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Abstract  17	

In the last decades numerical methods have become very popular tools in volcanological studies, 18	

since capable of considering many relevant parameters in their calculations, such as the presence of 19	

multiple reservoirs, topography, and heterogeneous distribution of the host rock mechanical 20	

properties. Although the widespread availability of geodetic data is keep growing, the influence of 21	

geological data on the numerical simulations is still poorly considered. In this work a 2D Finite 22	

Element Modelling is provided by using the commercial Linear Static Analysis (LISA) software, in 23	

order to investigate the stress field conditions occurring around the Colima Volcanic Complex (CVC, 24	

Mexico) at increasing the details of geological and geophysical input data. By integrating the 25	

published geophysical, volcanological and petrological data, we provide a first-order domain of the 26	

CVC feeding system, considering either one or two magma chambers connected to the surface via 27	

dykes or isolated (not connected) in the elastic host rocks. We test the methodology by using a 28	

gravitational modelling with different geometrical configurations and constraints (i.e. magma 29	

chamber dimensions, depth, overpressure). Our results suggest that an appropriate set of geological 30	

data is of pivotal importance for improving the mesh generation procedures and the degree of 31	

accuracy of numerical outputs, aimed to more reliable physics-based representations of the natural 32	

systems.   33	

 34	
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1 Introduction  35	

Large-scale deformation of geological systems, characterized by abrupt spatial variations of material 36	

properties, was increasingly investigated in recent years through numerical modelling (Xing et al., 37	

2003; Simms and Garven 2004; Manconi et al., 2007; Long and Grosfils 2009; Currenti et al., 2010; 38	

Currenti and Williams et al., 2014; Zehner et al., 2015). A large number of semi-analytical and 39	

numerical solutions have been proposed, taking into account the static elastic deformation in a multi-40	

layered half-space (Dieterich and Decker, 1975; Bonafede et al., 2002; Wang et al., 2003; 41	

Gudmundsson and Brenner, 2004; Zhao et al., 2004; Pritchard and Simons, 2004; Gottsmann et al., 42	

2006; Geyer and Gottsmann, 2010; Zhong et al., 2019). Following the successful application in 43	

mechanical engineering, the use of Finite Element Method (FEM) has been extensively introduced in 44	

Earth Sciences in order to investigate the effects of topography, lithologic heterogeneities, tectonic 45	

stresses and the gravity field on the Earth’s surface deformation (Cailleau et al., 2003; 2005; 46	

Buchmann and Conolly 2007; Manconi et al., 2009; Pepe et al., 2010; Masterlak et al., 2012; Fujita et 47	

al., 2013), including volcanoes (Fujita et al., 2013; Carcho and Sastre, 2014; Bunney 2014; Ronchin 48	

et al., 2015; Hickey et al., 2015; Cabaniss et al., 2019; Rivalta et al., 2019). In FEM-based models, 49	

the geometry of the Earth’s subsurface is performed either by a boundary representation or by 50	

discrete cells (Zehner et al., 2015). Boundary representations describe the spatial extent of a geo-51	

object only by its boundaries (Weiler, 1988; Mallet, 1989; Duvinage et al., 1999; Zehner et al., 2015), 52	

completely confined and partitioned by surfaces without holes and overlaps. These surfaces can be 53	

described as a triangulated surface or by a function like a spline (Mallet, 2002).  54	

The use of FEM in volcanic areas has several examples, which vary from the influence of layered 55	

materials on the surface deformation process during volcanic inflation (e.g. Darwin volcano, 56	

Galapagos Islands; Manconi et al., 2007) to processes affecting chamber rupture (e.g. Grosfils 2007; 57	

Long and Grosfils, 2009). The local stress around a volcanic feeding system strongly depends on the 58	

magma chamber geometry and on the mechanical properties of the layered host rock around it (Martì 59	

and Geyer, 2009). For instance, limestones, lava flows, welded pyroclastic units and intrusions can be 60	

very stiff (high Young’s modulus), whereas young and non-welded pyroclastic units may be very soft 61	

(low Young’s modulus). Consequently, the local stress may change abruptly from one layer to 62	

another (Gudmundsson, 2006). Irrespective of the scope of the numerical investigation, the 63	
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importance of applying accurate rheological constraints to FEM modelling was discussed in many 64	

studies (Folch et al., 2000; Newman et al., 2001; Fernandez et al., 2001; Currenti et al., 2010; Geshi 65	

et al., 2012; Masterlack et al., 2013). This implies that geology of the volcanic area needs to be 66	

considered as more accurate as possible. However, few investigations have been carried out to assess 67	

the influence of the amount and quality of geological data into FEM computations. To bridge this gap, 68	

in this work we use the Linear Static Analysis (LISA) software (version 8.0; www.lisafea.com) to 69	

study the subsurface stress behaviour in an elastic domain at Colima Volcanic Complex (CVC, 70	

Mexico) when improving the description of geological constraints. In other words, we propose 71	

different results of the FEM model by using the available published data of the inferred CVC feeding 72	

system structure, in order to assess how the addition of more detailed geological and volcanological 73	

constraints may and at what extent affect the model outputs.   74	

The CVC area is a good candidate for testing the response of FEM software to different geological 75	

conditions, being constituted by a large volcanic complex (significant topographic load; Lungarini et 76	

al., 2005), a well-defined feeding system inferred from geophysical and petrological data (e.g. Spica 77	

et al., 2017; Massaro et al. 2018; 2019), and growth within a tectonic graben (bordered by normal 78	

faults) infilled by volcaniclastic material (variability of rock mechanical characteristics; Norini et al., 79	

2010,  2019).   80	

It is worth noting that the elastic models clearly cannot replicate the full complexity of deformation 81	

and stress behaviour in volcanic areas if approximations in FEM modelling will not be tested and 82	

understood (Grosfils, 2007). Thus, the presented study proposes a contribution to a more proper use 83	

of FEM models for assessing surface deformation and failure location patterns in volcanic areas. 84	

Beside and beyond the evaluation of geological details on FEM outputs we also obtained a picture of 85	

the large-scale stress distribution in the CVC subsurface. 86	

Considering the limitations of the results, it is a matter of fact that in volcanic regions many factors 87	

make the rocks deviate from pure elastic behaviour and may strongly affect the estimate of source 88	

overpressure (Currenti and Williams, 2014). However, although arguably limited in their ability to 89	

simulate the complexity characteristics of volcanic areas, elastic models are nonetheless widely used 90	

to describe the response of magma reservoir pressure variations and to calibrate the development of 91	

more advanced models that enhance our simulation capacities (Grosfils, 2007; Trasatti et al., 2008). 92	
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2 The Colima Volcanic Complex (Mexico) 93	

2.1 Geological framework 94	

The Pleistocene-Holocene Colima Volcanic Complex (CVC) is one of the most prominent volcanic 95	

edifices within the Trans-Mexican Volcanic Belt (TMVB) (Macías et al., 2006; Capra et al., 2016; 96	

Norini et al., 2019). In this area, the Rivera microplate and the Cocos plate subduct beneath the North 97	

America plate along the Middle American Trench, producing great deformation and fragmentation of 98	

the continental plate (Stock and Lee, 1994), and forming a triple junction that delimits the tectonic 99	

units known as the Jalisco Block (JB) and the Michoacán Block (MB) (Luhr et al., 1985; Allan, 100	

1986; Rosas-Elguera et al., 1996; Rosas-Elguera et al., 1997; Ferrari and Rosas- Elguera, 1999; 101	

Rosas-Elguera et al., 2003; Frey et al., 2007). The three rifts of this system are the Tepic-Zacoalco 102	

(TZR), the Chapala-Tula (CTR), and the Colima Rift (CR) where the CVC is emplaced (Allan 1986; 103	

Escudero and Bandy, 2017). The still active NS trending Colima Rift (CR) was formed during an 104	

extensional phase occurred after the Late Cretaceous–Paleogene compressive and transpressive phase 105	

(Allan, 1986; Serpa et al., 1992; Bandy et al., 1995; Cortés et al., 2010). The rifting phase deformed 106	

Cretaceous marine limestones, Jurassic–Tertiary metamorphosed clastic and volcaniclastic sediments, 107	

Cretaceous–Tertiary intrusive rocks and Tertiary-Quaternary volcanic deposits along sub-vertical 108	

crustal faults. While opening, CR was gradually filled with Pliocene–Quaternary lacustrine sediments, 109	

alluvium and colluvium (e.g. Allan, 1986; Allan et al., 1991; Norini et al., 2010). The geometry, 110	

kinematics and dynamics of the CR have been studied on the basis of field, seismic, and geodetic 111	

data, mainly collected in its northern and central sectors (Fig. 1). 112	

The amount of vertical displacement of the northern and central sectors is estimated to be at least 2.5 113	

km by adding the topographic relief of the bounding fault scarps (1.5–1.6 km) to the calculated 114	

sediment depth (Allan, 1985; Serpa et al., 1992). Field data and focal mechanism solutions are 115	

consistent with a direction of opening of the northern and central sectors oriented from E-W to NW-116	

SE, with a mainly normal and minor right-lateral displacements of the bounding faults (Barrier et al., 117	

1990; Suárez et al., 1994; Rosas-Elguera et al., 1996; Garduño-Monroy et al., 1998; Norini et al., 118	

2010; 2019). In contrast to field and seismic evidence of long-term slightly dextral oblique extension, 119	

recent GPS geodetic measurements suggest a possible sinistral oblique extension of the CR (Selvans 120	

et al., 2011). In both cases, the stress regime is mainly extensional, with an approximately E-W 121	
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orientation of the minimum horizontal stress in the basement of the CVC (Barrier et al., 1990; Suárez 122	

et al., 1994; Rosas-Elguera et al., 1996; Selvans et al., 2011; Norini et al., 2010, 2019).  123	

The CVC stands within the central sector of the CR, on top of the Cretaceous limestones, Late 124	

Miocene-Pleistocene volcanic rocks, and Pliocene-Holocene lacustrine sediments, alluvium, and 125	

colluvium (Allan, 1985, 1986; Allan et al., 1991; Cortes et al., 2005; Norini et al., 2010). The 126	

volcanic complex is affected and displaced by the N-S/NNE-SSW-trending recent-active crustal 127	

faults of the CR, controlling the geometry and location of the volcano feeding system. Indeed, the 128	

CVC was formed by three andesitic stratovolcanoes aligned parallel to the CR bounding faults: the 129	

northern inactive Cantaro volcano (2900 m asl), following by the inactive Nevado de Colima (4255 130	

m a.s.l.) and, in the southern part, the youngest and active Volcán de Colima (3763 m a.s.l.) (Norini 131	

et al., 2019, and reference therein). 132	

 133	

2.2 Eruptive activity  134	

The eruptive history of the CVC started in the northeast area with the formation of Cantaro volcano 135	

at ca. 1-1.5 Ma. The volcanic activity of the Nevado de Colima started at ca. 0.53 Ma. It is composed 136	

of voluminous andesitic lava domes and flows and pyroclastic deposits associated with caldera 137	

forming eruptions and numerous partial sector collapses (Robin et al., 1987; Roverato et al., 2011; 138	

Roverato and Capra, 2013; Cortès et al., 2019). The youngest Volcán de Colima, now considered one 139	

of the most active volcanoes of the world, consists of the Paleofuego edifice that suffered several 140	

sector collapses, with the formation of a horseshoe-shaped depression where the new active cone 141	

(also known Volcán de Fuego) grew up, through Merapi and Soufrière type dome collapses, 142	

extrusion of lava flows, Vulcanian and occasionally sub-Plinian explosive eruptions (Saucedo et al., 143	

2010; Massaro et al., 2018, 2019). The activity of both Nevado and Volcán de Colima volcanoes 144	

included several sector collapses, occurred frequently in the Upper Pleistocene and Holocene, 145	

repeatedly devastating the floor of the Colima Rift down to the Pacific Ocean (Robin et al., 1987; 146	

Luhr and Prestegaard, 1988; Stoopes and Sheridan, 1992; Komorowski et al., 1997; Capra and 147	

Macias, 2002; Cortes et al., 2005, 2019; Roverato et al., 2011). 148	

 149	
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2.3 The CVC plumbing system 150	

Spica et al. (2017) indicate a 15 km-deep low velocity body (LVB) as the CVC deep magma 151	

reservoir. Its horizontal extension seems to be delimited by the borders of the CR, suggesting a 152	

structural control of the normal fault system on it (Spica et al., 2014). The LVB has an extent of ca. 153	

55 × 30 km in the N-S and E-W directions respectively, showing a mean thickness < 8 km. Escudero 154	

and Bandy (2017) obtained a higher resolution tomographic image of the subsurface in the CVC area, 155	

showing that the most active magma generation zone is presently under the Fuego de Colima edifice. 156	

Here, the ambient seismic noise tomographic study proposed by Spica et al. (2014) confirmed the 157	

presence of a shallow magma chamber above ca. 7 km depth, as also demonstrated by petrological 158	

studies (Medina-Martinez et al., 1996; Luhr, 2002; Zobin et al., 2002; López-Loera et al., 2011; 159	

Reubi et al., 2013; 2019; Macìas et al., 2017). Cabrera-Gutiérrez and Espíndola (2010) suggested the 160	

shallow active magma storage has a volume of ca. 30 km3. The shallow magma chamber is 161	

connected to the surface by a dyke/conduit system, whose path is facilitated by the presence of the 162	

CR fault zone, which provides a natural pathway for fluids (e.g., Allan, 1986; Norini et al., 2010, 163	

2019). The arrangement of dykes and the alignment of volcanic centres of CVC suggest that the 164	

dykes swarm draining the magma chambers developed along the NNE-SSW-trending, steep, 165	

eastward dipping normal fault exposed on the northern CVC flank (Fig. 1) (Norini et al., 2010, 2019).  166	

Taking into account the previous information, Massaro et al. (2018) provided a first-order 167	

geometrical reconstruction of the Fuego de Colima feeding system during the 1913 sub-Plinian 168	

eruption, by using volcanological data (Saucedo et al., 2010, 2011; Bonasia et al., 2011) as input and 169	

constraints for numerical simulations. Results showed good matches for a hybrid configuration of the 170	

shallow conduit-feeding system (i.e., dyke developing into a shallower cylindrical conduit). The best-171	

fit dyke has width in the range between 200 and 2000 m and thickness of ca. 40 m, with the 172	

cylindrical conduit diameter similar to the dyke thickness. The shallow magma chamber top was set 173	

at 6 km of depth, and dyke-cylinder transition at 500 m below the summit, as inferred from 174	

geophysical data (Salzer et al., 2014; Aràmbula et al., 2018).  175	

 176	

https://doi.org/10.5194/se-2020-82
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



	 7 

3 Methods 177	

In this study, we used the commercial 8.0 version of LISA software (www.lisafea.com). LISA is a 178	

general-purpose Finite Element Analysis (FEA) software developed in the ‘90s based on the 179	

formulations proposed by Rao (1989). Since then, formulations from many other sources have been 180	

also integrated (Bathe, 1990; Michaeli, 1991; Schwarz, 1991; Babuska et al., 1995). Despite FEA 181	

was originally used for structural analysis (Rao, 1989; 2013), it is also able to successfully predict the 182	

stress-strain behaviour of rock masses accounting for elastic models, in particular the deformation 183	

and failure mechanisms even in layered rock masses (Gabrieli et al., 2015).  184	

Simplifying techniques in structural FEA can give valuable insight into local stresses more rapidly 185	

and efficiently than a full 3D model. Here we considered a 2D model throughout a complex structure, 186	

in order to investigate the stress behaviour induced in the host rocks in response to the increasing 187	

detail of geological data used to constrain the model.  188	

3.3 Modelling approach 189	

Taking into account the works of Norini et al. (2010, 2019), we simulated the deformation of the 190	

CVC plumbing system considering an E-W cross section, which is parallel to the extension 191	

associated to the active Colima Rift (Norini et al., 2010), shown in Figure 1a (a-a’). 192	

Since the extensions of the CVC magma chambers in the NNE-SSW direction are typically much 193	

longer than the dimensions of the E-W cross section (Spica et al., 2017), 2D solutions of either 194	

numerical or analytical models describing E-W elongated magma chambers in the crust can be 195	

legitimately adopted (Jaeger et al., 2007; Costa et al., 2011). A topographic profile and 2D plane 196	

along the chosen E-W cross-section of the CVC area was obtained in ESRI ArcGIS from a Digital 197	

Elevation Model (DEM; resolution 50 m; INEGI website). This cross section was imported into 198	

Autodesk Auto-Cad R13 and approximated to a third-degree spline. Finally, the IGES file was 199	

imported into LISA, where the mesh discretization was performed. The domain was discretized by 200	

three-noded triangular finite elements (Table 1).  201	

The volcanic area domain extends 60 km horizontally and 30 km below the surface set in an x-z 202	

Cartesian Coordinate System. Zero normal displacements are assigned at the bottom and the lateral 203	

boundaries of the domain, while the upper boundary representing the ground surface is stress free.  204	
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FEM of geological structures requires accurate discretization of the computational domain such that 205	

geological units are represented correctly. Zehner et al. (2015) reported that the unstructured 206	

tetrahedral meshes on a complex geological model has to fulfil the following requirements: i) 207	

sufficient mesh quality: the tetrahedrons should not be too acute-angled, since numerical instabilities 208	

can occur, ii) incorporation of geometry for defining boundary conditions and constraints, iii) local 209	

adaption, which is a refinement of the mesh in the vicinity of physical sources in order to avoid 210	

numerical errors during the simulation. Considering these requirements, in this work we adopt as the 211	

best discretization a mesh with 4660 elements for the E-W cross-section (Table 1). The size of finite 212	

elements was refined in the regions with higher gradients, especially near the contours of the 213	

magmatic feeding systems. 214	

In our simulations, the geometry of the geological units is referred to the model in Norini et al. (2010, 215	

2019). Magma chambers and dykes are considered as finite-size bodies in an elastic crustal segment, 216	

acting as fluid-filled holes. This approach has been extensively used in several analytical and 217	

numerical models that treated magma reservoirs as internally pressurized ellipsoidal cavities within 218	

an elastic half space, in order to gain insight into the behaviour of magma plumbing systems (Pinel 219	

and Jaupart, 2004; Gudmundsson, 2006; Grosfils, 2007; Andrew and Gudmundsson, 2008; 220	

Hautmann et al., 2013; Currenti and Williams, 2014; Zhong et al., 2019).  221	

The geometrical configuration set for the CVC feeding system (i.e. the shape and dimensions of the 222	

magmatic chambers) derives from literature (Spica et al., 2014, 2017; Alvarez and Yutzis, 2015, 223	

Massaro et al., 2018, 2019). The overpressure in magma chambers may be produced by a variety of 224	

processes, including fractional crystallization, volatile exsolution and magma recharge, leading to 225	

deviatoric stresses in the country rock that may be tens of MPa in magnitude (Jellinek and DePaolo, 226	

2003; Karlstrom et al., 2010).  227	

Previously published studies indicate that differences between and problems with elastic models 228	

derive principally from the key role played by gravity. Gravity plays a first order role on bedrock 229	

failure conditions (Gerbault, 2012), on the geometry of magma propagation with respect to an edifice 230	

load (Corbi et al., 2015) and on buoyancy contrasts driving magma upward (Lister and Kerr, 1991; 231	

Watanabe et al., 2002). However, in a wide variety of simulations of natural phenomena the 232	
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gravitational effects are often incorporated either incorrectly or incompletely (Grosfils, 2007).  Some 233	

authors argued on whether it is appropriate or not to account for the gravity body force in numerical 234	

models of volcanic inflation (Currenti and Williams, 2014; Grosfils et al., 2015). When the 235	

gravitational loading is not included in the model, the volcanic deformation results from a change 236	

with respect to a stage previously at equilibrium (Gerbault et al. 2018). 237	

In this work, we carried out simulations considering the effect of the gravitational loading. Gravity in 238	

the host rock (z ≤ 0 m) is implemented via body forces and the application of a lithostatic stress.  239	

 240	

4 Geological data 241	

In this work, we used geological information available in literature as input data, in order to estimate 242	

the stress variations around the CVC magmatic plumbing system. Here we briefly describe the main 243	

geological features taken into account in LISA simulations. 244	

4.1 Stratigraphy  245	

Five units forming the CVC system were defined from the available geological data (Table 2): i) 246	

Basement (Unit B): cretaceous limestones and intrusive rocks forming the bed-rock underlying the 247	

CVC; ii) Graben fill deposits (Unit GF): Quaternary alluvial, colluvial, and lacustrine deposits filling 248	

the graben; iii) Fuego de Colima deposits (Unit FC): andesitic lavas and pyroclastic deposits forming 249	

the Paleofuego-Fuego de Colima edifices; and iv) Volcaniclastic deposits (Unit VD): volcaniclastic 250	

deposits covering the southern flank of the CVC (e.g. Cortés et al. 2010; Norini et al., 2010, 2019). 251	

Being the area interested by FEM extended down to 30 km, it is evident how Unit B is dominant with 252	

respect to the others, which occupy only few km in the upper part of the simulated domain. We 253	

assumed constant mechanical characteristics within each Unit (Table 2). In particular, Unit B was 254	

considered mechanically homogeneous with elastic properties of a carbonate, due to the lack more 255	

detailed information of deeper lithologies (Norini et al., 2019).   256	

Deformation within the brittle upper crust is described by elastic material behaviour. For each Unit 257	

we fixed typical rock mass properties, density (ρ), Young's Modulus (E) and Poisson's Ratio (ν) 258	

(Table 2). The rock masses are considered dry, in order (eventual) pore pressure to be neglected. 259	
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Only for Unit GF a higher value for the Poisson's Ratio was used close to the surface in order to 260	

mimic high water content in the graben sediments. The maximum thickness of the graben fill (about 261	

1 km) was assumed from the literature (Allan, 1985; Serpa et al., 1992; Norini et al., 2010, 2019). For 262	

Units B and GF rock mass proprieties were derived from Hoek and Brown (1997) and Marinos and 263	

Hoek (2000), while for volcanic materials (units FC and VD; Table 2) were estimated according to 264	

the approach proposed by Del Potro and Hürlimann (2008). This information allowed Norini et al. 265	

(2019) to derive the equivalent Mohr-Coulomb properties for the stress ranges expected in the 266	

different sectors of the CVC.  267	

 268	

4.2 The geometry of the plumbing system 269	

The geometry of the E-W cross-section of the CVC plumbing system was modelled taking into 270	

account the previous subsurface information described in Section 4.1. In our 2D model, we assumed 271	

the CVC composed of a two magma chambers connected by dykes and to the surface by a conduit. 272	

The shape of the magma chambers and dykes are represented by elliptical cross-sections with the 273	

major (2a) and minor (2b) axes over which magmatic overpressure (ΔP) acts.  274	

Generally, the magma chambers have a sill-like shape that is often imaged in seismic studies of 275	

volcanoes and rift zones (Macdonald, 1982; Sinton and Detrick, 1992; Mutter et al., 1995; MacLeod 276	

and Yaouancq, 2000; Singh et al., 2006; Canales et al., 2009). Most of them are not totally molten 277	

but rather a mixture of melt and crystal mush (i.e. Parfitt and Wilson, 2008). Various estimates have 278	

been made to infer the actual amount of melt in a magmatic body, showing that it is only ca. 10% of 279	

the total chamber volume (Gudmundsson et al., 2012 and reference therein).  280	

Spica et al. (2017) described a 15 km-deep low velocity body (LVB) with its top at ca. 15 km of 281	

depth and with an estimated volume of ca. 7000 km3, representing the deep magmatic reservoir of 282	

CVC. Assuming the melt as 10%, the deep magma chamber volume would be ca. 700 km3. 283	

Simplifying this volume in an elliptical sill-like geometry, the dimensions (i.e. 2a, 2b, 2c axes) have 284	

to be scaled according to those of LVB (55 × 30 × 8 km; Spica et al., 2017). We therefore fixed 2a = 285	

14 km, 2b = 3.6 km, 2c = 26 km as dimensions of the deep magma chamber, being 2c elongated in 286	
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NW-SE direction. 287	

For the shallow part of the feeding system, we have no detailed geophysical constraints. However, 288	

Massaro et al. (2019) reproduced through numerical modelling the nonlinear cyclic eruptive activity 289	

at Fuego de Colima in the last 20 years, using a shallow magma chamber volume in the range of 20-290	

50 km3, also according to the estimation of Cabrera-Gutiérrez and Espindola (2010). Assuming a 291	

volume of 30 km3, we fixed 2a = 3.5 km, 2b =2 km, 2c = 8 km as dimensions of the shallow magma 292	

chamber.  293	

Numerous theoretical and field studies have established that host rock stresses dictate the magma 294	

pathways (e.g. Maccaferri et al., 2011; Gudmundsson 2011). During ascent to the surface, the dykes 295	

align themselves with the most energy-efficient orientation, which is roughly perpendicular to the 296	

least compressive principal stress axis σ3 (e.g. Gonnermann and Taisne, 2015; Rivalta et al., 2019). 297	

This behaviour, however, can be modulated in the presence of significant variations in fracture 298	

toughness of the surrounding rock due to stratification (Maccaferri et al., 2010) or to old and inactive 299	

fracture systems (Norini et al., 2019). Although for oblate magma chambers the propagation of dykes 300	

is most probable from the tip areas, in our simulations the orientation of dykes is assumed vertical, 301	

because of the preferential pathways represented by the CR fault planes (Spica et al., 2017).  302	

Although, for decades, magma conduits were modelled as cylinders, because of easiness of their 303	

mathematical treatment, geophysical data and field observations highlight the importance of dykes in 304	

magma transport and hence the need to adopt more realistic geometries (Costa et al., 2009; Hautmann 305	

et al., 2013; Tibaldi, 2015). It is important to stress that although all cavities/inclusions in a medium 306	

modify the local stress field and concentrate stresses, the induced perturbation depends mainly on the 307	

geometry of the cavity/inclusion (Savin, 1961; Boresi and Sidebottom, 1985; Tan, 1994; Saada, 308	

2009). We set the dimensions of feeder dykes in agreement with Massaro et al. (2018): deep dyke 2ad 309	

= 2 km; shallow dyke 2a varies from 1 km at bottom to 500 m in the upper part of the volcano; width 310	

of both deep and shallow dyke 2bd = 2b = 100 m.  311	

It is worth noting that it is not the aim of this study to provide the conditions for the magma chamber 312	

rupture, being LISA accounting only for the elastic regime. For these reasons, the selected magma 313	

overpressures (ΔP) have to be less than the tensile strength of the rocks. We therefore fixed ΔP at 314	
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10 MPa and 20 MPa for the 15 km-deep chamber, and 5 MPa for the 6 km-deep one. For the 315	

modelling of the dyke and conduit the magmatic overpressure is fixed at 10 MPa in the deeper dyke 316	

and 5 MPa in the shallower dyke, except for the upper 500 m of the shallower dyke where 317	

overpressure is set at 0.4 MPa. 318	

 319	

 320	

5 Results  321	

The first part of this section is focused on sensitivity analysis of Young modulus variation, aimed to 322	

quantify the numerical effects of approximation of this important rock property on FEM outputs.  323	

The second part of this section describes the model when adding complexity to the input 324	

geological/geophysical data. 325	

Considering the E-W cross-section (a-a’; Fig. 1a), we provided six domain configurations with 326	

increasing geological complexity: i) “homogeneous lithology model” in which the volcanic domain is 327	

only composed of andesite rocks; ii) “not homogeneous lithology model” where different geological 328	

units are considered; iii) “single magma chamber model” composed of a not homogeneous lithology 329	

and a 15 km-deep magma chamber; iv) “dual magma chamber model” composed of a not 330	

homogeneous and 6 km- and 15 km-deep magma chambers; v) “feeding system model” composed of 331	

not homogeneous lithology, 6 km- and 15 km-deep magma chambers connected through a deep-dyke, 332	

and a shallow conduit connecting to the surface; vi) “extensional model”, in which we added a 5 MPa 333	

horizontal extensional stress to configurations ii) – v) (Fig. 1b).  334	

 335	

5.1 Sensitivity analysis on selected input parameters 336	

In order to quantify the influence of Young Modulus selection on the model outputs, we performed a 337	

sensitivity test using the single magma chamber model as reference case. We evaluated the influence 338	

of varying the Young Modulus in each geological Units on the principal stresses σ1 and σ3. Taking 339	

into account the material properties used in the simulations (Norini et al., 2010, 2019; Table 2) as 340	

reference values, we compared the stress state of the computational domain at changing (±) Young 341	
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Modulus by an order of magnitude. This variation has been separately applied to each Unit, in order 342	

to assess what is the effect of changing material properties on model outputs. This sensitivity analysis, 343	

although incomplete, may lead to raise awareness on the selection of input data when running a FEM. 344	

The sensitivity analysis was carried out on a reduced simulation domain, in order to diminish the 345	

influence of binding effects that are present along domain borders. 346	

We used the Euclidean norm (L2) method for illustrating the results of the sensitivity analysis. The 347	

L2 norm applied on a vector space x (having components i = 1,...n) is strongly related with the 348	

Euclidean distance from its origin, and is equal to: 349	

 350	

𝑥 2 = 𝑥𝑖!!
!                  (1) 351	

 352	

In our case, the vector space x is composed of all nodes of the computational domain (Table 1). We 353	

defined xref the vector containing the results for the maximum and minimum principal stress when 354	

using the selected values of material properties (Table 1) and x(-), x(+) the vectors at varying the 355	

Young Modulus of one order of magnitude in each Unit.  356	

We evaluated the global variation of stress in the proposed geometrical configurations of the domain 357	

(i.e. not homogeneous lithology, single magma chamber, dual magma chamber, and dual magma 358	

chamber with conduits models) calculating the global relative variation in L2 as follow:  359	

 360	

L2(-) = | !𝑟𝑒𝑓!! ! |2
| !𝑟𝑒𝑓 |2

            (2) 361	

L2(+) = 
| !𝑟𝑒𝑓!! ! |2

| !𝑟𝑒𝑓 |2
          (3) 362	

 363	

In Figure 2 are reported the global relative variations in L2 of the principal maximum stress σ1 and 364	

principal minimum stress σ3 caused by the variation of Young Modulus in each Unit. All the 365	

geometric configurations show variability less than 15%, with few exceptions within Unit B that have 366	

variability over 30% (Fig. 2; Table 3). It is worth noting that the spatial distribution of the major 367	

variations seems to not significantly affect the final stress distributions, because: i) they are located 368	
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near the mesh borders (Fig. 3a, b); and, ii) when not at the mesh borders, the variations are limited to 369	

few % (Fig. 3c, d). It means that changing the Young Modulus of one order of magnitude produces 370	

variation in FEM outputs distributed over a large domain and the change affecting the single nodes is 371	

limited to few %. 372	

 373	

5.2 Homogeneous and not homogeneous lithology 374	

We carried out LISA simulations considering the effect of the gravitational loading on the 375	

homogeneous and not homogeneous lithology on FEM outputs. In Figure 4 we reported a gravity 376	

loading model for E-W cross-section of the CVC system. We first considered the homogeneous rock 377	

composition composed by only andesitic lavas (Fig. 4a) and then by carbonates (Unit B), alluvional, 378	

volcaniclastic and pyroclastic deposits (Units GF and VD; Fig. 4b). We analysed the principal 379	

stresses σ1  and σ3 acting on the system, which correspond to the maximum and minimum stress at 380	

a point, respectively.  381	

Figure 4 shows the patterns of the minimum principal stress σ3  (panels i-ii) and of the maximum 382	

principal stress σ1 (panels iii-vi), highlighting very slight differences between the homogeneous and 383	

not homogeneous lithology cases. It is very important to stress that the x-z zero displacement 384	

assigned at the bottom and the lateral boundaries of the domain created substantial artefacts in the 385	

results (i.e. curved patterns of stress). The artefacts are also evident when consideringσ3 (panels i-ii) 386	

where the boundary effect on x-axis is amplified by the presence of the upper free surface. For this 387	

reason, the only area to be considered as unperturbed is the central part of the entire domain, and it 388	

extends ca. 30 km horizontally and ca. 15 km vertically (within the blue contour in Fig. 4).  389	

 390	

5.3 Gravitational modelling using the inferred feeding system geometry 391	

We progressively add the elements of the conduit/feeding system of the CVC to FEM under the 392	

effect of the gravitational loading. Three cross-section profiles (Figs. 5, 6) show increasing 393	

complexity of the feeding system starting from a single magma chamber, passing to two magma 394	

chambers and, finally, adding the conduits.  395	

Figure 5a describes the distribution of the minimum principal stress σ3 (panel i) and the maximum 396	
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principal stress σ1 (panel ii) at magma chamber overpressure of 10 MPa, showing how the insertion 397	

of the pressurized magma chamber modifies the lithostatic stress. No significant differences in 398	

magnitude and pattern of stresses are visible when having a magma chamber overpressure of 20 MPa 399	

(Appendix 1a). 400	

The addition of the shallow magma chamber significantly changes the values and pattern of both σ3 401	

and σ1 (Fig. 5b). In particular, σ3 and σ1 stresses describe a typical inflation pattern produced by 402	

overpressurised magma chamber(s) (Anderson, 1936; Gudmundsson, 2006), producing well-defined 403	

stress arches of σ3 (red dotted lines in Figs. 5bi) and divergent strong gradients of σ1, well developed 404	

around the larger magma chamber (Fig. 5bii). Stress arch is a common phenomenon occurring in 405	

continuous materials as response to applied pressure. It has been proved to have great influences on 406	

the self-stabilization of soils or rock masses (Huang and Zhang, 2012), and may influence 407	

mechanisms of caldera collapse (Holohan et al., 2015). Very slight differences in magnitude and 408	

pattern of stresses appear when using 10 MPa (Fig. 5b) or 20 MPa of deep magma chamber 409	

overpressure (Appendix 1b).  410	

Figure 6 shows the addition of two conduits connecting the deep and shallow magma chambers. It is 411	

evident how the insertion of the conduits in the feeding system of CVC dramatically changes the 412	

stress distribution, with disappearance of the stress arch and an almost constant stress in the 413	

computational domain except than on the tips of the deep magma chamber.  414	

 415	

5.4 Addition of an extensional field stress 416	

In order to explore the influence of the extensional field stress on stress patterns caused by the 417	

presence of the CR (Fig. 1a), we run simulations applying 5 MPa of extensional stress to the FEM 418	

domain, which is a typical value for rift zones (Turcotte and Schubert, 2002; Moek et al., 2009; 419	

Maccaferri et al., 2014; Sulpizio and Massaro, 2017). This should reproduce the effect of the CR on 420	

the different feeding system configurations (Fig. 7).  421	

In the case of a single magma chamber (with 10 MPa overpressure), the addition of extensional far 422	

field stress reduces the confinement effect due to the no displacement condition imposed along the x-423	
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z directions. The effect of the extensional field stress on double magma chamber configuration (with 424	

10 MPa overpressure in the deep chamber and 5 MPa in the shallower one) produces slight changes 425	

in stress magnitude and pattern for both σ3 and σ1 (Fig. 7). The same applies also for the complete 426	

feeding system configuration, in which the attrition of the far field stress changes slightly the 427	

intensity of the stresses and patterns.  Using 20 MPa overpressure in the deep magma chamber does 428	

not significantly affect the model outputs (Appendix 2). 429	

 430	

6 Discussions  431	

 432	

6.1 FEM analysis at increasing geological details 433	

The presented FEM model of the CVC highlighted some important characteristics of crustal stress 434	

distribution at changing geological constraints used as input conditions (Spica et al. 2014; 2017; 435	

Massaro et al., 2018). Although the results have to be considered as a first order approximation, the 436	

changes in stress distribution are evident and useful for the understanding of limitations and 437	

advantages of finite element modelling.  438	

We used the conditions of gravitational loading, the zero-displacement along x-z directions and 439	

overpressured magma chambers and dykes in order to simulate the fluid state conditions. Under these 440	

assumptions, the use of homogeneous or not homogeneous lithology for FEM provides negligible 441	

effects in stress intensity and pattern (Fig. 4). This is because the upper Units (Units FC, VD, GF; 442	

Table 2) represent only a limited part of the simulated domain, which in the remaining part results 443	

entirely composed of the assumed homogeneous basement (Unit B; Table 2). This does not mean that 444	

the influence of the upper Units may be still negligible using smaller scales of the simulated domain.  445	

Analysing the FEM outputs with the single magma chamber, it emerges how ΔP only limited the 446	

effects of gravitational loading. The use of a dual magma chamber geometry better describes the 447	

inflation induced by overpressure within magma chambers, with the formation of the stress arch in 448	

the minimum compressive stress σ3 plot.   449	

It is important to highlight that for both single and dual magma chamber models, the change of 450	

internal overpressure from 10 to 20 MPa slightly changes the magnitude of the stress but not their 451	
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general patterns (Appendix 1-2).  452	

The presence of conduits in the magma feeding system dramatically change the σ3 and σ1 patterns 453	

(Fig. 6). Indeed, they become quite homogeneous throughout the computational domain, with the 454	

only exception of sidewall effects induced by the zero displacement conditions, already discussed in 455	

Figure 4. 456	

The addition of extensional field stress of 5 MPa reduces the sidewall effects and produces an almost 457	

homogeneous stress distribution in the upper part of the FEM domain, above the top of the deep 458	

magma chamber. This describes a close to equilibrium volcanic system, in which volcanic 459	

overpressure and lithostatic stress almost equilibrate each other (Sulpizio et al., 2016).  460	

 461	

6.2 Some implication of the stress state of the CVC inferred from FEM 462	

The results obtained with the insertion of the full feeding system and far field stress on the FEM 463	

highlight an almost homogeneous stress distribution in the CVC area. This means that the shape of 464	

the dual magma chamber model plus conduits and far field stress provides a stable geometry, which 465	

limits the stress changes to few MPa. All the large stress variations are located at the tips of the 466	

magma chambers, as expected for pressurized or under-pressurized cavities in the lithosphere (Martì 467	

and Geyer, 2009). This means that the whole feeding system is in a quasi-equilibrium state, and, as 468	

an example, any overpressure created by input of new magma is adjusted by increasing the magma 469	

chamber volume or erupting at the surface. Even if we consider the scenario of complete emptying 470	

the upper conduit and part of the shallow magma chamber, as occasionally occurred in the past 471	

originating sub-Plinian and Plinian eruptions (Luhr et al., 2002; Saucedo et al., 2010; Massaro et al., 472	

2018), this would result in the restoration of the stress arch, which is still a stable stress configuration. 473	

Even the complete emptying of the shallow magma chamber probably would be ineffective for 474	

triggering a large collapse (caldera forming) of the feeding system. This latter event would be 475	

possible only if a large depressurization of the deeper magma chamber would occur, but it implies the 476	

eruption of tens to hundreds of km3 of magma, which seems not very likely provided the current 477	

stress distribution in CVC.  478	

Beside and beyond the inaccuracies due to the first order approximation of the FEM analysis, other 479	

sources of uncertainties in the discussion about present and future stress state of the CVC come from 480	
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the not consideration of gravity-driven processes as volcano spreading triggered by plastic 481	

deformation of the GF Unit (Norini et al., 2010, 2019) or pressurization of the upper conduit 482	

(Massaro et al., 2018), and detailed regional tectonics (Norini et al., 2010, 2019). Two main fault 483	

systems have been described in the CVC and surrounding area: the N-S trending Colima Rift and a 484	

set of E-W-trending faults (Fig. 1; Garduño-Monroy et al. 1998; Norini et al., 2010, 2019). The effect 485	

on stress distribution of these regional fault systems are not included in the presented analysis, and 486	

may alter significantly the stress patterns at a local scale, favouring intrusion of dykes or acting as 487	

trigger of depressurization of the feeding system promoting eruptions or causing catastrophic 488	

collapse of the upper edifice (e.g. Roverato et al., 2011).  489	

 490	

7 Conclusions 491	

The increasing detail of geological and geophysical data to FEM simulation at Colima Volcanic 492	

Complex (Mexico) showed the importance of using the most accurate input data in order to have 493	

reliable outputs. In particular, the data here presented highlighted how the use of simplified models 494	

produces unreliable outputs of the stress state of the volcano subsurface.  495	

Beside and beyond the results obtained by analysing the influence of detailing geological and 496	

geophysical data, the FEM of CVC confirms the close to equilibrium state of the volcano, which is 497	

the expected stress distribution induced by a feeding system directly connected to the surface.  498	

This means that any overpressure created by input of new magma is adjusted within the feeding 499	

system, sometimes triggering eruptions. The complete emptying the upper conduit and part of the 500	

shallow magma chamber, as occasionally occurred in the past originating sub-Plinian and Plinian 501	

eruptions would result in the restoration of the stress arch, which is still a stable stress configuration. 502	

Descends that large magnitude, caldera forming eruptions are possible only if the deeper magma 503	

chamber is involved and significantly emptied during an eruption.  504	

 505	

 506	

 507	
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Appendices  508	

 509	

Appendix 1 510	

E-W gravitational modelling of the CVC domain (stratified lithology) for all configurations 511	

investigated. The magnitude and pattern of the principal stress account for a) single magma chamber 512	

model; b) dual magma chamber model; c) dual magma chamber with conduits model (deep magma 513	

chamber, 2a = 14 km and 2b = 3.6 km at 15 km of depth; shallow magma chamber, 2a = 3.5 km and 514	

2b = 2 km at 6 km. The magmatic overpressure is 20 MPa for the deep chamber, and 5 MPa for the 515	

shallower. 516	

Appendix 2 517	

E-W gravitational modelling of the CVC domain (stratified lithology) considering a far extensional 518	

stress field of 5 MPa for all configurations investigated. The magnitude and pattern of the principal 519	

stress account for a) single magma chamber model; b) dual magma chamber model; c) dual magma 520	

chamber with conduits model (deep magma chamber, 2a = 14 km and 2b = 3.6 km at 15 km of depth; 521	

shallow magma chamber, 2a = 3.5 km and 2b = 2 km at 6 km. The magmatic overpressure is 20 MPa 522	

for the deep chamber, and 5 MPa for the shallower. 523	
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Table 1 - Input parameters used in finite-element model.    950	

 951	

 
Element types used in LISA analysis.    

E-W cross-section (a-a’)               Element Type             Quantity 

FC Fuego de Colima               quad4                              596 

VD Volcanic Deposits             quad4                              235 

GF Graben Fill                        quad4                             434 

B Basament                          quad4                             3395 

Total Elements: 4660 

      

 

Table 2 - Rock mass and mechanical properties used in the finite-element model (from Norini et al. 952	
2010; 2019). 953	
	954	

Acronym Model Unit Rock Type Density 
(kg/m3) 

Young’s 
Modulus 

(MPa) 

Poisson’s 
ratio ν 

FC Fuego de Colima Andesitic lavas and pyroclastic 
deposits forming the 
Paleofuego-Fuego de Colima 
volcano 

2242 1.4 ✕ 10
3

 0.30 

VD Volcaniclastic 
deposits 

Pyroclastic and epiclastic 
deposits covering the southern 
flank of the CVC 

1539 1.7  ✕ 10
3

 0.32 

GF Graben Fill Quaternary alluvial, colluvial, 
lacustrine deposits filling the 
graben 

1834 1.5 ✕ 10
3

 0.35 

B Basement Cretaceous limestones and 
intrusive rocks forming the 
bed-rock underlying the CVC 

2650 3.6  ✕10
4

 0.30 

 955	

 956	

 957	
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Figures Captions 958	

 959	

Fig. 1 (a) Morphotectonic map of the Colima Volcanic Complex (NC=Nevado de Colima volcano; 960	
FC=Fuego de Colima volcano) and Colima Rift with the main tectonic and volcano-tectonic 961	
structures (NCG =Northen Colima Graben; CCG= Central Colima Graben, from Norini et al., 2019). 962	
In the inset, the location of the Colima Volcanic Complex (CVC) within the Trans-Mexican Volcanic 963	
Belt (TMVB) is shown in the frame of the subduction-type geodynamic setting of Central America 964	
(from Davìla et al., 2019); (b) general sketch of the geometrical configurations used in FE modelling 965	
for the E-W cross-section.  966	

 967	

Fig. 2 Sensitivity analysis of the Young’s Modulus variations within the investigated domain 968	
configurations (stratified substratum model, single magma chamber model, dual magma chamber 969	
model, and dual magma chamber with conduits model). For each Units (B, FC, GF, VD), the relative 970	

global variation in L2 is provided for σ1 and σ3. The x(-) and x(+) vectors indicate the Young 971	
Modulus variation by an order of magnitude with respect to xref vector, containing the stress values 972	
calculated by using the values of material’s properties  indicated in Table 2.  973	

 974	

Fig. 3 Spatial variation of the L2 norm’s components at varying Young Modulus in Units B for the 975	
stratified substratum (a), the single (b) and dual (c) magma chamber models, and in Units VD for the 976	
dual magma chamber with conduits model (d).  977	
 978	

Fig. 4  E-W gravitational modelling of the CVC domain. The scale of the mesh is expressed in Unit 979	
of Design (1 UD = 1 km). The domain extends 60 km along the x-axis, and 30 km along the z-axis. 980	
The magnitude and pattern of the principal stresses (dotted black lines) are reported for a 981	
homogeneous lithology (HL: Unit FC =andesitic lavas and pyroclastic deposits) and for a stratified 982	
lithology (SL: Unit B= Cretaceous limestones and intrusive rocks forming the bed-rock underlying 983	
the CVC; Unit GF=Quaternary alluvial, colluvial, and lacustrine deposits filling the graben; Unit FC; 984	
Unit VD= volcaniclastic deposits covering the southern flank of the CVC). The blue contour defines 985	
the unperturbed part of the domain, which extends ca. 30 km horizontally and ca. 15 km vertically.  986	
 987	
 988	
Fig. 5 E-W gravitational modelling of the CVC domain (stratified lithology). The magnitude and 989	
pattern of the principal stresses are reported for (a) the single magma chamber model represented by 990	
a deep magma chamber (2a = 14 km and 2b = 3.6 km) at 15 km of depth, and for (b) the dual magma 991	
chamber model composed of a 15-km deep (2a = 14 km and 2b = 3.6 km) and 6-km deep (2a = 3.5 992	
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km and 2b = 2 km) magma chambers. These chambers are not connected via dykes. The magmatic 993	
overpressure is 10 MPa for the deep magma chambers (a,b) and 5 MPa for the shallow one (b).  994	

Fig. 6 E-W gravitational modelling of the CVC domain (stratified lithology). The magnitude and 995	
pattern of the principal stresses account for a dual magma chamber system connected by dykes via 996	
surface (deep magma chamber, 2a = 14 km and 2b = 3.6 km at 15 km of depth; shallow magma 997	
chamber, 2a = 3.5 km and 2b = 2 km at 6 km). The magmatic overpressure is 10 MPa for the deep 998	
chamber, 5 MPa for the shallow one. 999	

 1000	

Fig. 7 E-W gravitational modelling of the CVC domain (stratified lithology) when considering an 1001	
extensional stress field of 5 MPa. The magnitude and pattern of the principal stresses are shown for i-1002	
ii) the single magma chamber model, iii-vi) the dual magma chamber model, and v-vi) the dual 1003	
magma chamber with conduits model. The magmatic overpressure is set of 10 MPa for the deep 1004	
chamber, 5 MPa for the shallower one. 1005	

 1006	

 1007	

 1008	

 1009	

 1010	

 1011	

 1012	

 1013	

 1014	

 1015	

 1016	

 1017	

 1018	

 1019	
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 1026	

Fig. 2 1027	

 1028	

 1029	

Fig. 3 1030	
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 1031	

 1032	

Fig. 4 1033	
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Fig. 5 1043	
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Fig. 6 1051	
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Fig. 7 1058	
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Appendix 1 1068	
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