, and Figure 10). Moreover, microseism amplitudes synchronously vary at all stations (Figure 17). A similar pattern is shown for microbaroms (Figure 18). A better agreement between observations and simulations is found for the azimuths.

645

As already shown by Evers and Siegmund (2009) and Smets and Evers (Smets and Evers, 2014), the life cycle of <u>Sudden</u> <u>Stratospheric Warming (</u>SSW) events can be inferred from the observed spatio-temporal variations of microbarom parameters. Such observations are noted at IS31 where microbaroms in early and late February 2017 shifted to easterly directions (~40°) consistent with the simulated source regions in the Northern Pacific (Figure 8). As noted for IS31, KURIS also recorded signals

- 650 with <u>back-azimuths</u> of ~40° in late January 2017 (Figure 2). Similarly, signals from ~100° were also recorded during the 2017 SSW event at MKIAR. However, the observed <u>back-azimuths</u> differ from those expected (~60°). It is likely that this station recorded signals from other regions over the Pacific Ocean <u>which are</u> not described by the ocean wave model. These findings are consistent with comparisons between the observed and modelled microbarom signals carried out by Landès <u>et al.</u> (2014) at IS31. This study shows that modelling well describes microbarom sources in the North Atlantic in winter and
- 655 poorly explains signals in summer.

Comparison between seismic and infrasound bulletins at collocated sites highlight comment features. Figure 19 presents the observed back-azimuths and signal amplitudes from 1 January 2014 to 31 December 2017 at ABKAR and IS31 arrays located 230 km apart. Figure 20 shows the detections results for the collocated Kurchatov Cross and KURIS arrays. The comparison of the bulletins in Figure 19, and Figure 20 shows similar seasonal patterns;

- North Atlantic microseisms and microbaroms prevail in array records in winter months. Back-azimuths of approximately 300-360° are clearly visible in Figure 19, a.b., and Figure 20, a, b.
 - Amplitudes of North Atlantic microbaroms and microseisms exceed large amplitude during summer months as shown by Figure 19.c.d. Figure 20.c.d.

At the same time, specific features are identified;

	Deleted: Figure 15	
	Formatted	
	Formatted	
	Formatted	
	Deleted:	
1	Formatted	
1	Deleted: However, during summer months, stations detect	
7	Deleted: In this study, the method used to predict the attenuation	<u>ш</u>
	Deleted: Figure 7	
	Deleted: Figure 8	$\neg \neg$
	Deleted: Figure 9	\dashv
Γ,	Deleted: it is shown that the	$\neg $
	Deleted: Figure 15Figure 11 and Figure 12	
	Deleted: Figure 18Figure 15	\rightarrow
	Deleted: The bathymetry effect plays an important role when	
	Formatted	<u> </u>
	Formatted	<u> </u>
	Polatadi Eirura 7	<u> </u>
	Deleted: Figure 8	$ \rightarrow $
[]	Deleted: , or inaccuracy in the used ECMWF products (Blanc	et
/	Deleted: Landes et al.,014) at IS31. This study shows that	<u> (</u>
	Deleted: of the	
$\parallel \mid$	Deleted:	
$\parallel \mid$	Deleted: fort collocated theites where stations are collocated	^{it(})
$\parallel \mid$	Formatted	
//	Deleted: Figure 19	
	Formatted	
1	Deleted: record ofbserved back-azimuths and signal amplitu	^{1d})
1/	Deleted: Figure 20	
	Formatted	
/	Deleted: seismic arraynd KURIS infrasound stationrrays	·
	Formatted	
	Deleted: Figure 19	
	Deleted: Figure 20	
\backslash	Formatted	<u></u>
$\langle \rangle$	Deleted: series of easonal patterns:. This comparison illustra	
	Formatted	
$\left(\right)$	Deleted: Figure 19	
$\left(\right)$	Formatted	<u></u>
$\left(\right)$	Deleted: and	
	Formatted	
	Deleted: Figure 20	
	Formatted)
	Deleted: and	
	Formatted	
	Deleted: significantly	
	Formatted)
		\neg
	Formatted	
	Formatted	\dashv
	Formatted	\equiv
	i oimatteu	1]

- Arrays record North Atlantic microseisms more steadily than microbaroms from that region. Figure 19.a.b, Figure 20.b clearly show that microseisms dominate microbaroms.
- The range of back-azimuths for North Atlantic microseisms is Jarger than the ones of microbaroms for ABKAR and MKAR (Figure 19, a, b, and Figure 20, b),
- For all infrasound arrays, back-azimuths of North Atlantic microbaroms are larger (320-330°) (Figure 19, b and, Figure 20, b), Back-azimuths differ from one seismic array to another; 330-350° for ABKAR array (Figure 19a), 290-310° for Kurchatov Cross array (Figure 20 a) and 310-320°.
- In summer months, no correlation is found in the prevailing directions of microseism and microbarom arrivals for collocated arrays (Figure 19, a and b, Figure 20, a, b)

This study provides a first characterization of the seasonal patterns of microbarom and microseisms recorded by the IGR seismo-acoustic network. The chosen detection algorithm and propagation model offer a good trade-off between low calculation effort and propagation accuracy. Identified shortcoming is the limitation of PMCC to detect overlapping microbarom sources originating from different directions. Furthermore, the approach assuming range-independent atmosphere may lead to erroneous interpretations for situations involving long propagation ranges where significant along-path variability of wind and temperature profiles may occur, in particular when modeling the relative strength of microbarom sources located in different hemispheres.

Conclusions

810

815

- The IGR seismo-acoustic network is much denser than the global IMS infrasound network. Analyzing multi-year archives of continuous recordings provides a detailed picture of the spatial and temporal variability of the seismic and infrasound ambient noise originating from two hemispheres. In winter, the most intense oceanic storms are modelled in the Northern Atlantic, and their signature prevails on infrasound and seismic records. During minor SSWs, bi-directional conditions may occur which may have strong impacts on the retrieved microbarom signals (Assink et al., 2014), Simulated and observed microbarom parameters are consistent, as shown by high correlation coefficients. The largest amplitudes of both microbaroms and microseisms are found for sources in the Northern Atlantic. Exploiting the synergy between seismic and infrasound ambient noise observations is thus valuable to: (i) better constrain the source strength using seismic records as microseisms propagation through the static structure of the Earth, (ii) improve the detectability of ocean-wave interaction, and location accuracy as microbarom wave parameters are less affected by heterogeneities in the propagation medium, and, (iii) improve the physical
- description of seismo-acoustic energy partitioning at the ocean-atmosphere interface. 835 <u>Further numerical investigations are needed to define the most suitable detection parameters in terms of missed events and</u>

false alarm rate, and estimate wave parameter uncertainties accounting for the response functions of all arrays. In this study,

	Deleted:	Figure 19	
	Formatted	(
	Deleted:	and	_
	Formatted		\equiv
	Pelated	E: 20	
	Deleted:	Figure 20	
$\langle \rangle$	Deleted:	a and	
$\left(\right)$	Deleted:	the quantity of recorded	
$\left(\right)$	Formatted	(
//	Deleted:	exceeds icrobaroms significantly	<u> </u>
		energia interestationes significanting	
$\langle \rangle$	Formatted		<u> </u>
	Deleted:	significantly more extensive	_
	Formatted	(
	Deleted:	a visible range for the North Atlantic	
	Formatted		\equiv
	Deleted		
	Deleteu:	к,	
	Formatted	(
	Deleted:	Figure 19	
	Formatted		
	Deleted:	and	
	Formatted	,	_
	Dalata		<u> </u>
	Deleted:	Figure 20	
	Deleted:	a and	
	Formatted	(
	Deleted:	However, this distinction is not evident for a pair of	\equiv
	Formatted		
	Deleted	as shown by	
	Deleteu.	as shown by	\equiv
	Formatted	(
	Deleted:	Figure 19	
	Deleted:	,	
	Formatted	(
	Formatted		
	Formattod		
	Formatteu		
	Formatted		<u> </u>
	Deleted:	Figure 20	
	Formatted	(
	Deleted:	For all	_
	Formatted		\equiv
	Delatade	e back-azimuthe differ not only from each other but	<u> </u>
		s, sack azimuuis unter not onry nom each other, bu	
	Formatted	(
	Deleted:	The range of back-azimuths is about	
	Formatted		
	Deleted:	Figure 19	\neg
	Formatted	-	\equiv
	Delate		<u> </u>
	Deleted:	,	_
	Formatted		
	Formatted		
	(
	Formatted		
			<u> </u>
	Formatta 1		<u> </u>
	rormatted	(
	Formatted	(
			_
	Formatted	ſ	\equiv
118			

- 965 part of the discrepancies between observations and predictions motivate the use of high-resolution detection methods to identify multiple propagation paths from which microbarom energy can reach the array (e.g., Assink et al., 2014). Exploring the capability of high-resolution detection processing techniques to extract multidirectional overlapping coherent energy would be valuable to provide a more realistic picture of the recorded ocean ambient noise (e.g., den Ouden et al., 2020). Additional studies are required to further evaluate whether the bathymetry effect could explain discrepancies between the
- 970 observed microbarom and microseism signals (Longuet-Higgins, 1950; Stutzmann et al., 2012, De Carlo 2020). In summer, the microbarom and microseism sources which dominate in the southern hemisphere more especially along the peri-antarctic belt are likely at the origin of the weak signals observed south of the IGR network. For such long propagation ranges, more realistic numerical simulations could reduce the differences between the observed and modelled amplitude; additional studies are thus required to explore time- and range-dependent full-wave propagation techniques while still maintaining computational
- 975 <u>efficiency (e.g., Waxler and Assink, 2019).</u> Including additional data from other seismo-acoustic network in the southern hemisphere would help validating long-range propagation modelling, better characterize station-specific ambient noise signatures, and enhance discrimination methods at a regional scale.

Code/Data availability

- 980 Atmospheric wind and temperature profiles are derived from operational high-resolution atmospheric model analysis, defined by the Integrated Forecast System of the ECMWF, available at https://www.ecmwf.int/ (last access: 2 September 2019; ECMWF, 2018). Waveform data for the seismic and infrasound arrays of the CTBTO IMS (https://www.ctbto.org/, last access: 2 September 2019) used in this study are available to the authors, being members of National Data Centers for the CTBTO. Data of the Kazakhstani national seismic and infrasound arrays are available under request from the Institute of Geophysical
- 985 Researches, National Nuclear Center of Kazakhstan. Results of the microseism and microbarom detections by the seismoacoustic Kazakh network and of the microbarom simulation for the infrasound arrays of the network are available at ISC repository (Smirnov et al., 2020).

Author contribution

 N. Shapiro and A. Le Pichon suggested main outlines of the paper. A. Smirnov and A. Le Pichon prepared historical dataset
 for processing. M. De Carlo and A. Le Pichon developed the microbarom source model. A. Smirnov performed microbarom and microseism detections and propagation simulations. A. Smirnov prepared the manuscript with contributions from all coauthors. A. Le Pichon, M. De Carlo and S. Kulichkov made critical reviews and comments to improve the manuscript.

Competing interests

The authors declare that they have no conflict of interest.

995 Acknowledgements

This research has been supported by the Commissariat <u>à l'Energie Atomique (CEA, France)</u>. The work of NS has been supported by the European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation Programme (grant agreement 787399-SEISMAZE), the Russian Ministry of Education and Science (grant N 14.W03.31.0033)

Deleted: using range dependent atmosphere models
Deleted: .

Deleted: a

and Russian Foundation for Basic Research (project no. 18-05-00576). Authors also thank Anna Smirnova for the help in the manuscript preparation.

	References		Deleted: ¶
1005	•		Deleted: ¶
	Ardhuin, F., Stutzmann, E., Schimmel, M. and Mangeney, A.: Ocean wave sources of seismic noise, J. Geophys. Res., 116(C9).		Moved (insertion) [1]
	doi:10.1029/2011jc006952, 2011 Ardhuin, F. and Herbers, T. H. C.: Noise generation in the solid Earth, oceans and		Deleted: ¶
	atmosphere, from nonlinear interacting surface gravity waves in finite depth, J. Fluid Mech., 716, 316-348,		
	doi:10.1017/jfm.2012.548, 2013 <u>a</u> .		
1010	Ardhuin, F., Lavanant, T., Obrebski, M.: A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-		
	gravity and Rayleigh modes, J. Acoust. Soc. Am., 134, doi:10.1121/1.4818840, 2013b.		
	Assink, J. D., Waxler, R., Smets, P. and Evers, L. G.: Bidirectional infrasonic ducts associated with sudden stratospheric		Moved up [1]: Ardhuin, F., Stutzmann, E., Schimmel, M. and
I	warming events, J. Geophys. Res. Atmos., 119(3), 1140-1153, doi:10.1002/2013jd021062, 2014.		Mangeney, A.: Ocean wave sources of seismic noise, J. Geophys. Res., 116(C9), doi:10.1029/2011jc006952, 2011.¶
	Belyashov, A., Dontsov, V., Dubrovin, V., Kunakov, V. and Smirnov, A.: New infrasound array "Kurchatov", NNC RK Bull.,		Deleted: ¶
1015	(2), 24–30, 2013.		
	Cansi, Y.: An automatic seismic event processing for detection and location: The P.M.C.C. Method, Geophys. Res. Lett.,		Deleted: Blanc, E., Pol, K., Le Pichon, A., Hauchecorne, A.,
I	22(9), 1021–1024, doi:10.1029/95gl00468, 1995.		Keckhut, P., Baumgarten, G., Hildebrand, J., Höffner, J., Stober, G., Hibbins, R., Espy, P., Rapp, M., Kaifler, B., Ceranna, L., Hupe, P.,
	Cansi, Y. and Klinger, Y.: An Automated Data Processing Method for Mini-Arrays, Newsl. Eur. Seismol. Cent., 1021–1024,		Hagen, J., Rüfenacht, R., Kämpfer, N. and Smets, P.: Middle Atmosphere Variability and Model Uncertainties as Investigated in
	1997.		the Framework of the ARISE Project, Infrasound Monit. Atmos.
1020	Capon, J.: Long-Period Signal Processing Results for LASA, NORSAR and ALPA, Geophys. J. Int., 31(1-3), 279-296,		5144., 645 667, 46.10.1007/7765 517 75146 5_26, 2010.
	doi:10.1111/j.1365-246x.1972.tb02370.x, 1972.		
	De Carlo, M., Le Pichon, A., Ardhuin, F. and Näsholm, S.: Characterizing and modelling ocean ambient noise using infrasound		
1	network and middle atmospheric models, NNC RK Bull., (2), 144–151, 2018		Deleted: 1
	De Carlo, M., Ardhuin, F., and Le Pichon, A.: Atmospheric infrasound generation by ocean waves in finite depth: unified	/	Deleted: De Carlo, M., Ardhuin, F. and Le Pichon, A.:
1025	theory and application to radiation patterns, Geophys. J. Int., 21, 569-585, doi:10.1093/gji/ggaa015, 2020.		Atmospheric infrasound radiation from ocean waves in finite depth: a unified generation theory and application to radiation patterns, J.
	Donn, W. L., and Naini, B.: Sea wave origin of microbaroms and microseisms, J. Geophys. Res., 78, 4482-4488,		Acoust. Am., In review, 2019.
	doi:10.1029/JC078i021p04482, 1973.		Field Code Changed
	Ceranna, L., Matoza, R., Hupe, P., Le Pichon, A. and Landès, M.: Systematic array processing of a decade of global IMS		Field Code Changed
	infrasound data, Infrasound monitoring for atmospheric studies, 2 nd ed. Springer Nature, Dordrecht, ISBN: 978-3-319-75140-		Formatted: Justified
1030	5, 471–482, 2019.		Deleted: s
1	Evers, L. G. and Haak, H. W.: Listening to sounds from an exploding meteor and oceanic waves, Geophys. Res. Lett., 28(1),		Deleted: ,
I	41-44, doi:10.1029/2000gl011859, 2001.		Deleted: ¶
	Evers, L. G. and Siegmund, P.: Infrasonic signature of the 2009 major sudden stratospheric warming, Geophys. Res. Lett.,		Deleted: Donn, W. L.: Exploring the atmosphere with sonic booms, Am. Sci., 66, 724–733, 1978.¶
	36(23), doi:10.1029/2009gl041323, 2009.		Evers, L. G.: Infrasound monitoring in the Netherlands, J. Netherlands Acoust Soc (Nederlands Akoestisch Genoot 176 1–
1035	Garcés, M.: On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower. middle.		11, 2005.¶
	and upper atmosphere, Geophys. Res. Lett., 31(19), doi:10.1029/2004gl020696, 2004.		
1	Gutenberg, B.: Microseisms, microbaroms, storms, and waves in western North America. Eos Trans. AGU 34(2) 161-173		Formatted: Foot: Not Italic

1065	doi:10.1029/TR034i002p00161, 1953.	Fi
	Hasselmann, K.: A statistical analysis of the generation of microseisms, Rev. Geophys., 1(2), 177,	D
I	doi:10.1029/rg001i002p00177, 1963.	In Aj
	Hasselmann, K.: Feynman diagrams and interaction rules of wave-wave scattering processes, Rev. Geophys., 4(1), 1,	3,
	doi:10.1029/rg004i001p00001, 1966.	
1070	Haubrich, R. A. and McCamy, K.: Microseisms: Coastal and pelagic sources, Rev. Geophys., 7(3), 539,	
	doi:10.1029/rg007i003p00539, 1969.	
	Hupe, P., Ceranna, L., Pilger, C., De Carlo, M., Le Pichon, A., Kaifler, B. and Rapp, M.: Assessing middle atmosphere weather	D
I	models using infrasound detections from microbaroms, Geophys. J. Int., 216(3), 1761-1767, doi:10.1093/gji/ggy520, 2018.	
	IFREMER: Wave Watch 3, [online] Available from: ftp://ftp.ifremer.fr/ifremer/ww3/ (Accessed 3 October 2018), 2018.	
1075	Kanamori, H. and Given, J. W.: Use of long-period surface waves for rapid determination of earthquake-source parameters,	
	Phys. Earth Planet. Inter., 27(1), 8-31, doi:10.1016/0031-9201(81)90083-2, 1981.	
	Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R. and Jones, C.: The origin of deep ocean microseisms in	
	the North Atlantic Ocean, Proc. R. Soc. A Math. Phys. Eng. Sci., 464(2091), 777-793, doi:10.1098/rspa.2007.0277, 2008.	
	KNDC: Observation network of the Institute of Geophysical Researches of the National Nuclear Center of the Republic of	
1080	Kazakhstan., [online] Available from:	
	$http://www.kndc.kz/index.php?option=com_content&view=article&id=45&Itemid=147&Iang=en \ (Accessed \ 3 \ October \ Accessed \ Acces$	
	2019), 2019.	
	Landès, M., Ceranna, L., Le Pichon, A. and Matoza, R. S.: Localization of microbarom sources using the IMS infrasound	
	network, J. Geophys. Res. Atmos., 117(D6), n/a-n/a, doi:10.1029/2011jd016684, 2012.	
1085	Landès, M., Le Pichon, A., Shapiro, N. M., Hillers, G. and Campillo, M.: Explaining global patterns of microbarom	
	observations with wave action models, Geophys. J. Int., 199(3), 1328-1337, doi:10.1093/gji/ggu324, 2014.	
	Longuet-Higgins, M. S.: A Theory of the origin of microseisms, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 243(857), 1-	D
•	35, doi:10.1098/rsta.1950.0012, 1950.	C
	Matoza, R. S., Landès, M., Le Pichon, A., Ceranna, L. and Brown, D.: Coherent ambient infrasound recorded by the	
1090	International Monitoring System, Geophys. Res. Lett., 40(2), 429-433, doi:10.1029/2012gl054329, 2013.	D
	Olson, J. V and Szuberla, C. A. L.: Distribution of wave packet sizes in microbarom wave trains observed in Alaska, J. Acoust.	
	Soc. Am., 117(3), 1032–1037, doi:10.1121/1.1854651, 2005.	
	Le Pichon, A., Ceranna, L. and Vergoz, J.: Incorporating numerical modeling into estimates of the detection capability of the	
	IMS infrasound network, J. Geophys. Res. Atmos., 117(D5), n/a-n/a, doi:10.1029/2011jd016670, 2012.	
1095	Le Pichon, A., Assink, J. D., Heinrich, P., Blanc, E., Charlton-Perez, A., Lee, C. F., Keckhut, P., Hauchecorne, A., Rüfenacht,	F
	R., Kämpfer, N., Drob, D. P., Smets, P. S. M., Evers, L. G., Ceranna, L., Pilger, C., Ross, O. and Claud, C.: Comparison of	A
	co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather	
	prediction models, J. Geophys. Res. Atmos., 120(16), 8318-8331, doi:10.1002/2015jd023273, 2015. Obrebski, M., F. Ardhuin,	D

ield Code Changed

Deleted: Hagerty, M. T., Kim, W.-Y. and Martysevich, P.: nfrasound Detection of Large Mining Blasts in Kazakstan, Pure Appl. Geophys., 159(5), 1063–1079, doi:10.1007/s00024-002-8673-, 2002.¶

Deleted: d

Deleted: Liszka, L. and Waldemark, K.: High Resolution Dbservations of Infrasound Generated by the Supersonic Flights of Concorde, J. Low Freq. Noise, Vib. Act. Control, 14(4), 181–192, doi:10.1177/026309239501400403, 1995.¶

Deleted: O Deleted: M

Formatted: List Paragraph, Widow/Orphan control, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Deleted: ¶

		F., E. Stutzmann, E., and M. Schimmel, M.: Detection of microseismic compressional (P)body waves aided by numerical		
		modeling of oceanic noise sources, J. Geophys. Res. Solid Earth, 118, 4312-4324, doi:10.1002/jgrb.50233, 2013,		Formatted: Check spelling and grammar
		den Ouden, O., Assink, J. D., Smets, P., Shani-Kadmiel, S., Averbuch, G., and Evers, L.: CLEAN beamforming for the		
		enhanced detection of multiple infrasonic sources, Geophys. J. Int, 221 (1), 305-317, doi:10.1093/gji/ggaa010, 2020.		
1	115	Shapiro, N. M.: High-Resolution Surface-Wave Tomography from Ambient Seismic Noise, Science (80)., 307(5715), 1615-		
		1618, doi:10.1126/science.1108339, 2005.		
		Shapiro, N. M. and Campillo, M.: Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise,		
		Geophys. Res. Lett., 31(7), doi:10.1029/2004gl019491, 2004.		Deleted: n/a-n/a,
1		Smets, P. S. M. and Evers, L. G.: The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations,		
1	120	J. Geophys. Res. Atmos., 119(21), 12-84,99, doi:10.1002/2014jd021905, 2014.		Deleted: 12,
		Smirnov, A.: The variety Oof Infrasound sources recorded by Kazakhstani stations, in CTBT: Science and Technology,		Deleted: V
1		Vienna. [online] Available from: https://www.ctbto.org/fileadmin/user_upload/SnT2015/SnT2015_Posters/T2.3-P20.pdf,		Deleted: S
		2015.	$\langle \rangle \rangle$	Deleted: R
		Smirnov, A., Dubrovin, V., Evers, L. G. and Gibbons, S. J.: Explanation of the nature of coherent low-frequency signal sources		Deleted: B
1	125	recorded by the monitoring station network of the NNC RK, in CTBT: Science and Technology 2011. [online] Available from:		Deleted: K
		https://www.ctbto.org/fileadmin/user_upload/SandT_2011/posters/T4-P12 A_Smirnov Explanation of the nature of coherent		Deleted. 5
		low-frequency signal sources recorded by the monitoring station.pdf, 2011.		
1		Smirnov, A., De Carlo, M., Le Pichon, A. and Shapiro, N. M.: Signals from severe ocean storms in North Atlantic as it detected		Deleted: d
I		in Kazakhstan: observations and modelling, NNC RK Bull., (2), 152-160, 2018.		
1	130	Smirnov, A., De Carlo, M., Le Pichon, A., Shapiro, N. and Kulichkov, S.: Results of the microseism and microbarom detections		Formatted: Highlight
		by the seismo-acoustic Kazakh network, doi:10.31905/dsw7l5bv, 2020.		Commented [ALP3]: Rewrite reference, no abreviation
I		Stehly, L., Campillo, M. and Shapiro, N. M.: A study of the seismic noise from its long-range correlation properties, J.		Deleted: and of the microbarom simulation for the infrasound
		Geophys. Res., 111(B10), doi:10.1029/2005jb004237, 2006.	$\langle \rangle$	Deleted: Results microseism microharom Detect, by Seism.
		Stutzmann, E., Ardhuin, F., Schimmel, M., Mangeney, A. and Patau, G.: Modelling long-term seismic noise in various		Kazakh Netw. microbarom Simul. infrasound arrays Netw.,
1	135	environments, Geophys. J. Int., 191(2), 707-722, doi:10.1111/j.1365-246x.2012.05638.x, 2012.		
		Szuberla, C. A. L. and Olson, J. V: Uncertainties associated with parameter estimation in atmospheric infrasound arrays, J.		
		Acoust. Soc. Am., 115(1), 253–258, doi:10.1121/1.1635407, 2004.		
		Toksöz MN, Lacoss RT. Microseisms: mode structure and sources. Science. 1968; 159 (3817): 872-873.		
		doi:10.1126/science.159.3817.872		Deleted: ToksoZ, M. N. and Lacoss, R. T.: Microseisms: mMode
1	140	Waxler, R. and Gilbert, K. E.: The radiation of atmospheric microbaroms by ocean waves, J. Acoust. Soc. Am., 119(5), 2651-		structure and sources, science (80???), 159(3817), 872–873, doi:10.1126/science.159.3817.872, 1968.
		2664, doi:10.1121/1.2191607, 2006.		
		Waxler, R., Gilbert, K., Talmadge, C., and Hetzer, C.: The effects of finite depth of the ocean on microbarom signals, in 8th		Formatted: Superscript
		Int. Conf. Theoretical and Computational Acoustics (ICTCA), Crete, Greece, 2007.		
		Waxler, R., and Assink, J.: Propagation modeling through realistic atmosphere and benchmarking. In Infrasound monitoring		Formatted: Left

 \longrightarrow

	for atmos	pheric	e studi	es: 2 nd ed. Springer	Nature, Dordr	echt, IS	<u>BN: 978-3-</u>	- <u>319-751</u> 4	40-5, 509-550,	<u>2019.</u>		 Formatted: Superscript
	Weaver,	R.	L.:	GEOPHYSICS:	Information	from	Seismic	Noise,	Science 80	307(5715),	1568–1569,	 Deleted: (
I	doi:10.11	26/sci	ence.	1109834, 2005.								 Deleted:).
1	_											 Commented [ALP5]: Check reference
1165	•											Deleted: Wilson, C. R.: Auroral infrasonic waves and poleward expansions of auroral substorms at Inuvik, N.W.T., Canada, Geophys. J. R. astr. Soc., 26, 179–181, 1971.¶

Figure 1. IGR monitoring network. Yellow and red stars are seismic and infrasound arrays, respectively. Seismic and infrasound arrays are collocated at two sites. IS31 infrasound and ABKAR seismic arrays are located 200 km apart. Callouts show the array configurations. the configurations are not shown for the KKAR and MKAR as they are similar to the ABKAR's one

Formatted: English (United States)

1180 Figure 2. Frequency response of the MB2000, MB2005 and Chaparral M25 microbarometers.

Figure 3. Frequency responses of Geotech GS-21 Guralp CMG-3V seismometers

Figure 5. Noise spectra characteristics for the seismic arrays.

Figure 6. The distribution of the epicenters of the expected microbarom sources in January - February 2017 detected by the IS31 infrasound array.

Deleted: for the

Figure 7. The distribution of the epicenters of the predicted microseism sources from January to February 2017 detected by the ABKAR seismic array.

Deleted: expected	
Deleted: in	
Deleted: -	
Deleted: for the	
Deleted: at	

Deleted:	
Deleted: ,	

Figure 11. Same as Figure 8 at ABKAR from 1 January 1, 2014 to December 31, 2017.

Deleted: for

 I230
 Figure 13.
 Same as Figure 8 at Kurchatov Cross from 1 January 1, 2014 to December 31, 2017, Expected amplitudes
 Dele

 are scaled to compensate the instrument response difference.
 Image: Compensate the instrument

 Figure 16.
 Azimuthal distribution of detections with maximum amplitudes for seismic stations throughout 2017 (a),

 from December 1, 2016, to February 28 (b), 2017, and from June 1 to August 31, 2017 (c).

Figure 17. Dominant amplitude of seismic signals in the 0.1-0.4 Hz band detected at ABKAR (a), KKAR (b), Kurchatov Cross array (c), and MKAR (d) arrays from December 1, 2016 to January 31, 2017.

Deleted: A

Comparison of the observation results at the ABKAR seismic array and IS31 infrasound station separated	 Deleted: closely placed
	 Deleted: . The distance between stations is
	Formatted: English (United States)

Figure 19.

<u>by 230 km.</u>

Table 1. Uncertainties of azimuth and apparent velocity estimates.

Parameter	<u>Horizontal</u> <u>velocity, m/s</u>	<u>IS31</u>	<u>KURIS</u>	<u>MKIAR</u>	ABKAR	<u>KKAR</u>	<u>MKAR</u>	<u>Kurchatov</u> <u>Cross</u>
-----------	---	-------------	--------------	--------------	-------	-------------	-------------	----------------------------------

<u>δθ (°)</u>	<u>340</u>	<u>0.55</u> - <u>0.74</u>	<u>2.05</u> – <u>2.34</u>	<u>0.58</u> - <u>0.67</u>	-	-	-	-
<u>δV (m/s)</u>		3.8 - 4.4	<u>12 - 14</u>	<u>3.5 - 3.9</u>	-	=	-	-
<u>δθ (°)</u>	<u>3000</u>	-	-	-	<u>4.89</u> – <u>5.64</u>	<u>5.14</u> – <u>6.30</u>	<u>4.55</u> – <u>6.84</u>	<u>0.48 - 0.49</u>
<u>δV (m/s)</u>		-	-	-	<u>250 –</u> <u>290</u>	<u>270</u> – <u>330</u>	<u>220</u> - <u>380</u>	<u>25 – 26</u>

Table 2. Estimations of the prediction quality for microbarom amplitudes and azimuths.

Station	Long-term Observation period	Scorr Az	Scorr Amp	Observation period on winter	Scorr_Az	Scorr Amp	Observation period on summer	Scorr Az	Scorr Amp
<u>IS31</u>	<u>2014 - 2017</u>	<u>0.61</u>	<u>0.39</u>	<u>Dec 2016 –</u>	<u>0.76</u>	<u>0.53</u>	<u>Jun 2017 –</u>	<u>0.44</u>	<u>0.26</u>
				Feb 2017			<u>Aug 2017</u>		
<u>KURIS</u>	<u>2014 - 2017</u>	0.52	0.23	<u>Dec 2016 –</u>	0.82	0.58	<u>Jun 2017 –</u>	<u>0.16</u>	<u>0.18</u>
				Feb 2017			<u>Aug 2017</u>		
MKIAR	<u>Sep 2016 –</u>	0.62	0.5	<u>Dec 2016 –</u>	0.82	<u>0,66</u>	<u>Jun 2017 –</u>	0.34	<u>0.39</u>
	Dec 2017			Feb 2017			<u>Aug 2017</u>		

Deleted: ,

¶ ¶

1275

Deleted: ¶ ¶