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Abstract. A two-stage fuzzy inference system (FIS) is applied to prospectivity modelling and exploration-target delineation

for REE deposits associated with carbonatite-alkaline complexes in western part of the state of Rajasthan in India. The design
of the FIS and selection of the input predictor map are guided by a generalized conceptual model of carbonatite-alkaline-
complexes-related REE mineral systems. In the first stage, three FISs are constructed to map the fertility and favourable
geodynamic settings, favourable lithospheric architecture, and favourable shallow crustal (near-surface) architecture,
respectively, for REE deposits in the study area. In the second stage, the outputs of the above FISs are integrated to map the
prospectivity of REE deposits in the study area. Stochastic and systemic uncertainties in the output prospectivity maps are
estimated to facilitate decision making regarding the selection of exploration targets. The study led to identification of
prospective targets in the Kamthai-Sarnu-Dandeli and Mundwara regions, where project-scale detailed ground exploration is
recommended. Low-confidence targets were identified in the south of the Siwana ring complex, north and northeast of Sarnu-
Dandeli, south of Barmer, and south of Mundwara. Detailed geochemical sampling and high-resolution magnetic and
radiometric surveys are recommended in these areas to increase the level of confidence in the prospectivity of these targets
before undertaking project-scale ground exploration. The prospectivity-analysis workflow presented in this paper can be
applied to delineation of exploration targets in geodynamically similar regions globally such as Afar province (East Africa),
Parana-Etendeka (South America and Africa), Siberian (Russia), East European Craton-Kola (Eastern Europe), Central lapetus

(North America, Greenland and the Baltic region), and the Pan-superior province (North America).

Keywords
Prospectivity Modelling, Uncertainty Modelling, Rare Earth Elements (REE), Carbonatite-Alkaline Complex, Fuzzy Inference
System, Western Rajasthan
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1 Introduction

The term Rare Earth Elements (REEs) includes (International Union of Pure and Applied Chemistry, [UPAC): yttrium (Y),
scandium (Sc), and the lanthanides (lanthanum, La; cerium, Ce; praseodymium, Pr; neodymium, Nd; promethium, Pm;
samarium, Sm; europium, Eu; gadolinium, Gd; terbium, Tb; dysprosium, Dy; holmium, Ho; erbium, Er; thulium, Tm;
ytterbium, Yb; and lutetium, Lu). Because of their increasing use in environment-friendly high-technology industries, REEs
are widely considered as the resources of the future (e.g., Goodenough et al., 2018; Wall, 2021). Most countries have classified
REEs as ‘critical minerals and metals’ because of their strategic importance and the projected gap between their future demand
and supply (Goodenough et al., 2018; Gonzalez-Alvarez et al., 2021 and references therein).

In spite of significant efforts into developing technology for recovering and recycling REEs from discarded devices
(Binnemans et al., 2013), geological resources are likely to remain the primary sources of REEs in the foreseeable future
(Goodenough et al., 2018). Several classification schemes for REE deposits have been proposed by different workers based
on geological associations and settings; for example, Chakhmouradian and Wall (2012), Jaireth et al. (2014), Wall (2014),
Goodenough et al. (2016), Verplanck and Hitzman (2016), Simandl and Paradis (2018), etc. In general, REE deposits can be
broadly classified into those formed by high-temperature (magmatic and hydrothermal) processes and those formed by low-
temperature (mechanical and residual concentration) processes (e.g., Wall, 2021). Although the majority of the global
production of REEs comes from low-temperature deposits such as regolith-hosted and heavy-mineral placers (IBM yearbook
2018, 2019), the bulk of geological resources are in high-temperature magmatic deposits, particularly those associated with
carbonatites (e.g., Bayan Obo, Inner Mongolia, China; Mount Weld, Western Australia; Maoniuping, South China; Mountain
Pass, USA etc.; Gonzalez-Alvarez et al., 2021 and references therein)

India ranks 6th in terms of production of REEs and 5th in terms of resources (USGS, 2021). All of India’s production comes
from monazite-bearing beach sands along the eastern and western coasts (IBM yearbook 2018, 2019). Since India has 29 out
of the total 527 globally reported carbonatite occurrences (Woolley and Kjarsgaard, 2008a), there is significant latent potential
for carbonatite-related REE deposits in the country. Currently, there is no study available, at least in the public domain, on
systematic delineation of prospective REE exploration targets in India.

Mineral prospectivity modelling is a widely used predictive tool for identifying exploration target areas. Implemented in a GIS
environment, it involves the integration of ‘predictor maps’ that represent a set of mappable exploration criteria for the targeted
deposit type. Typically, conceptual mineral systems models are used to identify exploration criteria (Porwal and Kreuzer,
2010; Porwal and Carranza, 2015). The integration is done through either linear or non-linear mathematical functions
(Bonham-Carter, 1994; Porwal, 2006; Porwal and Carranza, 2015). Depending on how the model parameters are estimated,
that is, whether based on training data comprising attributes of known deposits or on expert knowledge, these models are
classified as data-driven or knowledge-driven.

Data-driven approaches require a sizeable sample of known deposits of the targeted deposit type for estimating the model

parameters. The main data-driven approaches are Bayesian probabilistic approaches (e.g., Weights of Evidence - Singer and
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Kouda, 1999; Nykanen et al., 2008; Porwal et al., 2010; Zhang et al., 2014; Nielsen et al., 2015; Payne et al., 2015; Chudasama
et al., 2018; Tao et al., 2019), regression-based approaches (e.g., Logistic regression - Harris and Pan, 1999; Carranza and
Hale, 2001; Harris et al., 2003; Nykanen et al., 2008; Porwal et al., 2010; Chen et al., 2011; Zhang et al., 2014; Xiong and
Zuo, 2018) and machine learning approaches (e.g., neural networks — Singer and Kouda, 1999; Brown et al., 2000; Porwal et
al., 2003a; Rodriguez-Galiano et al., 2015; Chudasama et al., 2018; Sun et al., 2020; Support Vector Machines - Zuo and
Carranza, 2011; Abedi et al., 2012; Rodriguez-Galiano et al., 2015; Chen and Wu, 2017; Random forests - Rodriguez-Galiano
et al., 2015; Carranza and Laborte, 2015; Hariharan et al., 2017). Knowledge-driven approaches use expert knowledge for
estimating model parameters. Typical knowledge-driven approaches include fuzzy-set theory-based expert systems (Porwal et
al., 2003b; Nykénen et al., 2008; Gonzalez-Alvarez et al., 2010; Joly et al., 2012; Porwal et al., 2015; Wilde et al., 2018;
Chudasama et al., 2018; Morgenstern et al., 2018), Dempster—Shafer evidential belief functions (Moon, 1990, 1993; An et al.,
1994; Chung and Fabbri, 1993; Tangestani and Moore, 2002; Carranza and Sadeghi, 2010).

Prospectivity modelling is subject to uncertainties. These uncertainties are classified in two main categories (Porwal et al.,
2003b; Lisitsin et al., 2014), namely, systemic and stochastic. Systemic uncertainties rise from the incomplete understanding
of the geological process involved in the formation of the mineral deposit, leading to imperfect or inefficient models. Stochastic
uncertainties rise from the limitations of datasets used, of the methods used to interpret useful information from them. These
can be a result of inaccurate or imprecision of measurements, mapping or interpolations, inconsistent data coverage etc (Porwal
et al., 2003b; McCuaig et al., 2009; Lisitsin et al., 2014).

There are very few published studies on REE prospectivity modelling. Ekmann (2012) escorted a study of REEs in coal
deposits in the United States. In one of the first GIS-based prospectivity modelling studies for REEs, Aitken et al. (2014) used
a fuzzy-logic-based model to delineate prospective targets for pegmatite-, carbonatite- and vein-hosted REES in the Gascoyne
Region of Western Australia. This study was part of a larger multi-commodity prospectivity study of the Gascoyne Province.
Sadeghi (2017) carried out a regional-scale GIS-based prospectivity analysis for REEs in the Bergslagen district of Sweden,
targeting iron-apatite- and skarn-associated deposits using the weights of evidence and weighted-overlay models. Bertrand et
al. (2017) used database querying to analyse the prospectivity for REEs as by-products in known mineral deposits in Europe.
In a recent study, Morgenstern et al. (2018) analysed the potential of REEs in New Zealand using a multi-stage Fuzzy inference
system (FIS).

This contribution describes the first systematic and comprehensive prospectivity modelling exercise aimed at identifying
exploration targets for REE associated with carbonatite-alkaline complexes in Western Rajasthan, India (Fig. 1). Although a
well-established carbonatite province that is widely considered prospective for REE deposits, no deposit has been identified
in the province so far. In this study, we employ fuzzy inference system (FIS), which is a knowledge-driven artificial intelligence
technique, to identify and delineate prospective targets for REE deposits in the study area. The inputs to the FIS were identified
based on a generalised mineral systems model for alkaline-carbonite-complexes-related REEs, which was further used to guide
the design of the FIS. To support decision making regarding the delineated targets, stochastic and systemic uncertainties in the

output model were also estimated. The prospectivity-analysis workflow presented in this paper can be applied to other
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geodynamically similar regions globally for targeting regions for follow-up exploration in East Africa, South and North

America, Russia, Eastern Europe, Greenland, and the Baltic region.

2 Geological setting of the study area

The study area falls in the state of Rajasthan in northwest India (Fig. 1). This areca was chosen because it is a known major
carbonatite province of India, and well-integrated public domain datasets are available. Geologically, the study area contains
igneous and sedimentary formations ranging in age from the Neoproterozoic to Holocene. Neoproterozoic Erinpura and Jalore
granites, along with a few outcrops of the Mesoproterozoic Delhi Supergroup, occur in the southeastern part of the study area
(Fig. 1). The eastern part of the study area comprises extrusive and intrusive igneous rocks belonging to the Neoproterozoic
Malani Igneous Suite that is mostly buried under a thick horizon of Holocene wind-blown sand. Sedimentary sequences
belonging to the Late Neoproterozoic Marwar Supergroup, Jurassic Jaisalmer, Cretaceous Sarnu-Fatehgarh, Tertiary Barmer
(Palaeocene) and Akli (Eocene), Quaternary Uttarlai Formations (Pleistocene to sub-Recent) (Roy and Jakhar, 2002;
Ramakrishnan and Vaidyanadhan, 2008; Singh et al., 2016) occur in the central and western parts around Barmer and Jaisalmer
towns (Fig. 1).

Carbonatite-alkaline complexes of the Cretaceous age occur in the Mer-Mundwara area in the eastern part of the study area
and the Sarnu-Dandali area in the central part (Fig. 1; Table 1). The Mer-Mundwara carbonatite-alkaline complex intrudes the
Neoproterozoic Erinpura Granite and displays a characteristic ring structure, wherein the alkaline-mafic rock suites form two
ring structures and a dome (Pande et al., 2017). Carbonatites mainly occur in the form of linear dykes at Mer-Mundwara. The
Sarnu-Dandeli complex covers a relatively large area on the eastern shoulder of the Barmer basin. The carbonatites occur
mainly as scattered plugs and dykes with an extensive Quaternary sand cover, intruding the Neoproterozoic Malani igneous
suite and the Cretaceous Sarnu formation (Vijayan et al., 2016; Sheth et al., 2017). It also includes more minor occurrences of
carbonatites in the Danta-Langera-Mahabar and Kamthai areas. The Kamthai plug is considered to be highly prospective for
REEs (Bhushan and Kumar, 2013).

The study area is dissected by the Barmer rift, which continues southwards through the state of Gujarat into the Cambay basin.
The Barmer rift is a failed, roughly north-south trending, extensional intracratonic rift (Fig. 1) that was active during Late
Cretaceous to Eocene (Dolson et al., 2015). A long-lasting extensional regime in northwest India predating the Deccan
volcanism existed in northwest India, peaked with the Seychelles rifting at the Cretaceous—Paleogene boundary and the
emplacement of the main phase of Deccan volcanics at ca. 65 Ma (Devey and Stephens, 1992; Allegre et al., 1999; Chenet et
al., 2007; Collier et al., 2008; Ganerad et al., 2011; Bladon et al., 2015a, b). The well-preserved Cretaceous carbonatite-alkaline
complexes of the study area represent a young carbonatite magmatism episode (~68 Ma) that is coeval with the initial
magmatism of the Deccan Large Igneous Province (LIP) and is related to the India-Seychelles breakup and northward drifting

of India over the reunion mantle plume (Devey and Stephens, 1992; Basu et al., 1993; Simonetti et al., 1995; Allegre et al.,
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1999; Ray and Pande, 1999; Ray and Ramesh, 1999; Ray et al., 2000; Chenet et al., 2007; Collier et al., 2008; Sheth et al.,
2017; Chandra et al., 2018).
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Figure 1: Geological map of the study area with known carbonatite-alkaline complexes.

3 Datasets and methods

The public domain geoscience datasets used in the study, which include geological, geophysical, topographic and satellite
data,  were sourced  from  the Bhukosh  portal of the  Geological Survey  of  India
(https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx). Table 2 summarises the sources, scales and other details about the

individual datasets.
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Table 2: A list of primary data available for the study area.
Primary data Resolution Source
Geological map 1:50,000 Q , Bhukosh, accessed in October 2019
Structural map 1:50,000 GSI, Bhukosh, accessed in October 2019
Magnetic TMI 75 m GSI, Bhukosh, accessed in October 2019
Ground Gravity 10,000 m GSI, Bhukosh, accessed in October 2019
@llite sensed gravity anomaly and o Smith and Sandwell, 1997; Sandwell and Smith, 2009; Sandwell
g m
topographical data et al., 2013, 2014; accessed in January 2020
SRTM topography 954 m Geosoft seeker; accessed in October 2019
Lineaments fro@te sensing data 1:250,000 GSI, Bhukosh, accessed in October 2019
Known carbonatite occurrences Literature review; Table 1

inn prospects GSI an@, 2020

140  The methodology flow chart is shown in Figure 2.

Study area
Conceptual REE :
mineral system Exploration
database
model
Targeting criteria Processing

Predictor maps

Predictor map %,

Integration in Uncertainty

a multistage modelling
FIS. f N

Prospectivity maps
with quantified
confidence.

Figure 2: Flow chart depicting the methodology. Rectangular boxes contain generated objects, and oval boxes contain processes
used for creating the objects. Shaded boxes indicate the objects and processes created and implemented in a GIS, respectively.
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The methodology is described in detail in the following subsections.

3.1 Mineral systems model for carbonatite-alkaline complex related REE deposits

In this study, we used the generalised conceptual model of carbonatite-alkaline-complex-related REE mineral systems
developed by Aranha et al. (in review) based on the framework proposed by McCuaig and Hronsky (2014). Figure 3 illustrates
the main features of the model. The main components of the mineral systems are compiled in Table 3 and briefly summarised
in the following paragraphs.

Geodynamic setting: Carbonatite-alkaline complexes and related REE deposits generally occur in extensional intra-
continental rifts and large igneous provinces (LIPs) (#4, 5, 6 in Fig. 3 and Table 3; Woolley and Kjarsgaard 2008a; Woolley
and Bailey, 2012; Pirajno, 2015; Simandl and Paradis, 2018). Extensional tectonic settings and associated LIPs are
manifestations of mantle plumes (Simonetti et al., 1995, 1998; Bell and Tilton, 2002; Bell and Simonetti, 2010; Ernst and Bell,
2010), which also induce metasomatism of th@M, fertile source regions of, and favourable geodynamic settings for, REE
deposits related to carbonatite-alkaline complex are interlinked.

Architecture: Carbonatite-alkaline complexes and related REE mineral systems derive fluids from the SCLM through large-
scale permeable networks of trans-lithospheric structures. Most carbonatite-alkaline complexes are found spatially associated
with crustal-scale faults, rifts and shear zones at regional scales (Ernst and Bell, 2010; Woolley and Bailey, 2012; Pirajno,
2015; Simandl and Paradis, 2018; Spandler et al., 2020). Therefore, lithosphere-scale structures form favourable plumbing
structures for carbonatite-alkaline-complex-related REE deposits (#7 in Fig. 3 and Table 3). Upper crustal faults, shallow
discontinuity structures and joints serve as pathways for focussing fluids to near-surface levels and also form structural traps
(#8 in Fig. 3 and Table 3; Ernst and Bell, 2010; Skirrow et al., 2013; Jaireth et al., 2014).

The crystallisation of carbonatites and alkaline complexes along with reactions with the country-rock to form Ca and Mg
silicates is accompanied by the removal of CO2, dissolved P and F (Skirrow et al., 2013; Jaireth et al., 2014). The above
reactions may cause enrichment of incompatible elements such as REEs, U, Th, Nb, Ba, Sr, Zr, Mn, Fe, Ti (#10, 13, 14, 15,
16, 17, 18, 19 in Fig. 3 and Table 3; Cordeiro et al., 2010; Skirrow et at., 2013; Jaireth et al., 2014; Pirajno, 2015; Mitchell,
2015; Chakhmouradian et al., 2015; Stoppa et al., 2016; Poletti et al., 2016; Giovannini et al., 2017; Simandl and Paradis,
2018; Spandler et al., 2020). Carbonatite-alkaline complexes are often enriched in ferromagnesian minerals that cause well-
defined magnetic and gravity anomalies (#9 in Fig. 3 and Table 3; Gunn and Dentith, 1997; Thomas et al., 2016). Fenitisation
often enriches country rocks in K and Na (#12 in Fig. 3 and Table 3; Le Bas, 2008; Elliott et al., 2018).

Rare earth element mineralisation in the carbonatites can be in the form of primary REE-bearing minerals (e.g., Mountain
Pass, Mariano, 1989; Castor, 2008; Verplanck and Van Gosen, 2011; Van Gosen et al., 2017) or by the precipitation from
hydrothermal or late magmatic fluid phases expelled from the carbonatite magmas (Verplanck and Van Gosen, 2011; Skirrow
et at., 2013; Jaireth et al., 2014; Van Gosen et al., 2017). Primary REE-bearing cumulates include perovskite, pyrochlore,
apatite and calcite, while late-stage REE-bearing minerals include bastnésite, parasite, and synchysite (#24 in Table 3;

Verplanck and Van Gosen, 2011; Skirrow et al., 2013; Van Gosen et al., 2017).
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along with the plumbing architecture on a regional scale. B, C and D focus on the emplacement architecture at the camp-to-prospect-
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(C) Presents the near-surface structural architecture and the spatial distribution of associated. (D) Displays the idealised geometry

scale. (B) Shows the idealised geometry of the intrusion and the relation of carbonatites and associated alkaline rocks and fenitisation
of a carbonatite-alkaline intrusion and the relationship between the magma chamber, ring dykes, cone sheets, and radial dykes.

Figure 3
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Table 3: Conceptual REE mineral systems model (adapted from Aranha et al., under review). The index numbers correlate to the

numbers in blue in Fig. 3.

Solid Earth

Discussions

Setting/process # Targeting criteria Spatial proxies
Fertility
| Subduction of crust Subduc.tlon zones throughout
geological history
Mantle metasomatism and low degree ) Decompressional melting of mantle and crust Rift zones
partial melting due to rifting (crustal thinning)
3 Il:/lljltlalzomatlsm driven by a rising mantle Trace of mantle plume
Geodynamic setting and triggers
Trace of mantle plume through
4 Trace of mantle plumes based on plate time
. . . tectonics through indicative magmatism
Continental rifts (Rising Mantle plume) 5 LIP
6 Major global tectonic events - super Plate reconstruction models -
continental breakups rifting
Architecture-plumbing
iorati isti Rift structure
Mlgratl(})lr} of magma along existing or 7  Crustal scale discontinuities
new architecture Deep crust penetrating faults
Architecture-Emplacement
?r/ia;gsma emplacement under structural 8  Near-surface network of faults Shallow intersecting faults
Carbonatltg magma emplacqment - 9 @malous signatures in geophysical data Anomalqus signatures 1n magnetic
Concentration of minerals with a strong and gravity data
magt_letic response and contrasting High response in radiometric maps
density from the country rocks 1o High radioactivity due to U and Th due to U and Th
Cloncentratlon of incompatible radioactive 10 enrichment malous signatures in
elements soothemical data
Hosted by or strongly associated yvith Ca ) ) Anomalous signatures in
or Mg carbonate rocks (Carbonatites) 11 High concentrations of Ca and Mg geochemical data.
Sodic and potassic fenitisation 12 Enrichment of K and Na in the surrounding High response in radiometric maps
rocks due to K.
13 Enrichment of REEs
14 P20s,
Emplacement of incompatible elements in 15 F,Cland COs; . .
. . Anomalous signatures in
primary carbonatite or secondary 16 Nb cochemical data
carbonatitic veins & ’
17 Ba, Sr, Zr
18 Mn
19 Ti

10


Comments on Revision - 1
Highlight
Anomalously high I suppose? Because 'low values' can also be an anomalous signature. In case of carbonatites are these High anomalies in both magnetic and gravity data?

Comments on Revision - 1
Highlight
What sort of anomalous signatures in geochemical data? High or Low? of which elemental concentrations, are we still talking of U and Th only or elements other than U, Th or any particular elemental ratios, etc; ? 

Malcolm Aranha
Sticky Note
Yes, we expect high anomalous values in both gravity and magnetics. We have now made this clear in the revised version. 

Malcolm Aranha
Sticky Note
Yes, we refer to high anomalous values of U and Th here. We have now specified it here.


190

195

https://doi.org/10.5194/se-2021-108

Preprint. Discussion started: 24 September 2021

(© Author(s) 2021. CC BY 4.0 License.

Biogeochemical indicators: Absorption of
REEs and related elements by plants
growing over a potential deposit

ctive absorption of specific

elengths of the Electromagnetic
spectrum
Carbonatites are commonly spatially
associated with alkaline silicate (85%;
Woolley and Kjarsgaard, 2008a, b) and in
some cases with ultramafic and felsic
silicate igneous rocks

Concentric zoning of carbonate rocks
along with magnetic minerals (magnetite)

Variation in mineralogy in REE-bearing
minerals and associated alkaline suite of
rocks are indicators of emplacement
depth as well as erosional level and,
therefore, mineralisation potential

20

21

22

23

24

Abundance of Ba, Sr, P, Cu, Co, La, Ce, Pr,

Nd, Sm, Dy, Fe, Nb, Ta, U and Y against the
background value in the leaves and twigs of

the plants and in the Humus.

acteristic absorption features in remotely

@red images

Known alkaline intrusions

Circular outline

Variation in rock units of the alkaline rock
suite and/or Variation of REE minerals

Solid Earth

Discussions

Plant/Humus anomaly maps

REE Concentration maps derived
from remotely sensed images

Mapped intrusions in geological
maps

@ular features in topographic

geophysical data

Individual rock and mineralogical
units in detailed lithological and
mineralogical profiles

3.2 Targeting criteria an(@dictor maps

The above conceptual model for carbonatite-alkaline-related REE mineral systems was translated into a “targeting model”,
which is a compilation of processes whose responses can be mapped directly or indirectly in the publicly available datasets for

the study area listed in Table 2. The targeting model was used to identify regional-scale mappable targeting criteria for REE

deposits in the study area @les 4A, B and C).

The mappable targeting criteria for REE deposits in the study area were represented in the form of GIS layers or predictor

maps for inputting into the FIS. The details of the primary data, the algorithms and GIS tools and techniques used to generate

input predictor maps are provided in Tables 4A, B and C.
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Table 4A: Targeting model, spatial proxies and steps used to derive the predictor maps of the fertility and geodynamic setting components of the REE mineral system in Northwestern India.

Rationale

Procedures used to generate the predictor map

Individual
predictor
maps

Spatial
proxy

Primary Data

SNO

Rift can represent the trace of the mantle plume under the crust as a result of

crustal extension caused by the rising plume. It also marks a zone of

16)

continued geophysical data shows the extension of the rift at depth. T|

extension and deep permeable faults that facilitate magma flow. Vertical
Barmer rift is assumed to be the trace of the mantle plume.

derivative of magnetic data reveal responses from near-surface sources
(Goneng, 2014) where the rift zone is at its maximum dimension. Up

outside the coverage of magnetic data. Euclidean distance was

magnetic data and further extrapolated using lineament map
calculated to this trace.

Rift outline traced from the vertical derivative of RTP

Proximity to
Rift/trace of
mantle plume

plume trace

cale structural Rift/mantle
p of GSI

Ma
R
. O

netic data and  Barmer

LIPs can demarcate the zone of influence of the mantle plume. Carbonatites

Mantle plumes result in the formation of large igneous provinces, and thus,
are known to be associated with mantle plumes.

Geology map queried and filtered for Deccan large igneous
province and then extracted, followed by calculation of

Euclidean distance to these extracted features.

Large Igneous

Proximity to
Province

the Deccan

Deccan Large
Igneous
Province

ale geology
of GSI

3.3 FIS-based prospectivity modelling

The predictor maps were integrated using FIS to generate REE prospectivity maps of the
study area. The theoretical exposition of the FIS-based modelling approach and
implementation for mineral prospectivity modelling is provided by Porwal et al. (2015)
and Chudasama et al. (2016).
The modelling was implemented in the following steps.
1. Fuzzification of numeric predictor maps: In the first step, all numeric predictor
maps (e.g., the predictor map showing distance to structural lineaments) were converted
into fuzzy predictor maps (e.g., proximity to structural lineaments) using membership
functions such as linear, piece-wise linear (trapezoidal) or Gaussian (Table 5). However,
the output fuzzy membership values of a predictor map are dependent on the parameters
of the function used (e.g., mean and standard deviation for Gaussian functions and slope
and intercept for linear functions).
Because there were no training data (that is, known deposits) for optimising the fuzzy
@‘nbership functions, we quantified uncertainty arising from using sub-optimal
function parameters (termed “systemic uncertainty’; Porwal et al., 2003b; Lisitsin et al.,
2014). The Monte-Carlo-simulation-based algorithm described by Lisitsin et al. (2014)
and Chudasama et al. (2017) was used to estimate model uncertainties. Instead of using
point values for each function parameter, we used a beta distribution of values and then
@d a series of Monte Carlo simulations to estimate the function parameter at 10%, 50%
and 90% probability levels. The beta distribution was used because it is a bounded
distribution that is generally recommended when no training data are available and relies
only on expert knowledge about the optimistic, most likely and pessimistic values
@mson et al.,, 1995). Three fuzzy maps were generated at 10%, 50%, and 90%
probability levels for each predictor map through this step.
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Comments on Revision - 1
Highlight
There is a lot of repetition here. The magnetic data was progressively upward continued for 2km, 5km, 10km, and 20 km to map the lineaments from different depths (or progressively deeper lineaments) using the same data processing methods and the rationale also seems to be the same, except that the depth of the interpreted lineaments changes. 
I suggest this be shortened and summarized in a concise manner. Example - you could merge all the individual rows in the last two columns to just one row describing the processing method and the rationale. 

Comments on Revision - 1
Highlight
What does RMI stand for?

Comments on Revision - 1
Highlight
See the comment for the 'Magnetic RMI data' row in this table, regarding the repetition in last two columns. The same applies here also

Malcolm Aranha
Sticky Note
Thank you for pointing it out, We have ensured that all abbreviations used are explained in the revised version.

Malcolm Aranha
Sticky Note
Thank you for bringing this to our attention. We have now redrafted the table and removed the repeating points. We have tried to make the table as concise as possible.
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Comments on Revision - 1
Highlight
See the comment for the 'Magnetic RMI data' row in this table, regardin the repetition in last two columns. The same applies here also

Comments on Revision - 1
Highlight

Comments on Revision - 1
Highlight
What does remotely sensed data refer to here? It is not specified in Table 2 either

Comments on Revision - 1
Highlight
Is this the same layer from Table 4A, the layer: 'Spatial Proxy = Barmer Rift/mantle plume trace'?

Comments on Revision - 1
Highlight
Lineaments or Faults? (this applies to all mentions of lineaments in this table). 
In Figure 4 these are referred to as Faults and here as Lineaments. Be consistent.

Comments on Revision - 1
Highlight
With spatial resolution of 10,000m of ground gravity data, what sort of details do the upward continuations by 2, 5 10 km provide? 
Is '10,000m' a typo in Table 2?

Malcolm Aranha
Sticky Note
We apologise for the inconsistencies. We have now made the necessary changes and ensured consistency.
 

Malcolm Aranha
Sticky Note
We appreciate the comments and suggestions and in response, we have redrafted the tables to remove the repetition, to make the table more concise.


Malcolm Aranha
Sticky Note
We apologise for the confusion. We have now reworded the this to make it clear that these are inferred lineaments obtained from the GSI.


Malcolm Aranha
Sticky Note
The ground gravity data available in the public domain is indeed very coarse. Very few lineaments were extracted. These were the large scale lineaments that were indeed the targets here. 

Malcolm Aranha
Sticky Note
This question has been addressed in detail in the general comments. In Table 4A (fertility/geodynamic setting), the rift is used as a proxy for the extensional setting and the associated mantle plume. Here, in the transport architecture component, it is used to represent its part in fluid transport. Hence, the two inputs differ in the fuzzy membership functions used as the targeted process is different. Therefore, ultimately, the fuzzy maps are unique. The revised table attempts to make this clear.

Comments on Revision - 1
Highlight
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Comments on Revision - 1
Highlight
And is this the same layer from Table 4A, the layer: 'Spatial Proxy = Deccan Large Igneous Province'?

Comments on Revision - 1
Highlight
And does this also correspond to the same layer in Table 4B, SNO3?

Comments on Revision - 1
Highlight
Still using the RTP for #2 and #3 also right? should mention it here also like for (1) 

Comments on Revision - 1
Highlight
Does this apply to gravity data also?
The spatial resolution of satellite gravity is low (1600m) compared to the magnetic data (75m). And it looks like that both datasets have been used to target the same feature. The spatial resolution of the Euclidean Distances raster is not yet know, hence it's difficult to imagine and assess how these features are identified and resolved from these datasets.

Comments on Revision - 1
Highlight

Comments on Revision - 1
Highlight
Was it the Bouguer gravity anomaly data?

Malcolm Aranha
Sticky Note
This question has been addressed in detail in the general comments. The revised table attempts to make the difference clear.

Malcolm Aranha
Sticky Note
This question has been addressed in detail in the general comments. The revised table attempts to make the difference clear.

Malcolm Aranha
Sticky Note
Thank you for pointing it out. This has been addressed in the revised table.

Malcolm Aranha
Sticky Note
Yes, it was Bouguer anomaly data. 

Malcolm Aranha
Sticky Note
That's an excellent question. Ideally, it applies equally to gravity and magnetic datasets. In the current case of coarse gravity datasets, we expected fewer circular features to be extracted, and considering the coarseness, the search parameters were accordingly altered to allow for more deviance from ideal circularity. The vector features extracted from gravity data were compared with those obtained from magnetic and topographic data and only those features that are consistently present in all the datasets were extracted into the final layer, following which Euclidean distance was calculated as a raster image.
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Comments on Revision - 1
Highlight
What does UCSD stand for?

Comments on Revision - 1
Highlight
Circular features are constrantly identified from different datasets such as from Magnetics, Satellite gravity, SRTM DEM. How did these features show up spatially? Were similar features identified from all the methods? Was there any  spatial overaly? Were these finally considered collectively?  Since these are considered as representing the carbonatitie-alkaline ring complexs, the potential hosts for REE deposit, wouldn't it be worth showing these features? Any Figures? 

Comments on Revision - 1
Highlight
Surficial lineaments - does this imply any high-pass filtering of the data? 

Comments on Revision - 1
Highlight
Shallow, implying up to what depths?

Comments on Revision - 1
Highlight
Extracted from three different datasets with different spatial resolutions, how are the extracted features comparable with each other? Can they all be termed as shallow? 
The scale of features mappable from the data depends a lot on the resolution of the datasets. What is the scale of the lineaments identified from these different datasets?

How welll can ground gravity with 10,000m spatial resolution resolve the 'shallow' lineaments related to  carbonatite-alkaline instrusive complexes? 

Malcolm Aranha
Sticky Note
Thank you for pointing it out, We have ensured that all abbreviations used are explained in the revised version.


Malcolm Aranha
Sticky Note
In this study, we extracted circular features from three data sources, at different depth levels. These features were extracted as vectors. Some of these features were present in all the obtained layers and these were extracted into the final layer of circular features. There was spatial overlay and this was the main criteria for filtering the extracted features. It is true that these circular features are likely to represent carbonatite-alkaline complexes, but not exclusively so. The circular feature may also pick up some smaller granitic intrusions. Hence, it is essential that this layer should not be considered individually, but in conjunction with other predictor maps that target REE bearing carbonatite-alkaline complexes. We had considered showing these as figures, as well as the predictor maps (as they all need to be considered collectively). However, figures of the various features, the predictor maps, ended up cluttering the paper, much like the tables in the current version. In efforts to make the paper concise, we decided to leave them out. 

Malcolm Aranha
Sticky Note
We did not apply any high-pass filters. We relied on vertical derivatives to enhance the near-surface features. 

Malcolm Aranha
Sticky Note
This is a very good question. 

Malcolm Aranha
Sticky Note
We believe the lineaments extracted from the magnetic data were the best representatives of surficial lineaments among the three datasets used. However, the magnetic dataset did not cover the entire study area and the gravity data was used to supplement it. Lineaments extracted from the magnetic dataset and the gravity model data were comparable. Barely any lineaments were extracted from the ground gravity data. In general, the gravity lineaments were larger in scale compared to those extracted from the magnetic dataset. 
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5: Input variables, linguistic values and types of membership functions

Solid Earth

Discussions

Input Variable (Spatial Proxy)

Linguistic Values

Type of Membership Function

Premise variables
FERTILITY/GEODYNAMIC SETTING

1. @mity to Barmer rift/Plume head. Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)l, Gaussianz, Piece-wise linear (Trapezoidal)3
2. mity to Deccan Large Igneous Province. Proximal, Intermediate, Distal ~ Picce-wise linear (Trapezoidal)', Gaussian’, Piece-wise linear (Trapezoidal)®
ARCHITECTURE - LITHOSPHERIC PATHWAYS
3. Proximity tj:nents derived from magnetic data.  Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)', Gaussian’, Piece-wise linear (Trapezoidal)3
4. mlty t ler rift. Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)', Gaussian’, Piece-wise linear (Trapezoidal)®
5. mlty to inferred faults and remotely sensed . . . X L. o L2 . L L3
lineaments. Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)', Gaussian®, Piece-wise linear (Trapezoidal)
6.  Proximity to lineaments derived from gravity data. Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)', Gaussian’, Piece-wise linear (Trapezoidal)®
ARCHITECTURE - EMPLACEMENT
7. Proximity to post-Cambrian, non-felsic intrusions. Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)', Gaussian’, Piece-wise linear (Trapezoidal)®
8. mity to Deccan Large Igneous Province. Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)', Gaussian’, Piece-wise linear (Trapezoidal)®
9. mity to inferred faults and remotely sensed . . . . L e L2 L 3
s, Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)', Gaussian®, Piece-wise linear (Trapezoidal)
10. @lative map of Proximity to circular features. Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)’, Gaussian’, Piece-wise linear (Trapezoidal)3
11. mity to surficial faults. Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)', Gaussian’, Piece-wise linear (Trapezoidal)®
12.  Proximity to intersections of surficial faults. Proximal, Intermediate, Distal ~ Piece-wise linear (Trapezoidal)', Gaussian’, Piece-wise linear (Trapezoidal)®

High, Intermediate, Low

. . . . 4 .5 . . . . 6
Piece-wise linear (Trapezoidal)®, Gaussian®, Piece-wise linear (Trapezoidal)

13. hysical anomaly map.
Con t Variables
Fertility and Geodynamic setting Potential Linear’, Gaussian’, Linear’

High, Intermediate, Low.

Architecture - Pathways prospectivity High, Intermediate, Low. Linear’, Gaussian’, Linear”

Architecture - Emplacement prospectivity High, Intermediate, Low. Linear’, Gaussian’, Linear’

1 A piece-wise linear (trapezoid) function allots equal weightage (horizontal line section) to areas lying in very close proximity to the input variables while the influence decreases
linearly (inclined line section) as the distance increases. Such a function suits well to represent close proximity relations. For instance, close proximity to faults can be described as
the first few kilometres being surely proximal and are assigned the fuzzy membership value of 1. After a certain threshold, the level of a given distance being proximal decreases
progressively; the fuzzy membership value linearly decreases until it reaches zero.

2 The uncertainty is associated with the determination of intermediate proximity levels is much higher as a subjective value of intermediateness is estimated based on expert
knowledge. The membership values reduce gradually as we move away from this estimated distance value. A Gaussian function best represents such a relation since the 'bell-shape’
allots high weightage to the estimate values and its immediate surroundings.

3 Beyond a certain threshold distance, the input variable is considered to have no geological influence on mineralisation and can be assigned an equal weightage of being distal
(horizontal line section of the trapezoidal function). The weightage would increase steadily in a linear manner as this threshold is approached (inclined line section of the trapezoidal
function). Hence, a piece-wise linear function was used to represent distal relationships.

4 A piece-wise linear (trapezoid) function allots equal weightage (horizontal line section) to values beyond an estimated threshold to represent high anomalous values. The threshold
is such that values beyond it would surely be anomalously high. The weightage decreases linearly as the geophysical anomaly values reduce from the estimated threshold (inclined
line section). Accordingly, a piece-wise linear function was used to represent high geophysical anomaly values.

5 Magnetic susceptibility generally conforms to a log-normal distribution (Latham et al., 1989). Therefore, a gaussian function was used to represent intermediate values.

6 Equal weightage of 'low-ness' (horizontal line section of the trapezoidal function) was allotted to values that were considered to be too low to be indicative of REE mineralisation.
The membership values reduce linearly as magnetic susceptibility values increase. Therefore, a piece-wise linear function was used to represent low geophysical anomaly values.

7 The output (consequent) variables have been assigned linear membership functions to model the favourability on a linear scale.

Every membership function described above relies on an assumed or estimated parameter/threshold. The variation of these parameters/thresholds that influence the shape of the
membership functions were modelled using Monte Carlo simulations. The degree of variation was represented by a beta (PERT) distribution which is defined by

_atdb+c

B 6
where a is the minimum limit up to which a given parameter/threshold may vary, b is the most likely value that is estimated based on our knowledge, and ¢ is the maximum variation
value.
The values of a and ¢ move further away from b as uncertainty increases.
The value of each parameter/threshold was then simulated 1000 times within the constraints of the assumed beta (PERT) distribution.
These simulated values at three probability levels (10%, 50% and 90%) were used to define the shape of the fuzzy membership functions in separate respective FIS and therefore,
determine the fuzzy membership values for each predictor map, at the respective probabilities.
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Comments on Revision - 1
Highlight
This is already used as Premise variable #1

Comments on Revision - 1
Highlight
This table lists the final layers used as input variables in the FIS. But some of these are obtained from AND overlay of the different layers mentioned in Table 4. This is graphically represented in Figure 4. Hence, to maintain the flow of ideas, it might benefit the reader if Figure 4 is cited and presented before Table 5

Comments on Revision - 1
Highlight
There are so many ways in which these lineaments and faults are derived that it is becoming too confusing to keep a track of it. And the terminology referring to lineaments and faults is also inconsistent. 
Are these features (identified from different datasets, e.g. '#3 lineaments from magnetic data', '#5 and #9 inferred faults and remotely sensed lineaments', '#6 lineaments derived from gravity data') spatially dispersed from each other? I can imagine it might not be feasible to have Figures for each of these, but not providing Figure either of primary data or of the interpreted features leaves a lot to the imagination of the reader.  

Comments on Revision - 1
Highlight
Are the 'input variables' with 'Proximity' fuzzy predictor maps derived from fuzzification of the Distances rasters? (refering to Section 3.3, lines #202 - 205).
But since these are 'Premise variables', these refer to the distances rasters I think. Perhaps rephrasing the lines #202-205 might add clarity? Because it clearly states there that 'numeric predictor maps (e.g., the predictor map showing distance to structural lineaments) were converted into fuzzy predictor maps (e.g., proximity to structural lineaments) using membership
functions'. This implies a clear distinction in the terminology. Additionally, Table 4 also uses the term 'Proximity' for the distances maps. 


Comments on Revision - 1
Highlight
This is already used as Premise variable #2

Comments on Revision - 1
Highlight
What does cumulative refer to?

Comments on Revision - 1
Highlight
Which geophysical dataset was used to make this anomaly map?


Malcolm Aranha
Sticky Note
Thank you very much for the suggestion. We agree with you and have decided to present Fig. 4 before this table.

Malcolm Aranha
Sticky Note
We regret the inconsistencies, we have addressed them in the revised table. You are correct, these premise variables in this table refer to the distances rasters. We have changed the terms here in this Table, as well as in the previous table. 

Malcolm Aranha
Sticky Note
We regret the inconsistencies, we have now used better terminology and ensured consistency for clarity. The lineaments from different datasets are not spatially dispersed from each other, they broadly agree with each other with few lineaments being common in all, which are extracted in the final map used as input in the FIS modelling. 

Malcolm Aranha
Sticky Note
This question has been addressed in detail in the general comments. The revised table attempts to make the difference clear.

Comments on Revision - 1
Highlight
This is already used as Premise variable #5

Malcolm Aranha
Sticky Note
This question has been addressed in detail in the general comments. The revised table attempts to make the difference clear.


Malcolm Aranha
Sticky Note
This was an attempt to indicate that this input is the collectively analysed, overlay map of all circular features extracted from the different datasets. We have not simplified the terminology here and explained the process better in the previous table.

Malcolm Aranha
Sticky Note
The magnetic dataset was used for this layer. We have now renamed it accordingly.


Malcolm Aranha
Sticky Note
This question has been addressed in detail in the general comments. The revised table attempts to make the difference clear.
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Solid Earth

Discussions

reasoning an exploration geologist for delineating regional-scale exploration targets.

In the first stage, a series of FISs were developed to generate fuzzy prospectivity maps for individual components
of the REE mineral systems by combining their respective fuzzy predictor maps. The FISs for
fertility/geodynamic settings, whole lithosphere architecture and near-surface architecture (Fig. 4) comprised 5,
8 and 11 fuzzy if-then rules, respectively, which are shown in Table 6A, 6B and 6C, respectively. Since each
predictor map was converted into three fuzzy maps at 10%, 50% and 90% probability levels, the outputs of this

FIS-based prospectivity modelling: In the second step, a multi-stage FIS was designed to mimic the geological

step were three fuzzy prospectivity maps for each component at 10%, 50% and 90% probability levels.

In the second stage, the fuzzy prospectivity maps of the individual mineral-system components were combined

using the fuzzy product operator (Fig. 4D) to generate three REE prospectivity maps of the study area at 10%,

50% and 90% probability levels.

Proximity to the trace of the Plume
head/Barmer rift

Proximity to Deccan Large Igneous
Province

Proximity to faults derived from horizontal derivative of
20 km upward continued magnetic data

Proximity to faults derived from horizontal derivative of
10 km upward continued magnetic data

Proximity to faults derived from horizontal derivative of
5 km upward continued magnetic data

Proximity to faults derived from horizontal derivative of
2 km upward continued magnetic data

Proximity to faults derived from horizontal derivative
of 20 km upward continued Ground gravity data

Proximity to faults derived from horizontal derivative
of 10 km upward continued Ground gravity data

Proximity to faults derived from horizontal derivative
of 5 km upward continued Ground gravity data

Proximity to faults derived from horizontal derivative
of 2 km upward continued Ground gravity data

Proximity to faults derived from horizontal derivative
of 20 km upward continued satellite gravity data

Proximity to faults derived from horizontal derivative
of 10 km upward continued satellite gravity data

Proximity to faults derived from horizontal derivative
of 5 km upward continued satellite gravity data

[
[
[
[
[
[
[
[
[
[
[
[

Proximity to faults derived from horizontal derivative
of 2 km upward continued satellite gravity data

Fertility
FIS | Prospectivity
Map

Cumulative map of Proximity to
lineaments derived from magnetic data

(A)

Proximity to Barmer rift

[
[

Proximity to Lineaments from remote
sensing data

FIS

Pathways
Architecture

Il Prospectivity

Map

Cumulative map of Proximity to
lineaments derived from gravity data
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Proximityto circular features derived from horizontal
[ derivative of 5 km upwa_rd continued mag
Proximityto circular features derived from horizontal
[ derivative of 2 km upwa_rd continued magnetic data
[ Proximityto circular features derived from horizontal

©)

netic data

derivative of reduced to pole magnetic data
Proximityto circular features derived from horizontal
derivative of 5 km upwa_rd continued satellite gravity data
Proximityto circular features derived from horizontal

derivative of 2 km upwa_rd continued atell'rtegra\ritv data
Proximityto circular features derived from horizontal

derivative of Etel lite gravity dEta
Proximityto circular features derived from SRTM
Topographical data
Proximity to circular features derived from UCSD
Topographical data

[ Proximityto intrusions
Proximity to Deccan Large lgneous
Province
Proximityto Lineaments from remote
sensingdata Emplacement
Proximity to surficial faults Cumulative map of Proximity to circular EIS Ll Architecture
derived from magnetic data features Prospectivity
: = e 7 Ma
Proximityto surficial faults derived Proximity to surficialfaults p
from ground gravity data
Proximityto surficialfaults derived Proximityto intersections of surficial
from satellite gravity data faults

[ Proximity to intersections of surficial

Geophysical anomaly map
faults derived from magnetic data

Proximity to intersections of surficial
faults derived from ground gravity data

Proximity to intersections of surficial
faults derived from satellite gravity data

(D)

Fertility
Prospectivity
Map

Pathways Mineral
Architecture s
Prospectivity Prospectivity

Map Map

Emplacement
Architecture

Prospectivity
Map

Figure 4: The multi-stage FIS for REE prospectivity mapping in the study area. (A) FIS for generating fuzzy prospectivity maps for
fertile sources and favourable geodynamics settings. (B) FIS for generating fuzzy prospectivity maps for favourable whole

250 lithosphere architecture for transportation of REE-enriched carbonatite-alkaline magma. (C) FIS for generating fuzzy prospectivity
maps for favourable shallow crustal (near-surface) architecture for emplacement of carbonatite-alkaline complexes. (D) Second
stage FIS combines the above three prospectivity maps obtained from the first stage and generates the final outputs.
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Comments on Revision - 1
Highlight
Table 5 mentions three linguistic values for these variables - 'Proximal, Intermediate, Distal'; What does 'not distal' imply? I suppose it is not another fuzzy set/ fuzzy membership function defining a linguistic value in the dataset, but an additional condition. What does this condition mean, and why is it important? 
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3. Generation of confidence map: In the third step, stochastic uncertainties, which arise from the limitations of
public-domain datasets and procedures used for generating the predictor maps, were quantified in terms of
confidence values for each predictor map using the techniques described by Porwal et al. (2003b) and Joly et al.
(2012). The confidence value for each predictor map was assigned based on the degree of representativeness of
the predictor map — that is, how well it represents the mineralisation process it seeks to map. A predictor map
was assigned a high confidence value if it directly mapped the targeting criteria and a low confidence value if it
indirectly mapped the response of the targeting criterion. The confidence factor also captured the fidelity and
precision of the primary dataset from which the input was derived. The confidence factor for all predictor maps,
along with the justifications, are given in Table 7. The output confidence map was generated by combining the
confidence factors of different predictor maps using the same fuzzy inference systems that were used for

prospectivity modelling.

Table 7: Confidence values allotted to each of the predictor maps used in the FIS modelling.

. nfiden . .
Predictor map Confidence Justification
value
Pro;qmlty to the Deccan Large Igneous 0.9 LIP mapped extensively on the field at 1:50000 scale.
Province
oyt e b e @ RSt mwals s 04 Interpreted map; the trace of the plume was derived based on the

assumption that it coincides roughly with the Barmer-Cambay rift.
The rift was traced using magnetic data and remotely sensed
Proximity to the Barmer Rift 0.8 lineaments and further cross verified with the traces published by
Bladon et al. (2015a, b); Dolson et al. (2015).

Proximity to lineaments derived from magnetic

data 0.75 Lineaments were mapped from high-resolution magnetic data.
g;’;lmlty to lineaments derived from gravity 0.7 Lineaments were mapped from low-resolution gravity data.
Proximity to lineaments from remote sensing 05 Lineaments were mapped from remote sensing data. The faults are

data and inferred faults from structural maps inferred, not directly mapped.

Proximity to post-Cambrian, non-felsic

. . 0.8 Exposed intrusions directly mapped on field at 1:50000 scale.

ntrusives

ety o ool Rosiinics 05 Clrculqr feature?s were mapped fr‘o-resolutlon magnetic, low-
resolution gravity and topographic deres

Proximity to surficial lineaments derived from

07 Lineaments were mapped fron@—reselution magnetic and low-

geophysical data resolution gravity data.

Proximity to intersections of surficial 07 Lineaments were mapped frorr@-resolution magnetic and low-
lineaments derived from geophysical data ’ resolution gravity data.

Magnetic anomaly map 0.7 Anomalies mapped from high-resolution magnetic data.
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Finally, the three REE prospectivity maps of the study area at 10%, 50% and 90% probability levels were blue-to-red colour-
coded and draped over the confidence map for viewing as 3D surface models. In the 3D surface models, the colours represented
prospectivity (blue tones signify low prospectivity and red tones signify high prospectivity), and elevation represented

confidence (depressions signify low confidence and elevations signify high confidence).

4 Results

The final outputs are shown as continuous-scale (relative) prospectivity maps at 10%, 50% and 90% probability levels draped
over confidence map in Figures 5 A, B, and C. High prospectivity areas cluster around the carbonatite occurrences of Sarnu-
Dandeli and Kamthai. Several areas to the south of Mundwara and Barmer also show high prospectivity at high probability
levels. In contrast, some areas in the north and northwest of Sarnu-Dandeli show high prospectivity at low probability levels.
Throughout the study area, prospective areas follow the outline of major faults and lineaments. A circular area to the east of
Sarnu-Dandeli shows high prospectivity at low and moderate probabilities; however, it shows low prospectivity at the high

probability level. A small patch south of the circular outline shows high prospectivity across all probability levels.

23



285

290

295

300

https://doi.org/10.5194/se-2021-108 _
Preprint. Discussion started: 24 September 2021 Solid Earth
(© Author(s) 2021. CC BY 4.0 License. Discussions

re 5: Continuous scale prospectivity maps at 10%, 50% and 90% probability levels draped over the confidence layer, shown in
~7; (B) and (C), respectively. The colours mark increasing prospectivitv from low (blue) to high (red). The elevations mark high
confidence in the data used for prospectivity modelling. Black balli‘arcate major cities, and green balls demarcate known
carbonatite occurrences; green numbers correspond to the known caroonatite occurrences: 1 — Sarnu Dandeli, 2 — Kamthai, 3 —
Danta-Langera-Mahabar, 4- Mundwara. Areas marked with black numbered rectangles are discussed iion 6.

5 Discussion and Recommendations

The lack of known carbonatite-alkaline complexes REE deposits in the study area precluded the use of data-driven approaches,
and therefore we opted to apply the knowledge-driven FIS approach. Because FISs are constructed in natural language using
simple if-then rules, they are transparent and easy to construct and interpreted by geologists (Porwal et al., 2015). The multi-
stage FIS in this study replicates the structure of the REE mineral system model and encapsulates the geological reasoning that
an exploration geologist would use to delineate regional-scale exploration targets. The rules utilise fuzzy ‘AND’ (minimum),
‘OR’ (maximum) (Bonham-Carter, 1994; Porwal et al., 2015) operators; these operators are used in such a way as to narrow
n prospectivity areas as efficiently as possible. Mathematical functions and operators are used to convert the if-then rules
in English into machine-readable mathematical values.
In the first stage, the first FIS maps REE fertility and favourable geodynamic settings (Fig. 4A and Table 6A) by delineating
areas that are likely to be underlain by plume-metasomatised SCLM. Considering the size of a typical mantle plume, these
areas are expected to be very large. The second FIS maps favourable lithospheric architecture for the transportation of REE-
enriched carbonatite-alkaline magma (Fig. 4B and Table 6B) and narrows down the target areas identified by the first FIS to
areas that are proximal to trans-lithospheric structures target areas demarcated by the second FIS are also relatively large
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as immense trans-lithospheric structures are expected to have a large zone of influence. The third FIS maps favourable shallow
crustal (near-surface) architecture for the emplacement of carbonatite-alkaline complexes (Fig. 4C and Table 6C) and further
narrows down the target area to camp-size areas that are facilitated by near-surface higher-order structures. These individual
FIS in the first stage rely on simple logic-based rules to integrate the individual predictor maps (Tables 6A, B, and C). The
rules were framed based on our understanding of the REE mineral system. The use of AND operator in the IF parts of the rules
defining high prospectivity ensured that a pixel would get a high prospectivity value only if it is proximal to predictor features
on all predictor maps. Similarly, the use of the OR operator in the IF parts of the rules defining low prospectivity ensured that
a pixel would get a low prospectivity low even if it is distal to predictor features on any one of the predictor maps. As a result,
the extents of the areas with background (low) prospectivity are maximised, and high-prospectivity zones are narrowed down
efficiently.

In the second stage of the multi-stage FIS, the output prospectivity maps of the individual components were integrated using
the fuzzy product operator, which calculates the mathematical product of all input predictor maps (Bonham-Carter, 1994;
Porwal etal., 2015). Since the individual FIS output values range between 0 and 1, it decreases the final integrated prospectivity
values.

We also attempted to quantify the different uncertainties associated with the prospectivity analysis process in this contribution.
Systemic uncertainty arises from the subjective estimation of mathematical parameters that determine the shape of the fuzzy
membership functions used to convert numerical predictor maps to fuzzy predictor maps, which greatly influence the final

@pectivity maps. Instead of point values, Beta-PERT distributions of values were used for the parameters of the fuzzy
membership functions. The parameters of the beta functions (optimistic, most likely and pessimistic values) were assigned
based on a geological evaluation of the decay of the influence of a targeting criteria with distance (Table 5). Monte-Carlo
simulations provided the fuzzy membership values at 10%, 50%, and 90% probability levels, which yielded three sets of fuzzy
predictor maps at 10%, 50%, and 90% probability levels. These three sets of predictor maps were then integrated through
respective multi-stage FIS to obtain the final prospectivity maps at 10%, 50%, and 90% probability levels.

Stochastic uncertainties were quantified based on the approach described by Porwal et al. (2003b), Gonzalez-Alvarez et al.
(2010) and Joly et al. (2012) by assigning each predictor map a particular confidence value as per the Sherman-Kent scale
(Jones and Hillis, 2003; Kreuzer et al., 2008). Most previous workers (e.g., Porwal et al., 2003b; Gonzalez-Alvarez et al., 2010;
Joly et al., 2012) incorporated confidence values in the fuzzy membership values. However, according to the fuzzy set theory,
fuzzy membership value is simply a measure of the strength of an input map as a predictor of the targeted deposit and is
independent of the quality of data used to generate the input predictor map. Therefore, we created separate confidence maps
for all predictor maps and propagated them through the same multi-stage FIS (Fig. 4) to generate an integrated confidence
map.

Conjunctive interpretations of prospectivity maps and confidence maps can help in making decisions regarding follow up

exploration. In the present study, we used the matrix shown in Table 8 to recommend follow-up exploration.
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Table 8: Matrix summarising the target areas quantified according to probability and confidence levels and further

exploration recommended for the identified targets.

Target

@pectivity Probability = Confidence

Interpretation

Recommendation

Qlwn carbonatite
rrences of

High prospectivity because
of the possible presence of

Apply direct detection
techniques such as high-

Il\)/l;lr?(ivlvia;i,dslgnrrl:t_hai @1 High High extended arms of the central  resolution air-borne radiometric
and several patches carbonatite-alkaline complex surveys and drilling to identify
surroun. dingpthem intrusion mineral deposits.
(1 ular outline east The circular outline Follow-up detailed exploration
of -Dandeli (Fig. represents the Siwana ring . up L OXP
Moderate . . - . using high-resolution air-borne
5A and B; rectangle intrusion, consisting of alkali radiometric surveys and sround
number 1); and . . granites and rhyolites. High . s &
. High High .. geochemical sampling of
a small patch just south prospectivity may result outcrops. especially of the
of the circular outline . from the consistent presence ps, €Sp Y. .
e . High 5 " patch south of the Siwana ring
(within rectangle 1 in of lineaments and magnetic complex
Figs. 5A, B and C). response of the intrusion. plex.
Aerial radiometric surveys are
mall patch south of High prospectivity because ieic?lr-rrl:slzrllli?g;lforlcl)?lvrrsd ?az;it
E' P High High Moderate  of the intersection of & ground gravity
Darmer town lineaments surveys and later drilling if the
radiometric surveys yield
positive results.
High-resolution ground gravity
High prospectivity because  and aerial radiometric surveys
@\Iorj{h i fs Sarnu- . . of the high density of are recommended, followed by
deli carbonatite High Moderate High . o . . O
oceurTence hnearpents n th1§ section . ground‘ sampl.lng and drl%hng if
and high magnetic anomalies the radiometric and gravity
surveys yield positive results.
High-resolution ground gravity
High prospectivity because  and aerial radiometric surveys
@[\Iortheast f)fthe . of the high density of are recommended, followed by
u-Dandeli High Moderate Moderate . o . . -
. lineaments in this section ground sampling and drilling if
carbonatite occurrence . . . . . .
and high magnetic anomalies the radiometric and gravity
surveys yield positive results.
. .. Additional data collection -
E. everal areas east High prospectivity because . . .
e southeast of of consistent overlap of ISEES WA (I T,
High High High aerial radiometric surveys and

Mundwara carbonatite
occurrence

lineaments derived from
each geophysical source

geochemical sampling of
outcrops to delineate deposits.

Along with the known carbonatite occurrences of Mundwara, Sarnu-Dandeli and Kamthai, high prospectivity (orange-red
colours in Fig. 5A, B and C) is noted at several scattered patches immediately surrounding Sarnu-Dandeli and Mundwara at
high probability and confidence levels. These scattered patches can represent scattered arms of the central carbonatite-alkaline
complex intrusion. Direct detection studies are recommended in these locations.

At low probability levels (Fig. 5A and B), moderate to high prospectivity is seen over a circular outline east of Sarnu-Dandeli
(Fig. 5A and B; rectangle number 1); and also, over a small patch just south of the circular outline (within rectangle 1 in Figs.

5A, B and C). The circular outline corresponds to the Siwana ring intrusion, which consists of alkali granites and rhyolites.
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The Siwana ring intrusion is part of the Neoproterozoic Malani LIP (Bhushan and Mohanty, 1988). However, the Siwana ring
intrusion shows low prospectivity at high probability (Fig. 5C; rectangle number 1), while the smaller patch to its south
consistently shows high prospectivity at high probability and confidence levels. The high values may be caused by the
consistent presence of lineaments in this region and the magnetic response of the intrusion. It is noteworthy that although not
a carbonatite-alkaline complex, the peralkaline Siwana ring complex does contain REE potential and has been assessed for
REE mineralisation (Bhushan and Somani, 2019). Further detailed assessment of this region is recommended, with detailed
radiometric surveys and geochemical sampling, especially of the patch south of the Siwana ring complex that shows high
prospectivity at high probability levels.

A small area south of Barmer shows high prospectivity at high probability and moderate confidence levels (Fig. 5B and C;
rectangle number 2). This area exhibits high prospectivity due to the intersection of lineaments. Two more areas to the north
and northeast of the Sarnu-Dandeli carbonatite occurrence show high prospectivity at moderate probability and confidence
levels (Figs. 5A and B, rectangles 3 and 4, respectively). A high density of lineaments in this section and high magnetic
anomalies are the likely causes. Aerial radiometric surveys are recommended at all three locations, followed by ground
sampling and drilling if the radiometric surveys yield positive results.

@eral areas east and southeast of Mundwara show high prospectivity at high probability and confidence levels (Fig. 5C;
rectangle 5). This is likely due to the consistent overlap of lineaments derived from each geophysical source at these locations.
Acquiring additional data would help in delineating the target zone in these areas.

The emplacement of the carbonatite-alkaline complexes in the study area was related to the large-scale rifting and splitting of
India from Madagascar and later from Seychelles, which also triggered the Deccan volcanism. A similar mode of origin is
envisaged for several other carbonatite-alkaline complexes worldwide. Ernst and Bell (2010) have identified several
carbonatite provinces that are emplaced in an extensional setting, associated with a mantle plume and a LIP. These include,
along with the Deccan province, the Afar province (East Africa), Parana-Etendeka (South America and Africa), Siberian
province (Russia), East European Craton-Kola province (Eastern Europe), Central Iapetus province (North America,
Greenland and the Baltic region), and Pan-superior province (North America). This paper’s methodologies can be used for
exploration targeting REEs in these provinces.

Furthermore, at the time of emplacement of these carbonatite-alkaline complexes, the Indian subcontinent was located close
to Madagascar and Seychelles. Therefore, similar complexes could occur in Madagascar and Seychelles also. The Barmer rift
is the northern extension of the Cambay rift, which forms a triple junction in western India along with the Kutch rift. Thus,
carbonatite-alkaline complexes are also expected along the Cambay rift and Kutch rifts, also possibly along the offshore E-W
trending Gop and the NNW-SSE trending West Coast rift zones on the western coast of India. Kala-Dongar (Sen et al., 2016)
and Murud-Janjira (Sethna and D’Sa, 1991) are known minor occurrences of carbonatites along the Kutch and West Coast rift
zone, respectively. Moreover, the Gop rift is the western extension of the Son-Narmada-Tapti (SONATA) rift zone, along
which several significant occurrences of the Chhota-Udepur carbonatite district are found. A similar study may help in

identifying exploration targets for REEs in these regions. Paleo-reconstruction of the geography to the time when these

27


Comments on Revision - 1
Highlight
For comparison, why is this rectangle not marked in Fig. 5A and B?

Malcolm Aranha
Sticky Note
We had considered marking all the rectangles in all the three sets of images. However, it was found that the resulting images were quite cluttered. As a result it was decided to mark only the relevant rectangles on the each figure.


385

390

395

400

405

410

https://doi.org/10.5194/se-2021-108 _
Preprint. Discussion started: 24 September 2021 Solid Earth
(© Author(s) 2021. CC BY 4.0 License. Discussions

complexes were being emplaced and analysing the prospectivity of the entire Deccan province (including western India,

Madagascar and Seychelles) may help identify more prospective targets for carbonatite related REEs.

6 Summary and Conclusions

Rare earth elements comprise of 17 metallic elements that are considered as ‘critical metals’ for future development of
environmentally friendlier and technologically based societies. India’s production entirely comes from secondary beach placer
deposits on the western and eastern coasts. Even though no primary economic-grade deposit of REE is identified in India,
there is significant latent potential for carbonatite-related REE deposits. This study has developed a knowledge-driven, GIS-
based prospectivity model for exploration targeting of REEs associated with carbonatite-alkaline complexes in the western
Rajasthan, northwestern India.

The generalised mineral systems model for carbonatite-alkaline complexes related REEs described by Aranha et al. (under
review) was used to identify regional-scale targeting criteria for REE in the study area. Several predictor maps were derived
from public-domain geological, geophysical and satellite data based on the mineral systems model. A multi-stage FIS was
constructed to represent the different components of the mineral system. The first stage of the multi-stage FIS comprises of
three individual FIS to represent (1) plume-metasomatised SCLM in an extensional regime that make up fertile source regions
for REE-bearing fluids and favourable geodynamic settings; (2) trans-lithospheric structures that provide favourable
lithospheric architecture for the transportation of REE-enriched carbonatite-alkaline magma; and (3) near-surface higher-order
structures that make up a shallow crustal architecture facilitating emplacement of carbonatite-alkaline complexes.

Systemic uncertainties associated with the fuzzification of the predictor maps was quantified based on the procedure described
by Lisitsin et al. (2014) and Chudasama et al. (2017) that produced prospectivity maps at 10%, 50% and 90% confidence
levels. Stochastic uncertainties associated with the primary data used and the processing methods adopted to derive predictor
maps were quantified based on the procedure described by Porwal et al. (2003b), producing a confidence layer over which the
prospectivity maps were draped.

Based on the results, a@d structural control over the emplacement of carbonatite-alkaline complexes is recognised. The
following are the recommendations based on the results of this study. Project-scale detailed ground exploration is
recommended for the Kamthai-Sarnu-Dandeli and Mundwara regions and their immediate surroundings, where patches of
high prospectivity are recorded at high probability levels. More data collection is recommended for the Siwana ring complex,
particularly for the high prospectivity region found to its immediate south. Similarly, high resolution data should be collected
in the regions to the north and northeast of Sarnu-Dandeli, south of Barmer, and the south of Mundwara to better resolve and
delineate targets for ground exploration.

The prospectivity-analysis workflow presented in this paper can be applied to other geodynamically similar regions globally
for targeting geological provinces for follow-up exploration such as the Deccan province, the Afar province (East Africa),

Parana-Etendeka (South America and Africa), Siberian province (Russia), East European Craton-Kola province (Eastern
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Europe), Central lapetus province (North America, Greenland and the Baltic region), and Pan-superior province (North
America).
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