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Abstract. Many plate tectonic processes, such as subduction initiation, are embedded in long-term (>100 Myrs) geodynamic
cycles often involving subsequent phases of extension, cooling without plate deformation and convergence. However, the im-
pact of upper mantle convection on lithosphere dynamics during such long-term cycles is still poorly understood. We have
designed two-dimensional upper mantle-scale (down to a depth of 660 km) thermo-mechanical numerical models of coupled
lithosphere-mantle deformation. We consider visco-elasto-plastic deformation including a combination of diffusion, dislocation
and Peierls creep law mechanisms. Mantle densities are calculated from petrological phase diagrams (Perple_X) for a Hawai-
ian pyrolite. Our models exhibit realistic Rayleigh numbers between 10 and 107 and model temperature, density and viscosity
structures agree with geological and geophysical data and observations. We tested the impact of the viscosity structure in the
asthenosphere on upper mantle convection and lithosphere dynamics. We also compare models in which mantle convection is
explicitly modelled with models in which convection is parameterized by Nusselt number scaling of the mantle thermal con-
ductivity. Further, we quantified the plate driving forces necessary for subduction initiation in 2D thermo-mechanical models
of coupled lithosphere-mantle deformation. Our model generates a 120 Myrs long geodynamic cycle of subsequent extension
(30 Myrs), cooling (70 Myrs) and convergence (20 Myrs) coupled to upper mantle convection in a single and continuous sim-
ulation. Fundamental features such as the formation of hyper-extended margins, upper mantle convective flow and subduction
initiation are captured by the simulations presented here. Compared to a strong asthenosphere, a weak asthenosphere leads to
the following differences: smaller value of plate driving forces necessary for subduction initiation (15 TN m~! instead of 22
TN m~1!) and locally larger suction forces. The latter assists in establishing single-slab subduction rather than double-slab sub-
duction. Subduction initiation is horizontally forced, occurs at the transition from the exhumed mantle to the hyper-extended
passive margin and is caused by thermal softening. Spontaneous subduction initiation due to negative buoyancy of the 400
km wide, cooled exhumed mantle is not observed after 100 Myrs in model history. Our models indicate that long-term litho-
sphere dynamics can be strongly impacted by sub-lithosphere dynamics. The first-order processes in the simulated geodynamic
cycle are applicable to orogenies that resulted from the opening and closure of embryonic oceans bounded by magma-poor

hyper-extended rifted margins, which might have been the case for the Alpine orogeny.
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1 Introduction
1.1 Convection in the Earth’s mantle

In general, the term convection can be used to describe any motion of a fluid driven by external or internal forces (Ricard et al.,
1989). Prout (1834) derived this term from the Latin word "convectio" (to carry, or to convey) to distinguish between advection
dominated heat transfer and conduction, radiation dominated heat transfer.

On Earth, heat transfer through the lithosphere is dominated by thermal conduction while heat transfer through the underly-
ing mantle is dominated by advection of material (e.g. Turcotte and Schubert, 2014). Convection may involve either the whole
mantle, down to the core-mantle boundary, or only specific mantle layers. At temperature and pressure conditions correspond-
ing to a depth of about 660 km, the mineralogy of peridotite changes from -spinel to perovskite + magnesiowiistite. This
phase transition is endothermic, which means it has a negative pressure-temperature, so-called Clapeyron slope. Therefore,
the penetration of cold slabs subducting into the lower mantle and hot plumes rising into the upper mantle may be delayed
(Schubert et al., 2001). The 660-km phase transition can therefore represent a natural boundary, that separates two convecting
layers. Laboratory experiments, tomographic images and calculations on the Earth’s heat budget deliver evidence that a mixed
mode of both types best explains convection in the present-day Earth’s mantle (Li et al., 2008; Chen, 2016).

Any convecting system can be described by a dimensionless number, the so-called Rayleigh number. It is defined as the
ratio of the diffusive and the advective time scale of heat transfer (see also, eq. B1). The critical value of the Rayleigh number
necessary for the onset of convection in the Earth’s mantle is typically in the order of 1000 (Schubert et al., 2001). Convection
in the Earth’s mantle can occur at Rayleigh numbers in the range of 10-10° depending on the heating mode of the system
and whether convection is layered or it includes the whole mantle (Schubert et al., 2001). The higher the Rayleigh number, the
more vigorous is the convection, i.e. advection of material occurs at a higher speed. Vigour of both whole and layered mantle
convection is inter alia controlled by the mantle density, the temperature gradient across and the effective viscosity of the
mantle. However, unlike the density and thermal structures, the viscosity structure of the mantle is subject to large uncertainty.
Viscosity is not a direct observable and can only be inferred by inverting observable geophysical data such as data for glacial
isostatic adjustment (e.g. Mitrovica and Forte, 2004) or seismic anisotropy data (e.g. Behn et al., 2004). Especially at depths of
ca. 100-300 km, in the so-called asthenosphere, the inferred value for viscosity varies greatly (see fig. 2 in Forte et al. (2010)).
Values for effective viscosity in this region can be up to two orders of magnitude lower than estimates for the average upper
mantle viscosity of ~10?! Pa s (Hirth and Kohlstedt, 2003; Becker, 2017).

1.2 Long-term geodynamic cycle and coupled lithosphere-mantle deformation

Many coupled lithosphere-mantle deformation processes, such as the formation of hyper-extended passive margins and the
mechanisms leading to the initiation of subduction (e.g. Peron-Pinvidic et al., 2019; Stern and Gerya, 2018), are still elusive.
Crameri et al. (2020) compiled a database from recent subduction zones to investigate whether subduction initiation was
vertically (spontaneous) or horizontally forced (induced, see also Stern (2004) for terminology). They concluded that, during

the last ca. 100 Myrs, the majority of subduction initiation events were likely horizontally forced. Recent numerical studies
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have investigated thermal softening as a feasible mechanism for horizontally forced subduction initiation (Thielmann and Kaus,
2012; Jaquet and Schmalholz, 2018; Kiss et al., 2020). In these models, horizontally forced subduction was initiated without
prescribing a major weak zone cross-cutting through the lithosphere. These models do not require further assumptions on other
softening mechanisms, such as micro-scale grain growth or fluid- and reaction-induced softening. Therefore, these models are
likely the simplest to study horizontally forced subduction initiation.

Geodynamic processes, such as lithosphere extension or convergence, are frequently studied separately. In fact, many studies
show that these processes are embedded in longer term cycles, such as the Wilson cycle (Wilson, 1966; Wilson et al., 2019).
Over large time scales (>~80 Myrs), tectonic inheritance of earlier extension and cooling events (Chenin et al., 2019) together
with mantle convection (Solomatov, 2004) had presumably a major impact on subsequent convergence and subduction. Cer-
tainly, subduction initiation at passive margins during convergence can be studied without a previous extension and cooling
stage (e.g., Kiss et al. (2020)). An initial passive margin geometry and thermal field must be then constructed ad-hoc for the
model configuration. However, it is then uncertain whether the applied model would have generated a stable margin geometry
and its characteristic thermal structure during an extension simulation. In other words, it is unclear whether the initial margin
configuration is consistent with the applied model.

Plenty of numerical studies modelling the deformation of the lithosphere and the underlying mantle do not directly model
convective flow below the lithosphere (e.g. Jaquet and Schmalholz, 2018; Giilcher et al., 2019; Beaussier et al., 2019; Erdos
et al., 2019; Li et al., 2019). Ignoring convection below the lithosphere in numerical simulations is unlikely problematic, if
the duration of the simulated deformation is not exceeding a few tens of millions of years. In such short time intervals, the
diffusive cooling of the lithosphere is likely negligible. However, convection in the Earth’s mantle regulates the long-term
thermal structure of the lithosphere (Richter, 1973; Parsons and McKenzie, 1978) and has, therefore, a fundamental control
on the lithospheric strength. Furthermore, mantle flow can exert suction forces on the lithosphere (e.g. Conrad and Lithgow-
Bertelloni, 2002). Numerical studies show that these suction forces can assist in the initiation of subduction (Baes et al.,
2018). Therefore, coupling mantle convection to lithospheric scale deformation can potentially improve our understanding of
processes acting on long-term geodynamic cycles of the lithosphere.

Here, we present two-dimensional (2D) thermo-mechanical numerical simulations modelling the long-term cycle of cou-
pled lithosphere-mantle deformation. The modelled geodynamic cycle comprises a 120 Myrs history of extension—cooling—
convergence leading to horizontally forced subduction. We include the mantle down to a depth of 660 km assuming that
convection is layered. Timings and deformation velocities for the distinct periods have been chosen to allow for comparison
of the model results to the Alpine orogeny. With these models, we investigate and quantify the impact of (1) the viscosity
structure of the upper mantle and (2) an effective conductivity parameterization on upper mantle convection and lithospheric
deformation. Applying this parameterization diminishes the vigour of convection, but maintains a characteristic thermal field
for high Rayleigh number convection (explained in more detail in the next section and in appendix B). (3) We also test creep
law parameters for wet and dry olivine rheology. Finally, we investigate whether forces induced by upper mantle convection

have an impact on horizontally forced subduction initiation.
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2 The applied numerical model

The applied numerical algorithm solves the partial differential equations for conservation of mass and momentum coupled
to conservation of energy. We consider the deformation of incompressible visco-elasto-plastic slowly flowing fluids under
gravity (no inertia). The equations are discretized on a 2D finite difference staggered grid in the Cartesian coordinate system.
Material properties are advected using a marker-in-cell method (Gerya and Yuen, 2003). A 4th order Runge-Kutta scheme is
employed for marker advection and a true free surface is applied (Duretz et al., 2016a). A detailed description of the algorithm
is given in the appendix A and the results of a community convection benchmark test are presented in appendix C. The applied
algorithm has already been used to model processes at different scales, such as deformation of eclogites on the centimetre-
scale (Yamato et al., 2019), crystal-melt segregation of magma during its ascent in a meter-scale conduit (Yamato et al.,
2015), rifting of continental lithosphere (Duretz et al., 2016b; Petri et al., 2019), stress calculations around the Tibetan Plateau
(Schmalholz et al., 2019) and within and around the subduction of an oceanic plate (Bessat et al., 2020), as well as modelling
Precambrian orogenic processes (Poh et al., 2020). Here, we test the algorithm for capability of reproducing first order features
of a geodynamic cycle namely: (i) formation of hyper-extended magma-poor rifted margins during a 30 Myrs extension period
applying an absolute extension velocity of 2 cm yr~!. (ii) Separation of the continental crust and opening of a ca. 400 km wide
marine basin floored by exhumed mantle material. (iii) Generation of upper mantle convection during a 70 Myrs cooling period
without significant plate deformation. (iv) Subsequent convergence for a period of 20 Myrs and horizontally forced subduction
initiation in a self-consistent way, that means without modifying the simulation by, for example, adding ad-hoc a prominent
weak zone across the lithosphere or changing material parameters. During convergence, the self-consistently evolved passive

margin system is shortened applying an absolute convergence velocity of 3 cm yr—1.

2.1 Modelling assumptions and applicability

For simplicity, we consider lithosphere extension that generates magma-poor hyper-extended margins and crustal separation
leading to mantle exhumation. This means that we do not need to model melting, lithosphere break-up, mid-ocean ridge
formation and generation of new oceanic crust and lithosphere. Such Wilson-type cycles, involving only embryonic oceans,
presumably formed orogens such as the Pyrenees, the Western and Central Alps and most of the Variscides of Western Europe
(e.g. Chenin et al., 2019). Values for deformation periods and rates in the models presented here are chosen to allow for
comparison of the model evolution to the Alpine orogeny.

Further, tomographic images from the Mediterranean show large p-wave anomalies in the transition zone (Piromallo and
Morelli, 2003) indicating that the 660-km phase transition inhibits the sinking material to penetrate further into the lower

mantle. Therefore, we do not include the lower mantle into the model domain and assume that mantle convection is layered.
2.2 Model configuration

The model domain is 1600 km wide and 680 km high and the applied model resolution is 801 x681 grid points (fig. 1). Mini-
mum z-coordinate is set to -660 km and the top +20 km are left free (no sticky air) to allow for build-up of topography. The top
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surface (initially at z = 0 km) is stress free. Thus, its position evolves dynamically as topography develops. Mechanical bound-
ary conditions on the remaining boundaries are set to free slip at the bottom and constant material inflow/outflow velocities
at the left and right boundary. The boundary velocity is calculated such that the total volume of material flowing through the
lateral boundary is conserved. The transition between inflow and outflow occurs at z = -330 km and not at the initially imposed
lithosphere-asthenosphere boundary (LAB). Values for deviatoric stresses at this depth are significantly lower compared to
those at the base of the lithosphere. This choice avoids boundary effects close to the mechanical lithosphere and the LAB can
develop freely away from the lateral model boundaries. We use material flow velocity boundary condition rather than bulk
extension rates to deform the model units. Applying bulk extension rates and deforming the model domain would change the
height of the model domain which has strong control on the Rayleigh number of the system (eq. B1). Also, evolution of passive
margin geometries becomes dependent on the model width when using bulk extension rates as mechanical boundary condition
(Chenin et al., 2018). It is therefore more practical to use constant velocity boundary conditions with material flow in the type
of models presented here.

Initial temperature at the surface is set to 15 °C and temperatures at the crust-mantle (Moho) and at the LAB are 600 °C and
1350 °C, respectively. Assuming an adiabatic gradient of 0.49 °C km~! (see appendix B), the temperature at the model bottom
is 1612 °C. Thermal boundary conditions are set to isothermal at the bottom and at the top of the domain and the left and right
boundaries are assumed to be insulating (i.e. no heat flows through lateral boundaries). Model units include a 33 km thick,
mechanically layered crust which overlies an 87 km thick mantle lithosphere on top of the upper mantle. The resulting initial
thickness of the lithosphere is thus 120 km. The crust includes three mechanically strong and four mechanically weak layers.
The thickness of the weak layers is set to 5 km each, the thickness of the uppermost and lowermost strong layer is set to 4 km,
whereas the strong layer in the middle is 5 km thick. This thickness variation allows to match the total 33 km thickness of the
crust without introducing an additional vertical asymmetry. Mechanical layering of the crust was chosen, because it is a simple
way of considering mechanical heterogeneities in the crust. The layering leads to the formation of numerous structural features
observed in natural hyper-extended passive margins (Duretz et al., 2016b) without relying on pre-defined strain softening.

We consider viscous, elastic and brittle-plastic deformation of material in all models presented here. Viscous flow of material
is described as a combination of several flow laws. We use dislocation creep for the crustal units and dislocation, diffusion and
Peierls creep for mantle units (see also appendix A). The initial viscosity profile through the upper mantle is calibrated to match
viscosity data obtained by Ricard et al. (1989). The applied flow law parameters lie within the error range of the corresponding
laboratory flow law estimates (see tab. Al).

The difference between mantle lithosphere and upper mantle is temperature only, i.e. all material parameters are the same.
Density of the crustal phases is computed with an equation of state (eq. A3), whereas density of the mantle phase is pre-
computed using Perple_X (Connolly, 2005) for the bulk rock composition of a pyrolite (Workman and Hart (2005), fig. Al).
A detailed description of the phase transitions and how the initial thermal field is calibrated is given in appendix B. Surface
processes (e.g., erosion and sedimentation) are taken into account by a kinematic approach: if the topography falls below
a level of 5 km depth or rises above 2 km height, it undergoes either sedimentation or erosion with a constant velocity of

0.5 mm yr—'. In case of sedimentation, the generated cavity between the old and corrected topographic level is filled with
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Table 1. Parameters varied in models M1-6.

Parameter Unit Ml M2 M3 M4 M5 M6

k Wm™ ' K™! 2.75 2.75 2.75 36 36 2.75
Teutoft Pas 1x10'8 1x10% 5x10% 1x10'8 1x10% 1x10'®
Rdaye - 9.95x10°  3.92x10° 1.18x10° 1.97x10°  5.48x10° 9.26x107
Rheology mantle - Dry Olivine Dry Olivine Dry Olivine  Dry Olivine Dry Olivine = Wet Olivine

k is thermal conductivity and ncuoft is the lower viscosity limiter. Raqy, is the arithmetic average of Rayleigh numbers >1000. Rayleigh numbers are computed locally
at each cell center according to eq. B1 after 99 Myrs in model history for models M 1-5 and after 26 Myrs for model M6. Bold font highlights the parameters varied

compared to the reference model M1.

sediments, alternating between calcites and pelites every 2 Myrs. This simple parameterization of surface processes moderates

the amplitude of topography and may affect geodynamic processes such as subduction.
2.3 Investigated parameters

Among the physical parameters controlling the long-term geodynamic evolution (f.e., mantle density, plate velocities), the
viscosity structure of the mantle is one of the least constrained. Therefore, we test (1) models with different upper mantle
viscosity structures. In model M1, the reference model, the asthenosphere is assumed to be weak with values for viscosity
in the order of ~ 10! Pa s resulting from the applied flow laws. In models M2 and M3 the asthenosphere is assumed to be
stronger. Values for viscosities in the asthenosphere are limited by a numerical cut-off value of 1 x102° Pa s in M2 and 5x10%°
Pa s in M3. Coupling of lithosphere-mantle deformation is achieved by resolving numerically both lithospheric deformation
and upper mantle convection in M1-3. (2) We further test the impact of parameterizing convection on the cycle by scaling the
thermal conductivity to the Nusselt number of upper mantle convection (see app. B). In these models, we also assume both a
weak asthenosphere (as in M 1) in model M4 and a strong asthenosphere (as in M2) in model M5. The effective conductivity
approach has been used, for example, in mantle convection studies for planetary bodies when convection in the mantle is too
vigorous to be modelled explicitly (e.g. Zahnle et al., 1988; Tackley et al., 2001; Golabek et al., 2011). Also, it has been used
in models of back-arc lithospheric thinning through mantle flow that is induced by subduction of an oceanic plate (e.g. Currie
et al., 2008) and in models of lithosphere extension and subsequent compression (e.g. Jammes and Huismans, 2012). (3) We
finally investigate the role of the olivine rheology. To this end, we perform an additional model M6 in which the material
parameters of the dislocation and diffusion creep mechanism of a dry olivine rheology is replaced by the parameters of a wet
olivine rheology (table Al). In M6, values for all the other parameters, both physical and numerical, are initially equal to
those set in M 1. Within the error range of values for activation volume and energy of the wet olivine rheology, the viscosity is
calibrated to the data obtained by Ricard et al. (1989). However, using the highest possible values for the wet olivine flow law
parameters, the maximum viscosity in the upper mantle is initially one order of magnitude lower compared to models M1-5.

A summary of all simulations is given in table 1 and all material parameters are summarised in table Al.
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3 Results

We first describe the evolution of the reference model M1 and of M6. Model M6 is stopped after the extensional stage, because
its later evolution is not applicable to present-day Earth. Thereafter, we compare the results of M2-5 to the results of M1 for the
individual deformation stages. Finally, we compare the evolution of the plate driving forces in models M1-5 during the entire
cycle. The arithmetic average Rayleigh number in all models is significantly larger compared to the critical Rayleigh number
Rai = 1000. The rifting and cooling period laterally perturb the thermal field sufficiently to initiate and drive the convection

over large time scales in all models presented here.
3.1 Dry Olivine rheology: Model M1 - Reference run

Crustal break-up during the rifting phase in M1 occurs after ca. 8 Myrs (fig. 3(a) & (e)). The left continental margin has a
length of ca. 200 km and the right margin has a length of ca. 150 km (fig. 3(e)). Velocity arrows indicate upward motion of
hot material in the centre of the domain (fig. 3(e)). Two convection cells begin to establish at this stage below each margin.
The viscosity of the upper mantle decreases to minimal values in the order of 10'° Pa s and increases again up to values in
the order of 10?! Pa s at the bottom of the model domain (fig. 3(a) and fig. 2(c)). Towards the end of the cooling period (at
97 Myrs), M1 has developed circular shaped convection cells in the upper region of the upper mantle (above z ~ -400 km, fig
3(b)). The average Rayleigh-number (see footnote of tab. 1) of the system computed at this late stage of the cooling period is
ca. 9.95x10° and the size of the cells varies between ca. 50 km and ca. 300 km in diameter below the left and right margin
respectively (fig.3(b)). Below the right margin at z ~ -150 km and x ~ +300 km the downward directed mantle flow of two
neighbouring convection cells unifies (fig. 3(f)). The top ca. 100 km of the modelled domain remain undeformed; no material
is flowing in this region (area without velocity arrows in fig. 3(f)). Convergence starts at 100 Myrs and at ca. 102 Myrs, a
major shear zone forms breaking the lithosphere below the right margin (inclined zone of reduced effective viscosity in fig.
3(c) & (g)). Velocity arrows in the lithosphere indicate the far-field convergence, whereas velocity arrows in the upper mantle
show that convection cells are still active. The exhumed mantle is subducted in one stable subduction zone below the right
continental margin. Several convection cells are active in the upper mantle during subduction (see velocity arrows fig. 3(d) &
(h)). A trench forms in which sediments are deposited (fig.3(d) & (h)). Folding of the crustal layers in the overriding plate
indicates significant deformation of the crust. The crustal layers of the subducting plate remain relatively undeformed. The

viscosity in the asthenosphere remains stable at values of 101 Pa s during the entire model history.
3.2 Wet Olivine rheology: Model M6

Crustal necking in M6 starts at ca. 2 Myrs in model history (fig. 4(a) & (e)). Two convecting cells develop in the horizontal
centre of the domain transporting material from z/-200 km to z=-100 km (fig. 4(b) & (f)). At ca. 13 Myrs convection cells are
active in the upper 500 km of the domain (fig. 4(c)). Crustal thickness varies laterally between ca. 20 km and <5 km (fig. 4(g)).
The mantle lithosphere is thermally eroded, indicated by a rising level of the 102! Pa s contour in fig. 4(f)-(h) after 26 Myrs in
model history. In contrast to M1, M6 does not reach the stage of crustal break-up (fig. 4(d) & (h)) within 30 Myrs. Two large
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convection cells are active: in the left half of the domain convection occurs at relatively enhanced flow speeds, whereas in the
right half of the domain flow speeds are relatively lower (compare relative length of velocity arrows in fig. 4(d)). The average
Rayleigh number of the system at this stage is 9.26x107. Values for temperature at the Moho reach ca. 1000 °C locally (fig.
4(h) and fig. 2(a)). The horizontally-averaged density profile (fig. 2(b)) shows that values for density in the lithosphere are on
average 100 kg m~3 lower in M6 compared to M1. Values for effective viscosity in the asthenosphere decrease to minimal
values in the order of 10'® Pa s and increase up to values of 10 Pa s at a depth of 660 km at the end of the extension period
(fig. 2(c)).

3.3 Comparison of reference run with models M2-5: Extension phase

In contrast to M1, M2 produces two conjugate passive margins that are both approximately 150 km long (fig. 5(b)) after 13
Myrs. Crustal separation has not occurred up to this stage in M3: the two passive margins are still connected by a crustal bridge
of ca. 10 km thickness. Mantle material rises below the centre of the domain and then diverges below the plates in M2 and M3,
but no convection cells have formed yet (fig. 5(b) & (c)), which is different compared to M 1. The minimal value for effective
viscosity in the upper mantle is at the applied cut-off value of 1x10%° Pa s in M2 and 5x10%° Pa s in M3 and increases
up to ca. 1x10%! Pa s at a depth of 660 km (fig. 2(c)) in both models. Similar to the reference model (M1), in M4, the left
continental margin has a length of ca. 200 km and the right margin has a length of ca. 150 km (fig. 5(d)). Like in M1, two
convection cells have formed below the two passive margins in this model (see arrows in fig. 5(d)) and the minimal value for
effective viscosity below the lithosphere is in the order of 1x10'® Pa s and increases to approximately 1x 10?! Pa s at a depth
of 660 km (fig. 2(c)). Both margins in M5 are approximately equally long (ca. 150 km, fig. 5(e)) and values for viscosity are at
the lower cut-off value of 1x 10%° Pa s in the upper mantle and increase up to ca. 1x 10%! Pa s at a depth of 660 km (fig. 2(c)).
The overall evolution of the extension period in M5 is more similar to M2 than to M 1. In M1-5, the 1350 °C isotherm does not
come closer than ca. 30 km to the surface. Horizontally-averaged vertical temperature profiles are similar in M1-5 (fig. 2(a) &
(g)). The level of the 1350 °C isotherm remains at its initial depth in M4 and M5, whereas it subsides by ca. 20 km in M1-3.
Horizontally-averaged density profiles (fig. 2(b)) show density differences of <10 kg m ™3 between ca. 35 km and ca. 120 km
depth.

3.4 Comparison of reference run with models M2-5: Cooling phase without plate deformation

Models M1-5 maintain a stable lithospheric thickness of ca. 90-100 km over 100 Myrs (top magenta viscosity contour in fig.
6) and no thermal erosion of the lithosphere occurs. Below, the upper mantle is convecting at decreasing Rayleigh numbers
from M1-5. In M1, the vertical mantle flow speed within the convecting cell at x~+350 km is elevated (indicated by darker
blue coloured region in fig. 6(a)) compared to the average flow speed of ~1-2 cm yr~—! in neighbouring cells). The size of
the convection cells in M2 is larger compared to M1 and in the order of ca. 100-300 km in diameter. Characteristic is the
more elliptical shape of the cells compared to the circular cells in M1. The magnitude of material flow velocity is similar but
distributed more horizontally symmetric below both margins compared to M1 (compare arrows and colour field of fig.6(a)

& (b)). A zone of strong downward directed movement develops below both margins (dark blue cells at x ~ -300 km and x
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~ 4300 km in fig.6(b)). Magnitude of material flow speed is in the order of 1.5 cm yr~!. The average Rayleigh-number of
the convecting system in M2 is approximately 3.92x10° and is about a factor 2.5 lower compared to M1. M3 develops four
large convection cells, two below each margin, that are active up to depths of approximately 600 km (see arrows fig. 6(c)).
Downward directed movement of material occurs with ca. 2 cm yr—! (darker blue regions at x ~ -500 km and x ~ 500 km in
fig.6(c)). The average Rayleigh number of the system is ca. 1.18x10%, which is about a factor 8.4 smaller compared to M1. In
M4 and M5, material transport occurs at absolute values for vertical velocity <0.5 cm yr—! (see coloured velocity field in fig.
6(d) & (e)) which is one order of magnitude lower compared to M1-3. Two horizontally symmetric convection cells develop in
these models that are active between z ~ -150 km and z ~ -400 km (arrows in fig. 6(d) & (e)). The average Rayleigh number
is ca. 1.97x10° and 5.48 x10° in M4 and M5, respectively. Figure 6(f)-(j) shows the difference between the entire density
field and the horizontally averaged vertical density profile at 99 Myrs (see fig. 2(e)) and fig. 7(b) shows a horizontal profile of
this field averaged vertically over —200 < z < —100 km. The distribution of density differences becomes more horizontally
symmetric with decreasing Rayleigh number (M1-5, see fig. 7(b)). In M1, the 2 kg m~2 density contour line encloses a high-
density anomaly below the right passive margin (see black contour line at x~300 km, z/-200 km in fig. 6(f)). Calculating the
suction, or buoyancy, force for this body according to eq. D4 yields a value of 0.25 TN m~!. Since the distribution of density
differences is laterally symmetric in M2-5 (fig. 7(b)) and defining an integration area is not trivial, a calculation of suction
forces is not attempted for M2-5. Figure 7(a) shows the topography at ca. 99 Myrs in model history, that is 1 Myrs before the
start of convergence. Topography does not exceed 1.5 km and the average depth of the basin is ca. 3.75 km.

Figure 8(a)-(e) shows the conductive heat flow of the entire domain in absolute values. M1-5 reproduce a heat flux of 20-
30 mW m~2 through the base of the lithosphere (indicated by the 102! Pa s isopleth at a depth between 100-110 km). The
conductive heat flow below the lithosphere is close to 0 mW m~2 in M1-3. In M4 and M5, values for conductive heat flow
remain at ca. 20 mW m~2 through the entire upper mantle. Density differences in the upper part of the mantle lithosphere
reach ca. 20 kg m~3 between ca. 35-120 km in depth (fig. 2(e) & (j)). Values for effective viscosity range in the order of 1019
Pa s for M1 and M5 and in the order 10?° Pa s in M2-4 directly below the lithosphere and 10%! Pa s at the bottom of the upper
mantle (fig. 2(f)).

3.5 Comparison of reference run with models M2-5: Convergence and subduction phase

In contrast to M1, two major symmetric shear zones develop in the lithosphere in M2, M3 and M5, one shear zone at each of
the continental margins (fig.9(b), (c) & (e)). Like in M1, one shear zone forms below the right margin in M4 (fig. 9(d)). At this
early stage of subduction initiation, the strain rate in the shear zone is in the order 10714-10713 s~!. In the region of the shear
zones, the temperature is increased, which is indicated by the deflection of the isotherms (red contour lines in fig.9(a)-(e)).
Horizontal profiles of gravitational potential energy (GPE, see appendix D) are in general similar (fig. 7(c)) for M1-5.

In contrast to the single-slab subduction evolving in M1, double-slab subduction is observed below both margins in M2-5
and sediments are deposited in two trenches as the subduction evolves (fig.10(b)-(e)). Folding of the crustal layers indicates
deformation in both margins of M2-5. Values for viscosity in the upper mantle remain stable at values of 10'° Pa s in M4,

whereas the viscosity values are at the applied lower cut-off value in M2, M3 and M5 throughout the entire simulation history.
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Convection cells remain active during subduction. Similar to M1, a stable convection cell is active below one subducting slab
in M4. The distribution of convection cells is more symmetric in front of the slabs in M2, M3 and M5 compared to M1.
Defined by the applied boundary condition, material flows into the model domain up to z = -330 km at the lateral boundaries
in all models (see section 2.2). Though, far away from the boundary in the centre of the domain in M1 and M2 the horizontal
material inflow from the lateral boundaries is limited up to a depth of ca. 100-150 km (see horizontally directed arrows in fig.

10(a) & (b)). In M3-5 the lateral inflow of material reaches a depth of about 200 km in the centre of the domain (fig. 10(c)-(e)).
3.6 Estimates for plate driving forces

The vertically-integrated second invariant of the deviatoric stress tensor, 7, is a measure for the strength of the lithosphere and
twice its value is representative for the horizontal driving force (per unit length, F'p hereafter) during lithosphere extension and
compression (appendix D). Figure 7(d) shows the evolution of Fp during the entire cycle. During the pure shear thinning phase
in the first ca. 2 Myrs of extension, values for Fp reach 14 TN m~1. At ca. 2-3 Myrs (1 in fig. 7(d)), this value drops below ca.
5 TN m~! at ca. 8 Myrs. At the end of the extension period Fp, is stabilised at values between ca. 2-3 TN m~! for all models
(2 in fig. 7(d)). This value remains relatively constant for all models during the entire cooling period. The maximum value
for Fp necessary to initiate subduction in all models is observed in M3 and is ca. 23 TN m~! (thin blue curve in fig. 7(d)).
The minimum value necessary for subduction initiation of ca. 13 TN m~! is observed in M4. The reference run M1 initiates
subduction with a value of F, ~ 17 TN m™!. Strain localization at ca. 102 Myrs is associated with a rapid decrease of Fp, by

ca. 2-5 TN m~! in all models (3 in fig. 7(d)). At ca. 105 Myrs, values for Fp increase again until the end of the simulation.

4 Discussion
4.1 Impact of mantle viscosity structure and effective conductivity on passive margin formation

Higher values for the lower viscosity cut-off (M2 & M3 compared to M1) do not only change the viscosity structure of the
mantle, but also increase the strength of the weak layers. In consequence, the multi-layered crust necks effectively as a single
layer. The resulting passive margins are slightly shorter and more symmetric (Duretz et al., 2016b, see also M3). The highest
cut-off value of 5x10%° Pa s (M3) leads to a two-stage necking as investigated by Huismans and Beaumont (2011). First, the
lithosphere is necking while the crust deforms by more or less homogeneous thinning, leading to the development of a large
continuous zone of hyper-extended crust, below which the mantle lithosphere has been removed. Second, the hyper-extended
crust is breaking up later than the continental mantle lithosphere. During the rifting stage, the thermal field in all simulations is
very similar (see fig. 2(a)), presumably because effects of heat loss due to diffusion are not significant over the relatively short

time scale.
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4.2 Onset of upper mantle convection and thermo-mechanical evolution of the lithospheric plates

Rifting in M1-5 causes up-welling of hot asthenospheric material in the horizontal centre of the domain. The resulting lateral
thermal gradients are high enough to induce small-scale convection (Buck, 1986). Huang et al. (2003) derived scaling laws to
predict the onset time for small-scale convection in 2D and 3D numerical simulations. They investigated the impact of plate
motion, layered viscosity, temperature perturbations and surface fracture zones on the onset time. The observed onset time
in layered viscosity systems becomes larger when the thickness of the weak asthenosphere decreases. Also, plate motion can
delay the onset of small-scale convection. In contrast, fracture zones at the surface may lead to earlier onset of convection
depending on the thermal structure of the fracture zones. Using their scaling law and the parameters used in our reference
model M1, onset time of convection is predicted for ca. 43 Myrs. However, onset of convection in M1 is observed as early as
ca. 8 Myrs (see fig. 3) which is consistent with onset times observed in numerical simulations conducted by Van Wijk et al.
(2008). There may be several reasons for the discrepancy between the prediction and observation. First, the models presented
here are likely a combination of the configurations tested by Huang et al. (2003). Second, the choice of boundary conditions
and initial configuration is different which is probably important when testing the impact of plate motion on the onset time.
They located the rift centre at the left lateral boundary, whereas the rift centre in our models is located far away from the lateral
boundaries in the horizontal centre of the domain. This likely impacts the flow direction of hot material ascending beneath the
rift centre and, consequently, alters lateral thermal gradients which are important for the onset of convection. The onset time
for convection is delayed and at ca. 20 Myrs in M2 and at ca. 30 Myrs in M3. This delay is likely due to the increased viscosity
in the asthenosphere in M2 & M3 compared to M1 which decreases the Rayleigh number of the system. This observation is
in agreement with the general inverse proportionality of the onset time of convection to the Rayleigh number as predicted by
Huang et al. (2003).

Once convection has started, it stabilises the temperature field (Richter, 1973; Parsons and McKenzie, 1978) over large time
scales and controls the thickness of the lithosphere. Although we allow for material inflow up to z = -330 km, the arrows in
fig. 10(a) & (b) indicate that lateral inflow of material far away from the boundary is limited up to z >~ -150 km. Below
this coordinate, the convection cells transport material even towards the lateral boundary, in the opposite direction of material
inflow. This observation suggests, that the thermal thickness of the lithosphere adjusts self-consistently and far away from
the boundary during the geodynamic cycle. The thermal thickness of the lithosphere seems to vary with decreasing Rayleigh
number: in M5 the value for the thermal thickness of the lithosphere is = 200 km (see arrows in fig. 10(e)). This observation
suggests that the thermal thickness of the moving lithosphere is presumable regulated by the vigour of convection.

For realistic values for thermal conductivity in the upper mantle (M1-3), heat flow through the base of the mechanical
lithosphere is between 20-30 mW m™? (fig. 8(a)-(c)). These values are in the range of heat flow estimates for heating at the
base of the lithosphere confirmed by other numerical studies (Petersen et al., 2010; Turcotte and Schubert, 2014). Below the
lithosphere, the conductive heat flux is essentially zero, because heat transport is mainly due to advection of material in the
convecting cells. The effective conductivity approach maintains a reasonable heat flux directly at the base of the lithosphere

(figs. 8(d) & (e)) and convection cells develop. However, all processes in the upper mantle are conduction dominated (see
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elevated values for g, in fig. 8(d) & (e)). This implies that the characteristic physics of mantle convection are not captured
correctly in these models. This becomes evident when comparing fig. 6(a) to fig. 6(d): although the physical parameters -
except the thermal conductivity in the upper mantle - are the same in both simulations and temperature profiles are similar (see
fig. 2(d) & (i)), the Rayleigh-numbers of the systems differ by one order of magnitude (see tab. 1) and the convective patterns

are entirely different.
4.3 Mantle convection, thermal erosion and tectonics in the Archean

Model M6 underlines the importance of better constraining the rheology of the mantle. Due to significantly reduced viscosities
(see fig. 2(c)), convection in the upper mantle occurs at an average Rayleigh number of ca. 9x107 in M6. Compared to
estimates for present-day Earth’s upper mantle convection (Torrance and Turcotte, 1971; Schubert et al., 2001) this Rayleigh-
number is an order of magnitude higher. The lithosphere is recycled rapidly and the resulting values for density directly below
the lithosphere are ca. 100 kg m~3 lower in M6 compared to M1-5. The resulting density structure in the upper region of the
mantle deviates significantly from the PREM model (Dziewonski and Anderson (1981), see fig. 2(b)). Convection at such high
Rayleigh numbers leads to an enhanced temperature field. Resulting values for temperature at the Moho locally reach ca. 1000
°C. Our models suggest that such weak mantle rheology is actually not feasible for present-day plate tectonics, but this non-
feasibility can only be observed when performing coupled mantle-lithosphere models as we have presented. In lithosphere-only
models, a weak mantle would not generate the thermal erosion of the lithosphere bottom as observed in model M6, because
the lithosphere bottom would be "stabilized" by the bottom boundary condition. In the Archean eon, the mantle potential
temperature was probably 200-300 °C higher (Herzberg et al., 2010) and therefore convection was more vigorous (Schubert
et al., 2001). Agrusta et al. (2018) have investigated the impact of variations in mantle potential temperature compared to
present-day’s value on slab-dynamics. Assuming a 200 °C higher value for the mantle potential temperature compared to
present-day estimates leads to viscosity structures similar to the average viscosity structure we report for M6 (compare fig. 6¢
in Agrusta et al. (2018) to fig. 2(c) of this study). Hence, we argue that such vigorously convecting systems as presented in M6

may be applicable to the mantle earlier in Earth’s history.
4.4 Spontaneous vs. induced subduction initiation and estimates for plate driving forces

Currently, the processes and tectonic settings leading to subduction initiation remain unclear (Stern, 2004; Stern and Gerya,
2018; Crameri et al., 2019). Stern (2004) proposed two fundamental mechanisms for subduction initiation:

(1) Spontaneous (or vertically forced, Crameri et al. (2020)) subduction initiation occurs, for example, due to densification
of the oceanic lithosphere during secular cooling. Cloos (1993) proposed that the density increase of cooling, 80 Myrs old
oceanic lithosphere compared to the underlying asthenosphere is in the order of 40 kg m 3. According to Cloos (1993), this
difference is sufficient to initiate subduction spontaneously by negative buoyancy of the oceanic lithosphere (see Stern (2004);
Stern and Gerya (2018, & references therein) for detailed explanation). However, McKenzie (1977) and Mueller and Phillips

(1991) showed that the forces acting on the lithosphere due to buoyancy contrasts are not high enough to overcome the strength

12



375

380

385

390

395

400

405

of the cold oceanic lithosphere. Observations of old plate ages (>100 Myrs) around passive margins in the South Atlantic
(Miiller et al., 2008) indicate their long-term stability.

In the models presented here, the applied thermodynamic density of the Hawaiian pyrolite leads to density differences
between the exhumed mantle in the basin and the underlying asthenosphere of ca. 10-20 kg m~3 after 99 Myrs in model history.
These buoyancy contrasts are ca. 2x smaller than the contrast proposed by Cloos (1993). Boonma et al. (2019) calculated a
density difference (pag — piir) of +19 kg m~—2 for an 80 km thick continental lithosphere and -17 kg m ™3 for an oceanic
lithosphere of 120 Myrs of age. These values are in agreement with the values we report in our study. In the 2D models
presented here, these buoyancy contrasts are insufficient to overcome the internal strength of the cooled exhumed mantle and
initiate subduction at the passive margin spontaneously.

However, modelling spontaneous subduction initiation for an ad-hoc constructed passive margin geometry is possible, if the
employed mechanical resistance is small, the density difference between lithospheric and oceanic mantle is large, and/or if an
additional weak zone is imposed. Such passive margin configurations are indeed unstable and lead to spontaneous subduction
initiation within a few million years (Stern and Gerya, 2018, & references therein). However, the passive margins we consider
in our study have been stable for at least 60 Myrs before subduction initiation. Therefore, spontaneous subduction initiation
for unstable passive margins is in contrast with the observation of long-term stability of the ancient Alpine Tethys margins
(McCarthy et al., 2018) and the recent passive margins in the South Atlantic (Miiller et al., 2008). Our results are, hence, in
agreement with the stability of these passive margins. Modelling long-term geodynamic cycles, applicable to the evolution of
the Alpine Tethys and the South Atlantic, requires appropriate density and rheological models which generate passive margins
that are stable for more than 60 Myrs (Alpine Tethys) or more than 180 Myrs (South Atlantic). To evaluate whether models
of spontaneous SI at passive margins are feasible, these models need to explain why the passive margins have been stable for
more than 60 Myrs and only afterwards "collapsed" spontaneously, although they are cooled and mechanically strong.

(2) Induced (or horizontally forced, Crameri et al. (2020)) subduction initiation occurs, for example, due to far-field plate
motion. In fact, many numerical studies that investigate subduction processes do not model the process of subduction initiation.
In these studies, a major weak zone across the lithosphere is usually prescribed ad-hoc in the initial model configuration to
enable subduction (Ruh et al., 2015; Zhou et al., 2020). Another possibility to model subduction is to include a prescribed slab
in the initial configuration. This means that subduction has already initiated at the onset of the simulation (Kaus et al., 2009;
Garel et al., 2014; Holt et al., 2017; Dal Zilio et al., 2018). In our models, subduction is initiated self-consistently, which means
here: (i) we do not prescribe any major weak zone or an already existing slab, and (ii) the model geometry and temperature
field at the onset of convergence (100 Myrs) were simulated during a previous extension and cooling phase with the same
numerical model and parameters. Subduction is initiated during the initial stages of convergence and subduction initiation is,
hence, induced by horizontal shortening. Notably, Crameri et al. (2020) analysed more than a dozen documented subduction
zone initiation events from the last hundred million years and found that horizontally forced subduction zone initiation is
dominant over the last 100 Myrs. During convergence in our models, shear heating together with the temperature and strain
rate dependent viscosity formulation (dislocation creep flow law, eq. A7) causes the spontaneous generation of a lithosphere-

scale shear zone that evolves into a subduction zone (Thielmann and Kaus, 2012; Kiss et al., 2020). However, shear heating is
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a transient process which means the increase in temperature is immediately counterbalanced by thermal diffusion. Efficiency
of shear heating is restricted to the first ca. 2-3 Myrs after shear zone formation in the presented models. After this time span,
heat generated by mechanical work is diffused away. Therefore, thermal softening is unlikely the mechanism responsible for
stabilisation of long-term subduction zones, but likely important for initiating and triggering subduction zones.

The value of Fp (see appendix D) represents the plate driving force. In M1, the maximal value of Fp, just before stress drop
caused by subduction initiation at =103 Myrs is ~17 TN m~! (fig. 7(d)). However, Fp ~ 2 TN m™! at the end of the cooling
stage, resulting from stresses due to mantle convection and lateral variation of GPE between continent and basin. Therefore, this
value can be subtracted from the ~17 TN m~!. The required plate tectonic driving force for convergence-induced subduction
initiation is then ~15 TN m~! for M1. Kiss et al. (2020) modelled thermal softening induced subduction initiation during
convergence of a passive margin, whose geometry and thermal structure was generated ad-hoc as initial model configuration.
Their initial passive margin structure was significantly less heterogeneous than ours. To initiate subduction, they needed a
driving force of ~37 TN m~! which is significantly larger than the ~15 TN m~! required in our model M1. Obviously, the
~15 TN m~! cannot be exceeded by the mantle convection (=~ 2 TN m~!) modelled here. Even assuming an additional ridge
push force of 3.9 TN m~! (Turcotte and Schubert, 2014) would not be sufficient to initiate subduction spontaneously in the
models presented here. The boundary convergence providing the remaining ca. 9 TN m ™! to initiate subduction in our models
are assumed to be caused by far-field plate driving forces. These are generated by global processes that are not modelled inside
our domain, such as slab pull, whole mantle convection, ridge push etc. For example, the closure of the Piemonte-Liguria basin
is assumed to be caused by the much larger scale convergence of the African and European plates (McCarthy et al., 2018).

We suggest that mechanical and geometrical heterogeneity inherited by previous deformation periods and thermal hetero-
geneity due to mantle convection reduces the required driving force necessary for subduction initiation by thermal softening.
Additionally, we suppose that the plate driving force necessary for horizontally forced subduction initiation in our models
could be further reduced by considering more heterogeneities, or a smaller yield stress in the mantle lithosphere. However,
the minimum value for Fp which can still generate horizontally forced subduction initiation via thermal softening has to be
quantified in future studies. This is relevant, because the main argument against thermal softening as an important localization
mechanism during lithosphere strain localization and subduction initiation is commonly that the required stresses, and hence
driving forces, are too high. In nature, more softening mechanisms act in concert with thermal softening, such as grain damage
(e.g. Bercovici and Ricard, 2012; Thielmann and Schmalholz, 2020), fabric and anisotropy evolution (e.g. Montési, 2013) or
reaction-induced softening (e.g. White and Knipe, 1978), likely further reducing forces required for subduction initiation. Fur-
thermore, Mallard et al. (2016) showed with 3D spherical full-mantle convection models that a constant yield stress between
150 and 200 MPa in their outer boundary layer, representing the lithosphere, provides the most realistic distribution of plate
sizes in their models. The yield stress in their models corresponds to a deviatoric, von Mises, stress which is comparable to
the value of 7y calculated for our models. If we assume a 100 km thick lithosphere, then F, = 15 TN m™~! yields a vertically-
averaged deviatoric stress, 7y, of 75 MPa for our model lithosphere. Therefore, vertically-averaged deviatoric stresses for our

model lithosphere are even smaller than deviatoric, or shear, stresses employed in global mantle convection models. Based on
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the above-mentioned arguments, we propose that ~15 TN m~! is a feasible value for the horizontal driving force per unit

length.
4.5 Mantle convection stabilising single-slab subduction

Figure 7(c) shows the difference in GPE at 103 Myrs. The horizontal profiles do not reveal significant differences between
the models. The GPE is sensitive to topography and density distribution throughout the model domain. Values for density

differences are ca. 10-20 kg m~3

across the mantle lithosphere. When integrated over the entire depth, such variations do not
significantly impact the GPE profiles. Instead, the signal reflects the topography, which is similar in all the models due to the
similar margin geometry (see fig. 7(a) and fig. 5(a)-(e)). In consequence, stress concentrations lead to localised deformation and
shear zone formation at both margins in all models during the onset of convergence. Therefore, the evolution and stabilisation
of a single-sided subduction requires an additional asymmetry of the system.

The average Rayleigh number (see appendix eq. B1) in M1 is ca. 9.95x10° (see tab. 1) which is close to estimated values
for upper mantle convection (Torrance and Turcotte, 1971; Schubert et al., 2001). Potential lateral asymmetry caused by the
convecting cells in the upper mantle is inherited from the cooling period. The vertical velocity field at the end of the cooling
period of M1 (fig. 6(a)) reveals one convection cell at x~+350 km with flow speeds in the order of the convergence velocity
applied later. This convection cell is induced by a high-density anomaly directly below the passive margin at which subduction
will be initiated later in the model (see black contour line below right margin in fig. 6(f)). This sinking, high-density body
probably induces an asymmetry in form of an additional suction force exerted on the lithospheric plate. Conrad and Lithgow-
Bertelloni (2002) quantified the importance of slab-pull vs. slab-suction force and showed that the slab pull force and the
suction force of a detached slab sinking into the mantle induces similar mantle flow fields. They argued that a detached fraction
of a slab sinking into the mantle can exert shear traction forces at the base of the plate and drive the plate. Baes et al. (2018)
showed with numerical simulations that sinking of a detached slab below a passive margin can contribute significantly to
the initiation of subduction. We suggest that the high-density anomaly observed in M1 and the associated mantle flow also
generates a force similar to a slab-suction force. To quantify the suction force induced by the sinking, high-density body in
M1, we calculated the difference of the density in this region with respect to the horizontally averaged density field presented
in fig. 2(e) and integrated this buoyancy difference spatially over the area enclosed by the 2 kg m~2 density contour below the
right passive margin (see fig. 6(f)). The resulting buoyancy force per unit length is ca. 0.25 TN m~!. This value is relatively
low compared to the plate driving forces acting in the model, but likely induces a sufficiently high asymmetry to stabilise the
single-slab subduction in simulation M1.

Values for the Rayleigh number in M2 and M3 are lower (3.92x10° and 1.18 x 10° respectively) compared to M1 (see tab.
1), because of the relatively higher viscosity (see eq. B1). With decreasing Rayleigh-number the asymmetry of convection
also decreases (Schubert et al., 2001). In consequence, the size of the convecting cells becomes larger and more elliptic (M2
compared to M 1) and the number of active cells decreases (M3 compared to M1). Enhancing the thermal conductivity (included
in the denominator in eq. B1) by ca. one order of magnitude in models M4 and M5 also decreases the Rayleigh number by one

order of magnitude compared to M1 (see table 1). Decreasing the Rayleigh-number (M2-5) leads to more laterally symmetric
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convective flow patterns and decreases the speed and distribution of material flow (see fig. 6(b)-(e)). In turn, this probably leads
to more equally distributed density differences (fig. 7(b)) and, therefore, suction forces exerted on the plates. Hence, we argue
that decreasing the Rayleigh-number, assuming a relatively strong asthenosphere or applying an enhanced thermal conductivity
likely favours the initiation of divergent double-slab subduction. The resulting slab geometries resemble a symmetric push-
down (M2-5), rather than a stable asymmetric subduction (M1). This impacts the deformation in the lithosphere, especially in
the crust: the crustal layers of both plates are strongly folded (see fig. 10(b)-(e)). In M1, the deformation of the crustal layers

only occurs in the overriding plate.
4.6 Comparison with estimates of Earth’s mantle viscosity and thermal structure

To apply our models to geodynamic processes on Earth, we compare several model quantities with measurements and indirect
estimates of these quantities. Even after 118 Myrs of model evolution, the mantle density structure of our model remains in
good agreement with the preliminary reference Earth model (PREM Dziewonski and Anderson (1981), see fig. 2(b) & (e)).
The geotherm of the conduction dominated regime remains well in the range of pressure-temperature (P-7) estimates from
mantle xenolith data. Also, the geotherm of the convection dominated regime remains within the range for adiabatic gradients
and potential temperatures applicable to the Earth’s mantle (Hasterok and Chapman (2011), see fig. 2(a) & (d)) during the
entire long-term cycle. Viscosity profiles lie within the range of estimates inferred by inversion of observable geophysical data
and from experimentally determined flow law parameters of olivine rheology (Mitrovica and Forte (2004); Behn et al. (2004);
Hirth and Kohlstedt (2003), see fig. 2(c) & (f)). Lithosphere and mantle velocities are in a range of several cm yr~! which is in
agreement with predictions from boundary layer theory of layered mantle convection (Schubert et al., 2001) and plate velocity

estimates from GPS measurements (Reilinger et al., 2006).
4.7 Formation and reactivation of magma-poor rifted margins: potential applications

Our model can be applied to some first-order geodynamic processes that were likely important for the orogeny of the Alps.
Rifting in the Early to Middle Jurassic (Favre and Stampfli, 1992; Froitzheim and Manatschal, 1996; Handy et al., 2010)
lead to the formation of the Piemont-Liguria ocean which was bounded by the hyper-extended magma-poor rifted margins of
the Adriatic plate and the Briangonnais domain on the side of the European plate. We follow here the interpretation that the
Piemont-Liguria ocean was an embryonic ocean which formed during ultra-slow spreading and was dominated by exhumed
subcontinental mantle (e.g. Picazo et al., 2016; McCarthy et al., 2018; Chenin et al., 2019; McCarthy et al., 2020). If true,
there was no stable mid-ocean ridge producing a several 100 km wide ocean with a typically 8 km thick oceanic crust and
our model would be applicable to the formation of an embryonic ocean with exhumed mantle bounded by magma-poor hyper-
extended rifted margins. Our models show the formation of a basin with exhumed mantle bounded by hyper-extended margins
above a convecting mantle. Hence, our model may describe the first-order thermo-mechanical processes during formation of
an embryonic ocean. During closure of the Piemont-Liguria ocean, remnants of those magma-poor ocean-continent transitions
escaped subduction and are preserved in the Eastern Alps (Manatschal and Miintener, 2009). We follow the interpretation

that the initiation and at least the early stages of ocean closure were caused by far-field convergence between the African and
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European plates (e.g. Handy et al., 2010). We further assume that subduction was induced, or horizontally forced, by this
convergence and was not initiated spontaneously due to buoyancy of a cold oceanic lithosphere (De Graciansky et al., 2010).
This interpretation agrees with recent results of Crameri et al. (2020) who suggest that most subduction zones that formed
during the last 100 Myrs were likely induced by horizontal shortening. Our models show that a cooling exhumed mantle does
not subduct spontaneously because buoyancy forces are not significant enough to overcome the strength of the lithosphere.
However, the models show that convergence of the basin generates a horizontally forced subduction initiation at the hyper-
extended passive margin causing subduction of the exhumed mantle below the passive margin. Such subduction initiation at the
passive margin agrees with geological reconstructions which suggest that the Alpine subduction initiated at the hyper-extended
margin of Adria (e.g. Manzotti et al., 2014) and not, for example, within the ocean. Overall, the here modelled, more than
100 Myrs long, geodynamic cycle is thus in agreement with several geological reconstructions of the Alpine orogeny. During
convergence, several of our models show the formation of a divergent double-slab subduction. Such divergent double-slab
subduction likely applies to the eastward and westward dipping subduction of the Adriatic plate (Faccenna and Becker, 2010;
Hua et al., 2017). Subduction started significantly earlier below the Dinarides compared to the westward directed subduction
(Handy et al., 2010). Since about 30 Ma, the Adriatic plate undergoes a divergent double slab subduction, for which the two
subduction zones have started at different times. In model M4, subduction initiation does not occur simultaneously below both
margins. The subduction initiation below the left margin occurs ca. 10 Myrs after subduction initiation below the right margin.
During the evolution of the model, the subduction switches from the right margin to the left margin and then back again (see
also video supplement). Therefore, divergent double-slab subduction does not require that subduction initiation at the passive
margins occurs at the same time. However, the Alpine orogeny exhibits a distinct three-dimensional evolution including major
stages of strike-slip deformation and a considerably radial shortening direction so that any 2D model can always only address
the fundamental aspects of the involved geodynamic processes.

Another example of divergent double-slab subduction is presumably the Paleo-Asian Ocean, which has been subducted
beneath both the southern Siberian Craton in the north and the northern margin of the North China Craton in the south during
the Paleozoic (Yang et al., 2017). Furthermore, a divergent double-slab subduction was also suggested between the North
Qiangtang and South Qiangtang terrane (Li et al., 2020; Zhao et al., 2015). Our models show that a divergent double-slab
subduction is a thermo-mechanically feasible process during convergence of tectonic plates.

Tomographic images from the Mediterranean show large p-wave anomalies in the transition zone (Piromallo and Morelli,
2003) indicating that the 660-km phase transition inhibits the sinking material to penetrate further into the lower mantle. This
observation suggests that convection in the Alpine-Mediterranean region could be two-layered and largely confined to the
upper region of the upper mantle. The convective patterns resulting from the presence of a weak asthenosphere simulated in
our study are in agreement with these observations. We speculate that upper mantle convection might have played a role in the
formation of the Alpine orogeny in the form of inducing an additional suction force below the Adriatic margin and assisting in

the onset of subduction.
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5 Conclusions

Our 2D thermo-mechanical numerical models of coupled lithosphere-mantle deformation are able to generate a 120 Myrs
long geodynamic cycle of subsequent extension (30 Myrs), cooling (70 Myrs) and convergence (20 Myrs) in a continuous
simulation. The simulations capture the fundamental features of such cycles, such as formation of hyper-extended margins,
upper mantle convective flow or subduction initiation, with model outputs that are applicable to Earth. We propose that the
ability of a model to generate such long-term cycles in a continuous simulation with constant parameters provides further
confidence that the model has captured correctly the first-order physics.

Our models show that the viscosity structure of the asthenosphere and the associated vigour of upper mantle convection has
a significant impact on lithosphere dynamics during a long-term geodynamic cycle. In comparison to a strong asthenosphere
with minimum viscosities of 5x10%° Pa s, a weak asthenosphere with minimum viscosities of ca. 10'® Pa s generates the
following differences: (1) locally larger suction forces due to convective flow, which are able to assist in establishing a single-
slab subduction instead of a divergent double-slab subduction, and (2) smaller horizontal driving forces to initiate horizontally
forced subduction, namely ca. 15 TN m~! instead of ca. 22 TN m~!. Therefore, quantifying the viscosity structure of the
asthenosphere is important for understanding the actual geodynamic processes acting in specific regions.

In our models, subduction at a hyper-extended passive margin is initiated during horizontal shortening and by shear localiza-
tion due to mainly thermal softening. In contrast, after 70 Myrs of cooling without far-field deformation, subduction of a 400
km wide exhumed and cold mantle is not spontaneously initiated. The buoyancy force due to the density difference between
lithosphere and asthenosphere is too small to overcome the mechanical strength of the lithosphere.

The first-order geodynamic processes simulated in the geodynamic cycle of subsequent extension, cooling and convergence
are applicable to orogenies that resulted from the opening and closure of embryonic oceans, which might have been the case

for the Alpine orogeny.

Data availability. The data presented in this study are available on request from Lorenzo G. Candioti.

Video supplement. The videos (https://doi.org/10.5446/48939) and (https://doi.org/10.5446/48940) show the entire model evolution of M1

(reference run) and the convergence stage of M4, respectively, as discussed in the article.

Appendix A: Numerical algorithm
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Table A1. Physical parameters used in the numerical simulations M1-6.

Parameter Unit Strong Crust! Weak Crust? Calcite® Mica* Dry Mantle® Wet MantleS
00 kgm™3 2800 2800 2800 2800 - -
G Pa 2x 100 2x10%° 2x10%° 2x10%° 2x10%° 2x 1010
cp Jkg P K™! 1050 1050 1050 1050 1050 1050
k Wm ' K™! 225 225 237 2.55 2.75 2.75
Hy Wm3 0.9%x107° 0.9%x107° 0.56x10~° 29%x107%  2.1139x107®  2.1139x1078
c Pa 107 108 107 108 107 107
© ° 30 5 30 5 30 30
a K™ 3%x107° 3%x107° 3%x107° 3%x107° 3x107° 3%x107°
8 Pa~! I1x10~ I1x10~ I1x10~ I1x10~ I1x10~ I1x10~
Dislocation

A Pa="""s7! 5.0477x1072®  5.0717x107*®  1.5849x1072°  107'%8 1.1x107'%  56786x10727
n - 4.7 23 4.7 18 3.5 3.5
0 J mol™* 485x%10° 154x10° 297x 103 51x10° 530%10° 460%10°
14 m® mol ™! 0 0 0 0 14x1076 11x1076
r - 0 0 0 0 0 1.2
fu,0 Pa 0 0 0 0 0 10°
Diffusion

A* Pa™""m"s™* - - - - 1.5x1071° 2.5%10728
n - - - - - 1 1
Q J mol™? - - - - 370x 103 375%x 103
14 m? mol ™! - - - - 7.5%107° 20x107°
m - - - - - 3 3
r - - - - - 0 1
fH,0 Pa - , . } 0 10°
d m - - - - 1073 1073
Peierls

A st - - - - 5.7x10" 5.7x10M
0 Jmol ™! - - - - 540x 103 540%10°
op Pa - - - - 8.5x10° 8.5x10°
o' - - - - - 0.1 0.1

Flow law parameters: 1Maryland Diabase (Mackwell et al., 1998), 2 Wet Quartzite (Ranalli, 1995), 3 Calcite (Schmid et al., 1977), 4Mica (Kronenberg et al., 1990), 5Dry Olivine
(Hirth and Kohlstedt, 2003) and ®Wet Olivine (Hirth and Kohlstedt, 2003). Peierls creep: (Goetze and Evans, 1979) regularised by Kameyama et al. (1999). *Converted to SI units
from original units: A = 2.5 x 107 ([MPa]) ~"~" ([um])™ ([s]) ™! = 2.5 x 107 x (1079767 [Pa] =6"=6") x (107%" [m]") x ([s]!) = 2.5 x 10723 [Pa~2m3s~1].
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Continuity and force balance equations for an incompressible slowly flowing (no inertial forces) fluid under gravity are given
by

(“)v,- -
o =" (A1)
doy _
oy, P (A2)

where v; denotes velocity vector components and x; spatial coordinate components, where (i,j=1) indicates the horizontal
direction and (i,j=2) the vertical direction, o;; are components of the total stress tensor, p is density and a; = [0; g] is a vector
with g being the gravitational acceleration. Density is a function of pressure P (negative mean stress) and temperature T

computed as a simplified equation of state for the crustal phases like

p(P.T) = po (1 - GAT) (1 + BAP) | (A3)

where py is the material density at the reference temperature Ty and pressure Py, « is the thermal expansion coefficient, (5 is
the compressibility coefficient, AT = T — Ty and AP = P — Py. Effective density for the mantle phases is pre-computed using
the software package Perple_X (Connolly, 2005) for the bulk rock composition of a Hawaiian pyrolite (Workman and Hart,
2005). Figure A1 shows the density distribution for the calculated pressure and temperature range.

The visco-elastic stress tensor components are defined using a backward-Euler scheme (e.g., Schmalholz et al., 2001) as

o= —Po;+ 2 & (A4)

y

where 6; = 0if i # j, or 0;; = 1if i = j, 71° is the effective viscosity, £ are the components of the effective deviatoric strain

rate tensor,

corr_ (e Th (A5)
y Y oGAr )’

where G is shear modulus, At is the time step, 7,7 are the deviatoric stress tensor components of the preceding time step
and J;; comprises components of the Jaumann stress rate as described in detail in Beuchert and Podladchikov (2010). A visco-
elasto-plastic Maxwell model is used to describe the rheology, implying that the components of the deviatoric strain rate tensor
¢;j are additively decomposed into contributions from the viscous (dislocation, diffusion and Peierls creep), elastic and brittle

plastic deformation as

- __ cela -dis -dif -pei .pla
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In case deformation is effectively visco-elastic, a local iteration cycle is performed on each cell/node until eq. A6 is satisfied
(e.g., Popov and Sobolev, 2008). The viscosity for the dislocation and Peierls creep flow law is a function of the second

» o
invariant of the respective strain rate components &P = 7y /(2ndispet)

N r-1 Q+PV
ndls:?)le = (Edlls) exp ( RT ) (fH20> ) (A7)

2n

where the ratio in front of the pre-factor A results from conversion of the experimentally derived 1D flow law, obtained from
laboratory experiments, to a flow law for tensor components (e.g., Schmalholz and Fletcher, 2011). For the mantle material

diffusion creep is taken into account and its viscosity takes the following form

; 1 1 + PV
ndfng Ly exp<Q )(fHQO) , (A8)

where d is grain size and m is a grain size exponent. Effective Peierls viscosity is calculated using the regularised form of

Kameyama et al. (1999) for the experimentally derived flow law by Goetze and Evans (1979) as

-
nPei _ ‘{2))12;:‘ A ( pel) -1 ’ (A9)

where s is an effective, temperature dependent stress exponent:

s:QV%(l—'y). (A10)

A in Eq. (A9) is

2 _1
A= [A exp<—Q(1RT7)ﬂ ~op, (A11)

where Ap is a pre-factor, + is a fitting parameter and op is a characteristic stress value. The parameters A, Q, V, m and r
are defined independently for each deformation mechanism (e.g., Adis| A4 Apely However, for practical reasons we omit the
corresponding superscripts (dis, dif, pei) for these material parameters.

In the frictional domain, stresses are limited by the Drucker-Prager yield function

F=71—Psing—C coso, (A12)

where ¢ is the internal angle of friction and C is the cohesion. If the yield condition is met (F > 0), the equivalent plastic

viscosity is computed as

P sing + C cos¢

pla _
= “off
2

(A13)
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and the effective deviatoric strain rate is equal to the plastic contribution of the deviatoric strain rate (eq. AS). At the end
of the iteration cycle, the effective viscosity in eq. A4 is either computed as the inverse of the quasi-harmonic average of the

visco-elastic contributions

1 1 1 1\
neff: (@+Wd“+W+W) 7F<O (A14)
77pla ,FZO

or is equal to the viscosity 7P calculated at the yield stress according to eq. A13. Thermal evolution of the model is

calculated with the heat transfer equation

P cp

Dr o or
8x,~

Dr = ox k> +Ha+Hp + H (AI5)
where cp is the specific heat capacity at constant pressure, D /Dt is the material time derivative, k is thermal conductivity,
Ha = Tav.gpis a heat source or sink resulting from adiabatic processes assuming lithostatic pressure conditions, Hp = 7 (é,-j—
éfjl"‘) results from the conversion of dissipative work into heat (so-called shear heating) and Hy is a radiogenic heat source.
To initiate the deformation, we perturbed the initial marker field with a random amplitude vertical displacement like

M= +A exp(—x;”> , (A16)

where z) is the vertical marker coordinate in km, A is a random amplitude varying between -1.25 km and 1.25 km, xy; is the
horizontal marker coordinate in km and \ = 25 km is the half-width of the curve. The perturbation is applied to the horizontal
centre of the domain between -75 km and 75 km.

All physical parameters are summarised in table Al.

Appendix B: Nusselt number scaling laws and phase transitions

Modelling thermal convection beneath an actively deforming lithosphere can be numerically expensive, because the convection
velocities can be as high as or even higher than the motion of the lithospheric plates, depending on the vigour of the convecting
system. This significantly reduces the maximum time step necessary to ensure numerical stability. In consequence, it takes
more time steps to run a simulation to the same physical time when convection is modelled together with deformation in the
lithosphere. Hence, the computational time can be twice as long compared to models, where only the deforming lithosphere
is modelled. However, it is possible to include the effect of convection in the mantle on the thermal field and keep a constant
vertical heat flux through the lithosphere-asthenosphere boundary (LAB) into a numerical model without explicitly modelling

convection by using an effective thermal conductivity for the mantle material below the lithosphere. Two dimensionless quan-
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tities have to be defined, namely the Rayleigh and Nusselt numbers. The Rayleigh number is the ratio of the thermal diffusion

and advection time scale

i ATD?
Ra— DIt _ PEO2TE (B1)
Tadv Ketf
where p is density, g is gravitational acceleration, « is a coefficient of thermal expansion, AT is the temperature difference
between the top and the bottom and D is the thickness of the convecting layer, x = k/p/cp is the thermal diffusivity and 7 is

the effective viscosity. The Nusselt number can be expressed in terms of the Rayleigh number as

5
Nu = < Ra ) , (B2)

Racrit

where Ra. is the critical Rayleigh number at which convection starts, typically in the order of 103, and /3 is a power-law
exponent (Schubert et al., 2001). The Nusselt number is the ratio of advective heat flux, gaqy, Which is the vertical heat flux
through the base of the lithosphere, imposed by the convecting upper mantle to the diffusive heat flux, gpir, imposed by the

lithosphere on top of the convecting upper mantle as

Nu = Taav (B3)
dpif

Using this relationship, it is possible to scale the thermal conductivity to the Nusselt number of the Earth’s mantle and
to maintain a constant heat flow through the base of the lithosphere via conduction when convection is absent. Assuming
Ra =2 x 10% and 3 = 1/3 for the Earth’s upper mantle convection, eq. B2 predicts Nu = 13. This implies that the heat flow
provided by advection is 13 x higher than the heat flow provided by conduction. Using an effective conductivity approach,
the heat flow provided by advection is mimicked using an enhanced conductive heat flow in the upper mantle. The effective
conductivity can be determined by scaling the standard value of thermal conductivity of the upper mantle material to the

Nusselt number of the convecting system like

keff =Nuk. (B4)

For this study, the standard value for k = 2.75 of the upper mantle material and Nu = 13. The effective conductivity according
to eq. B4 is ket = 36. To avoid a strong contrast of conductivities directly at the base of the lithosphere, we linearly increase
the conductivity from 2.75-36 W m~! K~! over a temperature range of 1350-1376 °C. Applying this effective conductivity
approach reduces the number of time steps necessary for computation up to the same physical time by ca. a factor 2 in M4
compared to M1.

As mentioned above, the vigour of convection is defined by the Rayleigh number (eq. B1). For Ra»Rac,, the time scale for

thermal diffusion is much larger than the time scale for advection of material. This means that the entropy of the system remains
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relatively constant in time. By definition, such a system is adiabatic (Kondepudi and Prigogine, 2014). In the presented models,
the density and entropy for the mantle phases is pre-computed using Perple_X for a given bulk rock composition. Assuming
that the temperature gradient in the upper mantle is adiabatic and stress conditions are close to lithostatic (i.e., deviatoric
stresses are negligible), the temperature at any depth can be determined by following an isentrop from the Perple_X database.
Starting coordinates in pressure-temperature space are the (lithostatic) conditions at the base of the lithosphere. From these
pressure and temperature values one can follow the closest isentrop (black line Fig. A1) until the (lithostatic) pressure value at
target depth (in this study 660 km, red diamond Fig. A1) is reached and extract the corresponding temperature value. Trubitsyn
and Trubitsyna (2015) derived an analytical solution to calculate temperatures assuming an adiabatic gradient for given depths.
We determined the temperature at the bottom of the model domain using both approaches and the obtained values that differ
by only 0.01 °C.

Involving phase transitions necessitates mainly two major assumptions: (1) is compressibility of material due to large density
variations important and (2) does latent heat released or consumed at a phase transition significantly change the convective
pattern? Bercovici et al. (1992) concluded that compressibility effects on the spatial structure of mantle convection are minor
when the superadiabatic temperature drop is close to the adiabatic temperature of the mantle, which is the case for the Earth.
Although the net density varies largely in P-T space of the phase diagram used in this study (fig. A1), the maximum value for
the density time derivative computed from M1 is two orders of magnitude lower than the velocity divergence. We assume that
density changes due to volumetric deformation are, hence, still negligible and density changes are accounted for in the buoyancy
force only. This means the classical Boussinesq approximation is still valid. However, not considering adiabatic heating in the
energy conservation equation leads to a significant deviation of the thermal structure from the initially imposed temperature
gradient over large time scales (>100 Myrs). The resulting temperature profile is constant throughout the upper mantle and
the newly equilibrated constant temperature is equal to the imposed temperature at the bottom boundary. In consequence, the
density structure read in from the phase diagram table according to pressure and temperature values is significantly wrong. To
avoid these problems, we use the extended Boussinesq approximation, i.e., the adiabatic heating term is included in the energy
conservation equation. As a result, the initially imposed adiabatic (or isentropic) temperature gradient can be maintained over
large time scales. The resulting density structure agrees well with the PREM model (Dziewonski and Anderson, 1981) as
shown in this study. A detailed comparison between different approximations of the system of equations is clearly beyond the
scope of this study.

Latent heat that is released or consumed by a phase transition can perturb the thermal field by up to 100 K and induce a
buoyancy force aiding or inhibiting the motion of cold, especially low-angle, subducting slabs (van Hunen et al., 2001) or
hot rising plumes. However, when the lateral differences in temperature are small, the deflection of the phase transition by
an ascending plume or a subducting slab has a much bigger impact on the buoyancy stresses than the latent heat released or
consumed by the phase transition (Christensen, 1995). Because a detailed parametric investigation of the impact of latent heat

on buoyancy stresses is beyond the scope of study, we neglect latent heat for simplicity.
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Appendix C: Convection benchmark

In this section, we present the results of a convection benchmark performed by the algorithm used in this study. Equations for

continuity and force balance are solved as in eq. Al and A2, density is a function of temperature only and calculated as

p(T) = po(1 —aT) €D

and the total stress tensor is decomposed into a pressure and a deviatoric part as

UU:—P(S,‘J'—FTU. (C2)

Transfer of heat is calculated as in eq. A15. Stresses and strain rates (€;;) are related to each other via the viscosity 7 as

T = 2ngj; - (C3)

Viscosity is computed via a linearized Arrhenius law, also called Frank-Kamenetskii approximation (Kamenetskii, 1969):

n(T,z) = exp(—yr+12) (C4)

with 7 = log(nr) and v, = log(n,). By choosing 7, = 1, v, = 0 in eq. C4 and, therefore, the viscosity is only temperature
dependent.
The dimensionless equations are discretized over a domain that extends from O to 1 in both horizontal and vertical directions

and a small amplitude perturbation (A = 0.01) is applied to the initial temperature profile as

T(x,z) = (1 —z) + Acos(mx)sin(nz) . (C5)

As mentioned above, the vigour of the convecting system is described by its Rayleigh number (eq. B1). A local Ra = 10? is
applied to the top boundary by setting o = 10~2, g = 10 and all other parameters of eq. B1 are set to 1. The applied viscosity
decrease by choosing 77 = 10° in eq. C4 results in a global Ra = 10”. All mechanical boundaries are set to free slip, the thermal
boundary conditions are constant temperature at the top (7 = 0) and bottom (7 = 1) and insulating (i.e., zero flux) at the two
vertical boundaries. Tosi et al. (2015) tested several algorithms, including finite element, finite differences, finite volume and
spectral discretization, on their capability of modelling distinct rheologies of the mantle, from temperature dependent viscosity
only up to visco-plastic rheologies. We have chosen the simplest test, case one in Tosi et al. (2015), and report the results of

two distinct diagnostic quantities: the average temperature over the entire modelling domain

1 1
(T):// T dxdz (C6)
0 0
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and the root mean square velocity at the surface

1
surf 2
URMS = ( / Vx
0

The model develops one convection cell below a stagnant lid (fig. A2(a)). We tested numerical resolutions of 502, 1002,

1

dx) . )
=1

1502 and 3002. Only for resolutions >100? the desired convective pattern developed. The numerical algorithms tested by Tosi
et al. (2015) passed the benchmark already for lower resolutions. This is due to the fact that the algorithm presented here uses
a uniform grid size across the domain. The algorithms tested by Tosi et al. (2015) used refined meshes. Sufficient resolution
of the thermal boundary layers at the top and at the bottom is crucial to develop the desired pattern. Using a refined mesh in
these regions, allows for lower total resolution, whereas using a regular mesh necessitates a much higher resolution in total.
Nevertheless, values for the diagnostic quantities reproduced by the presented algorithm lie well within the minimum and
maximum values calculated by the algorithms tested in Tosi et al. (2015) (grey areas in fig. A2(b) & (d)). This shows that the
convection in the upper mantle, where the viscosity is essentially temperature dependent, in the models presented in this study

in which convection is not parameterized, is accurately modelled.

Appendix D: Gravitational potential energy and plate driving forces

We use the gravitational potential energy per unit surface (GPE) to quantify the impact of convection induced density variations
in the upper mantle during the distinct stages of the simulations. The GPE varies along the horizontal x-direction and is

computed as

St(x)
GPE(x) = / Pu(z,2) dz, (D1)

Sb

where Py is the lithostatic pressure calculated as

St(x)

PL(x,z) = / p(x,z’) g dz’ (D2)
z

and St(x) is the stress-free surface and Sb is the model bottom. Horizontal variations in GPE, AGPE, are calculated by

subtracting the leftmost value as a reference value from all other values. The GPE gives an estimate on the plate driving forces

per unit length (Molnar and Lyon-Caen, 1988; Schmalholz et al., 2019; Bessat et al., 2020) acting in the system during the
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different stages of the hyper-extension and convergence cycle. We also calculate the vertical integral of the second invariant of

the deviatoric stress tensor

%[](.X) = / TH()C,Z) dz . (D3)

The value of Fp = 2 X 75, % (x), where 7;®(x) is calculated averaging the average of 7i;(x) both over the left and rightmost
100 km of the domain, is also identical to the vertical integral of the difference between the horizontal total stress and the
lithostatic pressure, if shear stresses are negligible (Molnar and Lyon-Caen, 1988; Schmalholz et al., 2019). This condition is
strictly satisfied by the choice of boundary conditions at the top and the bottom of the model domain. We therefore chose to
show the profiles which have been integrated over the entire domain height (z=-660 km). Since the deviatoric stresses below the
lithosphere are indeed negligibly small, values for Fp, integrated from depths of z = —660km, z = —330km and z = —120km
do not reveal significant differences. Therefore, the value of Fp is essentially independent on the integration depth (if deeper
than the lithosphere thickness). Fp can therefore be used to estimate the plate driving force (see fig.7(d)). For calculation of

the suction force per unit length (Fs) induced by the mantle flow (fig. 6(a) & (f)) we used the following formula

a

FS://Apg dz dx | (D4)
d

b
where a, b, ¢ and d are the integration bounds and Ap is the difference in density between the entire density field at the end

of the cooling period and a reference density value (profiles in fig. 2(e)).
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model fit of mantle flow to seismic anisotropy originally by Behn et al. (2004). All profiles taken from Forte et al. (2010) (fig. 2). The median
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via thermal softening. The legend shown in (d) is valid for all panels above as well.
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show the effective viscosity field calculated by the numerical algorithm for the mantle lithosphere and the upper mantle. Arrows represent

velocity vectors and the length of the arrows is not to scale. Grey lines indicate the 550 °C, 1350 °C and 1450 °C isotherm.
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Figure Al. Hawaiian pyrolite phase diagram calculated with Perple_X (Connolly, 2005). Bulk rock composition in weight amount: 44.71
(Si02), 3.98 (Al203), 8.18 (FeO), 38.73 (MgO), 3.17 (Ca0) and 0.13 (NazO). Bulk rock composition taken from Workman and Hart
(2005). Blue to red colours indicate density calculated for the given pressure and temperature range, black line indicates the isentrop for a

temperature of 1350 °C at the base of a 120 km thick lithosphere and the red diamond shows the pressure and temperature conditions at 660
km depth following this isentrop.

43



800

700

600

500

400

300

200

100

0.2 0.4 0.6 0.8

Z Z
0.8 T T 2.5 T T Le end
(b) /\ (d) g
075! / ] - Excluding spectral
27 | algorithm
0.7 0.78 ] 15 2 | Including spectral
—~ (e) e (f) algorithm
&~ 0.65 { =
~ 0.778 CR
1.5
06+ 1
0.776
0.55 | |08
130000 210000 30000 100000
0.5 : : 0 : :
0 100000 200000 0 100000 200000
No. time steps No. time steps

Figure A2. Results of 2D convection benchmark. (a) effective viscosity after convection reached a steady state, (b) normal average temper-
ature calculated as in eq. C6 for the entire model history, (c) root mean square velocity field for the entire domain after convection reached
a steady state, (d) root mean square velocity at the surface of the modelled domain of the entire model history calculated as in eq. C7, (e)
normal average temperature calculated as in eq. C6 for the time period at which the convection reaches a steady state and (f) root mean
square velocity at the surface of the modelled domain calculated as in eq. C7 for the time period at which the convection reaches a steady
state. In fig. A2(b) and fig. A2(d)-(f), the dark grey area only shows the range of minimum maximum values for the given diagnostic quantity
obtained by the algorithms tested by Tosi et al. (2015) excluding the spectral algorithm. Dark combined with light grey areas indicate the
range obtained by all algorithms tested by Tosi et al. (2015) including the spectral algorithm.
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