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Abstract. A two-stage fuzzy inference system (FIS) is applied to prospectivity modelling and exploration-target delineation 10 

for REE deposits associated with carbonatite-alkaline complexes in western part of the state of Rajasthan in India. The design 

of the FIS and selection of the input predictor map are guided by a generalized conceptual model of carbonatite-alkaline-

complexes-related REE mineral systems. In the first stage, three FISs are constructed to map the fertility and favourable 

geodynamic settings, favourable lithospheric architecture, and favourable shallow crustal (near-surface) architecture, 

respectively, for REE deposits in the study area. In the second stage, the outputs of the above FISs are integrated to map the 15 

prospectivity of REE deposits in the study area. Stochastic and systemic uncertainties in the output prospectivity maps are 

estimated to facilitate decision making regarding the selection of exploration targets. The study led to identification of 

prospective targets in the Kamthai-Sarnu-Dandeli and Mundwara regions, where project-scale detailed ground exploration is 

recommended. Low-confidence targets were identified in the south of the Siwana ring complex, north and northeast of Sarnu-

Dandeli, south of Barmer, and south of Mundwara. Detailed geochemical sampling and high-resolution magnetic and 20 

radiometric surveys are recommended in these areas to increase the level of confidence in the prospectivity of these targets 

before undertaking project-scale ground exploration. The prospectivity-analysis workflow presented in this paper can be 

applied to delineation of exploration targets in geodynamically similar regions globally such as Afar province (East Africa), 

Paraná-Etendeka (South America and Africa), Siberian (Russia), East European Craton-Kola (Eastern Europe), Central Iapetus 

(North America, Greenland and the Baltic region), and the Pan-superior province (North America). 25 
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1 Introduction 30 

The term Rare Earth Elements (REEs) includes (International Union of Pure and Applied Chemistry, IUPAC): yttrium (Y), 

scandium (Sc), and the lanthanides (lanthanum, La; cerium, Ce; praseodymium, Pr; neodymium, Nd; promethium, Pm; 

samarium, Sm; europium, Eu; gadolinium, Gd; terbium, Tb; dysprosium, Dy; holmium, Ho; erbium, Er; thulium, Tm; 

ytterbium, Yb; and lutetium, Lu). Because of their increasing use in environment-friendly high-technology industries, REEs 

are widely considered as the resources of the future (e.g., Goodenough et al., 2018; Wall, 2021). Most countries have classified 35 

REEs as ‘critical minerals and metals’ because of their strategic importance and the projected gap between their future demand 

and supply (Goodenough et al., 2018; Gonzalez-Alvarez et al., 2021 and references therein).  

In spite of significant efforts into developing technology for recovering and recycling REEs from discarded devices 

(Binnemans et al., 2013), geological resources are likely to remain the primary sources of REEs in the foreseeable future 

(Goodenough et al., 2018). Several classification schemes for REE deposits have been proposed by different workers based 40 

on geological associations and settings; for example, Chakhmouradian and Wall (2012), Jaireth et al. (2014), Wall (2014), 

Goodenough et al. (2016), Verplanck and Hitzman (2016), Simandl and Paradis (2018), etc. In general, REE deposits can be 

broadly classified into those formed by high-temperature (magmatic and hydrothermal) processes and those formed by low-

temperature (mechanical and residual concentration) processes (e.g., Wall, 2021). Although the majority of the global 

production of REEs comes from low-temperature deposits such as regolith-hosted and heavy-mineral placers (IBM yearbook 45 

2018, 2019), the bulk of geological resources are in high-temperature magmatic deposits, particularly those associated with 

carbonatites (e.g., Bayan Obo, Inner Mongolia, China; Mount Weld, Western Australia; Maoniuping, South China; Mountain 

Pass, USA etc.; Gonzalez-Alvarez et al., 2021 and references therein) 

India ranks 6th in terms of production of REEs and 5th in terms of resources (USGS, 2021). All of India’s production comes 

from monazite-bearing beach sands along the eastern and western coasts (IBM yearbook 2018, 2019). Since India has 29 out 50 

of the total 527 globally reported carbonatite occurrences (Woolley and Kjarsgaard, 2008a), there is significant latent potential 

for carbonatite-related REE deposits in the country. Currently, there is no study available, at least in the public domain, on 

systematic delineation of prospective REE exploration targets in India. 

Mineral prospectivity modelling is a widely used predictive tool for identifying exploration target areas. Implemented in a GIS 

environment, it involves the integration of ‘predictor maps’ that represent a set of mappable exploration criteria for the targeted 55 

deposit type. Typically, conceptual mineral systems models are used to identify exploration criteria (Porwal and Kreuzer, 

2010; Porwal and Carranza, 2015). The integration is done through either linear or non-linear mathematical functions 

(Bonham-Carter, 1994; Porwal, 2006; Porwal and Carranza, 2015). Depending on how the model parameters are estimated, 

that is, whether based on training data comprising attributes of known deposits or on expert knowledge, these models are 

classified as data-driven or knowledge-driven.     60 

Data-driven approaches require a sizeable sample of known deposits of the targeted deposit type for estimating the model 

parameters. The main data-driven approaches are Bayesian probabilistic approaches (e.g., Weights of Evidence - Singer and 
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Kouda, 1999; Nykänen et al., 2008; Porwal et al., 2010; Zhang et al., 2014; Nielsen et al., 2015; Payne et al., 2015; Chudasama 

et al., 2018; Tao et al., 2019), regression-based approaches (e.g., Logistic regression - Harris and Pan, 1999; Carranza and 

Hale, 2001; Harris et al., 2003; Nykänen et al., 2008; Porwal et al., 2010; Chen et al., 2011; Zhang et al., 2014; Xiong and 65 

Zuo, 2018) and machine learning approaches (e.g., neural networks – Singer and Kouda, 1999; Brown et al., 2000; Porwal et 

al., 2003a; Rodriguez-Galiano et al., 2015; Chudasama et al., 2018; Sun et al., 2020; Support Vector Machines - Zuo and 

Carranza, 2011; Abedi et al., 2012; Rodriguez-Galiano et al., 2015; Chen and Wu, 2017; Random forests - Rodriguez-Galiano 

et al., 2015; Carranza and Laborte, 2015; Hariharan et al., 2017). Knowledge-driven approaches use expert knowledge for 

estimating model parameters. Typical knowledge-driven approaches include fuzzy-set theory-based expert systems (Porwal et 70 

al., 2003b; Nykänen et al., 2008; González-Álvarez et al., 2010; Joly et al., 2012; Porwal et al., 2015; Wilde et al., 2018; 

Chudasama et al., 2018; Morgenstern et al., 2018), Dempster–Shafer evidential belief functions (Moon, 1990, 1993; An et al., 

1994; Chung and Fabbri, 1993; Tangestani and Moore, 2002; Carranza and Sadeghi, 2010). 

Prospectivity modelling is subject to uncertainties. These uncertainties are classified in two main categories (Porwal et al., 

2003b; Lisitsin et al., 2014), namely, systemic and stochastic. Systemic uncertainties rise from the incomplete understanding 75 

of the geological process involved in the formation of the mineral deposit, leading to imperfect or inefficient models. Stochastic 

uncertainties rise from the limitations of datasets used, of the methods used to interpret useful information from them. These 

can be a result of inaccurate or imprecision of measurements, mapping or interpolations, inconsistent data coverage etc (Porwal 

et al., 2003b; McCuaig et al., 2009; Lisitsin et al., 2014). 

There are very few published studies on REE prospectivity modelling. Ekmann (2012) escorted a study of REEs in coal 80 

deposits in the United States. In one of the first GIS-based prospectivity modelling studies for REEs, Aitken et al. (2014) used 

a fuzzy-logic-based model to delineate prospective targets for pegmatite-, carbonatite- and vein-hosted REEs in the Gascoyne 

Region of Western Australia. This study was part of a larger multi-commodity prospectivity study of the Gascoyne Province. 

Sadeghi (2017) carried out a regional-scale GIS-based prospectivity analysis for REEs in the Bergslagen district of Sweden, 

targeting iron-apatite- and skarn-associated deposits using the weights of evidence and weighted-overlay models. Bertrand et 85 

al. (2017) used database querying to analyse the prospectivity for REEs as by-products in known mineral deposits in Europe. 

In a recent study, Morgenstern et al. (2018) analysed the potential of REEs in New Zealand using a multi-stage Fuzzy inference 

system (FIS). 

This contribution describes the first systematic and comprehensive prospectivity modelling exercise aimed at identifying 

exploration targets for REE associated with carbonatite-alkaline complexes in Western Rajasthan, India (Fig. 1). Although a 90 

well-established carbonatite province that is widely considered prospective for REE deposits, no deposit has been identified 

in the province so far. In this study, we employ fuzzy inference system (FIS), which is a knowledge-driven artificial intelligence 

technique, to identify and delineate prospective targets for REE deposits in the study area. The inputs to the FIS were identified 

based on a generalised mineral systems model for alkaline-carbonite-complexes-related REEs, which was further used to guide 

the design of the FIS. To support decision making regarding the delineated targets, stochastic and systemic uncertainties in the 95 

output model were also estimated. The prospectivity-analysis workflow presented in this paper can be applied to other 
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geodynamically similar regions globally for targeting regions for follow-up exploration in East Africa, South and North 

America, Russia, Eastern Europe, Greenland, and the Baltic region. 

2 Geological setting of the study area 

The study area falls in the state of Rajasthan in northwest India (Fig. 1). This area was chosen because it is a known major 100 

carbonatite province of India, and well-integrated public domain datasets are available. Geologically, the study area contains 

igneous and sedimentary formations ranging in age from the Neoproterozoic to Holocene. Neoproterozoic Erinpura and Jalore 

granites, along with a few outcrops of the Mesoproterozoic Delhi Supergroup, occur in the southeastern part of the study area 

(Fig. 1). The eastern part of the study area comprises extrusive and intrusive igneous rocks belonging to the Neoproterozoic 

Malani Igneous Suite that is mostly buried under a thick horizon of Holocene wind-blown sand. Sedimentary sequences 105 

belonging to the Late Neoproterozoic Marwar Supergroup, Jurassic Jaisalmer, Cretaceous Sarnu-Fatehgarh, Tertiary Barmer 

(Palaeocene) and Akli (Eocene), Quaternary Uttarlai Formations (Pleistocene to sub-Recent) (Roy and Jakhar, 2002; 

Ramakrishnan and Vaidyanadhan, 2008; Singh et al., 2016) occur in the central and western parts around Barmer and Jaisalmer 

towns (Fig. 1). 

Carbonatite-alkaline complexes of the Cretaceous age occur in the Mer-Mundwara area in the eastern part of the study area 110 

and the Sarnu-Dandali area in the central part (Fig. 1; Table 1). The Mer-Mundwara carbonatite-alkaline complex intrudes the 

Neoproterozoic Erinpura Granite and displays a characteristic ring structure, wherein the alkaline-mafic rock suites form two 

ring structures and a dome (Pande et al., 2017). Carbonatites mainly occur in the form of linear dykes at Mer-Mundwara. The 

Sarnu-Dandeli complex covers a relatively large area on the eastern shoulder of the Barmer basin. The carbonatites occur 

mainly as scattered plugs and dykes with an extensive Quaternary sand cover, intruding the Neoproterozoic Malani igneous 115 

suite and the Cretaceous Sarnu formation (Vijayan et al., 2016; Sheth et al., 2017). It also includes more minor occurrences of 

carbonatites in the Danta-Langera-Mahabar and Kamthai areas. The Kamthai plug is considered to be highly prospective for 

REEs (Bhushan and Kumar, 2013). 

The study area is dissected by the Barmer rift, which continues southwards through the state of Gujarat into the Cambay basin. 

The Barmer rift is a failed, roughly north-south trending, extensional intracratonic rift (Fig. 1) that was active during Late 120 

Cretaceous to Eocene (Dolson et al., 2015). A long-lasting extensional regime in northwest India predating the Deccan 

volcanism existed in northwest India, peaked with the Seychelles rifting at the Cretaceous–Paleogene boundary and the 

emplacement of the main phase of Deccan volcanics at ca. 65 Ma (Devey and Stephens, 1992; Allegre et al., 1999; Chenet et 

al., 2007; Collier et al., 2008; Ganerød et al., 2011; Bladon et al., 2015a, b). The well-preserved Cretaceous carbonatite-alkaline 

complexes of the study area represent a young carbonatite magmatism episode (~68 Ma) that is coeval with the initial 125 

magmatism of the Deccan Large Igneous Province (LIP) and is related to the India-Seychelles breakup and northward drifting 

of India over the reunion mantle plume (Devey and Stephens, 1992; Basu et al., 1993; Simonetti et al., 1995; Allegre et al., 
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1999; Ray and Pande, 1999; Ray and Ramesh, 1999; Ray et al., 2000; Chenet et al., 2007; Collier et al., 2008; Sheth et al., 

2017; Chandra et al., 2018). 

130 
Figure 1: Geological map of the study area with known carbonatite-alkaline complexes. 

3 Datasets and methods 

The public domain geoscience datasets used in the study, which include geological, geophysical, topographic and satellite 

data, were sourced from the Bhukosh portal of the Geological Survey of India 

(https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx). Table 2 summarises the sources, scales and other details about the 135 

individual datasets. 
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Table 2: A list of primary data available for the study area. 

Primary data Resolution Source 

Geological map 1:50,000 GSI, Bhukosh, accessed in October 2019 

Structural map 1:50,000 GSI, Bhukosh, accessed in October 2019 

Magnetic TMI 75 m GSI, Bhukosh, accessed in October 2019 

Ground Gravity 10,000 m GSI, Bhukosh, accessed in October 2019 

Satellite sensed gravity anomaly and 

topographical data 
1,600 m 

Smith and Sandwell, 1997; Sandwell and Smith, 2009; Sandwell 

et al., 2013, 2014; accessed in January 2020 

SRTM topography 954 m Geosoft seeker; accessed in October 2019 

Lineaments from remote sensing data 1:250,000 GSI, Bhukosh, accessed in October 2019 

Known carbonatite occurrences Literature review; Table 1 

Known prospects GSI and AMD, 2020 

The methodology flow chart is shown in Figure 2. 140 

Figure 2: Flow chart depicting the methodology. Rectangular boxes contain generated objects, and oval boxes contain processes 
used for creating the objects. Shaded boxes indicate the objects and processes created and implemented in a GIS, respectively.   
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The methodology is described in detail in the following subsections. 

3.1 Mineral systems model for carbonatite-alkaline complex related REE deposits 145 

In this study, we used the generalised conceptual model of carbonatite-alkaline-complex-related REE mineral systems 

developed by Aranha et al. (in review) based on the framework proposed by McCuaig and Hronsky (2014). Figure 3 illustrates 

the main features of the model. The main components of the mineral systems are compiled in Table 3 and briefly summarised 

in the following paragraphs. 

Geodynamic setting: Carbonatite-alkaline complexes and related REE deposits generally occur in extensional intra-150 

continental rifts and large igneous provinces (LIPs) (#4, 5, 6 in Fig. 3 and Table 3; Woolley and Kjarsgaard 2008a; Woolley 

and Bailey, 2012; Pirajno, 2015; Simandl and Paradis, 2018). Extensional tectonic settings and associated LIPs are 

manifestations of mantle plumes (Simonetti et al., 1995, 1998; Bell and Tilton, 2002; Bell and Simonetti, 2010; Ernst and Bell, 

2010), which also induce metasomatism of the SCLM, fertile source regions of, and favourable geodynamic settings for, REE 

deposits related to carbonatite-alkaline complex are interlinked. 155 

Architecture: Carbonatite-alkaline complexes and related REE mineral systems derive fluids from the SCLM through large-

scale permeable networks of trans-lithospheric structures. Most carbonatite-alkaline complexes are found spatially associated 

with crustal-scale faults, rifts and shear zones at regional scales (Ernst and Bell, 2010; Woolley and Bailey, 2012; Pirajno, 

2015; Simandl and Paradis, 2018; Spandler et al., 2020). Therefore, lithosphere-scale structures form favourable plumbing 

structures for carbonatite-alkaline-complex-related REE deposits (#7 in Fig. 3 and Table 3). Upper crustal faults, shallow 160 

discontinuity structures and joints serve as pathways for focussing fluids to near-surface levels and also form structural traps 

(#8 in Fig. 3 and Table 3; Ernst and Bell, 2010; Skirrow et al., 2013; Jaireth et al., 2014). 

The crystallisation of carbonatites and alkaline complexes along with reactions with the country-rock to form Ca and Mg 

silicates is accompanied by the removal of CO2, dissolved P and F (Skirrow et al., 2013; Jaireth et al., 2014). The above 

reactions may cause enrichment of incompatible elements such as REEs, U, Th, Nb, Ba, Sr, Zr, Mn, Fe, Ti (#10, 13, 14, 15, 165 

16, 17, 18, 19 in Fig. 3 and Table 3; Cordeiro et al., 2010; Skirrow et at., 2013; Jaireth et al., 2014; Pirajno, 2015; Mitchell, 

2015; Chakhmouradian et al., 2015; Stoppa et al., 2016; Poletti et al., 2016; Giovannini et al., 2017; Simandl and Paradis, 

2018; Spandler et al., 2020). Carbonatite-alkaline complexes are often enriched in ferromagnesian minerals that cause well-

defined magnetic and gravity anomalies (#9 in Fig. 3 and Table 3; Gunn and Dentith, 1997; Thomas et al., 2016). Fenitisation 

often enriches country rocks in K and Na (#12 in Fig. 3 and Table 3; Le Bas, 2008; Elliott et al., 2018). 170 

Rare earth element mineralisation in the carbonatites can be in the form of primary REE-bearing minerals (e.g., Mountain 

Pass, Mariano, 1989; Castor, 2008; Verplanck and Van Gosen, 2011; Van Gosen et al., 2017) or by the precipitation from 

hydrothermal or late magmatic fluid phases expelled from the carbonatite magmas (Verplanck and Van Gosen, 2011; Skirrow 

et at., 2013; Jaireth et al., 2014; Van Gosen et al., 2017). Primary REE-bearing cumulates include perovskite, pyrochlore, 

apatite and calcite, while late-stage REE-bearing minerals include bastnäsite, parasite, and synchysite (#24 in Table 3; 175 

Verplanck and Van Gosen, 2011; Skirrow et al., 2013; Van Gosen et al., 2017). 
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Figure 3: Idealised genetic model of a carbonatite-alkaline-complex-related REE mineral system (adapted from Aranha et al., under 
review) cross-referenced to processes listed in Table 3 through the numbers in blue. (A) Depicts the fertility and geodynamic setting 
along with the plumbing architecture on a regional scale. B, C and D focus on the emplacement architecture at the camp-to-prospect- 180 
scale. (B) Shows the idealised geometry of the intrusion and the relation of carbonatites and associated alkaline rocks and fenitisation 
(C) Presents the near-surface structural architecture and the spatial distribution of associated. (D) Displays the idealised geometry 
of a carbonatite-alkaline intrusion and the relationship between the magma chamber, ring dykes, cone sheets, and radial dykes. 
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Table 3: Conceptual REE mineral systems model (adapted from Aranha et al., under review). The index numbers correlate to the 
numbers in blue in Fig. 3. 185 

Setting/process # Targeting criteria Spatial proxies 

Fertility 

Mantle metasomatism and low degree 
partial melting  

1 Subduction of crust Subduction zones throughout 
geological history 

2 Decompressional melting of mantle and crust 
due to rifting (crustal thinning) Rift zones 

3 Metasomatism driven by a rising mantle 
plume  Trace of mantle plume 

Geodynamic setting and triggers 

Continental rifts (Rising Mantle plume) 

4 Trace of mantle plumes based on plate 
tectonics through indicative magmatism 

Trace of mantle plume through 
time 

5 LIP 

6 Major global tectonic events - super 
continental breakups 

Plate reconstruction models - 
rifting 

Architecture-plumbing 

Migration of magma along existing or 
new architecture 7 Crustal scale discontinuities 

Rift structure 

Deep crust penetrating faults 

Architecture-Emplacement 
Magma emplacement under structural 
traps 8 Near-surface network of faults Shallow intersecting faults 

Carbonatite magma emplacement - 
Concentration of minerals with a strong 
magnetic response and contrasting 
density from the country rocks 
Concentration of incompatible radioactive 
elements 
Hosted by or strongly associated with Ca 
or Mg carbonate rocks (Carbonatites) 

9 Anomalous signatures in geophysical data Anomalous signatures in magnetic 
and gravity data 

10 High radioactivity due to U and Th 
enrichment 

High response in radiometric maps 
due to U and Th 
Anomalous signatures in 
geochemical data 

11 High concentrations of Ca and Mg Anomalous signatures in 
geochemical data. 

Sodic and potassic fenitisation 12 Enrichment of K and Na in the surrounding 
rocks 

High response in radiometric maps 
due to K. 

Emplacement of incompatible elements in 
primary carbonatite or secondary 
carbonatitic veins  

13 Enrichment of REEs 

Anomalous signatures in 
geochemical data. 

14 P2O5, 

15 F, Cl and CO3; 

16 Nb 

17 Ba, Sr, Zr 

18 Mn 

19 Ti 
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Biogeochemical indicators: Absorption of 
REEs and related elements by plants 
growing over a potential deposit 

20 

Abundance of Ba, Sr, P, Cu, Co, La, Ce, Pr, 
Nd, Sm, Dy, Fe, Nb, Ta, U and Y against the 
background value in the leaves and twigs of 
the plants and in the Humus. 

Plant/Humus anomaly maps 

Selective absorption of specific 
wavelengths of the Electromagnetic 
spectrum  

21 Characteristic absorption features in remotely 
sensed images 

REE Concentration maps derived 
from remotely sensed images 

Carbonatites are commonly spatially 
associated with alkaline silicate (85%; 
Woolley and Kjarsgaard, 2008a, b) and in 
some cases with ultramafic and felsic 
silicate igneous rocks 

22 Known alkaline intrusions Mapped intrusions in geological 
maps 

Concentric zoning of carbonate rocks 
along with magnetic minerals (magnetite) 23 Circular outline Circular features in topographic 

and geophysical data 
Variation in mineralogy in REE-bearing 
minerals and associated alkaline suite of 
rocks are indicators of emplacement 
depth as well as erosional level and, 
therefore, mineralisation potential  

24 Variation in rock units of the alkaline rock 
suite and/or Variation of REE minerals 

Individual rock and mineralogical 
units in detailed lithological and 
mineralogical profiles 

3.2 Targeting criteria and predictor maps 

The above conceptual model for carbonatite-alkaline-related REE mineral systems was translated into a “targeting model”, 

which is a compilation of processes whose responses can be mapped directly or indirectly in the publicly available datasets for 

the study area listed in Table 2. The targeting model was used to identify regional-scale mappable targeting criteria for REE 190 

deposits in the study area (Tables 4A, B and C). 

The mappable targeting criteria for REE deposits in the study area were represented in the form of GIS layers or predictor 

maps for inputting into the FIS. The details of the primary data, the algorithms and GIS tools and techniques used to generate 

input predictor maps are provided in Tables 4A, B and C.  

195 
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3.3 FIS-based prospectivity modelling 

200 

The predictor maps were integrated using FIS to generate REE prospectivity maps of the 

study area. The theoretical exposition of the FIS-based modelling approach and 

implementation for mineral prospectivity modelling is provided by Porwal et al. (2015) 

and Chudasama et al. (2016).  

The modelling was implemented in the following steps.   

1. Fuzzification of numeric predictor maps: In the first step, all numeric predictor

maps (e.g., the predictor map showing distance to structural lineaments) were converted 

into fuzzy predictor maps (e.g., proximity to structural lineaments) using membership 

functions such as linear, piece-wise linear (trapezoidal) or Gaussian (Table 5). However, 

the output fuzzy membership values of a predictor map are dependent on the parameters 

of the function used (e.g., mean and standard deviation for Gaussian functions and slope 

and intercept for linear functions). 

Because there were no training data (that is, known deposits) for optimising the fuzzy 

      membership functions, we quantified uncertainty arising from using sub-optimal 

function parameters (termed “systemic uncertainty”; Porwal et al., 2003b; Lisitsin et al., 

2014). The Monte-Carlo-simulation-based algorithm described by Lisitsin et al. (2014) 

and Chudasama et al. (2017) was used to estimate model uncertainties. Instead of using 

point values for each function parameter, we used a beta distribution of values and then 

used a series of Monte Carlo simulations to estimate the function parameter at 10%, 50% 

and 90% probability levels. The beta distribution was used because it is a bounded 

distribution that is generally recommended when no training data are available and relies 

only on expert knowledge about the optimistic, most likely and pessimistic values 

(Johnson et al., 1995). Three fuzzy maps were generated at 10%, 50%, and 90% 

probability levels for each predictor map through this step. 

210 
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Malcolm Aranha
Sticky Note
Yes, this does refer to the uncertainties associated with the mathematical modeling system. We have modified the paragraph to explain this better.

Malcolm Aranha
Sticky Note
Thank you for these questions. We simulated the parameters that define the membership functions. For example, in the case of a linear function, the slope and the intercept were the dependent parameters simulated against the independent x and y variables of the linear function. As a result, we had slightly different membership functions for each probability level. 
The simulations were run 1000 times. 
The simulated parameters were obtained at various probability levels. Of this, the values of the parameters at the 10%, 50% and the 90% were extracted out to define membership functions at 10%, 50% and 90% probability levels. 

Malcolm Aranha
Sticky Note
We have rewritten this section to make it more clear. The parameters that define the membership functions were simulated using Monte Carlo simulations which resulted in the extraction of these parameters at three different probability levels. These parameters at three probability levels were then used to construct the membership functions at three different probability levels which in turn generated fuzzy membership values at the respective probability levels during fuzzification. Yes, it is correct that we have three membership functions for each of the input predictor maps and the simulations were implemented individually, each fuzzy membership function-wise. 
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Comments on Revision - 1
Highlight
There is a lot of repetition here. The magnetic data was progressively upward continued for 2km, 5km, 10km, and 20 km to map the lineaments from different depths (or progressively deeper lineaments) using the same data processing methods and the rationale also seems to be the same, except that the depth of the interpreted lineaments changes. 
I suggest this be shortened and summarized in a concise manner. Example - you could merge all the individual rows in the last two columns to just one row describing the processing method and the rationale. 

Comments on Revision - 1
Highlight
What does RMI stand for?

Comments on Revision - 1
Highlight
See the comment for the 'Magnetic RMI data' row in this table, regarding the repetition in last two columns. The same applies here also

Malcolm Aranha
Sticky Note
Thank you for pointing it out, We have ensured that all abbreviations used are explained in the revised version.

Malcolm Aranha
Sticky Note
Thank you for bringing this to our attention. We have now redrafted the table and removed the repeating points. We have tried to make the table as concise as possible.
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Comments on Revision - 1
Highlight
And does this also correspond to the same layer in Table 4B, SNO3?

Comments on Revision - 1
Highlight
Still using the RTP for #2 and #3 also right? should mention it here also like for (1) 

Comments on Revision - 1
Highlight
Does this apply to gravity data also?
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Comments on Revision - 1
Highlight
What does UCSD stand for?

Comments on Revision - 1
Highlight
Circular features are constrantly identified from different datasets such as from Magnetics, Satellite gravity, SRTM DEM. How did these features show up spatially? Were similar features identified from all the methods? Was there any  spatial overaly? Were these finally considered collectively?  Since these are considered as representing the carbonatitie-alkaline ring complexs, the potential hosts for REE deposit, wouldn't it be worth showing these features? Any Figures? 

Comments on Revision - 1
Highlight
Surficial lineaments - does this imply any high-pass filtering of the data? 

Comments on Revision - 1
Highlight
Shallow, implying up to what depths?

Comments on Revision - 1
Highlight
Extracted from three different datasets with different spatial resolutions, how are the extracted features comparable with each other? Can they all be termed as shallow? 
The scale of features mappable from the data depends a lot on the resolution of the datasets. What is the scale of the lineaments identified from these different datasets?

How welll can ground gravity with 10,000m spatial resolution resolve the 'shallow' lineaments related to  carbonatite-alkaline instrusive complexes? 

Malcolm Aranha
Sticky Note
Thank you for pointing it out, We have ensured that all abbreviations used are explained in the revised version.


Malcolm Aranha
Sticky Note
In this study, we extracted circular features from three data sources, at different depth levels. These features were extracted as vectors. Some of these features were present in all the obtained layers and these were extracted into the final layer of circular features. There was spatial overlay and this was the main criteria for filtering the extracted features. It is true that these circular features are likely to represent carbonatite-alkaline complexes, but not exclusively so. The circular feature may also pick up some smaller granitic intrusions. Hence, it is essential that this layer should not be considered individually, but in conjunction with other predictor maps that target REE bearing carbonatite-alkaline complexes. We had considered showing these as figures, as well as the predictor maps (as they all need to be considered collectively). However, figures of the various features, the predictor maps, ended up cluttering the paper, much like the tables in the current version. In efforts to make the paper concise, we decided to leave them out. 

Malcolm Aranha
Sticky Note
We did not apply any high-pass filters. We relied on vertical derivatives to enhance the near-surface features. 

Malcolm Aranha
Sticky Note
This is a very good question. 

Malcolm Aranha
Sticky Note
We believe the lineaments extracted from the magnetic data were the best representatives of surficial lineaments among the three datasets used. However, the magnetic dataset did not cover the entire study area and the gravity data was used to supplement it. Lineaments extracted from the magnetic dataset and the gravity model data were comparable. Barely any lineaments were extracted from the ground gravity data. In general, the gravity lineaments were larger in scale compared to those extracted from the magnetic dataset. 



Table 5: Input variables, linguistic values and types of membership functions
Input Variable (Spatial Proxy) Linguistic Values Type of Membership Function

Premise variables
ꞏ         FERTILITY/GEODYNAMIC SETTING
1. Proximity to Barmer rift/Plume head. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

2. Proximity to Deccan Large Igneous Province. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

ꞏ         ARCHITECTURE - LITHOSPHERIC PATHWAYS
3. Proximity to lineaments derived from magnetic data. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

4. Proximity to Barmer rift. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

5. Proximity to inferred faults and remotely sensed 
lineaments. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

6. Proximity to lineaments derived from gravity data. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

ꞏ         ARCHITECTURE - EMPLACEMENT
7. Proximity to post-Cambrian, non-felsic intrusions. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

8. Proximity to Deccan Large Igneous Province. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

9. Proximity to inferred faults and remotely sensed 
lineaments. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

10. Cumulative map of Proximity to circular features. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

11. Proximity to surficial faults. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

12. Proximity to intersections of surficial faults. Proximal, Intermediate, Distal Piece-wise linear (Trapezoidal)1, Gaussian2, Piece-wise linear (Trapezoidal)3

13. Geophysical anomaly map. High, Intermediate, Low Piece-wise linear (Trapezoidal)4, Gaussian5, Piece-wise linear (Trapezoidal)6

Consequent Variables
ꞏ        Fertility and Geodynamic setting Potential High, Intermediate, Low. Linear7, Gaussian7, Linear7

ꞏ        Architecture - Pathways prospectivity High, Intermediate, Low. Linear7, Gaussian7, Linear7

ꞏ        Architecture - Emplacement prospectivity High, Intermediate, Low. Linear7, Gaussian7, Linear7

1 A piece-wise linear (trapezoid) function allots equal weightage (horizontal line section) to areas lying in very close proximity to the input variables while the influence decreases 
linearly (inclined line section) as the distance increases. Such a function suits well to represent close proximity relations. For instance, close proximity to faults can be described as 
the first few kilometres being surely proximal and are assigned the fuzzy membership value of 1. After a certain threshold, the level of a given distance being proximal decreases 
progressively; the fuzzy membership value linearly decreases until it reaches zero.
2 The uncertainty is associated with the determination of intermediate proximity levels is much higher as a subjective value of intermediateness is estimated based on expert 
knowledge. The membership values reduce gradually as we move away from this estimated distance value. A Gaussian function best represents such a relation since the 'bell-shape' 
allots high weightage to the estimate values and its immediate surroundings.
3 Beyond a certain threshold distance, the input variable is considered to have no geological influence on mineralisation and can be assigned an equal weightage of being distal 
(horizontal line section of the trapezoidal function). The weightage would increase steadily in a linear manner as this threshold is approached (inclined line section of the trapezoidal 
function). Hence, a piece-wise linear function was used to represent distal relationships. 
4 A piece-wise linear (trapezoid) function allots equal weightage (horizontal line section) to values beyond an estimated threshold to represent high anomalous values. The threshold 
is such that values beyond it would surely be anomalously high. The weightage decreases linearly as the geophysical anomaly values reduce from the estimated threshold (inclined 
line section). Accordingly, a piece-wise linear function was used to represent high geophysical anomaly values. 
5 Magnetic susceptibility generally conforms to a log-normal distribution (Latham et al., 1989). Therefore, a gaussian function was used to represent intermediate values. 
6 Equal weightage of 'low-ness' (horizontal line section of the trapezoidal function) was allotted to values that were considered to be too low to be indicative of REE mineralisation. 
The membership values reduce linearly as magnetic susceptibility values increase. Therefore, a piece-wise linear function was used to represent low geophysical anomaly values.
7 The output (consequent) variables have been assigned linear membership functions to model the favourability on a linear scale.

Every membership function described above relies on an assumed or estimated parameter/threshold. The variation of these parameters/thresholds that influence the shape of the 
membership functions were modelled using Monte Carlo simulations. The degree of variation was represented by a beta (PERT) distribution which is defined by 

where a is the minimum limit up to which a given parameter/threshold may vary, b is the most likely value that is estimated based on our knowledge, and c is the maximum variation 
value. 
The values of a and c move further away from b as uncertainty increases.
The value of each parameter/threshold was then simulated 1000 times within the constraints of the assumed beta (PERT) distribution.
These simulated values at three probability levels (10%, 50% and 90%) were used to define the shape of the fuzzy membership functions in separate respective FIS and therefore, 
determine the fuzzy membership values for each predictor map, at the respective probabilities. 

𝜇 ൌ
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Comments on Revision - 1
Highlight
This is already used as Premise variable #1

Comments on Revision - 1
Highlight
This table lists the final layers used as input variables in the FIS. But some of these are obtained from AND overlay of the different layers mentioned in Table 4. This is graphically represented in Figure 4. Hence, to maintain the flow of ideas, it might benefit the reader if Figure 4 is cited and presented before Table 5

Comments on Revision - 1
Highlight
There are so many ways in which these lineaments and faults are derived that it is becoming too confusing to keep a track of it. And the terminology referring to lineaments and faults is also inconsistent. 
Are these features (identified from different datasets, e.g. '#3 lineaments from magnetic data', '#5 and #9 inferred faults and remotely sensed lineaments', '#6 lineaments derived from gravity data') spatially dispersed from each other? I can imagine it might not be feasible to have Figures for each of these, but not providing Figure either of primary data or of the interpreted features leaves a lot to the imagination of the reader.  

Comments on Revision - 1
Highlight
Are the 'input variables' with 'Proximity' fuzzy predictor maps derived from fuzzification of the Distances rasters? (refering to Section 3.3, lines #202 - 205).
But since these are 'Premise variables', these refer to the distances rasters I think. Perhaps rephrasing the lines #202-205 might add clarity? Because it clearly states there that 'numeric predictor maps (e.g., the predictor map showing distance to structural lineaments) were converted into fuzzy predictor maps (e.g., proximity to structural lineaments) using membership
functions'. This implies a clear distinction in the terminology. Additionally, Table 4 also uses the term 'Proximity' for the distances maps. 


Comments on Revision - 1
Highlight
This is already used as Premise variable #2

Comments on Revision - 1
Highlight
What does cumulative refer to?

Comments on Revision - 1
Highlight
Which geophysical dataset was used to make this anomaly map?


Malcolm Aranha
Sticky Note
Thank you very much for the suggestion. We agree with you and have decided to present Fig. 4 before this table.

Malcolm Aranha
Sticky Note
We regret the inconsistencies, we have addressed them in the revised table. You are correct, these premise variables in this table refer to the distances rasters. We have changed the terms here in this Table, as well as in the previous table. 

Malcolm Aranha
Sticky Note
We regret the inconsistencies, we have now used better terminology and ensured consistency for clarity. The lineaments from different datasets are not spatially dispersed from each other, they broadly agree with each other with few lineaments being common in all, which are extracted in the final map used as input in the FIS modelling. 

Malcolm Aranha
Sticky Note
This question has been addressed in detail in the general comments. The revised table attempts to make the difference clear.

Comments on Revision - 1
Highlight
This is already used as Premise variable #5

Malcolm Aranha
Sticky Note
This question has been addressed in detail in the general comments. The revised table attempts to make the difference clear.


Malcolm Aranha
Sticky Note
This was an attempt to indicate that this input is the collectively analysed, overlay map of all circular features extracted from the different datasets. We have not simplified the terminology here and explained the process better in the previous table.

Malcolm Aranha
Sticky Note
The magnetic dataset was used for this layer. We have now renamed it accordingly.


Malcolm Aranha
Sticky Note
This question has been addressed in detail in the general comments. The revised table attempts to make the difference clear.
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2. FIS-based prospectivity modelling: In the second step, a multi-stage FIS was designed to mimic the geological

reasoning an exploration geologist for delineating regional-scale exploration targets.

In the first stage, a series of FISs were developed to generate fuzzy prospectivity maps for individual components

of the REE mineral systems by combining their respective fuzzy predictor maps. The FISs for235 

fertility/geodynamic settings, whole lithosphere architecture and near-surface architecture (Fig. 4) comprised 5,

8 and 11 fuzzy if-then rules, respectively, which are shown in Table 6A, 6B and 6C, respectively. Since each

predictor map was converted into three fuzzy maps at 10%, 50% and 90% probability levels, the outputs of this

step were three fuzzy prospectivity maps for each component at 10%, 50% and 90% probability levels.

In the second stage, the fuzzy prospectivity maps of the individual mineral-system components were combined240 

using the fuzzy product operator (Fig. 4D) to generate three REE prospectivity maps of the study area at 10%,

50% and 90% probability levels.

.

245 
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Figure 4: The multi-stage FIS for REE prospectivity mapping in the study area. (A) FIS for generating fuzzy prospectivity maps for 
fertile sources and favourable geodynamics settings. (B) FIS for generating fuzzy prospectivity maps for favourable whole 
lithosphere architecture for transportation of REE-enriched carbonatite-alkaline magma. (C) FIS for generating fuzzy prospectivity 250 
maps for favourable shallow crustal (near-surface) architecture for emplacement of carbonatite-alkaline complexes. (D) Second 
stage FIS combines the above three prospectivity maps obtained from the first stage and generates the final outputs. 
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3. Generation of confidence map: In the third step, stochastic uncertainties, which arise from the limitations of255 

public-domain datasets and procedures used for generating the predictor maps, were quantified in terms of

confidence values for each predictor map using the techniques described by Porwal et al. (2003b) and Joly et al.

(2012). The confidence value for each predictor map was assigned based on the degree of representativeness of

the predictor map – that is, how well it represents the mineralisation process it seeks to map. A predictor map

was assigned a high confidence value if it directly mapped the targeting criteria and a low confidence value if it260 

indirectly mapped the response of the targeting criterion. The confidence factor also captured the fidelity and

precision of the primary dataset from which the input was derived. The confidence factor for all predictor maps,

along with the justifications, are given in Table 7. The output confidence map was generated by combining the

confidence factors of different predictor maps using the same fuzzy inference systems that were used for

prospectivity modelling.265 

Table 7: Confidence values allotted to each of the predictor maps used in the FIS modelling. 

Predictor map Confidence 
value Justification 

Proximity to the Deccan Large Igneous 
Province 0.9 LIP mapped extensively on the field at 1:50000 scale. 

Proximity to the trace of Réunion mantle plume 0.4 Interpreted map; the trace of the plume was derived based on the 
assumption that it coincides roughly with the Barmer-Cambay rift. 

Proximity to the Barmer Rift 0.8 
The rift was traced using magnetic data and remotely sensed 
lineaments and further cross verified with the traces published by 
Bladon et al. (2015a, b); Dolson et al. (2015). 

Proximity to lineaments derived from magnetic 
data 0.75 Lineaments were mapped from high-resolution magnetic data. 

Proximity to lineaments derived from gravity 
data 0.7 Lineaments were mapped from low-resolution gravity data. 

Proximity to lineaments from remote sensing 
data and inferred faults from structural maps 0.5 Lineaments were mapped from remote sensing data. The faults are 

inferred, not directly mapped. 

Proximity to post-Cambrian, non-felsic 
intrusives 0.8 Exposed intrusions directly mapped on field at 1:50000 scale. 

Proximity to circular features 0.5 Circular features were mapped from high-resolution magnetic, low-
resolution gravity and topographic data. 

Proximity to surficial lineaments derived from 
geophysical data 0.7 Lineaments were mapped from high-resolution magnetic and low-

resolution gravity data. 

Proximity to intersections of surficial 
lineaments derived from geophysical data 0.7 Lineaments were mapped from high-resolution magnetic and low-

resolution gravity data. 

Magnetic anomaly map 0.7 Anomalies mapped from high-resolution magnetic data. 
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Finally, the three REE prospectivity maps of the study area at 10%, 50% and 90% probability levels were blue-to-red colour-

coded and draped over the confidence map for viewing as 3D surface models. In the 3D surface models, the colours represented 270 

prospectivity (blue tones signify low prospectivity and red tones signify high prospectivity), and elevation represented 

confidence (depressions signify low confidence and elevations signify high confidence). 

4 Results 

The final outputs are shown as continuous-scale (relative) prospectivity maps at 10%, 50% and 90% probability levels draped 

over confidence map in Figures 5 A, B, and C. High prospectivity areas cluster around the carbonatite occurrences of Sarnu-275 

Dandeli and Kamthai. Several areas to the south of Mundwara and Barmer also show high prospectivity at high probability 

levels. In contrast, some areas in the north and northwest of Sarnu-Dandeli show high prospectivity at low probability levels. 

Throughout the study area, prospective areas follow the outline of major faults and lineaments. A circular area to the east of 

Sarnu-Dandeli shows high prospectivity at low and moderate probabilities; however, it shows low prospectivity at the high 

probability level. A small patch south of the circular outline shows high prospectivity across all probability levels. 280 
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Figure 5: Continuous scale prospectivity maps at 10%, 50% and 90% probability levels draped over the confidence layer, shown in 285 
(A), (B) and (C), respectively. The colours mark increasing prospectivity from low (blue) to high (red). The elevations mark high 
confidence in the data used for prospectivity modelling. Black balls demarcate major cities, and green balls demarcate known 
carbonatite occurrences; green numbers correspond to the known carbonatite occurrences: 1 – Sarnu Dandeli, 2 – Kamthai, 3 – 
Danta-Langera-Mahabar, 4- Mundwara. Areas marked with black numbered rectangles are discussed in Section 6. 

5 Discussion and Recommendations 290 

The lack of known carbonatite-alkaline complexes REE deposits in the study area precluded the use of data-driven approaches, 

and therefore we opted to apply the knowledge-driven FIS approach. Because FISs are constructed in natural language using 

simple if-then rules, they are transparent and easy to construct and interpreted by geologists (Porwal et al., 2015). The multi-

stage FIS in this study replicates the structure of the REE mineral system model and encapsulates the geological reasoning that 

an exploration geologist would use to delineate regional-scale exploration targets. The rules utilise fuzzy ‘AND’ (minimum), 295 

‘OR’ (maximum) (Bonham-Carter, 1994; Porwal et al., 2015) operators; these operators are used in such a way as to narrow 

down prospectivity areas as efficiently as possible. Mathematical functions and operators are used to convert the if-then rules 

in English into machine-readable mathematical values. 

In the first stage, the first FIS maps REE fertility and favourable geodynamic settings (Fig. 4A and Table 6A) by delineating 

areas that are likely to be underlain by plume-metasomatised SCLM. Considering the size of a typical mantle plume, these 300 

areas are expected to be very large. The second FIS maps favourable lithospheric architecture for the transportation of REE-

enriched carbonatite-alkaline magma (Fig. 4B and Table 6B) and narrows down the target areas identified by the first FIS to 

areas that are proximal to trans-lithospheric structures. The target areas demarcated by the second FIS are also relatively large 
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as immense trans-lithospheric structures are expected to have a large zone of influence. The third FIS maps favourable shallow 

crustal (near-surface) architecture for the emplacement of carbonatite-alkaline complexes (Fig. 4C and Table 6C) and further 305 

narrows down the target area to camp-size areas that are facilitated by near-surface higher-order structures. These individual 

FIS in the first stage rely on simple logic-based rules to integrate the individual predictor maps (Tables 6A, B, and C). The 

rules were framed based on our understanding of the REE mineral system. The use of AND operator in the IF parts of the rules 

defining high prospectivity ensured that a pixel would get a high prospectivity value only if it is proximal to predictor features 

on all predictor maps. Similarly, the use of the OR operator in the IF parts of the rules defining low prospectivity ensured that 310 

a pixel would get a low prospectivity low even if it is distal to predictor features on any one of the predictor maps. As a result, 

the extents of the areas with background (low) prospectivity are maximised, and high-prospectivity zones are narrowed down 

efficiently.  

In the second stage of the multi-stage FIS, the output prospectivity maps of the individual components were integrated using 

the fuzzy product operator, which calculates the mathematical product of all input predictor maps (Bonham-Carter, 1994; 315 

Porwal et al., 2015). Since the individual FIS output values range between 0 and 1, it decreases the final integrated prospectivity 

values.  

We also attempted to quantify the different uncertainties associated with the prospectivity analysis process in this contribution. 

Systemic uncertainty arises from the subjective estimation of mathematical parameters that determine the shape of the fuzzy 

membership functions used to convert numerical predictor maps to fuzzy predictor maps, which greatly influence the final 320 

prospectivity maps. Instead of point values, Beta-PERT distributions of values were used for the parameters of the fuzzy 

membership functions. The parameters of the beta functions (optimistic, most likely and pessimistic values) were assigned 

based on a geological evaluation of the decay of the influence of a targeting criteria with distance (Table 5). Monte-Carlo 

simulations provided the fuzzy membership values at 10%, 50%, and 90% probability levels, which yielded three sets of fuzzy 

predictor maps at 10%, 50%, and 90% probability levels. These three sets of predictor maps were then integrated through 325 

respective multi-stage FIS to obtain the final prospectivity maps at 10%, 50%, and 90% probability levels. 

 Stochastic uncertainties were quantified based on the approach described by Porwal et al. (2003b), González-Álvarez et al. 

(2010) and Joly et al. (2012) by assigning each predictor map a particular confidence value as per the Sherman-Kent scale 

(Jones and Hillis, 2003; Kreuzer et al., 2008). Most previous workers (e.g., Porwal et al., 2003b; González-Álvarez et al., 2010; 

Joly et al., 2012) incorporated confidence values in the fuzzy membership values. However, according to the fuzzy set theory, 330 

fuzzy membership value is simply a measure of the strength of an input map as a predictor of the targeted deposit and is 

independent of the quality of data used to generate the input predictor map. Therefore, we created separate confidence maps 

for all predictor maps and propagated them through the same multi-stage FIS (Fig. 4) to generate an integrated confidence 

map.  

Conjunctive interpretations of prospectivity maps and confidence maps can help in making decisions regarding follow up 335 

exploration. In the present study, we used the matrix shown in Table 8 to recommend follow-up exploration. 
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Table 8: Matrix summarising the target areas quantified according to probability and confidence levels and further 
exploration recommended for the identified targets. 

Target Prospectivity Probability Confidence Interpretation Recommendation 

Known carbonatite 
occurrences of 
Mundwara, Sarnu-
Dandeli and Kamthai 
and several patches 
surrounding them 

High High High 

High prospectivity because 
of the possible presence of 
extended arms of the central 
carbonatite-alkaline complex 
intrusion 

Apply direct detection 
techniques such as high-
resolution air-borne radiometric 
surveys and drilling to identify 
mineral deposits. 

(1) Circular outline east 
of Sarnu-Dandeli (Fig. 
5A and B; rectangle 
number 1); and  
a small patch just south 
of the circular outline 
(within rectangle 1 in 
Figs. 5A, B and C). 

High 

Moderate 

High 

High 

The circular outline 
represents the Siwana ring 
intrusion, consisting of alkali 
granites and rhyolites. High 
prospectivity may result 
from the consistent presence 
of lineaments and magnetic 
response of the intrusion. 

Follow-up detailed exploration 
using high-resolution air-borne 
radiometric surveys and ground 
geochemical sampling of 
outcrops, especially of the 
patch south of the Siwana ring 
complex. 

(2) Small patch south of 
Barmer town High High Moderate 

High prospectivity because 
of the intersection of 
lineaments 

Aerial radiometric surveys are 
recommended, followed by 
high-resolution ground gravity 
surveys and later drilling if the 
radiometric surveys yield 
positive results. 

(3) North of the Sarnu-
Dandeli carbonatite 
occurrence 

High Moderate High 

High prospectivity because 
of the high density of 
lineaments in this section 
and high magnetic anomalies 

High-resolution ground gravity 
and aerial radiometric surveys 
are recommended, followed by 
ground sampling and drilling if 
the radiometric and gravity 
surveys yield positive results. 

(4) Northeast of the 
Sarnu-Dandeli 
carbonatite occurrence 

High Moderate Moderate 

High prospectivity because 
of the high density of 
lineaments in this section 
and high magnetic anomalies 

High-resolution ground gravity 
and aerial radiometric surveys 
are recommended, followed by 
ground sampling and drilling if 
the radiometric and gravity 
surveys yield positive results. 

(5) Several areas east 
and southeast of 
Mundwara carbonatite 
occurrence 

High High High 

High prospectivity because 
of consistent overlap of 
lineaments derived from 
each geophysical source 

Additional data collection - 
High-resolution ground gravity, 
aerial radiometric surveys and 
geochemical sampling of 
outcrops to delineate deposits. 

340 

Along with the known carbonatite occurrences of Mundwara, Sarnu-Dandeli and Kamthai, high prospectivity (orange-red 

colours in Fig. 5A, B and C) is noted at several scattered patches immediately surrounding Sarnu-Dandeli and Mundwara at 

high probability and confidence levels. These scattered patches can represent scattered arms of the central carbonatite-alkaline 

complex intrusion. Direct detection studies are recommended in these locations. 

At low probability levels (Fig. 5A and B), moderate to high prospectivity is seen over a circular outline east of Sarnu-Dandeli 345 

(Fig. 5A and B; rectangle number 1); and also, over a small patch just south of the circular outline (within rectangle 1 in Figs. 

5A, B and C). The circular outline corresponds to the Siwana ring intrusion, which consists of alkali granites and rhyolites. 
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The Siwana ring intrusion is part of the Neoproterozoic Malani LIP (Bhushan and Mohanty, 1988). However, the Siwana ring 

intrusion shows low prospectivity at high probability (Fig. 5C; rectangle number 1), while the smaller patch to its south 

consistently shows high prospectivity at high probability and confidence levels. The high values may be caused by the 350 

consistent presence of lineaments in this region and the magnetic response of the intrusion. It is noteworthy that although not 

a carbonatite-alkaline complex, the peralkaline Siwana ring complex does contain REE potential and has been assessed for 

REE mineralisation (Bhushan and Somani, 2019). Further detailed assessment of this region is recommended, with detailed 

radiometric surveys and geochemical sampling, especially of the patch south of the Siwana ring complex that shows high 

prospectivity at high probability levels. 355 

A small area south of Barmer shows high prospectivity at high probability and moderate confidence levels (Fig. 5B and C; 

rectangle number 2). This area exhibits high prospectivity due to the intersection of lineaments. Two more areas to the north 

and northeast of the Sarnu-Dandeli carbonatite occurrence show high prospectivity at moderate probability and confidence 

levels (Figs. 5A and B, rectangles 3 and 4, respectively). A high density of lineaments in this section and high magnetic 

anomalies are the likely causes. Aerial radiometric surveys are recommended at all three locations, followed by ground 360 

sampling and drilling if the radiometric surveys yield positive results. 

Several areas east and southeast of Mundwara show high prospectivity at high probability and confidence levels (Fig. 5C; 

rectangle 5). This is likely due to the consistent overlap of lineaments derived from each geophysical source at these locations. 

Acquiring additional data would help in delineating the target zone in these areas. 

The emplacement of the carbonatite-alkaline complexes in the study area was related to the large-scale rifting and splitting of 365 

India from Madagascar and later from Seychelles, which also triggered the Deccan volcanism. A similar mode of origin is 

envisaged for several other carbonatite-alkaline complexes worldwide. Ernst and Bell (2010) have identified several 

carbonatite provinces that are emplaced in an extensional setting, associated with a mantle plume and a LIP. These include, 

along with the Deccan province, the Afar province (East Africa), Paraná-Etendeka (South America and Africa), Siberian 

province (Russia), East European Craton-Kola province (Eastern Europe), Central Iapetus province (North America, 370 

Greenland and the Baltic region), and Pan-superior province (North America). This paper’s methodologies can be used for 

exploration targeting REEs in these provinces.   

Furthermore, at the time of emplacement of these carbonatite-alkaline complexes, the Indian subcontinent was located close 

to Madagascar and Seychelles. Therefore, similar complexes could occur in Madagascar and Seychelles also. The Barmer rift 

is the northern extension of the Cambay rift, which forms a triple junction in western India along with the Kutch rift. Thus, 375 

carbonatite-alkaline complexes are also expected along the Cambay rift and Kutch rifts, also possibly along the offshore E-W 

trending Gop and the NNW-SSE trending West Coast rift zones on the western coast of India. Kala-Dongar (Sen et al., 2016) 

and Murud-Janjira (Sethna and D’Sa, 1991) are known minor occurrences of carbonatites along the Kutch and West Coast rift 

zone, respectively. Moreover, the Gop rift is the western extension of the Son-Narmada-Tapti (SONATA) rift zone, along 

which several significant occurrences of the Chhota-Udepur carbonatite district are found. A similar study may help in 380 

identifying exploration targets for REEs in these regions. Paleo-reconstruction of the geography to the time when these 
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complexes were being emplaced and analysing the prospectivity of the entire Deccan province (including western India, 

Madagascar and Seychelles) may help identify more prospective targets for carbonatite related REEs. 

6 Summary and Conclusions 

Rare earth elements comprise of 17 metallic elements that are considered as ‘critical metals’ for future development of 385 

environmentally friendlier and technologically based societies. India’s production entirely comes from secondary beach placer 

deposits on the western and eastern coasts. Even though no primary economic-grade deposit of REE is identified in India, 

there is significant latent potential for carbonatite-related REE deposits. This study has developed a knowledge-driven, GIS-

based prospectivity model for exploration targeting of REEs associated with carbonatite-alkaline complexes in the western 

Rajasthan, northwestern India. 390 

The generalised mineral systems model for carbonatite-alkaline complexes related REEs described by Aranha et al. (under 

review) was used to identify regional-scale targeting criteria for REE in the study area. Several predictor maps were derived 

from public-domain geological, geophysical and satellite data based on the mineral systems model. A multi-stage FIS was 

constructed to represent the different components of the mineral system. The first stage of the multi-stage FIS comprises of 

three individual FIS to represent (1) plume-metasomatised SCLM in an extensional regime that make up fertile source regions 395 

for REE-bearing fluids and favourable geodynamic settings; (2) trans-lithospheric structures that provide favourable 

lithospheric architecture for the transportation of REE-enriched carbonatite-alkaline magma; and (3) near-surface higher-order 

structures that make up a shallow crustal architecture facilitating emplacement of carbonatite-alkaline complexes. 

Systemic uncertainties associated with the fuzzification of the predictor maps was quantified based on the procedure described 

by Lisitsin et al. (2014) and Chudasama et al. (2017) that produced prospectivity maps at 10%, 50% and 90% confidence 400 

levels. Stochastic uncertainties associated with the primary data used and the processing methods adopted to derive predictor 

maps were quantified based on the procedure described by Porwal et al. (2003b), producing a confidence layer over which the 

prospectivity maps were draped.  

Based on the results, a solid structural control over the emplacement of carbonatite-alkaline complexes is recognised. The 

following are the recommendations based on the results of this study. Project-scale detailed ground exploration is 405 

recommended for the Kamthai-Sarnu-Dandeli and Mundwara regions and their immediate surroundings, where patches of 

high prospectivity are recorded at high probability levels. More data collection is recommended for the Siwana ring complex, 

particularly for the high prospectivity region found to its immediate south. Similarly, high resolution data should be collected 

in the regions to the north and northeast of Sarnu-Dandeli, south of Barmer, and the south of Mundwara to better resolve and 

delineate targets for ground exploration. 410 

The prospectivity-analysis workflow presented in this paper can be applied to other geodynamically similar regions globally 

for targeting geological provinces for follow-up exploration such as the Deccan province, the Afar province (East Africa), 

Paraná-Etendeka (South America and Africa), Siberian province (Russia), East European Craton-Kola province (Eastern 
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Europe), Central Iapetus province (North America, Greenland and the Baltic region), and Pan-superior province (North 

America). 415 
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