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Abstract. The restrictions implemented to contain the spread of the COVID-19 pandemic during 2020 and 2021 have forced 

university-level educators from around the world to seek alternatives to residential physical field trips which constitute a 10 

fundamental pillar of geoscience programmes. The field-mapping course for 2nd year Geology BSc students from the Cardiff 

University was replaced with a virtual mapping course set in the same area as previous years, the Esla Nappe (Cantabrian 

Zone, NW Spain). The course was designed with the aim of providing the students with the same methodology employed in 

physical mapping, gathering discrete data in stops located along five daily itineraries. Data included bedding attitude, outcrop 

descriptions with a certain degree of ambiguity, photographs and/or sketches, panoramic photos and fossil images. Data was 15 

provided to the students through georeferenced KMZ files in Google Earth. Students were asked to keep a field notebook, 

define lithological units of mappable scale, identify large structures such as thrust faults and folds with the aid of age 

estimations from fossils, construct a geological map on a hard-copy topographic map, draw a stratigraphic column and cross 

sections, and plot the data in a stereonet to perform structural analysis. The exercise allowed a successful training of diverse 

geological field skills.  In the light of the assessment of reports and student surveys, a series of improvements for the future is 20 

considered. Though incapable of replacing a physical field course, the virtual exercise could be used in preparation for the 

residential fieldtrip. 

1 Introduction 

Fieldwork has traditionally been an integral part of Geoscience teaching programs, and of Geology in particular (Compton, 

1958; Boyle et al., 2007; Butler, 2008; Mogk and Goodwin, 2012). The benefits of fieldwork teaching are varied, and include 25 

an appraisal of theoretical concepts through practice and sensorial experiences (Gibson, 2007), the learning of practical 

geological skills needed by researchers and practitioners (Butler, 2008; Whitmeyer et al., 2009), an increase in student 

engagement and enjoyment (Boyle et al. 2007; McConnel and van der Hoeven Kraft, 2011), as well as the development of  

transferable competencies such as teamwork, communication, critical thinking and autodidacticism (Arrowsmith et al., 2011). 
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Fieldwork relevance is recognised by bodies that regulate geology degree programmes, which either establish a minimum 30 

curricular content (e.g. 60 days for 3-year degrees in the UK; Geological Society of London, 2013), or tacitly consider it an 

essential curricular content (e.g. 40 – 80 days for 4-year degrees in different Spanish universities). 

Fieldwork has traditionally involved different pedagogical methods. Among them, one of the most traditional consists of 

delivering a lecture in a specific location in the field, while students take notes, observe the explained phenomenon, and attempt 

to memorise it. This generates an enhanced passive learning environment where the students may gain knowledge thanks 35 

solely to the lecturer’s expertise. However, it is well known among the cognitive science community that the knowledge gained 

through passive learning is more superficial than that gained through active learning, where students are involved in the 

learning process through practise and the undertaking of lecturer-designed activities (e.g. Higgs and McCarthy, 2005; Moran, 

2018). While the benefits of fieldwork have long been assumed by educators, it has been difficult to demonstrate them clearly 

(e.g. Elkins and Elkins, 2007; Stokes and Boyle, 2009), a proviso that applies even more to virtual fieldwork. 40 

Circumstances can limit the field access in the learning environment. Although exceptional, these situations have proved to be 

very trying to both staff and students, as substitute activities need to be implemented, usually in a limited time interval. This 

was the case, for example, during the outbreak of foot and mouth disease in 2001, when travel restrictions were imposed to 

travelling outside the UK, thus limiting curricular fieldwork activities (Placing and Fernandez, 2002), or during the 2010-2011 

Canterbury earthquake swarm in New Zealand, which prompted a rapid substitution of college lectures with virtual lessons 45 

(Mackey et al., 2012). The ongoing coronavirus pandemic (COVID-19) has caused a major disturbance in education worldwide 

(Sahu, 2020), especially in highly practical disciplines where fieldwork and face-to-face practicals are essential curricular 

activities (e.g. Ferrel and Ryan, 2020; Day et al., 2021; Rotzien et al., 2021). In these circumstances, many lectures have been 

moved to the virtual environment, where social interactions are reduced and the spread of the disease is minimised (e.g. Sahu, 

2020). While this transition may be challenging for theory lessons, it is especially arduous for practicals, and in particular for 50 

fieldwork (Bryson and Andres, 2020; Day et al., 2021; Rotzien et al., 2021). 

Virtual fieldwork has then come to the rescue of these particular curricular formative activities, although it has been in use 

long before the COVID-19 crisis. Virtual fieldwork refers to the recreation of field-based activities in a classroom environment, 

most commonly aided by technology (Maskall and Stokes, 2008). The advantages of virtual fieldwork include, among others: 

(i) an absence of field-related logistical issues, (ii) its accessibility to differently abled students and to those unable to attend a 55 

physical trip for other reasons, (iii) flexibility of teaching resources, (iv) ease of repetition and adaption of the exercises as 

many times as necessary, (iv) ability to incorporate and interact with non-outcrop features such as geochemical data or seismic 

lines, (v) ability to use a variety of observation scales, (vi) training of field skills prior to physical fieldwork, and (vii) 

opportunity to visit, even if virtually, locations that otherwise would be difficult, and in some cases impossible, to access 

(Hurst, 1998; Stokes et al., 2012; Cliffe, 2017).  60 

Just like real fieldwork, its virtual counterpart has many different possible delivery modes, all of them with advantages and 

drawbacks. Among them, there are (i) virtual video fieldtrips, recorded lectures based on field information and photographs; 

(ii) text-book supplements with field case studies with data and related exercises (Ford and Hipple, 1999); (iii) virtual lab 
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experiences where a lab environment is simulated in order to learn basics of a certain subject, such as fossil identification 

(Placing and Fernandez, 2002); (iv) adaptive e-learning exercises where feedback is provided to students based on their 65 

responses and decisions (e.g. Mead et al., 2019); (v) virtual educational games where students use an avatar to interact with 

different information and scenarios where a certain learning task needs to be performed (e.g. Pringle, 2013, Virtual Landscapes, 

2020; Needle et al., 2021); (vi) virtual reality tours which provide the students with an immersive 3D experience using a head 

mounted display, through which they may interact with a virtual environment and utilise different data; (vii) virtual globe 

experiences, where a 3D visualisation of rocks, structures, and topography is possible, which may be supplemented with 70 

photographs, sketches and outcrop descriptions (Blenkinsop, 2012; Whitmeyer, 2012; Whitmeyer and Dordevic, 2020; Rotzien 

et al., 2021; Bond and Cawood, 2021; Toy et al., 2021; Mahan et al., 2021; Marshall and Higley 2021). The effectiveness of 

these approaches depends largely on the degree of student engagement in the learning process itself, the type of information 

available to the students, the way in which the working data is provided, and the nature of the final outcome of the activity. In 

many cases, the virtual fieldwork is little more than a ‘show and tell’ activity in which students are presented with images and 75 

data with which they do not work with, thereby loosing much of the pedagogical potential that virtual fieldwork can provide. 

In this contribution, we present a virtual fieldwork course, the Esla Mapping Project, designed during the spring of 2020 for 

second year Geology BSc students of the School of Earth and Environmental Sciences of Cardiff University. The virtual 

fieldwork was produced as a substitute mapping exercise for students in the academic years 2019/2020 and 2020/2021 as a 

consequence of the COVID-19-related restrictions in place, that resulted in the closure of the campus and the generalised 80 

lockdown in the UK and elsewhere. The Esla Mapping Project was designed  to achieve as many of the aims as possible of the 

original field-based mapping, including a strong emphasis on development and testing of hypotheses, development of 3 and 

4D thinking, and understanding of how structural and stratigraphic knowledge iteratively converge to a solution. The results 

reported in this contribution are largely referred to the 2019/2020 version of the Esla Mapping Project, which has been slightly 

improved during the second 2020/2021 run. 85 
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Figure 1. (A) Geological map of the Cantabrian Zone modified from Alonso et al. (2009). (B) Simplified geological map of the Esla 
Nappe modified from Merino-Tomé et al. (2014). 

2 Design of the fieldtrip 90 

2.1 Working area 

In previous years, a five-day field mapping course was run in the Cantabrian Mountains of NW Spain for 2nd year students of 

Cardiff University. The trip was centred in the Esla Nappe, one of the main thrust units that comprise the Cantabrian Zone, the 

foreland-fold-and-thrust belt of the Variscan Orogen in the NW Iberian Massif (Fig. 1; de Sitter, 1959; Rupke, 1965; Arboleya, 

1978; Alonso, 1987; Alonso et al., 2009; and references therein). The major geological features of the mapping area are a 95 

sequence of Cambrian to Devonian carbonates and siliciclastic rocks deformed at sub-greenschist facies in the Variscan 

orogeny. The major structure consists of a nappe (the Esla nappe) that carries Cambrian and Ordovician formations over 

Silurian-Devonian rocks along a bedding-parallel thrust in the mapping area (i.e. with both hangingwall and footwall flats). 

The nappe has been folded in two major different orientations, giving rise to a relatively complex outcrop pattern. The 

recognition of the thrust depends on the correct interpretation of the age sequence via fossil evidence, and is locally supported 100 

by breccia outcrops on or near the thrust plane. The area is exceptional for geological mapping training owing to the outstanding 

exposure, the variety of sedimentary rocks, the good preservation of thrust sheet geometry and structures, and the subsequent 

deformation of the nappe through a set of folds that result in a variety of cartographic patterns within a relatively small area. 
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The virtual Esla Mapping Project was designed to cover the same area used in previous years, around the locality of La Velilla 

de Valdoré. The location selection was made based on three key motives: (i) using the same location would allow for continuity 105 

in the learning of students across different years, (ii) the virtual exercise could be used in later years as an introduction to the 

real fieldtrip, and most importantly, (iii) the authors’ detailed knowledge of the Esla Nappe from both a research and 

educational point of view.  

2.2 Student background 

The Esla Mapping Project was planned for 2nd year students of the 3–year Geology and Exploration Geology BSc degrees at 110 

Cardiff University, a group of 60 students. At this stage the students have had limited field experience, including only basic 

mapping training. Students had, however, previously received training in the description and interpretation of structural, 

sedimentary, and palaeontological features adapted to the geological complexity of the mapping area. The residential fieldtrip 

to the Esla Nappe was intended to provide them with the necessary geological and organisational skills to undertake a five-

week independent mapping project during the summer between year two and three, which eventually results in their Geology 115 

Dissertation, presented in their 3rd year as a key part of their BSc degree. 
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Figure 2. Outline of different elements of the Esla Mapping Project. (A) Daily itineraries of realistic walking distance with a number 
of stops along the way. X.Y notation refers to the day (X) and the stop (Y). Map derived from digital elevation model provided by 
IGN (National Geographic Institute of Spain). See Fig. 1A for location. (B) Tilted view of the northern part of the mapping area, 120 
looking north, with the stops in white symbols (©Google Earth 2021). Based on the information contained on each of the stops, 
students coloured the pins accordingly. (C) Example of data provided to the students in one of the stops. The photo of the trilobite 
is accessed by a link to an image stored in the GitHub repository, opened within Google Earth (©Google Earth 2021). (D) Panoramic 
view provided in stop 3.13 looking west: students were asked to inspect it and draw an annotated field sketch. (E) Outcrop 
photograph provided in stop 4.3 to familiarise the students with the provided rock description. (F) Outcrop sketch provided as data 125 
to the students in stop 5.1.  

2.3 Fieldtrip organisation 

The virtual fieldtrip was designed to mimic physical mapping methodology and experience as closely as possible. The ultimate 

goal of the exercise was for the students to be able to generate a geological map of a portion of the Esla Nappe remotely while 

at the same time getting a feel for some of the field-based procedures. The exercise involves an adapted conventional field 130 

methodology where the students keep a record of field observations, annotations and bedding attitude in a field notebook, 

taken in certain localities recorded on a topographic map. For this purpose, five realistic daily itineraries were designed with 
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similar lengths to those covered during real fieldwork days, with between 10 and 17 localities per day (Fig. 2). A variety of 

information is provided to the students in the form of field annotations for each of the stops, and included (i) field outcrop 

descriptions of the rock types, sedimentary structures and structural features, (ii) outcrop photographs, (iii) annotated outcrop 135 

field sketches, (iv) outcrop-scale stratigraphic columns, (v) fossil photographs and/or fossil species found in the locality, (vi) 

panoramic photographs taken from the location, (vii) bedding attitude and, in some cases, way-up criteria (Fig. 2). The data is 

distributed among the different stops, so that not all of them contain the same type of information. In addition, all locations 

include their geographic coordinates in the WGS 84 coordinate system. All the provided data is a truthful representation of 

real locations in the Esla Nappe, except in the case of some fossils, which have been found in other areas of the Cantabrian 140 

Zone. With the exception of the fossil images and species, which were obtained from the literature (Supplementary material), 

all the bedding measurements, field descriptions, photographs and sketches are original data collected by the authors 

throughout the years for educational and research purposes. The wealth of these data has been key to the successful 

implementation of the Esla Mapping Project. 

2.4 Materials used 145 

All the information was made available to the students in the form of a KMZ file to be opened in Google Earth. The selection 

of Google Earth as the platform was based on its ease of installation, its performance on average personal computers, and the 

students’ previous learning experience with the software, which has included a basic mapping exercise. Other geographic 

information systems were considered, such as QGis®, but were rejected due to their steeper learning curve for the students. 

Nonetheless, some of the material provided to the students was produced with the aid of QGis® software, and then exported as 150 

KMZ files to be used in Google Earth. Each of the stops in the KMZ file contained a text description with the provided data, 

as well as a link to web-hosted material such as photographs or sketches. In order to minimise computing resources on the 

students’ varied range of computers, the decision was made to host the graphic material such as sketches and field photographs 

in a web application, instead of inserting them within the KMZ file, which could have resulted in an unsatisfactory Google 

Earth performance in some cases. The chosen web application was GitHub repository, due to (i) its widespread use among the 155 

coding community, which ensures a long-term storage of the files; (ii) the fact that it is free for open-source projects; (iii) its 

good performance for repositories with less than 1 Gb; (iv) and an ample file size limit of 100 Mb, more than enough for 

photographs and sketches. The repository generates readily accessible file links that can be inserted in the text in the KMZ 

files. The links redirect to the material from within Google Earth, without the need to open third-party web-browsers. 

In addition to this KMZ file with the outcrop locations, data and observations, students were also provided with topographic 160 

contours in a KMZ file with 5 m intervals generated in QGis® from a digital elevation model obtained from the IGN (National 

Geographic Institute of Spain), a SK2 spreadsheet to generate 3D structural symbols showing the orientation of planar and 

linear features in Google Earth (Blenkinsop, 2012), a fossil guide with identification keys and related ages based on specimens 

sampled in the area over the years, and a mapping guide. The mapping guide informed the students of the materials available 

to them for the completion of the Esla Mapping Project, the required software operation, the learning outcomes of the exercise, 165 
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and instructions for the different tasks to be performed. In addition to the digital dataset, the students were provided with the 

physical materials necessary to complete the exercise. This material included (i) a hard copy of a topographic map with basic 

topographic contours, elevation points, coordinates and northing and easting grid (Supplementary material); (ii) a hard copy 

of a stereographic projection net, tracing paper and pin, (iii) graph paper for the cross sections and iv) a field notebook. Owing 

to the lockdown in place, this material was delivered by post to all the students. 170 

 
Figure 3. Tasks performed by students during of the Esla Mapping Project. (A) Stratigraphic log of the lithological units identified 
in the area, displayed in a tectono-stratigraphic order. (B) Cross-section through the central part of the mapping area showing the 
Pardominos Anticline. (C) Example of field notebook pages where a student has transcribed the information provided and drawn 
field sketches from panoramic photographs (see Fig. 2D for comparison with the lower-right sketch). 175 

2.5 Learning outcomes 

The field trip was designed to achieve the learning outcomes that are specified in Table 1. The table also shows the learning 

outcomes created for virtual field experiences by the National Association of Geoscience Teachers (NAGT, 2020). These have 

similarities with some of the more specific learning outcomes of the Esla Mapping Project. The learning outcomes of the 

exercise are the same as those for the physical trip that was run in previous years: the obvious difference between the trips is 180 

that the list of skills expected from the physical trip includes practical aspects such as the use of a compass-clinometer, and 

locating oneself in the field on a topographic map.  
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 185 

 
NAGT  Esla Mapping Project Task involved 

Collect accurate and sufficient data on field 

relationships and record these using 

disciplinary conventions (field notes, map 

symbols, etc.) 

Recording the rock record in a field 

notebook 

Daily summaries 

Interpret earth systems and past/current/future 

processes using multiple lines of spatially 

distributed evidence 

Using observations from sedimentary rocks 

to interpret sedimentary processes and 

depositional environments 

Daily summaries 

Stratigraphic column 

Develop an argument that is consistent with 

available evidence and uncertainty 

Analysis of structural data in deformed 

rocks 

Stereoplot 

Communicate clearly using written, verbal, 

and/or visual media (e.g., maps, cross-sections, 

reports) with discipline-specific terminology 

appropriate to your audience  

Making a geological map, constructing 

geological cross-sections and a stratigraphic 

column 

Geological map 

Cross sections 

Stratigraphic column 

Synthesize geologic data and integrate with 

core concepts and skills into a cohesive spatial 

and temporal scientific interpretation 

Synthesis of field data and interpretations 

of  stratigraphic relationships and structures 

to establish the geological history of an area 

Daily summaries 

 Interpretation of deformed rocks 

 

Daily summaries 

Geological map 

Cross sections 

Design a field strategy to collect or select data 

in order to answer a geologic question 

  

Reflect on personal strengths and challenges 

(e.g. in study design, safety, time management, 

independent and collaborative work) 

  

Demonstrate behaviours expected of 

professional geoscientists (e.g., time 

management, work preparation, collegiality, 

health and safety, ethics) 

  

Work effectively independently and 

collaboratively (e.g., commitment, reliability, 

leadership, open for advice, channels of 

communication, supportive, inclusive) 

  

Table 1. Learning outcomes from the National Association of Geoscience Teachers (NAGT) for virtual field experiences and for the 
Esla Mapping Project, indicating the tasks in which they are involved. 
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2.6 Objectives and assessment 

The objectives of the Esla Mapping Project were to produce a report with five assessed sections (Fig. 3). The first one consisted 190 

of a daily summary of the field notebook that contained (i) some of the information explicitly provided in the stops, (ii) 

information inferred from outcrop photographs and sketches such as rock type, age, younging direction, sedimentary structures 

and tectonic structures, (iii) bedding data provided and calculated by the students from structural contours, making use of the 

drawn geological contacts and the topographic map, (iv) annotated sketches drawn from panoramic photographs, (v) 

interpretation of depositional environments, (vi) provisional stratigraphic columns, (vii) and a table of geological events. The 195 

second section was the production of an A3 geological map from the information provided and inferred. Students were 

instructed to colour each of the KMZ stops according to their descriptions, from which they had to infer the different 

lithological units and the nature of their contacts (i.e. conformable, unconformable, tectonic), and correlate them throughout 

the area, in a similar way to the physical mapping exercise. With the aid of topographic contours and Google Earth satellite 

images, they drew form lines for different lithologies, identified high-angle faults affecting the sequence and obtained bedding 200 

data from structural contours in areas where none were provided. All the information was to be transferred to the topographic 

hard-copy map, where students were asked to draw the contacts of the different identified lithological units, colour them, 

identify and draw fold axial traces, and draw bedding and younging symbols. The third section consisted of drawing two cross 

sections in the south and north of the map, choosing appropriate locations normal to the local strike of the lithological units. 

The fourth section was a stratigraphic column with the defined lithological units, with an estimation of their thickness from 205 

the geological map and cross sections, an estimated age based on fossil content, a brief lithological description and an inference 

of their depositional environment. Finally, the fifth section consisted of plotting bedding plane measurements on a lower-

hemisphere equal area stereoplot, and recognising and calculating fold hinges using π pole girdles from selected data.  

2.7 Duration and implementation of the Esla Mapping Project 

After a one hour virtual briefing about the virtual exercise, the students had 20 days before electronic submission of the daily 210 

journals, map, cross sections, stereoplots and stratigraphic columns. During this period three online Q & A sessions of one 

hour each were run by teaching staff, and 6 one hour online clinics were run by postgraduate demonstrators, which mimicked 

the style and level of contact teaching that would have been carried out in the field. Students were encouraged to work in pairs 

or groups of three, but it was emphasised that they needed to submit their work individually and that plagiarism would be 

checked.  Students were expected to work on the project for about 40 hours, which is a similar amount as during previous 215 

years’ residential fieldtrip. The deadline of 20 days was given in order to ensure all students had enough time to adequately 

complete the exercise bearing in mind their different personal circumstances during lockdown.  
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3 Analysis of the Esla Mapping Project implementation 

In this section, results of the implementation of the mapping exercise are described based on a qualitative comparison between 

the final outcome of the physical and virtual trip in the same area, an evaluation of the student reports, and the analysis of 220 

student feedback through questionnaires, adapting previous fieldtrip evaluations described in the literature (e.g. Boyle et al., 

2007; Elkins and Elkins, 2007; Stokes and Boyle, 2009). 

3.1 Comparison between the outcomes of the physical and virtual trips 

The report produced by a 2nd year student in the field during the 2019 campaign was compared with a report produced by the 

same student via the Esla Mapping Project in 2020.  Although the student had gained considerable experience in the time 225 

between both reports, this comparison allowed differences in the mapping experiences to be evaluated. The time spent on both 

trips was similar, around 8 hours/day during five days. The area covered in the Esla Mapping Project is larger than during the 

physical trip (10 vs. 6 km2), which results in the recognition of more lithological units (stratigraphic column of 2.2 vs. 0.85 

km) and a refinement of the data used for fold axes calculations. However, this came at the expense of the level of detail 

attained through the virtual exercise, which is lower than what could be achieved in the field, in especially complex areas 230 

where geological changes occur at a small spatial scale, such as some exposures of the base of the Esla nappe. 

 
Figure 4. Most common student mistakes in the different tasks that comprise the Esla Mapping Project. Most of them could be easily 
rectified with a more comprehensive set of instructions and preparatory lessons. Percentage is calculated from a total number of 
students of 60.  235 
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3.2 Evaluation of student reports 

Most students identified and grouped formations appropriately, and mapped geological boundaries in approximately correct 

places. The majority also identified the critical Esla thrust. The major weaknesses of the maps, apart from failing to follow 

good mapping conventions such as using a different colour for structures, and omitting younging symbols or a key, was the 

lack of form lines on the maps, which inevitably meant that geological boundaries were not realistic with respect to topography 240 

(Fig. 4). The geological summaries were sometimes little more than repetitions of supplied information with no consideration 

of its significance. Sketches in the summaries were commonly of the photographs supplied, and rarely of landscape views 

visible in Google Earth. Cross sections mainly lacked conventional section information such as orientations or one or both 

vertical and horizontal scales. Stratigraphic columns lacked fossil identification and ages or formation descriptions. The most 

common weakness of the stereoplots was failure to add data obtained from structure contour measurements, but lack of key, 245 

fold hinges and pi-pole girdles were common. The reports produced from the Esla Mapping Project obtained lower marks than 

the reports produced during physical trips in previous years (56% vs. a five-year average of 62%).   

 
Figure 5. Violin plots (i.e. two-sided histograms) of the students’ answers to a score-based questionnaire (Q2) that surveyed their 
responses to the Esla Mapping Project. Note the large spread in their answers. In three cases, the same question was posed to previous 250 
year students (Q3) that participated in the residential field trip to the Esla Nappe: they are labelled in blue. 2019 and 2020 
percentages are calculated from a number of students of 57 and 60, respectively. 
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3.3 Analysis of student feedback 

Students that attended the Esla Mapping Project were given two questionnaires: one at the end of the exercise (Q1), and another 

one after 8 months (Q2). Students that attended the physical fieldtrip in 2019 were asked to complete a different questionnaire 255 

20 months after their trip (Q3).  

The main outcome of the student textbox comments in Q1 and Q2 is in agreement with the results derived from the report 

assessment. Students felt the need for a more extensive taught section prior to the start of the Esla Mapping Project including 

a reminder of geological concepts needed to adequately complete the exercise and a basic crash course in the use of Google 

Earth (though this was included in the briefing), as well as more detailed instructions on the different tasks and the estimated 260 

time they should spent on each of them. The results of the score-based questionnaires are shown in Fig. 5. The spread in student 

answers shows that there was a range of experiences for the students. While for some of them the experience seems to have 

been very positive, others consider their geological skills have not particularly improved as a result of the virtual exercise. 

There were three common answers to Q2 and Q3, related to the perceived student ability to undergo future independent 

mapping campaigns after the Esla Mapping Project (Q2) or physical fieldtrip (Q3). Unsurprisingly, students feel much less 265 

prepared to face a mapping project on their own after the virtual mapping exercise than after the physical trip (3.7/10 vs. 7/10, 

respectively). 

4 Discussion 

4.1 Evaluation of the learning outcomes 

The Esla Mapping Project can be considered, overall, a satisfactory experience for the students in developing key geological 270 

skills. A comparison between the continuous digital geological map of Spain (GEODE) from the Spanish Geological Survey 

(IGME; Merino-Tomé et al., 2014) and a selected area of the geological map produced by students in the virtual exercise is 

provided in Fig. 6. The map attests to the success in the students’ learning in the virtual project of the extrapolation skills 

necessary for the elaboration of a geological map. As it would be expected from any geological survey at a 1:10000 scale, it 

allows the differentiation of lithologies at the member-scale of officially defined formations.  275 
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Figure 6. Detail of the geological map of the Esla Nappe immediately west from the locality of La Velilla de Valdoré (see Fig. 1B for 
location). (A) Modified version of the continuous digital geological map of Spain (GEODE) from the Spanish Geological Survey 
(modified from Merino-Tomé et al., 2014). Bedding data is the same as provided to the students in the Esla Mapping Project. (B) 
Geological map produced by one of the students as a result of the Esla Mapping Project. Note that cross-section shown in Fig. 3B 280 
was not drawn through the syncline shown in this map, but through the more eastern Pardominos Anticline (axial trace shown on 
the NE corner of 6A). 

The learning outcomes were variably met by the students, as attested by the large spread in the grades achieved in the different 

tasks (Fig. 7). The grades related to the field notebook and the geological map are lower than in previous years of the physical 

trip (Fig. 8). On the other hand, the grades of the cross sections, stratigraphic columns and stereoplots are in the same range as 285 

in previous years. This is not surprising, since these tasks have the lowest degree of field interaction. The lower overall marks 

attained by the students doing the virtual project than previous year’s physical mapping trips is a cause for concern about the 

relative effectiveness of the virtual trip in achieving the learning outcomes. Several factors may have played a role. Preparation 

of students may have been at a lower level prior to the Esla Mapping Project arising from the COVID-19 lockdown and 

associated decrease in practical training. There may have been less training in digital mapping techniques than in physical 290 

mapping. However, the majority of marks were lost in mundane failure to follow standard protocols for preparation of maps, 

sections, stratigraphic columns and stereoplots, such as omission of keys and scales. One major factor behind this may be the 

lack of peer-to-peer learning which is greatly facilitated on a physical trip by contact in the field and in the evening when maps 

are revised and “inked-in”. Another possible explanation is that mapping in the field requires a high level of physical and 

intellectual engagement by the students, which could foster deep learning but is difficult to fully replicate with a virtual 295 

exercise. 
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Figure 7. Violin plots (i.e. two-sided histograms) of the students’ grades on the different evaluated tasks. Note the large spread in 
the grades. 

From the evaluation of student reports and surveys, the implementation of the Esla Mapping Project lacked some areas that 300 

would have helped the students in improving their learning outcomes. These largely refer to preparatory teaching and the 

instruction document. Some students struggled with (i) the drawing and annotation of geological sketches; (ii) the 

nomenclature of important geological structures; (iii) the relation between the attitude of lithological units and topography, 

which hindered the calculation of their own bedding data from structural contours; (iv) the adequate construction and 

annotation of a cross section; (v) the construction of stratigraphic columns, and how they are different from sedimentary logs; 305 

(vi) the plotting of data on a stereonet and its use to derive structural data such as fold hinges and hinge surfaces; (vii) the basic 

functioning of Google Earth, and (viii) the taking of document photographs, some of which had low quality largely due to 

lighting conditions. Although some of this content is addressed in other courses during 1st and 2nd years, students would benefit 

from a short revision of each of the problematic areas through online lectures prior to the undertaking of the virtual exercise. 

The instructions provided for the completion of the exercise were unsatisfactory for some students, who felt uncertain as to 310 

the time to be spent on each section of the report, which resulted in some students spending longer hours than others, affecting 

the quality of the reports and the students’ time management. In some tasks, particularly the daily summaries, the students felt 

doubtful about what was expected to be included, which resulted in a general decrease in the potential grades. During the 2020-

2021 version of the course, students were better briefed on the tasks to be completed, which has apparently resulted in an 

overall improvement of the grades (Fig. 8). 315 
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Figure 8. Cumulative plots of the students’ grades on different tasks throughout the years. The grades from the Esla Mapping 
Project (black colours, years 2020 and 2021) are, in general, lower than previous years’. Note that during 2021 summaries were not 
evaluated, and were not accounted for in the final grade. 

Some of the above problems are common mistakes for the weaker students in any circumstances, but they may have been 320 

made more frequently in the virtual environment due to a lack of confidence and due to the lack of peer-to-peer learning.  

Unfortunately, the percentage of students that filled in the questionnaires was low, which hinders the extraction of truly 

representative conclusions. This is a recurrent issue when assessing educational outcomes, especially in the case of small 

student groups (e.g. Chapman and Joines, 2017). In the case of a course with 60 students, as is the case for 2nd year in the 

Geology BSc at Cardiff University, Nulty (2008) suggests that a minimum response rate of 31 % is required to ensure the 325 

representativeness of the survey answers. In our case, the response rate for the questionnaires was, respectively, 21 %, 30 % 

and 10 %. 

An important consideration is that the Esla Mapping Project was only possible thanks to the wealth of data previously collected 

by the authors over the years, whose extent covers the entire mapping area, thus making possible a realistic fieldtrip. In addition 

to the geological data, the abundant photographs from the area have allowed to convey the outcrop descriptions adequately to 330 

the students, and to train the students’ ability to draw realistic field sketches from the same area as if they were there physically.  

In our view, this data and material abundance is a decisive factor for a successful implementation of a similar virtual mapping 

exercise in any other area. 

4.2 Advantages and disadvantages of the Esla Mapping Project 

Despite its success in training numerous field geological skills, when undertaking the virtual exercise the students do not gather 335 

the geological data themselves. Students are not trained in procedures inherent to field geology, such as observing the rocks at 

the outcrop scale, extracting samples to be inspected with a hand lens, identifying their lithology, using a compass to measure 

strike and dip of bedding and/or any other structures, looking for deformation and sedimentary structures and polarity 

indicators, or looking for fossils and identifying them. Students are also not trained in more logistical issues such as the ability 

to make real-time itinerary modifications, itinerary planning for future days based on available data, and crucially, terrain 340 
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navigation and self-location in the field. These are all fundamental skills that a field geologist needs to develop, and are in our 

view very difficult to replicate adequately in a virtual environment.  The lack of social interaction between students, 

fundamental to foster peer-learning, has likely influenced the lower grades of the exercise in comparison with previous years. 

These are important drawbacks of the virtual training as a substitutive activity for a physical residential fieldtrip, as is true for 

any other virtual fieldwork exercise (e.g. Hurst, 1998; Arrowsmith et al., 2005).  345 

However, the students have met the learning outcomes of the Esla Mapping Project to a similar extent as in previous years, as 

attested by their grades in the different tasks (Figure 8). Furthermore, the project allows students to learn skills not implemented 

in the physical trip in previous years. These include (i) fieldwork planning using aerial imagery, (ii) drawing of form lines, 

(iii) visualising the three-dimensional interactions of the geological structure with the topographic surface in a virtual globe 

environment (Google Earth), or (iv) making geological interpretations based on observations made by other geologists, a 350 

fundamental ability for professional geologists in an increasingly time-deprived society and the growing multidisciplinary 

approaches in industry and academia. 

The Esla Mapping Project provides a curricular opportunity for students who are unable to attend residential physical fieldtrips 

for various reasons, including students with mobility issues or those responsible for a person reliant on care. There is an 

increasing demand for inclusive learning and equality of learning opportunities for these students, which have traditionally 355 

been neglected (Hall et al., 2004; Stokes et al., 2012; Atchison et al., 2019). The exercise provides these students with an 

exercise where important geological field skills are learnt, and the implementation of the activity can greatly benefit them. 

Finally, the virtual project is easily adaptable to new circumstances and learning needs. For example, during the 2020/2021 

academic year, the fourth day of the exercise was deleted, leaving it with a total of four days instead of five. This preserves 

the learning outcomes unaltered, while at the same time relieving the time-pressure imposed on the students in the last weeks 360 

of the academic years, when the activity is carried out. Furthermore, once the fieldtrip workflow has been implemented and 

the results tested, the format can be applied to different field areas where abundant data is available to produce a similar 

exercise. 

4.3 Possible improvements 

Most student mistakes could be minimised in the future by even more emphasis on the prescriptive list of what needs to be 365 

included in each of the evaluated sections, and with further preparatory lessons on basic geological skills such as the generation 

of geological sketches, mapping symbology, the information recorded in a cross-section, the production of stratigraphic 

columns, and the plotting of data on a stereonet. These are all basic skills that the students practised throughout their 1st and 

2nd year, but the virtual training experience has shown that they still have not interiorised them, at least not well enough to 

work independently without the support of lecturers and assistants and, critically, peer-to-peer learning. 370 

There are other aspects of the trip that could be improved for future runs of the Esla Mapping Project. One addition to the 

fieldtrip would be to promote more involvement of the students in recognising some of the lithologies present in the area. This 

could be implemented virtually in some of the stops, for example by showing a thin section scan or a series of 
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microphotographs taken with an optical microscope. This approach, in combination with outcrop photographs, could improve 

at the same time their petrographic skills as well as their linking with outcrop-scale sedimentary features (e.g. Marshall and 375 

Higley, 2021). Another improvement could be allowing the students to plan their own daily itineraries based on the collected 

data in previous days, so that they can decide where to focus their efforts based on which areas look more promising, just as 

in physical fieldwork. This would foster their ability to manage their available time in the field in the future. This could be 

implemented, for example, by generating a series of stops that they could link at their will, generating many possible itineraries. 

When choosing the right combination, students would get the sense of the structure in a few stops. If they choose poorly, they 380 

would soon realise that there were better combinations to suit their mapping needs, and react accordingly. A similar method 

has been implemented by Mahan et al. (2021), who give the students the chance to choose their mapping stations.  

5 Conclusions 

Physical field geology is an irreplaceable curricular activity in any Earth Science undergraduate and postgraduate programme, 

and in particular Geology. In a situation (even prior to COVID-19) where universities are subjected to increasing financial 385 

pressure, the number of field-based geoscience curricular activities is progressively decreasing (e.g. Boyle et al., 2007, Mullens 

et al., 2012). This has caused alarm among geoscientists, who advocate for the maintenance of physical fieldtrips (e.g. Boyle 

et al., 2007; Butler, 2008). Our experience with the Esla Mapping Project agrees with this view: the virtual fieldtrip experience, 

though satisfactory as a substitute experience in a period of crisis and effective in the training of numerous skills, cannot 

replace a physical mapping course in the field (e.g. Spicer and Stratford, 2001).  Nonetheless, we consider that the virtual 390 

project has inherent benefits, and some of its parts could be implemented in combination with the physical trip in the future. 

Some of the activities of the Esla Mapping Project, such as form line drawing and inspection of the interaction between 

geological structure and topography, could provide an outstanding introduction to the mapping area in preparation for a 

physical trip. This would allow for a better time-management of the trip, with the targeting of especially problematic areas that 

require a more detailed attention in the field (e.g. where aerial imagery is not conclusive, in lithological contacts, fold hinges, 395 

etc.). This positive combination of virtual and physical trips is also supported by other educators after their analysis of student 

learning outcomes, both prior and during the COVID-19 pandemic (e.g. Stainfield et al., 2000; Arrowsmith et al., 2005; 

Granshaw and Duggan-Haas, 2012; Litherland and Stott, 2012; Cliffe, 2017; Rotzien et al., 2021; Toy et al., 2021; Bond and 

Cawood, 2021, Evelpidou et al., 2021). 

Data availability 400 

The KMZ files, outcrop descriptions, and photographs, are all stored in the GitHub repository. It can be accessed through the 

following link: https://github.com/EslaUnit/EslaMappingProject. The references used to obtain fossil images and information, 

as well as stratigraphic logs, that are not mentioned in the text, are listed in a separate supplementary document. The 

https://github.com/EslaUnit/EslaMappingProject
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topographic map supplied to the students can also be found in the supplementary material. The fossil guide and the set of 

instructions provided to the students is also provided as supplementary material. 405 
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