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Abstract. A two-stage fuzzy inference system (FIS) is applied to prospectivity modelling and exploration-target delineation

for REE deposits associated with carbonatite-alkaline complexes in the western part of the state of Rajasthan in India. The
design of the FIS and selection of the input predictor map are guided by a generalised conceptual model of carbonatite-alkaline-
complexes-related REE mineral systems. In the first stage, three FISs are constructed to map the fertility and favourable
geodynamic settings, favourable lithospheric architecture for fluid transportation, and favourable shallow crustal (near-surface)
emplacement architecture, respectively, for REE deposits in the study area. In the second stage, the outputs of the above FISs
are integrated to map the prospectivity of REE deposits in the study area. Stochastic and systemic uncertainties in the output
prospectivity maps are estimated to facilitate decision making regarding the selection of exploration targets. The study led to
the identification of prospective targets in the Kamthai-Sarnu-Dandeli and Mundwara regions, where project-scale detailed
ground exploration is recommended. Low-confidence targets were identified in the Siwana ring complex region, north and
northeast of Sarnu-Dandeli, south of Barmer, and south of Mundwara. Detailed geological mapping and geochemical sampling
together with high-resolution magnetic and radiometric surveys are recommended in these areas to increase the level of
confidence in the prospectivity of these targets before undertaking project-scale ground exploration. The prospectivity-analysis
workflow presented in this paper can be applied to the delineation of exploration targets in geodynamically similar regions
globally, such as Afar province (East Africa), Parana-Etendeka (South America and Africa), Siberian (Russia), East European
Craton-Kola (Eastern Europe), Central lapetus (North America, Greenland and the Baltic region), and the Pan-superior

province (North America).
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1 Introduction

The term Rare Earth Elements (REEs) includes (International Union of Pure and Applied Chemistry, IUPAC): yttrium (Y),
scandium (Sc), and the lanthanides (lanthanum, La; cerium, Ce; praseodymium, Pr; neodymium, Nd; promethium, Pm;
samarium, Sm; europium, Eu; gadolinium, Gd; terbium, Th; dysprosium, Dy; holmium, Ho; erbium, Er; thulium, Tm;
ytterbium, Yb; and lutetium, Lu). Because of their increasing use in environment-friendly high-technology industries, REEs
are widely considered as the resources of the future (e.g., Goodenough et al., 2018; Wall, 2021). Most countries have classified
REEs as “critical minerals and metals’ because of their strategic importance and the projected gap between their future demand
and supply (Goodenough et al., 2018; Gonzalez-Alvarez et al., 2021 and references therein).

In spite of significant efforts into developing technology for recovering and recycling REEs from discarded devices
(Binnemans et al., 2013), geological resources are likely to remain the primary sources of REEs in the foreseeable future
(Goodenough et al., 2018). Several classification schemes for REE deposits have been proposed by different workers based
on geological associations and settings; for example, Chakhmouradian and Wall (2012), Jaireth et al. (2014), Wall (2014),
Goodenough et al. (2016), Verplanck and Hitzman (2016), Simandl and Paradis (2018), etc. In general, REE deposits can be
broadly classified into those formed by high-temperature (magmatic and hydrothermal) processes and those formed by low-
temperature (mechanical and residual concentration) processes (e.g., Wall, 2021). Although the majority of Indian production
of REEs comes from low-temperature deposits such as regolith-hosted and heavy-mineral placers (IBM yearbook 2018, 2019),
the bulk of geological resources are in high-temperature magmatic deposits, particularly those associated with carbonatites
(e.g., Bayan Obo, Inner Mongolia, China; Mount Weld, Western Australia; Maoniuping, South China; Mountain Pass, USA

etc.; Gonzalez-Alvarez et al., 2021 and references therein).

India ranks 6th in terms of production of REEs and 5th in terms of resources (USGS, 2021). All of India’s production comes
from monazite-bearing beach sands along the eastern and western coasts (IBM yearbook 2018, 2019). Since India has 29 out
of the total 527 globally reported carbonatite occurrences (Woolley and Kjarsgaard, 2008a), there is significant latent potential
for carbonatite-related REE deposits in the country. Currently, there are no studies available, at least in the public domain, on

systematic delineation of prospective REE exploration targets in India.

Mineral prospectivity modelling is a widely used predictive tool for identifying exploration target areas for mineral exploration.
Implemented in a GIS environment, it involves the integration of ‘predictor maps’ that represent a set of mappable exploration
criteria for the targeted deposit type. Typically, conceptual mineral systems models are used to identify exploration criteria
(Porwal and Kreuzer, 2010; Porwal and Carranza, 2015). The integration is done through either linear or non-linear
mathematical functions (Bonham-Carter, 1994; Porwal, 2006; Porwal and Carranza, 2015). Depending on how the model
parameters are estimated, that is, whether based on training data comprising attributes of known deposits or on expert
knowledge, these models are classified as data-driven or knowledge-driven. Data-driven approaches require a sizeable sample

of known deposits of the targeted deposit type for estimating the model parameters, while knowledge-driven approaches use
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expert knowledge for estimating model parameters. Fuzzy-logic based approaches are the most widely used knowledge-driven
approaches to prospectivity modelling. These approaches have evolved from the Prospector (Duda et al., 1978, 1979, 1980),

which was the earliest knowledge-based expert system that utilised fuzzy operators in a Bayesian network (Porwal et al., 2015).

The outputs of both data-driven and knowledge-driven prospectivity models are subject to two types of uncertainties (Porwal
et al., 2003; Lisitsin et al., 2014), namely, systemic (or epistemic) and stochastic (or aleatory). Systemic uncertainties arise
from the incomplete understanding of the geological process involved in the formation of the mineral deposit, leading to
imperfect models. Stochastic uncertainties arise from the limitations of the primary and derivative processed datasets, including
the algorithms used to derive them. These uncertainties are results of inaccuracy or imprecision in measurements and
observations, data interpolations, and inconsistent data coverage (Porwal et al., 2003; McCuaig et al., 2009; Lisitsin et al.,

2014). However, most published prospectivity modelling studies do not specifically deal with uncertainties in model outputs.

There are very few published studies on REE prospectivity modelling. Ekmann (2012) published a study of REEs in coal
deposits in the United States. In one of the first GIS-based prospectivity modelling studies for REEs, Aitken et al. (2014) used
a fuzzy-logic-based model to delineate prospective targets for pegmatite-, carbonatite- and vein-hosted REES in the Gascoyne
Region of Western Australia. This study was part of a larger multi-commodity prospectivity study of the Gascoyne Province.
Sadeghi (2017) carried out a regional-scale GIS-based prospectivity analysis for REEs in the Bergslagen district of Sweden,
targeting iron-apatite- and skarn-associated deposits using the weights of evidence and weighted-overlay models. Bertrand et
al. (2017) used database querying to analyse the prospectivity for REEs as by-products in known mineral deposits in Europe.
In a recent study, Morgenstern et al. (2018) analysed the potential of REEs in New Zealand using a multi-stage Fuzzy inference
system (FIS).

This contribution describes the first systematic and comprehensive prospectivity modelling exercise aimed at identifying
exploration targets for REE associated with carbonatite-alkaline complexes in Western Rajasthan, India (Fig. 1). Although it
is a well-established carbonatite province that is widely considered prospective for REE deposits, only a single REE deposit
has been identified in the province so far. We employ fuzzy inference system (FIS), which is a knowledge-driven artificial
intelligence technique, to identify and delineate prospective targets for REEs (except Pm and Sc; Pm is an unstable element
and Sc is not an element sourced from carbonatites-alkaline complexes) in the study area. The inputs to the FIS were identified
based on a generalised mineral systems model for alkaline-carbonite-complexes-related REEs, which was further used to guide
the design of the FIS. To support decision making regarding the delineated targets, uncertainties in the output model were also
estimated. The prospectivity-analysis workflow presented in this paper can be applied to other geodynamically (mantle-plume-
related intracontinental extensional settings) similar regions globally for exploration targeting, e.g., in East Africa, South and

North America, Russia, Eastern Europe, Greenland, and the Baltic region.



2 Geological setting of the study area

The study area is located in the state of Rajasthan in northwest India (Fig. 1). This area was chosen because it is a known major

carbonatite province of India, and well-integrated public domain datasets are available. Geologically, the study area contains

95 igneous and sedimentary formations ranging in age from the Neoproterozoic to Holocene. Neoproterozoic Erinpura and Jalore

granites, along with a few outcrops of the Mesoproterozoic Delhi Supergroup, occur in the southeastern part of the study area

(Fig. 1). The eastern part of the study area comprises extrusive and intrusive igneous rocks belonging to the Neoproterozoic

Malani Igneous Suite that is mostly covered by a thick horizon of Holocene wind-blown sand. Sedimentary sequences

belonging to the Late Neoproterozoic Marwar Supergroup, Jurassic Jaisalmer, Cretaceous Sarnu-Fatehgarh, Tertiary Barmer

100 (Palaeocene) and Akli (Eocene), Quaternary Uttarlai Formations (Pleistocene to Holocene) (Roy and Jakhar, 2002;

Ramakrishnan and Vaidyanadhan, 2008; Singh et al., 2016) occur in the central and western parts around Barmer and Jaisalmer
towns (Fig. 1).
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Figure 1: Geological map of the study area with known carbonatite-alkaline complexes.
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Carbonatite-alkaline complexes of the Cretaceous age occur in the Mer-Mundwara area in the eastern part of the study area
and the Sarnu-Dandali area in the central part of the study area (Fig. 1; Table Al). The Mer-Mundwara carbonatite-alkaline
complex intrudes the Neoproterozoic Erinpura Granite and displays a characteristic ring structure, wherein the alkaline-mafic
rock suites form two ring structures and a dome (Pande et al., 2017). Carbonatites mainly occur in the form of linear dykes at
Mer-Mundwara. The Sarnu-Dandeli complex covers a relatively large area on the eastern shoulder of the Barmer basin. The
carbonatites occur mainly as scattered plugs and dykes that are covered by Quaternary sand, intruding the Neoproterozoic
Malani igneous suite and the Cretaceous Sarnu formation (Vijayan et al., 2016; Sheth et al., 2017). The Sarnu-Dandeli complex
also includes more minor occurrences of carbonatites in the Danta-Langera-Mahabar and Kamthai areas. The Kamthai plug is

considered to be highly prospective for REEs (Bhushan and Kumar, 2013).

The study area is dissected by the Barmer rift, which continues southwards through the state of Gujarat into the Cambay basin.
The Barmer rift is a failed, roughly north-south trending, extensional intracratonic rift (Fig. 1) that was active during Late
Cretaceous to Eocene (Dolson et al., 2015). A long-lasting extensional regime in northwest India predating the Deccan
volcanism existed in northwest India, peaked with the Seychelles rifting at the Cretaceous—Paleogene boundary and the
emplacement of the main phase of Deccan volcanics at ca. 65 Ma (Devey and Stephens, 1992; Allegre et al., 1999; Chenet et
al., 2007; Collier et al., 2008; Ganergd et al., 2011; Bladon et al., 20153, b). The well-preserved Cretaceous carbonatite-alkaline
complexes of the study area represent a young carbonatite magmatism episode (~68 Ma) that is coeval with the initial
magmatism of the Deccan Large Igneous Province (LIP) and is related to the India-Seychelles breakup and northward drifting
of India over the Réunion reuniern-mantle plume (Devey and Stephens, 1992; Basu et al., 1993; Simonetti et al., 1995; Allegre
et al., 1999; Ray and Pande, 1999; Ray and Ramesh, 1999; Ray et al., 2000; Chenet et al., 2007; Collier et al., 2008; Sheth et
al., 2017; Chandra et al., 2018).

3 Datasets and methodology pipeline

The public domain geoscience datasets used in the study, which include geological, geophysical, topographic and satellite
data, were mainly sourced from the Bhukosh portal of the Geological Survey of India (GSI)
(https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx). Table 1 summarises the sources, scales and other details about the

individual datasets.

Table 1: A list of primary data available for the study area.

Primary data Resolution/Scale Source
Geological map 1:50,000 GSlI, accessed in October 2019
Structural map 1:50,000 GSI, accessed in October 2019
Magnetic Total magnetic intensity (TMI) 75m GSI, accessed in October 2019
Ground Gravity 1:1,000,000 Reddi and Ramakrishna, 1988, accessed in October 2019



World Gravity Map 2012 (WGM2012)

. 0°2’ Bonvalot et al., 2012; accessed in November 2019
Bouguer gravity
) ) Amante and Eakins, 2009; Bonvalot et al., 2012; accessed in
ETOPO1 1 Arc-Minute Global Relief Model 01
November 2019
Shuttle Radar Topography Mission (SRTM) .
0°0°3” Geosoft seeker; accessed in October 2019
topography
Structural lineament map 1:250,000 GSl, accessed in October 2019
Known carbonatite occurrences Literature review; Table 1
Known prospects GSI and Atomic Minerals Directorate (AMD), 2020
Study area
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Figure 2: Flow chart depicting the methodology. Rectangular boxes contain generated objects, and oval boxes contain processes
used for creating the objects. Shaded boxes indicate the objects and processes created and implemented in a GIS, respectively.
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4 Mineral systems model for carbonatite-alkaline complex related REE deposits

In this study, we used the generalised conceptual model of carbonatite-alkaline-complex-related REE mineral systems
developed by Aranha et al. (in review) based on the framework proposed by McCuaig and Hronsky (2014). Figure 3 illustrates
the main features of the model. The main components of the mineral systems are compiled in Table 2 and briefly summarised

in the following paragraphs.

Fertile source region: Metasomatised pockets of the subcontinental lithospheric mantle (SCLM) are considered to be the
fertile source regions for carbonatite-alkaline complexes (Jones et al., 2013) as well as REE deposits associated with these
complexes as the processes of metasomatism also causes enrichment of REE and other incompatible elements (Zheng, 2012,
2019). The metasomatism of the SCLM involves one of the following processes: (1) lithospheric subduction into the SCLM
(#1 in Fig. 3 and Table 2; Duke 2009; Duke et al. 2014; Goodenough et al., 2016); (2) anatexis-induced mixing of subducting
crustal units with the SCLM (#2 in Fig. 3 and Table 2; Jones et al., 2013 and references therein); or (3) metasomatism induced
by ascending mantle plumes (#3 in Fig. 3 and Table 2; Simonetti et al., 1995, 1998; Bell and Tilton, 2002; Bell and Simonetti,
2010; Ernst and Bell, 2010).

Geodynamic setting: Carbonatite-alkaline complexes and related REE deposits generally occur in extensional intra-
continental rifts and large igneous provinces (LIPs) (#4, 5, 6 in Fig. 3 and Table 2; Woolley and Kjarsgaard 2008a; Woolley
and Bailey, 2012; Pirajno, 2015; Simandl and Paradis, 2018). Extensional tectonic settings and associated LIPs are
manifestations of mantle plumes (Simonetti et al., 1995, 1998; Bell and Tilton, 2002; Bell and Simonetti, 2010; Ernst and Bell,
2010), which also induce metasomatism of the SCLM, fertile source regions of, and favourable geodynamic settings for, REE

deposits related to carbonatite-alkaline complex are interlinked.

Architecture: Carbonatite-alkaline complexes and related REE mineral systems derive fluids from the SCLM through large-
scale permeable networks of trans-lithospheric structures. Most carbonatite-alkaline complexes are found spatially associated
with crustal-scale faults, rifts and shear zones at regional scales (Ernst and Bell, 2010; Woolley and Bailey, 2012; Pirajno,
2015; Simandl and Paradis, 2018; Spandler et al., 2020). Therefore, lithosphere-scale structures form favourable plumbing
structures for carbonatite-alkaline-complex-related REE deposits (#7 in Fig. 3 and Table 2). Upper crustal faults, shallow
discontinuity structures and joints serve as pathways for focussing fluids to near-surface levels and also form structural traps
(#8 in Fig. 3 and Table 2; Ernst and Bell, 2010; Skirrow et al., 2013; Jaireth et al., 2014).

The reaction of the carbonatites-alkaline magma with the country-rock results in the formation of Ca and Mg silicates and

removal of CO,, dissolved P, and F
to-form-Ca-and-Mg-silicates-is-accompanied-by-the removal-of CO,-dissohved-P-and-F(Skirrow et al., 2013; Jaireth et al.,
2014). The above reactions may cause REEs to deposit in silicate minerals along the country-rock interface (Anenburg and
Mavrogenes 2018; Anenburg et al., 2020). Enrichment of incompatible elements such as REEs, U, Th, Nb, Ba, Sr, Zr, Mn, Fe,
Ti in the fluids occur due to liquid immiscibility, especially in liquids rich in alkalis which promote REE solubility (#10, 13,
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14, 15, 16, 17, 18, 19 in Fig. 3 and Table 2; Cordeiro et al., 2010; Skirrow et at., 2013; Jaireth et al., 2014; Pirajno, 2015;
Mitchell, 2015; Chakhmouradian et al., 2015; Stoppa et al., 2016; Poletti et al., 2016; Giovannini et al., 2017; Simandl and
Paradis, 2018; Spandler et al., 2020; Anenburg et al., 2020). Carbonatite-alkaline complexes are often enriched in
ferromagnesian minerals that cause well-defined magnetic and gravity anomalies (#9 in Fig. 3 and Table 2; Gunn and Dentith,
1997; Thomas et al., 2016). Fenitisation often enriches country rocks in K and Na (#12 in Fig. 3 and Table 2; Le Bas, 2008;
Elliott et al., 2018). In alkali-rich intrusions, LREES are retained in the primary carbonatite while HREESs tend to concentrate
in Fenites, particularly K-Fenites; whereas in silica-rich or alkali-poor intrusions, HREEs remain in the carbonatite (Anenburg

et al., 2020). Size and HREE/LREE concentration of the fenites halo are major proxies.

REE mineralisation in the carbonatites can be in the form of primary REE-bearing minerals (e.g., Mountain Pass, Mariano,
1989; Castor, 2008; Verplanck and Van Gosen, 2011; Van Gosen et al., 2017) or by secondary hydrothermal activity, including
in-situ replacement, or from late magmatic fluid phases evolved from the carbonatite magmas (Verplanck and Van Gosen,
2011; Skirrow et at., 2013; Jaireth et al., 2014; Van Gosen et al., 2017). Primary REE-bearing cumulates include perovskite,
pyrochlore, apatite and calcite, while late-stage REE-bearing minerals include bastnasite, parisite, and synchysite that form
from the redistribution of soluble primary phases such as ancylite, burbankite and carbocernaite (#24 in Table 2; Verplanck
and Van Gosen, 2011; Skirrow et al., 2013; Van Gosen et al., 2017; Andersen et al., 2017; Anenburg et al., 2020; Kozlov et
al., 2020).
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alkaline-complex-related REE mineral system (adapted from Aranha et al., under

Figure 3: Idealised genetic model of a carbonatite

review) cross-referenced to processes listed in Table 2 through the numbers in blue. (A) Depicts the fertility and geodynamic setting
along with the transport architecture on a regional scale. B, C and D focus on the emplacement architecture at the camp-to-prospect-
scale. (B) Shows the idealised geometry of the intrusion and the relation of carbonatites and associated alkaline rocks and fenitisation
(C) Presents the near-surface structural architecture and the spatial distribution of associated. (D) Displays the idealised geometry
of a carbonatite-alkaline intrusion and the relationship between the magma chamber, ring dykes, cone sheets, and radial dykes.

185



Table 2: Conceptual REE mineral systems model (adapted from Aranha et al., under review). The index numbers correlate to the

numbers in blue in Fig. 3.

Setting/process # Targeting criteria Spatial proxies
Fertility
1 Subduction of crust Subdugtlon zones throughout
geological history
Mantle metasomatism and low degree partial ) Decompressional melting of mantle and Rift
melting crust due to rifting (crustal thinning) 1L zones
3 Metasomatism driven by a rising mantle Trace of mantle plume
plume
Geodynamic setting and triggers
4 Trace of mantle plume
Trace of mantle plumes based on plate through time
. . . tectonics through indicative magmatism
Continental rifts (Rising Mantle plume) 5 LIP
6 Major global tectonic events - super Plate reconstruction models -
continental breakups rifting
Architecture-Transport
iorati isti Rift structure
M'%Ta“"“ of magma along existing or new 7  Crustal scale discontinuities .
architecture Deep crust penetrating faults
Architecture-Emplacement
Magma emplacement under structural traps 8  Near-surface network of faults Shallow intersecting faults
. Anomalous high signatures in geophysical =~ Anomalous high signatures
Carbonatltg magma_emplace_ment § . 9 data in magnetic and gravity data
Concentration of minerals with a strong magnetic . - . .
response and contrasting density from the country High response in radiometric
rocks . . ) o 10 High radioactivity due to U and Th Eaps dllje tth_J ind. h
Concentration of incompatible radioactive enrichment nomalous high signatures
elements of U and Th in geochemical
Hosted by or strongly associated with Ca or Mg data —
carbonate rocks (Carbonatites) 11  High concentrations of Ca and Mg Anomalous high signatures
in geochemical data.
Enrichment of K and Na in the High response in radiometric
Sodic and potassic fenitisation 12 surrounding rocks; size and HREE/LREE maps due to K.
of the fenites halo HREE/LREE map
13 Enrichment of REEs
14 P20s,
15 F, Cland COs;
Emplacement of incompatible elements in primary Anomalous high signatures
. A 16 Nb . :
carbonatite or secondary carbonatitic veins in geochemical data.
17 Ba, Sr, Zr
18 Mn
19 Ti
Biogeochemical indicators: Absorption of REEs Abundance of Ba, Sr, P, Cu, Co, La, Ce,
- Pr, Nd, Sm, Dy, Fe, Nb, Ta, Uand Y
and related elements by plants growing over a 20 Plant/Humus anomaly maps

potential deposit

against the background value in the leaves
and twigs of the plants and in the Humus.

10
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Selective absorption of specific wavelengths of the
Electromagnetic spectrum (Boesche et al., 2015; 21
Neave et al., 2016; Zimmermann et al., 2016)

REE concentration maps
derived from remotely
sensed spectral images

Characteristic absorption features in
remotely sensed spectral images

Carbonatites are commonly spatially associated

with alkaline silicates (85%; Woolley and S . Mapped intrusions in
. . . 22 Known alkaline intrusions :

Kjarsgaard, 2008a, b) and in some cases with geological maps

ultramafic and felsic silicate igneous rocks

Concentric zoning of carbonate rocks along with Circular features in
magnetic minerals (magnetite) (Gunn and Dentith, 23  Circular outline topographic and geophysical
1997; Thomas et al., 2016) data

Variation in mineralogy in REE-bearing minerals Individual rock and

and associated alkaline suite of rocks are indicators 24 Variation in rock units of the alkaline rock ~ mineralogical units in

of emplacement depth as well as erosional level suite and/or variation of REE minerals detailed lithological and
and, therefore, mineralisation potential mineralogical profiles

5 Targeting criteria and predictor maps

The above conceptual model for carbonatite-alkaline-related REE mineral systems was translated into a “targeting model”,
which is a compilation of processes whose responses can be mapped directly or indirectly from the publicly available datasets
for the study area listed in Table 1. The targeting model was used to identify regional-scale mappable targeting criteria for
REE deposits in the study area (Table 3).

The mappable targeting criteria for REE deposits in the study area were represented in the form of GIS layers or predictor
maps for inputting into the FIS. The details of the primary data, the algorithms and GIS tools and techniques used to generate
input predictor maps are provided in Table 3. Since there is a one-to-two-orders of difference in the spatial resolution of the
input datasets (ranging from ~100 m for airborne magnetic data to ~10 km for ground gravity data), we chose a trade-off grid
cell size of 3 km for generating the input predictor maps. The same grid cell size was used for prospectivity analysis. This grid

cell size corresponded to the size of typical carbonatite-alkaline-complex occurrences in the study area.

6 FIS-based prospectivity modelling

The predictor maps were integrated using FIS (Fig. 4) to generate REE prospectivity maps of the study area. The theory of the
FIS-based modelling approach and implementation for mineral prospectivity modelling is provided by Porwal et al. (2015)
and Chudasama et al. (2016). Several open-source software packages and libraries for implementing FIS are available in the

public domain (e.g., FISDeT, Castellano et al., 2017; FisPro, R package ‘FuzzyR’; python library ‘fuzzy expert’). However,
in the present study, we used the commercial software Fuzzy Logic Toolbox of MathWorks® to implement the model. The

concepts and theory of fuzzy logic, as well as the procedures for designing and implementing FIS using the Fuzzy Logic

Toolbox, are explained in detail in the documentation that can be freely accessed at https://mathworks.com/help/fuzzy/fuzzy-

inference-process.html.
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Rationale

Procedures used to generate the predictor
map

Spatial proxy (predictor
maps)

SNO

Shallow, surficial, higher-order, local faults and joints aid in focussing the

Euclidean distance was calculated to lineaments

Shallow Lineaments
(Euclidean distance to surficial

extracted from the vertical derivative of (1) RTP fluids to near-surface levels and can also serve as structural traps. Such

magnetic data, (2) WGM2012 and (3) ground
gravity data, after edge-enhancements. These

features manifest as linear trends on geophysical data (Porwal, 2006).
Vertical derivative of magnetic data reveal responses from near-surface

lineaments derived from (1)
magnetic data (2) WGM2012 and

10

sources (Goneng, 2014); thus, these lineaments are considered to be near-
surface.

maps were integrated using the fuzzy 'AND'

operator.

(3) ground gravity data)

Intersections of shallow

Points of intersections were extracted of

lineaments

(Euclidean distance to
intersections of surficial

lineaments derived from the vertical derivative

Intersections of near-surface lineaments can serve as structural traps.

11

of (1) RTP magnetic data, (2) WGM2012 and (3)

ground gravity data.

lineaments)

Carbonatites are often enriched in magnetic minerals such as magnetite

that exhibit high magnetic susceptibility. Analytical signals are useful for
localising anolamies over their sources at lower magnetic latitudes

(Rajagopalan, 2003; Keating and Sailhac, 2004).

calculated to exaggerate anomalous signatures
* These maps were used as proxies for several different components, as explained under the rationale column.

Analytical signals of magnetic data were

High magnetic anomalies
(Magnetic anomaly map)

12

215

220

225

230

235

240

The modelling was implemented in the following steps.

1. Fuzzification of numeric predictor maps: In the first step, all
numeric predictor maps (e.g., the predictor map showing distance to
structural lineaments) were converted into fuzzy predictor maps (e.g.,
proximity to structural lineaments) using membership functions such as
linear, piece-wise linear (trapezoidal) or Gaussian (Table 4). However,
the output fuzzy membership values of a predictor map are dependent
on the shape of the membership function used, which in turn is
dependent on the mathematical parameters that define the function,
{e.g., mean and standard deviation for Gaussian functions and slope and
intercept for linear functions).

Because there are insufficient known deposits to use as training data are
no-training—data—{that-is,—known-depesits)-for optimising the fuzzy

membership functions, we quantified uncertainty arising from using

sub-optimal function parameters (termed “systemic uncertainty”;
Porwal et al., 2003; Lisitsin et al., 2014). The Monte-Carlo-simulation-
based algorithm described by Lisitsin et al. (2014) and Chudasama et
al. (2017) was used to estimate model uncertainties. In this approach,
instead of using point values for the parameters of the fuzzy
membership functions, we used beta-PERT distributions conforming to
the possible variations of these point values. The beta is a bounded
distribution that is widely used when there are no training data, and the
only information available is the expert knowledge about the optimistic,
most likely and pessimistic values (Johnson et al., 1995). The
parameters of the beta functions (optimistic, most likely and pessimistic
values) were assigned based on a geological evaluation of the decay of
the influence of a targeting criteria with distance (Table 4). A series of
Monte Carlo simulations were then carried out to estimate the values of
the parameters at 10%, 50% and 90% probability levels, which were,
respectively used to generate three fuzzy maps at 10%, 50%, and 90%

probability levels for each predictor map.
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245

However, the present work has not quantified other systemic uncertainties arising from the choice of the

membership function, FIS structure, and choice of distribution.

(A)

Plume head/Barmer rift Fertility
FIS |—{ Prospectivity

Deccan LIP Map

Lineaments from THD of 20 km upward continued (B)
RTP magnetics

Lineaments from THD of 10 km upward continued
RTP magnetics

Lineaments from THD of 5 km upward continued RTP
magnetics

Lineaments from THD of 2 km upward continued RTP Cumulative lineaments from
magnetics magnetics

Lineaments from THD of 20 km upward continued [ Pathways
ground gravity Fs M Architecture
Lineaments from THD of 10 km upward continued Lineaments from remote sensing Prospectivity
ground gravity [ data Map
Lineaments from THD of 5 km upward continued —
ground gravity Cumulative lineaments from
Lineaments from THD of 2 km upward continued gravity data
ground gravity
Lineaments from THD of 20 km upward continued
WGM2012
Lineaments from THD of 10 km upward continued
WGM2012
Lineaments from THD of 5 km upward continued
WGM2012
Lineaments from THD of 2 km upward continued
WGM2012

Barmer rift

4 AND

— —, —" ——— — — e e e e
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Circular features from THD of 5 km upward continued | (C)
RTP magnetics

Circular features from THD of 2 km upward continued
RTP magnetics

Circular features from THD of RTP magnetics

Circular features from THD of 5 km upward continued

WGM2012 AND
Circular features from THD of 2 km upward continued
WGM2012 5
Intrusions
Circular features from THD of WGM2012
LIP
Circular features from SRTM [ ke
i Lineaments from remote sensin,
Circular features from ETOPO1 [ g Emplacement
ik Architecture
Surficial lineaments from magnetics Cumulative circular features FIS Prospectivity
; - Map
Surficial lineaments from ground gravity Cumulative Surficial faults
N Cumulative Intersections of
Surficial lineaments from WGM2012 e
surficial faults
Intersections of surficial lineaments from magnetics [ Magnetic anomaly map™

gravity

[ Intersections of surficial lineaments from ground
[ Intersections of surficial lineaments from WGM2012

(D)

Fertility
Prospectivity
Map

Pathways Mineral
Architecture s
Prospectivity Prospectivity

Map Map

Emplacement
Architecture

Prospectivity
Map

250 Figure 4: The multi-stage FIS for REE prospectivity mapping in the study area. (A) FIS for generating fuzzy prospectivity maps for
fertile sources and favourable geodynamics settings. (B) FIS for generating fuzzy prospectivity maps for favourable lithospheric
architecture for transportation of REE-enriched carbonatite-alkaline magma. (C) FIS for generating fuzzy prospectivity maps for
favourable shallow crustal (near-surface) architecture for emplacement of carbonatite-alkaline complexes. (D) Second stage FIS
combines the above three prospectivity maps obtained from the first stage and generates the final outputs. * All the input maps in

255 (A), (B) and (C) are Euclidean distance maps, except for the magnetic anomaly map in (C).

2. FIS-based prospectivity modelling: In the second step, a multi-stage FIS was designed to replicate the

geological reasoning used by an exploration geologist for delineating regional-scale exploration targets.
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265

270

275

In the first stage, a series of FISs were developed to generate fuzzy prospectivity maps for individual components
of the REE mineral systems by combining their respective fuzzy predictor maps. The FISs for
fertility/geodynamic settings, whole lithosphere architecture and near-surface architecture (Fig. 4) comprised 5,
8 and 11 fuzzy if-then rules, respectively, which are shown in Table A2. Since each predictor map was converted
into three fuzzy maps at 10%, 50% and 90% probability levels, the outputs of this step were three fuzzy
prospectivity maps for each mineral systems component at 10%, 50% and 90% probability levels.

In the second stage, the above three sets of fuzzy prospectivity maps were combined using the fuzzy product
operator (Fig. 4D) to generate three REE prospectivity maps of the study area at 10%, 50% and 90% probability
levels.

Generation of confidence map: In the third step, stochastic uncertainties, which arise from the limitations of
public-domain datasets and procedures used for generating the predictor maps, were quantified in terms of
confidence values for each predictor map using the Sherman-Kent scale (Jones and Hillis, 2003; Kreuzer et al.,
2008) as described by Porwal et al. (2003), Gonzalez-Alvarez et al. (2010) and Joly et al. (2012). The confidence
value for each predictor map was assigned based on the degree of representativeness of the predictor map, i.e.,
how well it represents the mineralisation process it seeks to map. A predictor map was assigned a high confidence
value if it directly mapped the targeting criteria and a low confidence value if it indirectly mapped the response
of the targeting criterion. The confidence factor also captured the fidelity and precision of the primary dataset
from which the input was derived. The confidence factor for all predictor maps, along with the justifications, are
given in Table 5. The output confidence map was generated by combining the confidence factors of different

predictor maps using the same fuzzy inference systems that were used for prospectivity modelling.
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Table 4: Input variables, linguistic values and types of membership functions

Input predictor map Linguistic Values Type of Membership Function

Premise variables

FERTILITY/GEODYNAMIC SETTING
1. Euclidean distance to Barmer rift'.
2. Euclidean distance to Deccan LIP', Proximal Piece-wise linear (Trapezoidal)’
TRANSPORT ARCHITECTURE
Euclidean distance to lineaments derived from magnetic data.
Euclidean distance to lineaments derived from gravity data.
4. Euclidean distance to inferred faults'. . L3
) ) o Intermediate Gaussian
5. Euclidean distance to Barmer rift .
EMPLACEMENT ARCHITECTURE
6.  Euclidean distance to post-Cambrian, non-felsic intrusions.
7. EBuclidean distance to Deccan LIP'.
8. Euclidean distance to inferred faults'. . . L 0
9.  Euclidean distance to circular features. Distal Piece-wise linear (Trapezoidal)
10.  Euclidean distance to shallow lineaments.
11.  Euclidean distance to intersections of shallow lineaments. |
o] High Piece-wise linear (Trapezoidal)®
12.  Magnetic anomaly map. Intermediate Gaussian’
_ Low Piece-wise linear (Trapezoidal)2
Consequent Variables
Fertility and Geodynamic setting prospectivity ] High Linear®
Transport architecture prospectivity Intermediate Gaussian’
Emplacement architecture prospectivity Low Linear”

1. These maps were used as predictor maps for more than one component. However, different parameters were used for the membership
functions for different components.

2. A piece-wise linear function comprises several linear functions with different slopes. The ones used in this study are trapezoidal functions.
This function returns a constant fuzzy membership value of 1 (definitely proximal) up to a certain distance. Beyond this distance, the degree of
proximity decreases linearly with distance up to a certain distance, and hence fuzzy membership decreases accordingly. Beyond this distance, it
returns a fuzzy membership value of 0 (definitely not proximal). It may be noted that for “Distal” the function outputs are vice versa.

3. A Gaussian function allots a high membership function to the average value (centre of the peak of the function). As a result, this function was

used for the ‘intermediate’ fuzzy sets.
4. The output (consequent) variables have been assigned linear membership functions to model the favourability on a linear scale.

Finally, the three REE prospectivity maps of the study area at 10%, 50% and 90% probability levels were blue-to-red colour-
coded and draped over the confidence map for viewing as 3D surface models. In the 3D surface models, the colours represented
prospectivity (blue tones signify low prospectivity and red tones signify high prospectivity), and elevation represented

confidence (depressions signify low confidence and elevations signify high confidence).

285 Table 5: Confidence values allotted to each of the predictor maps used in the FIS modelling.

Confidence

Justification
value

Predictor map
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290

295

300

Euclidean distance to the Deccan LIP 0.9 The Deccan LIP is directly mapped in the field at 1:50000 scale.

Euclidean distance to the Barmer rift (trace of Interpreted map; the trace of the plume was derived based on the

Réunion mantle plume) U assumption that it coincides roughly with the Barmer-Cambay rift.
The rift was traced using magnetic data and inferred lineaments and

Euclidean distance to the Barmer rift 0.8 further cross verified with the traces published by Bladon et al.
(20154, b); Dolson et al. (2015).

S e S B IS (e 0.8 Lineaments were mapped from high-resolution magnetic data

magnetic data ' PP g g '

Eucl_ldean distance to lineaments derived from 0.6 Lineaments were mapped from low-resolution gravity data.

gravity data

Euclidean distance to inferred faults 0.5 The faults are inferred, not directly mapped.

:Enliflzﬁs:? distance to post-Cambrian, non-felsic 0.8 Exposed intrusions directly mapped in the field at 1:50000 scale.

Euclidean distance to circular features 05 Clrcula_r featurgs were mapped fr_om high-resolution magnetic, low-
resolution gravity and topographic data.

Euclidean distance to surficial lineaments 07 Lineaments were mapped from high-resolution magnetic and low-

derived from geophysical data ' resolution gravity data.

Euclidean distance to intersections of surficial 0.7 Lineaments were mapped from high-resolution magnetic and low-

lineaments derived from geophysical data ' resolution gravity data.

Magnetic anomaly map 0.9 Anomalies mapped from high-resolution magnetic data.

7 Results and Discussion

In the first stage, the first FIS maps REE fertility and favourable geodynamic settings (Fig. 4A and Table A2) by delineating
areas that are likely to be underlain by plume-metasomatised SCLM. Considering the size of a typical mantle plume, these
areas are expected to be very large. The second FIS maps favourable lithospheric architecture for the transportation of REE-
enriched carbonatite-alkaline magma (Fig. 4B and Table A2) and narrows down the target areas identified by the first FIS to
areas that are proximal to trans-lithospheric structures. The target areas demarcated by the second FIS are also relatively large
as immense trans-lithospheric structures, such as the 600 km long Barmer-Cambay rift, are expected to have a large zone of
influence. The third FIS maps favourable shallow crustal (near-surface) architecture for the emplacement of carbonatite-
alkaline complexes (Fig. 4C and Table A2) and further narrows down the target area to camp-size areas that are controlled by
near-surface higher-order structures. These individual FIS in the first stage rely on simple logic-based rules to integrate the
individual predictor maps (Table A2). The rules were framed based on our understanding of the REE mineral system. The use
of AND operator in the IF parts of the rules defining high prospectivity ensured that a pixel would get a high prospectivity
value only if it is proximal to predictor features on all predictor maps. Similarly, the use of the OR operator in the IF parts of
the rules defining low prospectivity ensured that a pixel would get a low prospectivity low even if it is distal to predictor
features on any one of the predictor maps. As a result, the extents of the areas with background (low) prospectivity are

maximised, and high-prospectivity zones are narrowed down efficiently.

In the second stage of the multi-stage FIS, the output prospectivity maps of the individual components were integrated using

the fuzzy product operator, which calculates the mathematical product of all input predictor maps (Bonham-Carter, 1994;
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310

315

320

325

Porwal et al., 2015). Since the individual FIS output values range between 0 and 1, it decreases the final integrated prospectivity
values. The final outputs are shown as continuous-scale (relative) prospectivity maps at 10%, 50% and 90% probability levels

draped over the confidence map in Figures 5 A, B, and C.

Conjunctive interpretations of prospectivity maps and confidence maps can help in making decisions regarding follow up

exploration, as summarised in Table 6.

Along with the known Mundwara, Sarnu-Dandeli and Kamthai carbonatite occurrences, high prospectivity (orange-red colours
in Fig. 5A, B and C) occurs in areas immediately surrounding Sarnu-Dandeli and Mundwara at high probability and confidence
levels. These areas may represent branching conduits of the central carbonatite-alkaline complex intrusion. Geological

mapping and direct detection studies are recommended in these locations.

Areas of moderate to high prospectivity at low probability levels are mapped over a circular region east of Sarnu-Dandeli (Fig.
5A and B; rectangle number 1); and also, over an area just south of the circular region (within rectangle 1 in Figs. 5A, B and
C). The circular region corresponds to the Siwana ring intrusion, which consists of alkali granites and rhyolites. The Siwana
ring intrusion is part of the Neoproterozoic Malani LIP (Bhushan and Mohanty, 1988). However, the Siwana ring intrusion
has low prospectivity at high probability (Fig. 5C; rectangle number 1), while the smaller area to its south consistently has
high prospectivity at high probability and confidence levels. The high values may be caused by the consistent presence of
lineaments in this region and the magnetic response of the intrusion. It is noteworthy that although not a carbonatite-alkaline
complex, the peralkaline Siwana ring complex does contain REE potential and has been assessed for REE mineralisation
(Bhushan and Somani, 2019). Further assessment of this region is recommended, with detailed radiometric surveys, geological
mapping and geochemical sampling, especially of the area south of the Siwana ring complex that has high prospectivity at

high probability levels.

A small area south of Barmer has high prospectivity at high probability and moderate confidence levels (Fig. 5B and C;
rectangle number 2). This area has high prospectivity due to the intersection of lineaments. Two more areas to the north and
northeast of the Sarnu-Dandeli carbonatite occurrence have high prospectivity at moderate probability and confidence levels
(Figs. 5A and B, rectangles 3 and 4, respectively). A high density of lineaments and high magnetic anomalies are the likely
causes. Detailed geological mapping and aerial radiometric surveys are recommended at all three locations, followed by ground
sampling and drilling if the radiometric surveys yield positive results.
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(A)

0 25 50 100 Kilometers
e F a

REE Prospectivity at 50%
probability

Value
_— High : 0.464553

REE Prospectivity at 10%
probability

Value
oy High: 0467178

[E— <
B Low - 0.000422499 Low : 0.00097965

(9)

0 25 50 100 Kilometers
T N T

REE Prospectivity at 90%
probability

Value

_ High : 0.445053

B 0w+ 0000254033

Figure 5: Continuous scale prospectivity maps at 10%, 50% and 90% probability levels draped over the confidence layer, shown in
(A), (B) and (C), respectively. The colours mark increasing prospectivity from low (blue) to high (red). The elevations mark high
confidence in the data used for prospectivity modelling. Black balls indicate major cities, and green balls indicate known carbonatite
occurrences; green numbers correspond to the known carbonatite occurrences: 1 — Sarnu Dandeli, 2 — Danta-Langera-Mahabar, 3
— Kamthai, 4- Mundwara. Areas marked with black numbered rectangles are discussed in Section 7.

Several areas east and southeast of Mundwara have high prospectivity at high probability and confidence levels (Fig. 5C;
rectangle 5). This is likely due to the consistent overlap of lineaments derived from each geophysical source at these locations.
Acquiring additional data such as detailed geological maps, ground gravity, and aerial radiometric surveys would help in
delineating the target zone in these areas.
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Table 6: Matrix summarising the target areas quantified according to probability and confidence levels, and
recommended exploration. Target serial numbers refer to the rectangle numbers in Figs. 5A, B and C.

Target Prospectivity  Probability  Confidence Interpretation Recommendation
Known carbonatite
%c:nudrgtléincéz ;{ éé;fgrl]l(-j High prospectivity because  Apply direct detection
Mundwara (green of the possible presence of  techniques such as detailed
numbers 1.3 and 4 High High High extend(?d branching geological mapping, high-
respectivelly in Figs conduits of the central resolution airborne radiometric
5A, B and C) and ' carbonatite-alkaline complex ~ surveys and dr_illing to identify
sev’eral areas intrusion mineral deposits.
surrounding them
(1) Circular region east i ) ) i
of Sarnu-Dandeli (Fig. - The circular region Follow-up detailed exploration
5A and B; rectangle oderate represents the Siwanaring  using high-resolution airborne
number 1); and intrusion, consisting of a_lkall radlom_etrlc surveys and ground
High Hiah granites and rhyolites. High  geological mapping and
. 9 g prospectivity may result geochemical sampling of
A small area just south from the consistent presence  outcrops, especially of the area
of the circular region High of lineaments and magnetic  south of the Siwana ring
I(Zwlth?Atethangdleé in response of the intrusion. complex.
igs. 5A, B and C).
Detailed geological mapping
and aerial radiometric surveys
High prospectivity because  are recommended, followed by
(Bzgri]rgfltgs\:ﬁa south of High High Moderate  of the intersection of high-resolution ground gravity
lineaments surveys and later drilling if the
radiometric surveys yield
positive results.
(3) North of the Sarnu- Detailed geological mapping,
Dandeli carbonatite High . L igh- i i
occurrelnce i ig High prospectivity because high regolutlo_n grou_nd gravity
. . and aerial radiometric surveys
. of the high density of
High Moderate I : are recommended, followed by
ineaments and high - e
(4) Northeast of the maanetic anomalies ground sampling and drilling if
Sarnu-Dandeli Moderate e ' the radiometric and gravity
carbonatite occurrence surveys yield positive results.
Additional data collection —
(5) Several areas east High prospectivity because ~ Geological mapping, high-
and southeast of High High High of consistent overlap of resolution ground gravity,

Mundwara carbonatite
occurrence

lineaments derived from
each geophysical source

aerial radiometric surveys and
geochemical sampling of
outcrops to delineate deposits.

The emplacement of carbonatite-alkaline complexes in the study area was related to the large-scale rifting and splitting of

India from Madagascar and later from Seychelles, which also triggered Deccan volcanism. A similar mode of origin is

345 envisaged for several other carbonatite-alkaline complexes worldwide. Ernst and Bell (2010) have identified several
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carbonatite provinces that are emplaced in an extensional setting, associated with a mantle plume and a LIP. These include,
along with the Deccan province, the Afar province (East Africa), Parana-Etendeka (South America and Africa), Siberian
province (Russia), East European Craton-Kola province (Eastern Europe), Central lapetus province (North America,
Greenland and the Baltic region), and Pan-superior province (North America). The methodologies described in this paper can

be used for exploration targeting REEs in these provinces.

Furthermore, at the time of emplacement of these carbonatite-alkaline complexes, the Indian subcontinent was located close
to Madagascar and Seychelles. Therefore, similar complexes could occur in Madagascar and Seychelles also. The Barmer rift
is the northern extension of the Cambay rift, which forms a triple junction in western India along with the Kutch rift. Thus,
carbonatite-alkaline complexes are also expected along the Cambay rift and Kutch rifts, also possibly along the offshore E-W
trending Gop and the NNW-SSE trending West Coast rift zones on the western coast of India. Kala-Dongar (Sen et al., 2016)
and Murud-Janjira (Sethna and D’Sa, 1991) are known minor occurrences of carbonatites along the Kutch and West Coast rift
zone, respectively. Moreover, the Gop rift is the western extension of the Son-Narmada-Tapti (SONATA) rift zone, along
which several significant occurrences of the Chhota-Udepur carbonatite district are found. A similar study may help in
identifying exploration targets for REEs in these regions. Paleo-reconstruction of the geography to the time when these
complexes were being emplaced and analysing the prospectivity of the entire Deccan province (including western India,

Madagascar and Seychelles) may help identify more prospective targets for carbonatite related REEs.

8 Summary, conclusions and recommendations

Rare earth elements comprise of 17 metallic elements that are considered as ‘critical metals’ for future development of
environmentally friendlier and technologically based societies. India’s production entirely comes from secondary beach placer
deposits on the western and eastern coasts. Even though just one primary economic-grade deposit of REE is identified in India,
there is significant latent potential for carbonatite-related REE deposits. This study has developed a knowledge-driven, GIS-
based prospectivity model for exploration targeting of REEs associated with carbonatite-alkaline complexes in the western

Rajasthan, northwestern India.

The generalised mineral systems model for carbonatite-alkaline complexes related REEs described by Aranha et al. (under
review) was used to identify regional-scale targeting criteria for REE in the study area. Several predictor maps were derived
from public-domain geological, geophysical and satellite data based on the mineral systems model. A multi-stage FIS was
constructed to represent the different components of the mineral system. The first stage of the multi-stage FIS comprises of
three individual FIS to represent (1) plume-metasomatised SCLM in an extensional regime that make up fertile source regions
for REE-bearing fluids and favourable geodynamic settings; (2) trans-lithospheric structures that provide favourable
lithospheric architecture for the transportation of REE-enriched carbonatite-alkaline magma; and (3) near-surface higher-order

structures that make up a shallow crustal architecture facilitating emplacement of carbonatite-alkaline complexes.
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Systemic uncertainties associated with the fuzzification of the predictor maps was quantified based on the procedure described
by Lisitsin et al. (2014) and Chudasama et al. (2017) that produced prospectivity maps at 10%, 50% and 90% confidence
levels. Stochastic uncertainties associated with the primary data used and the processing methods adopted to derive predictor
maps were quantified based on the procedure described by Porwal et al. (2003), producing a confidence layer over which the

prospectivity maps were draped.

Based on the results, a structural control over the emplacement of carbonatite-alkaline complexes is clearly recognised. The
following are the recommendations based on the results of this study. Project-scale detailed ground exploration is
recommended for the Kamthai-Sarnu-Dandeli and Mundwara regions and their immediate surroundings, where areas of high
prospectivity are mapped at high probability levels. Exploration of the Siwana ring complex is recommended, particularly for
the high prospectivity region to its south. Detailed geological mapping, high-resolution ground gravity and aerial radiometric
surveys should be carried out in the regions to the north and northeast of Sarnu-Dandeli, south of Barmer, and the south of

Mundwara to better resolve and delineate targets for ground exploration.

The prospectivity-analysis workflow presented in this paper can be applied to other geodynamically similar regions globally
for targeting geological provinces for follow-up exploration such as the Deccan province, the Afar province (East Africa),
Parana-Etendeka (South America and Africa), Siberian province (Russia), East European Craton-Kola province (Eastern
Europe), Central lapetus province (North America, Greenland and the Baltic region), and Pan-superior province (North

America).
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