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Abstract  18	

In the last decades Finite Element Modelling have become very popular tools in volcanological 19	
studies, increasing the relevant parameters considered in their calculations, and raising complex 20	
geometry with introduction of multiple reservoirs, topography, and heterogeneous distribution of host 21	
rock mechanical properties. In spite of this, the influence of geological information on the numerical 22	
simulations is still poorly considered. In this work a 2D Finite Element Modelling of Colima 23	
Volcanic Complex (Mexico) is provided by using the LInear Static Analysis (LISA) software, in 24	
order to investigate the stress field conditions at increasing detail of geological data. By integrating 25	
the published geophysical, volcanological and petrological data, we modelled the stress field 26	
considering either one or two magma chambers connected to the surface via dykes or isolated (not 27	
connected) in the elastic host rocks (considered homogeneous and not homogeneous). We also 28	
introduced tectonic disturbance, considering the effects of direct faults bordering the Colima Rift and 29	
imposing an extensional far field stress of 5 MPa. We run the model using gravity in the calculations. 30	
Our results suggest that an appropriate set of geological data is of pivotal importance for obtaining 31	
reliable numerical outputs, which can be considered as proxy for natural systems.  Beside and beyond 32	
the importance of geological data in FEM simulations, the model runs using the complex feeding 33	
system geometry and tectonics show how the present-day Colima volcanic system can be considered 34	
in equilibrium by stress state point of view, in agreement with the long lasting open conduit dynamics 35	
that lasts since 1913.   36	

 37	

1 Introduction  38	
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 101	

Magmatism and tectonism are strongly related to the regional and local stress fields, affecting both 102	

the orientation of faults and the location of volcanic vents (Geyer et al., 2016). The stress field around 103	

a magmatic source originates from three main contributions: (1) the background stress, composed of 104	

a vertical gravitational load, a lateral horizontal load (lithostatic confinement), and tectonic regime; 105	

(2) the stress field caused by the loading of the volcano edifice; and, (3) the stress field generated by 106	

the magmatic pressure (e.g. Martí and Geyer, 2009; Currenti and Williams et al., 2014). In recent 107	

years, a large number of semi-analytical and numerical methods have been proposed for the solution 108	

of stress field state of natural systems (e.g. Cayol and Cornet, 1998; Simms and Garven, 2004; 109	

Manconi et al., 2007; Long and Grosfils, 2009; Currenti et al., 2010; Currenti and Williams et al., 110	

2014; Zehner et al., 2015), taking into account the static elastic deformation in a multi-layered half-111	

space (e.g. Dieterich and Decker, 1975; Bonafede et al., 2002; Wang et al., 2003; Gudmundsson and 112	

Brenner, 2004; Zhao et al., 2004; Pritchard and Simons, 2004; Gottsmann et al., 2006; Geyer and 113	

Gottsmann, 2010; Zhong et al., 2019). Following the successful application in mechanical 114	

engineering, fluid dynamics and thermodynamics (e.g., Gutiérrez and Parada, 2010; Gelman et al., 115	

2013), the use of Finite Element Method (FEM) has been extensively introduced in volcanology, in 116	

order to investigate the effects of topography, lithologic heterogeneities, tectonic stresses and the 117	

gravity field on stress state of volcanic systems (e.g. Fujita et al., 2013; Carcho and Gàlan del Sastre, 118	

2014; Bunney, 2014; Ronchin et al., 2015; Hickey et al., 2015; Cabaniss et al., 2019; Rivalta et al., 119	

2019).  120	

The use of FEM for volcanic systems has several examples, which span from the influence of layered 121	

materials on the surface deformation process during volcanic inflation (e.g. Darwin volcano, 122	

Galapagos Islands; Manconi et al., 2007; Albino et al., 2010) to processes affecting chamber rupture 123	

(e.g. Grosfils, 2007; Long and Grosfils, 2009).  124	

The local stress around a volcanic feeding system depends on the geometry of the magma plumbing 125	

system, including chamber(s) and dykes forming it, and on the mechanical properties of the host rock 126	

around it (e.g. Martì and Geyer, 2009), and especially on changes in Young Modulus (e.g. 127	

Gudmundsson et al., 2011; Jeanne et al., 2017; Heap et al., 2020). For instance, limestones, lava 128	

flows, welded pyroclastic deposits and subvolcanic rocks can be very stiff (high Young Modulus; ca. 129	
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1.7-27 GPa for limestones, Touloukian, 1981; ca. 5.4 GPa for volcanic rocks, Heap et al., 2020), but 193	

young and non-welded pyroclastic units may be very soft (low Young Modulus; ca. 1.7 – 3.1 GPa, 194	

Margottini et al., 2013). Therefore, the local stress may abruptly change from one layer to another 195	

(e.g., Gudmundsson, 2006). Irrespective of the scope of the numerical investigation, the importance 196	

of applying accurate physical constraints to FEM modelling was already discussed in many studies 197	

(e.g., Folch et al., 2000; Newman et al., 2001; Fernandez et al., 2001; Currenti et al., 2010; Geshi et 198	

al., 2012). However, in the last decade few investigations have been carried out to assess the 199	

influence of the amount and quality of geological data into FEM computations (Kinvig et al., 2009; 200	

Norini et al., 2010, 2019; Cianetti et al., 2012; Ronchin et al., 2013; Chaput et al., 2014). To bridge 201	

this gap, in this work we use the Linear Static Analysis (LISA) software (version 8.0; 202	

www.lisafea.com) to study the subsurface stress field state at Colima Volcanic Complex (CVC, 203	

Mexico) at increasing geological detail. 	204	

The CVC area is a good candidate for testing the response of FEM software against different 205	

geological conditions, being constituted by a large volcanic complex (Lungarini et al., 2005) within a 206	

tectonic graben filled with volcaniclastic material (Fig. 1a; Norini et al., 2010, 2019). The FEM was 207	

run starting from simple homogeneous vs. stratified lithology of subsurface, and successively detailed 208	

by the addition of single and double magma chamber, feeder dykes, faults, and extensional far field 209	

tectonic stress (Fig. 1b). 210	

 211	

 212	

2 The Colima Volcanic Complex (Mexico) 213	

 214	

2.1 Geological framework 215	

The Pleistocene-Holocene CVC is one of the most prominent volcanic edifices within the Trans-216	

Mexican Volcanic Belt (TMVB) (Macías et al., 2006; Capra et al., 2016; Norini et al., 2019; Fig. 1a). 217	

In this area, the Rivera microplate and the Cocos plate subduct beneath the North America plate 218	

along the Middle American Trench, (Stock and Lee, 1994), forming a triple junction that delimits the 219	

tectonic units known as the Jalisco Block (JB) and the Michoacán Block (MB) (Luhr et al., 1985; 220	
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Allan, 1986; Rosas-Elguera et al., 1996; Rosas-Elguera et al., 1997; Ferrari and Rosas- Elguera, 256	

1999; Rosas-Elguera et al., 2003; Frey et al., 2007). The three rifts of this system are the Tepic-257	

Zacoalco (TZR), the Chapala-Tula (CTR), and the Colima Rift (CR). The still active NS trending CR 258	

was formed during a rifting phase occurred after the Late Cretaceous–Paleogene compressive and 259	

transpressive phase (Allan, 1986; Serpa et al., 1992; Bandy et al., 1995; Cortés et al., 2010). While 260	

opening, CR was gradually filled with Pliocene–Quaternary lacustrine sediments, alluvium and 261	

colluvium (e.g. Allan, 1986; Allan et al., 1991; Norini et al., 2010). The geometry, kinematics and 262	

dynamics of the CR have been studied on the basis of field, seismic, and geodetic data, mainly 263	

collected in its northern and central sectors (see Fig. 1 in Norini et al., 2010). 264	

The magnitude of vertical displacement of the northern and central sectors is ca. 2.5 km by adding 265	

the topographic relief of the bounding fault scarps (1.5–1.6 km) to the calculated sediment depth 266	

(Allan, 1985; Serpa et al., 1992). Field data and focal mechanism solutions are consistent with a 267	

direction of opening of the northern and central sectors oriented from E-W to NW-SE, with a mainly 268	

normal and minor right-lateral displacements of the bounding faults (Barrier et al., 1990; Suárez et al., 269	

1994; Rosas-Elguera et al., 1996; Garduño-Monroy et al., 1998; Norini et al., 2010, 2019). In contrast 270	

to field and seismic evidence of long-term slightly dextral oblique extension, recent GPS geodetic 271	

measurements suggest a possible left oblique extension of the CR (Selvans et al., 2011). In both cases, 272	

the stress regime is extensional with an E-W orientation of the minimum horizontal stress in the CVC 273	

basement (Barrier et al., 1990; Suárez et al., 1994; Rosas-Elguera et al., 1996; Selvans et al., 2011; 274	

Norini et al., 2010, 2019).  275	

The CVC stands within the central sector of the CR, on top of the Cretaceous limestones, Late 276	

Miocene-Pleistocene volcanic rocks, and Pliocene-Holocene lacustrine sediments, alluvium, and 277	

colluvium (Allan, 1985, 1986, 1991; Cortès, 2005; Norini et al., 2010; Escudero and Bandy, 2017). It 278	

is formed by three andesitic stratovolcanoes: Cantaro (2900 m a.s.l.), Nevado de Colima (4255 m 279	

a.s.l.) and, in the southern part, the youngest and active Volcàn de Colima (3763 m a.s.l.) (Norini et 280	

al., 2019 and reference therein; Fig. 1a). 281	

 282	

2.2 Eruptive activity  283	

The eruptive history of the CVC started in the northeast area with the formation of Cantaro volcano 284	
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at ca. 1-1.5 Ma followed by Nevado de Colima at ca. 0.53 Ma, which is composed of voluminous 321	

andesitic lava domes and deposits associated with caldera forming eruptions and partial sector 322	

collapses (Robin et al., 1987; Roverato et al., 2011; Roverato and Capra, 2013; Cortès et al., 2019). 323	

The youngest Volcàn de Colima comprises the Paleofuego edifice, which suffered several sector 324	

collapses that formed a horseshoe-shaped depression where the new active (also known as Volcàn de 325	

Fuego) cone grew up. Its activity was characterised by dome growths and collapses, extrusion of lava 326	

flows, Vulcanian and occasionally sub-Plinian explosive eruptions (Saucedo et al., 2010; Massaro et 327	

al., 2018, 2019).  328	

 329	

2.3 The CVC plumbing system 330	

Seismic tomography (Spica et al. 2017) highlights a 15 km-deep low velocity body (LVB), which 331	

was interpreted as the deep magma reservoir.  It is confined within the CR, suggesting a structural 332	

control of the normal fault system on it (Spica et al., 2014). The LVB has an extent of ca. 55 km× 30 333	

km in the N-S and E-W directions respectively, showing an averaged thickness < 8 km. Escudero and 334	

Bandy (2017) obtained a higher resolution tomographic image of the CVC subsurface area, showing 335	

that the most active magma generation zone is now under the Fuego de Colima edifice.  The ambient 336	

seismic noise tomographic study of Spica et al. (2014) indicates a shallow magma chamber above ca. 337	

7 km depth, in agreement with petrological studies (Medina-Martinez et al., 1996; Luhr, 2002; Zobin 338	

et al., 2002; López-Loera et al., 2011; Reubi et al., 2013, 2019; Macìas et al., 2017). Cabrera-339	

Gutiérrez and Espíndola (2010) suggested the shallow active magma storage has a volume of ca. 30 340	

km3. It is connected to the surface by conduits, whose path is facilitated by the presence of the CR 341	

fault zone, which provide a natural pathway for fluids (e.g., Allan, 1986; Norini et al., 2010, 2019). 342	

The arrangement of dykes and the alignment of volcanic centres of CVC suggest that the dykes 343	

swarm draining the magma chambers developed along the NNE-SSW-trending, steep, eastward 344	

dipping normal fault exposed on the northern CVC flank (Norini et al., 2010, 2019).  345	

Massaro et al. (2018) provided a first-order geometrical reconstruction of the Fuego de Colima 346	

feeding system during the 1913 sub-Plinian eruption, by using volcanological data (Saucedo et al., 347	
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2010, 2011; Bonasia et al., 2011) as input and constraints for numerical simulations. Results showed 428	

good matches for a hybrid configuration of the shallow conduit-feeding system composed of a ca. 429	

5500 m long, 200-2000 m wide, and 40 m width dyke passing into a shallower (500 m long, 40 m 430	

diameter) cylindrical conduit. The shallow magma chamber top was set at 6 km of depth, and dyke-431	

cylinder transition at 500 m below the summit as inferred from geophysical data (Salzer et al., 2014; 432	

Aràmbula et al., 2018).  433	

 434	

 435	

3 Methods 436	

 437	

In this study, we used the commercial 8.0 version of LISA (www.lisafea.com), a general-purpose 438	

Finite Element Analysis (FEA) software developed in the ‘90s and based on the formulations 439	

proposed by Rao (1989), and successively integrated from other sources (Bathe, 1990; Michaeli, 440	

1991; Schwarz, 1991; Babuska et al., 1995). Despite LISA was originally used for structural analysis 441	

(Rao, 1989; 2013), it successfully predicts the stress-strain behaviour of rock masses in elastic 442	

models, in particular the deformation mechanisms even in layered rock masses (Gabrieli et al., 2015).  443	

 444	

3.1 Modelling approach 445	

The stress field of the CVC plumbing system is simulated considering an E-W cross-section, parallel 446	

to the extension associated to the active CR (Norini et al., 2010; 2019) as shown in Figure 1a-b (a-a’). 447	

Since the extent of the CVC magma chambers in the NNE-SSW direction is typically much longer 448	

than the dimensions of the E-W cross section (Spica et al., 2017), 2D solutions of either numerical or 449	

analytical models describing E-W elongated magma chambers in the crust can be reasonably adopted 450	

(Jaeger et al., 2009; Costa et al., 2011). A topographic profile and 2D plane along the chosen E-W 451	

cross-section of the CVC area was obtained in ESRI ArcGIS from a Digital Elevation Model (DEM, 452	

resolution 50 m (Instituto Nacional de Estadística y Geografía - INEGI https://en.www.inegi.org.mx/) 453	
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and imported into Autodesk Auto-Cad R13 using a third-degree spline approximation. The IGES file 498	

was then imported into LISA for the mesh discretization.  499	

The investigated domain extends 60 x 30 km in a x-z Cartesian Coordinate System with a three and 500	

four-node finite element discretization (Table 1). Zero normal displacements are assigned at the 501	

bottom and the lateral boundaries, while the upper boundary represents the free-stress ground surface 502	

(Fig. 1c). The FEM is carried out by using a plane strain approximation, implying that the 503	

deformation in the third direction is assumed to be negligible.  504	

As reported in Zehner et al. (2015), FEM of geological structures requires accurate discretization of 505	

the computational domain. It follows that the unstructured tetrahedral meshes has to fulfil the 506	

following requirements: i) sufficient mesh quality: the tetrahedrons should not be too acute-angled, 507	

since numerical instabilities can occur, ii) incorporation of geometry for defining boundary 508	

conditions and constraints, iii) local adaption, which is a refinement of the mesh in the vicinity of 509	

physical sources in order to avoid numerical errors during the simulation. In this work we adopted a 510	

mesh composed of 4660 plane continuum elements, which have been refined in the regions of higher 511	

gradients (i.e. near the contours of the magmatic feeding system). 512	

In our simulations, the extent of the rock layers (Table 2) is referred to Norini et al. (2010, 2019). The 513	

configuration of the CVC feeding system (i.e. depth, shape and dimensions of the magma chambers 514	

and feeder dykes) derives from the literature (Spica et al., 2014, 2017; Massaro et al., 2018, 2019) 515	

and it is simplified in Figure 1d. In particular, magma chambers and dykes are considered as 516	

pressurized finite-size bodies in an elastic crustal segment, acting as fluid-filled holes. The boundary 517	

condition (pressurization) is provided by applying internal forces that act on the walls. This approach 518	

has been extensively used in several analytical and numerical models that treat magma reservoirs as 519	

internally pressurized ellipsoidal cavities within an elastic half space, in order to gain insight into the 520	

behaviour of magma plumbing systems (Pinel and Jaupart, 2004; Gudmundsson, 2006; Grosfils, 521	

2007; Andrew and Gudmundsson, 2008; Hautmann et al., 2013; Currenti and Williams, 2014; Zhong 522	

et al., 2019).  523	

Previously published studies indicate that differences between, and problems with, elastic models 524	

derive principally from the key role played by gravity (e.g. Albino et al., 2018; Gerbault, 2012; Lister 525	

and Kerr, 1991; Watanabe et al., 2002). Some authors argued on whether it is appropriate or not to 526	
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account for the gravity body force in models of volcanic systems (e.g. Currenti and Williams, 2014; 634	

Grosfils et al., 2015). When the gravitational loading is not included in the model, the volcanic 635	

deformation results from a change with respect to a stage previously at equilibrium (e.g. Gerbault et 636	

al. 2018). In this work, we carried out simulations considering the effect of the gravitational loading 637	

in the host rock, implemented via body forces. The model initial condition has a pre-assigned 638	

lithostatic stress, whose computation, in presence of topography and material heterogeneities, is not 639	

trivial because it requires applying the gravity load preserving the original not deformed geometry of 640	

the mesh (Cianetti et al., 2012). Since the presence of a lithostatic stress field, the load applied at the 641	

reservoir boundaries represents a superposition of the magmatic pressure and lithostatic component. 642	

We define here the magmatic pressure as either excess pressure (ΔPe, magmatic minus lithostatic 643	

pressure but below the tensile strength of wall rocks) or over pressure (or driving pressure ΔPo,   644	

which is the magmatic pressure exceeding tensile strength of wall rocks; Gudmundsson, 2012). The 645	

first pertains to the FEMs using isolated magma chambers (single or double), while the second is 646	

used for models with connected magma chambers (with conduit/feeding system).  647	

We also took into account the effect of the existing faults of the CR system even if LISA cannot 648	

include a frictional law to represent the fault movement (i.e. Chaput et al., 2014). As reported in 649	

Jeanne et al. (2017 and reference therein) the damage induced by faults increases from the host rocks 650	

to the fault core, implying the reduction in the effective elastic moduli. In this light, we represented 651	

the faults bordering the CR as two damage zones (ca. 70° of inclination, ca. 1 km thick, and down to 652	

10 km of depth) showing reduced elastic properties with respect to the surrounding host rocks.  653	

To take into account the effect of far field extensional regime, we applied a uniform stress of 5 MPa 654	

to the lateral boundaries of the domain (as reported in Martì and Geyer, 2009).  655	

Considering the E-W cross-section (a-a’; Fig. 1a), we provided six domain configurations: i) 656	

“homogeneous lithology model” in which the volcanic domain is only composed of andesite rocks; ii) 657	

“not homogeneous lithology model” where different geological units are considered; iii) “single 658	

magma chamber model” composed of a not homogeneous lithology and a 15 km-deep magma 659	
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chamber; iv) “dual magma chamber model” composed of a not homogeneous and 6 km- and 15 km-706	

deep magma chambers; v) “conduit feeding system model” composed of not homogeneous lithology, 707	

6 km- and 15 km-deep magma chambers connected through a deep dyke evolving into a shallow 708	

conduit near the surface; vi) “extensional model”, with a 5 MPa horizontal extensional stress (far 709	

field) and, vii) “faulted model”, in which are also added two damaged zones mimicking the CR faults 710	

(local stress) (Fig. 1b).  711	

The number of nodes in the only substratum and single magma chamber models is set at 4426, for the 712	

dual magma chamber model is set at 4161, and at 3737 for the conduit feeding system and faulted 713	

models.  714	

It is important to note that  simulations outputs are shown using different colour scales. Although 715	

such a choice may result into a difficult visual comparison of the different runs, it preserves the 716	

necessary details of stress distribution, which would have been lost using a common colour scale.  717	

Finally, in the following we refer toσ1 as the greatest compressive stress and σ3 is the least 718	

compressive stress. 719	

 720	

 721	

4 Geological data 722	

 723	

4.1 Stratigraphy and rock mechanics 724	

Four units forming the CVC system are defined from the available geological data (Table 2): i) 725	

Basement (Unit B): cretaceous limestones and intrusive rocks forming the bed-rock underlying the 726	

CVC; ii) Graben fill deposits (Unit GF): Quaternary alluvial, colluvial, and lacustrine deposits filling 727	

the graben; iii) Fuego de Colima deposits (Unit FC): andesitic lavas and pyroclastic deposits forming 728	

the Paleofuego-Fuego de Colima edifices; and iv) Volcaniclastic deposits (Unit VD): volcaniclastic 729	

deposits covering the southern flank of the CVC (e.g. Cortés et al. 2010; Norini et al., 2010, 2019).  730	
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We assumed constant mechanical characteristics within each Unit using the typical rock mass 756	

properties, density (ρ), Young Modulus (E) and Poisson Ratio (ν) (Table 2). The rock masses are 757	

considered dry, in order (eventual) pore pressure to be neglected. Only for Unit GF a higher value for 758	

the Poisson Ratio was used close to the surface in order to mimic high water content in the graben 759	

sediments. The maximum thickness of the graben fill (about 1 km) is assumed from the literature 760	

(Allan, 1985; Serpa et al., 1992; Norini et al., 2010, 2019). For Units B and GF rock mass proprieties 761	

are derived from Hoek and Brown (1997) and Marinos and Hoek (2000), while for volcanic materials 762	

(units FC and VD; Table 2) are estimated according to the approach proposed by Del Potro and 763	

Hürlimann (2008). In order to describe the effects of the CR faults on stress field distribution, the 764	

mechanical properties are locally degraded in proximity of the faults themselves. 765	

 766	

4.2 The geometry of the plumbing system 767	

In our 2D model, we assume the CVC composed of a two magma chambers connected by dykes and 768	

to the surface by a conduit (Fig. 1d). The shape of the magma chambers and dykes are represented by 769	

elliptical cross-sections with the major (2a) and minor (2b) axes.  770	

Generally, the magma chambers have a sill-like shape that is often imaged in seismic studies of 771	

volcanoes and rift zones (Macdonald, 1982; Sinton and Detrick, 1992; Mutter et al., 1995; MacLeod 772	

and Yaouancq, 2000; Singh et al., 2006; Canales et al., 2009). Most of them are not totally molten but 773	

rather a mixture of melt and crystal mush (i.e. Parfitt and Wilson, 2008). Various estimates have been 774	

made to infer the actual amount of melt in a magmatic body, showing that it is only ca. 10% of the 775	

total chamber volume (Gudmundsson et al., 2012 and reference therein).  776	

After Spica et al. (2017), the 15 km-deep LVB is ca. 7000 km3, therefore,  if we assume the melt as 777	

10%, the deep magma chamber volume would be ca. 700 km3. Simplifying this volume in an 778	

elliptical sill-like geometry, the magma chamber dimensions (i.e. 2a, 2b, 2c axes) have to be scaled 779	

according to  the LVB (55 × 30 × 8 km; Spica et al., 2017) using 2a = 14 km, 2b = 3.6 km, 2c = 26 780	

km, being 2c elongated in NW-SE direction. For the shallow part of the feeder system, we have no 781	

detailed geophysical constraints. However, Massaro et al. (2019) reproduced through numerical 782	

modelling the nonlinear cyclic eruptive activity at Fuego de Colima in the last 20 years, using a 783	
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shallow magma chamber volume in the range of 20-50 km3, according to the estimation of Cabrera-858	

Gutiérrez and Espindola (2010). Here we assume a volume of 30 km3, using 2a = 3.5 km, 2b =2 km, 859	

2c = 8 km as dimensions of the shallow magma chamber.  860	

Numerous theoretical and field studies have established that host rock stresses dictate the magma 861	

pathways (e.g. Maccaferri et al., 2011; Gudmundsson, 2011). During ascent to the surface, the dykes 862	

align themselves with the most energy-efficient orientation, which is roughly perpendicular to the 863	

least compressive stress (e.g. Gonnermann and Taisne, 2015; Rivalta et al., 2019), providing the 864	

magma driving pressure remains small compared to the deviatoric stress (Pinel et al., 2017; 865	

Maccaferri et al., 2019). This behaviour, however, can be modulated in the presence of significant 866	

variations in fracture toughness of the surrounding rock due to stratification (Maccaferri et al., 2010) 867	

or to old and inactive fracture systems (Norini et al., 2019).  868	

Although for oblate magma chambers the propagation of dykes is most probable from the tip areas, in 869	

our simulations the orientation of dykes is assumed vertical, because of the preferential pathways 870	

represented by the CR fault planes (Spica et al., 2017).  871	

We set the dimensions of feeder dykes in agreement with Massaro et al. (2018): deep dyke 2ad = 2 872	

km; shallow dyke 2a varies from 1 km at bottom to 500 m in the upper part of the volcano; width of 873	

both deep and shallow dyke 2bd = 2b = 100 m (Fig. 1d).  874	

It is worth noting that it is outside the scope of this work providing the conditions for the magma 875	

chamber rupture, being LISA accounting only for the elastic regime. For these reasons, we fixed ΔPe 876	

and ΔPo (for isolated and connected magma chamber models, respectively) in the range of 10 - 20 877	

MPa for the 15 km-deep chamber, and 5 MPa for the 6 km-deep one. For the dykes and conduit, ΔPo 878	

is set to 10 MPa in the deeper dyke and 5 MPa in the shallower one, while in the upper 500 m of 879	

conduit is 0.4 MPa. 880	

 881	

 882	

5 Results  883	

 884	
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In this section we reported the sensitivity analysis carried out to quantify the approximation of the 1002	

Young Modulus variation on FEM outputs, and the description of the model outputs when adding 1003	

complexity to the input geological/geophysical data. 1004	

 1005	

5.1 Sensitivity analysis of Young Modulus 1006	

Using the single magma chamber model as reference case, we quantified the influence of the Young 1007	

Modulus variation in each geological Units. Taking into account the mechanical  properties of rocks 1008	

(Table 2) as reference values, we compared the stress state of the computational domain at changing  1009	

Young Modulus by (±) an order of magnitude. This sensitivity analysis, although incomplete, may 1010	

lead to raise awareness on the selection of input data when running a FEM. The sensitivity analysis 1011	

was carried out on a reduced simulation domain (the x-axis was set to 35 km) in order to diminish the 1012	

influence of binding effects along the domain borders. 1013	

We applied the Euclidean norm (L2) method for illustrating the results. The L2 norm applied on a 1014	

vector space x (having components i = 1,...n) is strongly related with the Euclidean distance from its 1015	

origin, and is equal to: 1016	

 1017	

𝑥 2 = 𝑥𝑖!!
!                  (1) 1018	

 1019	

In our case, the vector space x is composed of all nodes of the computational domain (Table 1). We 1020	

defined xref the vector containing the results for the maximum and minimum principal stress when 1021	

using the selected values of material properties (Table 1) and x(-), x(+) the vectors at varying the 1022	

Young Modulus of one order of magnitude in each Unit. 1023	

 In Figure 2 are reported the global relative variations in L2 of σ1 and σ3 caused by the variation of 1024	

Young Modulus in each Unit, for each model configuration (i.e. not homogeneous lithology, single 1025	

magma chamber, dual magma chamber, and dual magma chamber with conduits models) as follow:  1026	

 1027	

L2(-) = | !𝑟𝑒𝑓!! ! |2
| !𝑟𝑒𝑓 |2

            (2) 1028	
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L2(+) = 
| !𝑟𝑒𝑓!! ! |2

| !𝑟𝑒𝑓 |2
          (3) 1178	

 1179	

All the models show variability less than 15%, with few exceptions within Unit B that have 1180	

variability over 30% (Fig. 2). In this light, the spatial distribution of the major variations seems to not 1181	

significantly affect the final stress distributions, because: i) they are located near the mesh borders 1182	

(Fig. 3a, b); and, ii) when not at the mesh borders, the variations are limited to few % (Fig. 3c, d). It 1183	

means that the one order of magnitude variation in Young Modulus produces variation in FEM 1184	

outputs distributed over a large domain, and the change affecting the single nodes is limited to few %. 1185	

 1186	

5.2 Homogeneous and not homogeneous lithology 1187	

In Figure 4 we reported σ1 and σ3 stresses for gravity loaded models with homogeneous lithology 1188	

composed by only andesitic lavas (Fig. 4a) and not-homogeneous lithology composed of carbonates 1189	

(Unit B), alluvional, volcaniclastic and pyroclastic deposits (Units GF and VD; Fig. 4b). It is 1190	

important to stress that the x-z zero displacement assigned at the bottom and at the lateral boundaries 1191	

of the domain created substantial artefacts in the results (i.e. curved patterns of stress), especially 1192	

considering σ3 (Fig. 4, panels i-ii) where the boundary effect on x-axis is amplified by the presence of 1193	

the upper free surface. It follows that the only unperturbed area extends ca. 30 km horizontally and ca. 1194	

15 km vertically (within the blue contour in Fig. 4). It is worth noting that the homogeneous and not-1195	

homogeneous models show quite similar results in stress patterns (Fig. 4).  1196	

 1197	

5.3 Gravitational modelling using the inferred feeding system geometry 1198	

In Figures 5 and 6 we show three cross-section profiles describing the feeding system starting from a 1199	

single to two magma chambers, then adding the conduits, and, finally, considering the full 1200	

complexity by adding the effects of far-field stress and CR faults. Figure 5a describes σ3 (panel i) 1201	

and σ1 (panel ii) stress distribution for the single magma chamber model and ΔPe = 10 MPa. No 1202	

significant differences in magnitude and pattern of stresses are visible using ΔPe = 20 MPa 1203	

(Appendix 1a). 1204	

The addition of the shallow magma chamber significantly changes the values and pattern of both σ3 1205	
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and σ1 (Fig. 5b). In particular, σ3 and σ1 stresses describe a typical inflation pattern produced by 1330	

excess pressure in magma chamber(s) (Anderson, 1936; Gudmundsson, 2006; 2012), producing well-1331	

defined stress arches of σ3 (red dotted lines in Figs. 5bi) and divergent strong gradients of σ1 around 1332	

the deep magma chamber (Fig. 5bii). Very slight differences in magnitude and pattern of stresses 1333	

appear when using ΔPo = 10 MPa (Fig. 5b) or 20 MPa (Appendix 1b).  1334	

Looking at Figure 6 it is evident how the insertion of the conduits in the CVC feeding system 1335	

dramatically changes the stress distribution, with the disappearance of the stress arch and a nearly 1336	

constant stress in the computational domain except around the deep magma chamber tips.  1337	

 1338	

5.4 Application of an extensional stress field 1339	

In order to explore the influence of the extensional far field stress on stress patterns (Fig. 1a), we run 1340	

simulations applying 5 MPa stress (typical low value for rift zones; Turcotte and Schubert, 2002; 1341	

Moeck et al., 2009; Maccaferri et al., 2014; Sulpizio and Massaro, 2017) along the lateral boundaries 1342	

of the computational domain (Fig. 7).   1343	

In the case of a single magma chamber (ΔPe = 10 MPa; Fig. 7, panels i-ii), the addition of the far 1344	

field stress reduces the confinement effect due to the no displacement condition imposed along the x-1345	

z directions (plane strain approximation). When considering the double magma chamber 1346	

configuration (ΔPo = 10 MPa in the deep chamber and ΔPo = 5 MPa in the shallower one), the 1347	

presence of the far field stress produces slight changes in stress magnitude and pattern for both σ3 1348	

and σ1 (Fig. 7, panels iii-iv) with respect to Figure 5b. Very similar effects appears on the complete 1349	

feeding system configuration model (Fig. 7, panels v-vi). Also in this case using ΔPo = 20 MPa in 1350	

the deep magma chamber does not significantly affect the model outputs (Appendix 2). 1351	

 1352	

5.5 Faults bordering the Colima Rift  1353	

The effect of faults bordering the CR on the final feeding system configuration is simulated through 1354	

two damage zones by degrading their elastic properties. Adding these elements does not significantly 1355	

alter the stress distribution observed in Figures 7v and 7vi, but only provide a slight reduction in both 1356	
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σ1 and σ3 intensities around their edges (Figs. 7vii and 7viii). The different distance of the two 1473	

damage zones from the feeding system produces a small asymmetry in both σ1 and σ3 patterns with 1474	

respect to simulations without damage zones, especially near the deep magma chamber (Figs. 7v-viii).  1475	

 1476	

 1477	

6 Discussions  1478	

 1479	

6.1 FEM analysis at increasing geological details 1480	

This study highlights some important features of crustal stress distribution at changing geological and 1481	

geophysical constraints as input conditions (Spica et al., 2014, 2017; Massaro et al., 2018). Although 1482	

the results have to be considered as a first order approximation, the changes in stress distribution are 1483	

appreciable and useful for a better understanding of the FEM limitations and advantages.  1484	

Under the assumptions of plane strain and gravitational loading, the use of homogeneous or not 1485	

homogeneous lithology provides negligible effects in stress intensity and pattern (Fig. 4). This is 1486	

likely due to the limited thickness of the shallow Units (Units FC, VD, GF; Table 2) in the simulated 1487	

domain, which results dominated by Unit B (Table 2). However, this does not mean that the influence 1488	

of the upper Units may be still negligible using smaller scales of the simulated domain.  1489	

Analysing the single magma chamber model outputs, it emerges how the ΔPee limited the effects of 1490	

gravitational loading. On the contrary, the dual magma chamber geometry better describes the 1491	

inflation induced by the ΔPee within magma chambers, with the formation of the stress arch in the σ3 1492	

plot.  It is worth noting that for both single and dual magma chamber models, the  ΔPe change from 1493	

10 to 20 MPa slightly affects the magnitude of the stress but not its general pattern (Appendix 1-2).  1494	

The presence of dykes in the magma feeding system dramatically change the σ3 and σ1 patterns (Fig. 1495	

6), which become quite homogeneous throughout the computational domain, with the only exception 1496	

of sidewall effects induced by the zero displacement conditions. 1497	

The addition of extensional field stress of 5 MPa reduces the sidewall effects and produces an almost 1498	

homogeneous stress distribution in the upper part of the computational domain, above the top of the 1499	

deep magma chamber. This, along with the additional inclusion of the damage zones introduced to 1500	
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mimic the effects of CR faults, describes a close to equilibrium volcanic system, in which pressure 1586	

within the volcano feeding system almost equilibrate the lithostatic stress (Sulpizio et al., 2016).  1587	

 1588	

6.2 Some implication of the stress state of the CVC inferred from FEM 1589	

The results from the most complete FEM runs highlight an almost homogeneous stress distribution in 1590	

the CVC area. This means the dual magma chamber model and the application of the far field stress 1591	

provide a stable geometry, which limits the stress changes to few MPa. The majority of stress 1592	

variations are located at the tips of the magma chambers, as expected for pressurized or under-1593	

pressurized cavities in the lithosphere (Martì and Geyer, 2009), implying that the whole feeding 1594	

system is in a quasi-equilibrium state. Even if we consider the scenario of complete emptying the 1595	

upper conduit and part of the shallow magma chamber, as occasionally occurred during the past sub-1596	

Plinian and Plinian eruptions (Luhr et al., 2002; Saucedo et al., 2010; Massaro et al., 2018), this 1597	

would result in the restoration of the stress arch, which is still a stable stress configuration. Even the 1598	

complete emptying of the shallow magma chamber probably would be ineffective for triggering a 1599	

large collapse (caldera forming) of the feeding system.  1600	

Beside and beyond the limitations due to the first order approximation of the FEM analysis, other 1601	

sources of uncertainties in the discussion about present and future stress state of the CVC come from 1602	

not considering gravity-driven processes, such as volcano spreading due to plastic deformation of the 1603	

GF Unit (Norini et al., 2010, 2019) and detailed regional tectonics (Norini et al., 2010, 2019). The 1604	

effect of the two fault systems bordering the CR are here simulated by degrading the mechanic 1605	

properties of rocks in an area of about 1 km width up to a depth of 10 km. Although the effects are 1606	

negligible at the scale of the computational domain, it cannot be excluded some local significant 1607	

effects that cannot be resolved using the described approach.  1608	

 1609	

7 Summary and conclusion 1610	

The presented study highlighted the importance to use complete and detailed geological and 1611	

geophysical data when dealing with FEM of volcanic areas. The different geological detail used in 1612	
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the model runs showed how the stress pattern critically depends on geometry of the volcano feeding 1643	

system, with huge differences in having a single or double magma chamber system and, in particular, 1644	

if the magma chamber(s) are connected or not to the surface by feeder dykes and conduit. The 1645	

geometry of the feeding system is prevalent on model outputs with respect to varying rock properties 1646	

(i.e. Young Modulus) of one order of magnitude. In the case of CVC the use of subsurface 1647	

homogeneous or stratified lithology not influence much the FEM outputs, being the subsurface 1648	

geology of the computational domain dominated by carbonates (Unit B).  1649	

Beside and beyond the results obtained by analysing the influence of detailed geological and 1650	

geophysical data, the presented modelling confirms the close to equilibrium state of the volcano, 1651	

which is the expected stress distribution induced by a feeding system directly connected to the 1652	

surface.  1653	

The complete emptying the upper conduit and part of the shallow magma chamber, as occasionally 1654	

occurred in the past, originating sub-Plinian and Plinian eruptions, would result in the restoration of 1655	

the stress arch, which is still a stable stress configuration. Descends that large magnitude, caldera 1656	

forming eruptions are possible only if the bigger deep magma chamber is also involved and 1657	

significantly emptied during an eruption.  1658	

 1659	

Appendices  1660	

 1661	

Appendix 1 1662	

E-W gravitational modelling of the CVC domain (stratified lithology) for all configurations 1663	
investigated. The magnitude and pattern of the principal stress account for a) single magma chamber 1664	
model (number of nodes: 4426); b) dual magma chamber model (number of nodes: 4161); c) dual 1665	
magma chamber with conduits model (number of nodes: 3737). The dimension of the deep magma 1666	
chamber: 2a = 14 km and 2b = 3.6 km at 15 km of depth; shallow magma chamber: 2a = 3.5 km and 1667	

2b = 2 km at 6 km. ΔPe  and ΔPo are equal to 20 MPa for the deep chamber, and 5 MPa for the 1668	
shallower. Black dotted lines highlight the passage from different stress values. Note that the scales 1669	
of stress values are different for each panel in order to maximise the simulation details. 1670	

 1671	
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Appendix 2 1696	

E-W gravitational modelling of the CVC domain (stratified lithology) considering an extensional far-1697	
field of 5 MPa for all configurations investigated. The magnitude and pattern of the principal stress 1698	
account for a) single magma chamber model (number of nodes: 4426); b) dual magma chamber 1699	
model (number of nodes: 4161); c) dual magma chamber with conduits model (number of elements: 1700	
3737).  The dimension of the deep magma chamber: 2a = 14 km and 2b = 3.6 km at 15 km of depth; 1701	

shallow magma chamber: 2a = 3.5 km and 2b = 2 km at 6 km. ΔPe  and ΔPo are equal to 20 MPa for 1702	
the deep chamber, and 5 MPa for the shallower. Black dotted lines highlight the passage from 1703	
different stress values. The red arrows indicate the direction of the applied far field stress. Note that 1704	
the scales of stress values are different for each panel in order to maximise the simulation details. 1705	
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Table 1 - Element types used in LISA analysis considering the final conduit feeding system 2194	
configuration – Fig.1d, panel vi)    2195	

E-W cross-section (a-a’)               Element Type             Elements            Nodes 2196	
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FC Fuego de Colima               quad4-tri3                       372                 384 2197	

VD Volcanic Deposits             quad4-tri3                       245                 273 2198	

GF Graben Fill                        quad4-tri3                       456                 338       2199	

B Basament                          quad4-tri3                       3088             2907 2200	

CG   Colima graben         quad4-tri3                       48                    71     2201	

Total Elements: 4209 2202	

 
     

 

Table 2 - Rock mass and mechanical properties of the geological Units used in the finite-element 2203	
model (from Norini et al., 2010, 2019). 2204	
	2205	

Acronym Model Unit Rock Type Density 
(kg/m3) 

Young’s 
Modulus 

(MPa) 

Poisson’s 
ratio ν 

FC Fuego de Colima Andesitic lavas and pyroclastic 
deposits forming the 
Paleofuego-Fuego de Colima 
volcano 

2242 1.4 ✕ 10
3

 0.30 

VD Volcaniclastic 
deposits 

Pyroclastic and epiclastic 
deposits covering the southern 
flank of the CVC 

1539 1.7  ✕ 10
3

 0.32 

GF Graben Fill Quaternary alluvial, colluvial, 
lacustrine deposits filling the 
graben 

1834 1.5 ✕ 10
3

 0.35 

B Basement Cretaceous limestones and 
intrusive rocks forming the 
bed-rock underlying the CVC 

2650 3.6  ✕10
4

 0.30 

 2206	

 2207	

Figures Captions 2208	

 2209	

Fig. 1 (a) Morphotectonic map of the Colima Volcanic Complex (NC=Nevado de Colima volcano; 2210	
FC=Fuego de Colima volcano) and Colima Rift with the main tectonic and volcano-tectonic 2211	
structures (NCG =Northen Colima Graben; CCG= Central Colima Graben, from Norini et al., 2019). 2212	
In the inset, the location of the Colima Volcanic Complex (CVC) within the Trans-Mexican Volcanic 2213	
Belt (TMVB) is shown in the frame of the subduction-type geodynamic setting of Central America 2214	
(from Davìla et al., 2019); (b) general sketch of the geometrical configurations used in LISA; (c) 2215	
example of mesh of the investigated area for the dual magma chamber model with conduits (case v in 2216	
panel (b), considering zero-displacement along the bottom and left and right sides. Note that for case 2217	
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(vi) in panel (b) the zero-displacement is removed from the lateral sides; (d) sketch of the Fuego de 2218	
Colima feeding system composed of a 15 km-deep magma chamber connected to surface via a 6 km-2219	

deep magma chamber and dykes. ΔPchs and ΔPchd indicate either excess or over pressure 2220	

(depending on the model used) in the shallow and deep chambers, respectively (modified from 2221	
Massaro et al., 2019). 2222	

 2223	

Fig. 2 Results of the sensitivity analysis carried out on the Young Modulus variations within each 2224	
rock layer of the domain considering different configurations (stratified substratum model – nodes: 2225	
4426; single magma chamber model – nodes: 4426; dual magma chamber model – nodes: 4161; dual 2226	
magma chamber with conduits model – nodes: 3737). For each geological Unit (B, FC, GF, VD), the 2227	

relative global variation in L2 (%) is provided for σ1 and σ3. The x(-) and x(+) vectors indicate the 2228	
Young’s Modulus variation by an order of magnitude with respect to xref vector, containing the stress 2229	
values calculated by using the values of material’s properties  indicated in Table 2. 2230	

 2231	

Fig. 3 Spatial variation (%) of the L2 norm’s components at varying Young Modulus for selected 2232	
cases of Units B and VD: (a) Unit B in the stratified substratum model (nodes: 4426); (b) Unit B in 2233	
the single magma chamber model (nodes: 4426); (c) Unit B in the dual magma chamber model 2234	
(nodes: 4161); (d) Unit VD in the dual magma chamber with conduits model (nodes: 3737). Symbols 2235	
x(-) and x(+) have the same meaning of Figure 2.  2236	
  2237	
Fig. 4  E-W gravitational modelling of the CVC domain. The scale of the mesh is expressed in Unit 2238	
of Design (1 UD = 1 km). The domain extends 60 km along the x-axis, and 30 km along the z-axis. 2239	
The number of nodes used in the mesh is set to 4426. The magnitude and pattern of the principal 2240	
stresses (dotted black lines) are reported for (a) the homogeneous stratigraphy (Unit FC =andesitic 2241	
lavas and pyroclastic deposits) and for (b) the not homogeneous stratigraphy (Unit FC; Unit B= 2242	
Cretaceous limestones and intrusive rocks forming the bed-rock underlying the CVC; Unit GF= 2243	
Quaternary alluvial, colluvial, and lacustrine deposits filling the graben; Unit VD= volcaniclastic 2244	
deposits covering the southern flank of the CVC). The blue line contours the unperturbed part of the 2245	
domain, which extends ca. 30 km horizontally and ca. 25 km vertically. Note that the scale of stress 2246	
values is the same for the all simulations.  2247	
 2248	
 2249	
Fig. 5 E-W gravitational modelling of the CVC domain with a not homogeneous stratigraphy. The 2250	
magnitude and pattern of the principal stresses are reported for (a) the single magma chamber model 2251	
represented by a magma chamber (2a = 14 km and 2b = 3.6 km) at 15 km of depth, and (b) the dual 2252	
magma chamber model composed of a 15 km-deep magma chamber (2a = 14 km and 2b = 3.6 km) 2253	
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and a shallow 6 km-deep one (2a = 3.5 km and 2b = 2 km). The magma chambers are not connected. 2257	

ΔPo is set to 10 and 5 MPa for the 15 km-deep and 6 km-deep magma chambers, respectively. The 2258	
number of nodes is set to 4426 and 4161 for the single and dual magma chamber models, respectively. 2259	
Black dotted lines highlight the passage from different stress values. The red dotted line in panel (b-i) 2260	
indicates the formation of the stress arch. Note that the scale of stress values are different for each 2261	
panel in order to maximise the simulation details.  2262	

 2263	

Fig. 6 E-W gravitational modelling of the CVC domain with a not homogeneous stratigraphy 2264	
accounted for a dual magma chamber system connected by dykes via surface (deep magma chamber, 2265	
2a = 14 km and 2b = 3.6 km at 15 km of depth; shallow magma chamber, 2a = 3.5 km and 2b = 2 km 2266	
at 6 km od depth). The magnitude and pattern of the principal stresses are shown. The number of 2267	

nodes used is set to 3737. ΔPo is set to 10 and 5 MPa for the 15 km-deep and 6 km-deep magma 2268	
chambers, respectively. The black dotted lines in panel (ii) highlight the passage from different stress 2269	
values. Note that the scale of stress values are different for each panel in order to maximise the 2270	
simulation details.  2271	

 2272	

Fig. 7 E-W gravitational modelling of the CVC domain with a not homogeneous stratigraphy 2273	
considering the extensional field stress. The magnitude and pattern of the principal stresses are shown 2274	
for the single magma chamber model (panels i-ii), the dual magma chamber model (panels iii-iv), the 2275	
dual magma chamber with conduits model (panels v-vi-vii-viii). Note that in panel vii-viii the faults 2276	
bordering the CG are shown. For all configurations an extensive far-field stress of 5 MPa is applied at 2277	
the lateral boundaries of the domain. In panels vii-viii the additional effect of the local extensive field 2278	

is simulated using a reduced values of material’s properties (Table 2). ΔPo is set to 10 and 5 MPa for 2279	
the 15 km-deep and 6 km-deep magma chambers, respectively. Black dotted lines highlight the 2280	
passage from different stress values. The red arrows indicate the direction of the applied far field 2281	
stress. Note that the scale of stress values are different for each panel in order to maximise the 2282	
simulation details. 2283	
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Figure 4  2315	

3.0

2.5

2.0

1.5

1.0

0.5

0.0

(d)

Unit VD σ3 x+

3.5

2.2

1.9

1.5

1.1

0.7

0.4

0.0

(c)

Unit B σ1 x-

2.6

1.2

1.0

0.8

0.6

0.4

0.2

0.0

(b)

Unit B σ3 x-

1.4

20 25 30 35 40 45 50 55

30

25

20

15

10

5

0

1.7

1.4

1.1

0.8

0.6

0.3

0.0

(a)

Unit B σ3 x-

2.0

30

25

20

15

10

5

0

30

25

20

15

10

5

0

30

25

20

15

10

5

0

20 25 30 35 40 45 50 55

20 25 30 35 40 45 50 55 20 25 30 35 40 45 50 55



	 35	

 2316	

 2317	

 2318	

 2319	

Figure 5 2320	

Principal Stress σ1
(iii)

FC

Unit B
Unit FC
Unit VD
Unit GF

1 UD = 1 km

(i) (ii)

(iv)

Principal Stress σ3
-8.0
-7.3
-6.6
-5.9
-5.2
-4.5
-3.8
-3.1
-2.4
-1.7
-1.0
-0.3
0.4
1.1
1.8
2.5
3.2
3.9
4.6
5.3

σ (Pax108) Principal Stress σ3

Principal Stress σ1

NothomogeneousstratigraphyHomogeneousstratigraphy

FC

Unit FC

1 UD = 1 km

(a) (b)



	 36	

 2321	

 2322	

 2323	

 2324	

Figure 6 2325	
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