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Abstract

Tibet, which is characterized by collisional orogens, has undergone the process of delamination or
convective removal. The lower crust and mantle lithosphere appear to have been removed through
delamination during orogenic development. Numerical and analog experiments demonstrate that
the metamorphic eclogitized oceanic subduction slab or lower crust may promote gravitational
instability due to its increased density. The eclogitized oceanic subduction slab or crustal root is
believed to be denser than the underlying mantle and tends to sink. However, the density of

eclogite under high-pressure and high-temperature conditions and density differences from the
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surrounding mantle is not preciously constrained. Here, we offer new insights into the derivation

of eclogite density with a single experiment to constrain delamination in Tibet. Using in situ

synchrotron X-ray diffraction combined with diamond anvil cell, experiments focused on minerals

(garnet, omphacite, and epidote) of eclogite are conducted under simultaneous high-pressure and

high-temperature conditions, which avoids systematic errors. Fitting the pressure-temperature-

volume data with the third-order Birch-Murnaghan equation of state, the thermal equation of state

(E0S) parameters, including the bulk modulus (Kro), its pressure derivative (Kro"), and the thermal

expansion coefficient (ao), are derived. The densities of rock-forming minerals and eclogite are

modeled along with the geotherms of two types of delamination. The delamination processes of

subduction slab breakoff and the removal of the eclogitized lower crust in Tibet are discussed. The

Tibetan eclogite which containing 40-60 vol. % garnet and 44-70% degrees of eclogitization can

promote the delamination of slab break-off in Tibet. Our results indicate that eclogite is a major

controlling factor in the initiation of delamination. A high abundance of garnet, a high Fe-content,

and a high degree of eclogitization are more conducive to instigating the delamination.

Keywords:

Eclogite, Equation of state, Single-crystal X-ray diffraction, Delamination, Tibet

1. Introduction

The evolution of orogenesis is characterized by lithospheric removal during rapid surface uplift,

mantle upwelling, and postcollisional magmatism, particularly in the Central Andes (e.g. Ehlers

and Poulsen, 2009), Himalayas (e.g. Singh and Kumar, 2009), and Dabie orogen (e.g. He et al.,

2011).
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It is widely accepted that delamination is the most important mechanism of lithospheric

removal. Delamination is induced and accompanied by two major requisites: (a) the density

difference caused by the negative buoyancy of the delaminated lithosphere; and (b) the presence

of a weak lower crust (lower viscosity) that exists between the strong upper crust and lithospheric

mantle. Usually, two types of delamination are believed to occur in orogen development. The first

is the conventional definition of delamination proposed by Bird (1978, 1979), which was used to

interpret the geodynamic evolution of the Colorado Plateau. In this scenario, mantle lithosphere

peels back from the overlying upper crust and is removed entirely, with the rising hot mantle

filling the lithospheric removal zone (e.g. Gogiis and Ueda, 2018; Krystopowicz and Currie, 2013).

A weak decoupling layer, i.e, the lower crust, is an essential condition in this delamination model,

which may be affected by the rheological behavior of the hydration, thermal, and chemical

characteristics of the lithosphere (e.g. Morency, 2004). In addition to conventional delamination,

an alternative delamination mechanism is convective removal based on the Rayleigh-Taylor-type

instability model (Houseman et al., 1981), namely, viscous “dripping”. This model postulates that

there is sufficient perturbation in the lithospheric mantle, which is ascribed to the strong

temperature-dependence of typical mantle rheology, without regard to a specific weak layer (e.g.

Conrad and Molnar, 1999; Houseman and McKenzie, 1982).

All previous studies attribute the gravitational instability process of lithospheric removal to the

negative thermal buoyancy of the cold lithosphere (Conrad and Molnar, 1999; Houseman and

McKenzie, 1982) or density contrast between asthenosphere and mantle lithosphere. In any case,

the density distribution with lithosphere pressure and temperature (P-T) conditions and chemical

composition is of vital importance to understanding the process of lithospheric removal.



67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

The Tibetan Plateau is the most representative and prominent collisional orogens. Two types of

delamination are proposed to proceed (e.g. Chung et al., 2005; Houseman et al., 1981):

lithospheric mantle removal and thickened eclogitized crust removal. The Neo-Tethyan oceanic

subduction, India-Asia collision, and Indian continental subduction could be further considered

responsible for the abnormal thinning of the mantle lithosphere under Tibet (Chung et al., 2005; Li

et al., 2019). The lithospheric removal event in Tibet corresponds to Neo-Tethyan oceanic slab

break-off. The mechanism is primarily based on density contrasts between the denser mantle

lithosphere and the lighter underlying mantle. Some models reveal that lithospheric removal is

induced by the retreating high-density eclogitized lithosphere detached from overlying low-

density crust (Faccenda et al., 2009; Li et al., 2016). Other alternative models indicate that

thickened eclogitized crust is a potential factor deriving lithospheric removal because the

eclogitized crustal root is denser than the underlying mantle and tends to sink (Krystopowicz and

Currie, 2013). Regardless of the above types of delamination, the density of eclogite is closely

related to delamination. Therefore, Tibet provides an excellent opportunity to understand the role

of eclogite density in the process of delamination.

An immense amount of concrete research has focused on the origin and appearance of

lithospheric mantle removal from different angles, such as geophysical (Ren and Shen, 2008),

geological (Chung et al., 2005), petrological (Chung et al., 2005; Turner et al., 1993), numerical

and analog experiments (Go6giis and Pysklywec, 2008; Morency, 2004). In particular, numerical

and analog experiments are used as prominent methods to simulate the dynamics of delamination

(Gogiis and Ueda, 2018). Of these studies, the density behavior occurring during the delamination

process has also been investigated intensively following thermodynamic (Semprich et al., 2010),
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seismic/tomography (Matchette-Downes et al., 2019), and numerical simulations (Li et al., 2016).

However, few studies have systematically illuminated the issue of delamination from the

perspective of eclogite density. Here, we attempt to offer new insights into the derivation of rock

density through the mineral physics method to constrain delamination in Tibet (Ye et al., 2021).

Conducting a single experiment under high-pressure and high-temperature conditions, we obtain

the equation of state (EoS) of the main minerals of eclogite with fewer systematic errors in the

experiment. Furthermore, the newly derived EoS of the main minerals of eclogite, combined with

the published EoSs of the main minerals of peridotite (Ye et al., 2021), geothermal lines, and

collected eclogite mineral compositions, are further used to elucidate a density evolution model

during the delamination process in Tibet. We argue that the EoSs of minerals could be used in a

straightforward manner as new constraints on the construction of the density model. Using a

simplistic calculation setup, in this study, this density evolution model will shed light on the

possibility of delamination during the orogen process.

2. Geological background

The Tibetan Plateau is composed of four terranes from south to north: the Himalaya, Lhasa,

Qiangtang, and Songpan-Ganzi terranes (Fig. 1). The birth of the Himalayas and Tibetan Plateau

is a consequence of the Indo-Asian collision, which began in the early Cenozoic (Hodges et al.,

2001; Wang et al., 2008). The Neo-Tethyan oceanic slab is proposed to have detached from the

Indian lithosphere, and the onset of the Indo-Asian collision (DeCelles et al., 2002) particularly

occurred in the lower part of the Indian and Lhasa lithospheres. The tectonic evolutionary history

of the Lhasa terrane and Tethys Himalayas is essential for revealing the origin of the Himalayan-
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Tibetan orogen. The subducting Neo-Tethyan slab was thrust into southern Tibet approximately

70-65 Ma (Fig. 1b). With the closure of the Neo Tethyan Ocean, the India-Asia continent collision

caused compressional deformation in southern Tibet, and a series of collision breakoff events were

delineated spanning from 65 Ma to 42 Ma (Chung et al., 2005, 2009; Ma et al., 2014; Zhu et al.,

2015). During this period, the Indian continental lithosphere might have dragged down to deeper

depths during subduction. Meanwhile, slab rollback accompanied by the southward migration of

asthenospheric convection in Tibet changed the thermal structure of the mantle wedge. The

breakoff of the oceanic Neo-Tethyan slab from the more buoyant Indian continental lithosphere

indicated by the eruption of early Eocene Linzizong volcanic rocks in the Gangdese arc or the

cessation of Gangdese arc magmatism occurred at ~45 Ma (DeCelles et al., 2002), which opened a

channel for the upwelling asthenosphere (Chung et al., 2009; Ma et al., 2014; Zhu et al., 2015).

Additionally, geophysical evidence of longitudinal wave (Vp) tomography is interpreted for the

north-dipping high-speed anomaly, which is ascribed to the deep Indian mantle lithosphere (Li et

al., 2008). Subsequently, the subduction of the Indian continental margin continues at a low

subduction angle beneath the Lhasa terrane (Guillot et al., 2008).

In addition, 25 Ma to 0 Ma is another period considered to contain either the occurrence of slab

breakoff (Miller et al., 1999) or lithospheric mantle removal following slab breakoff (Chung et al.,

2005; Nomade et al., 2004). Previous studies suggested that the hotter asthenosphere considerably

raised the geothermal conditions during this period (Chung et al., 2005). Magmatism of the

ultrapotassic, shoshonitic, and calc-alkaline was widespread, which was potentially due to the

partial melts of the metasomatized lithospheric mantle and eclogitized lower crust. An adopted

model of convective lithospheric removal below Lhasa is widely followed (Miller et al., 1999).
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The lithospheric removal-related mantle upwelling process has been supported by geological,
geophysical, and petrological studies (Chung et al., 2005; Ren and Shen, 2008; Turner et al., 1993).
Here, slab breakoff and convective lithospheric removal under Tibet are adopted as the

background in this study to discuss the possibility of the delamination process.

3. Materials and methods

3.1 Starting material

Natural garnet, omphacite, and epidote samples are collected from eclogite in the Dabie-Sulu
ultra-high pressure metamorphic (UHPM) belt. The compositions of each mineral are determined
to be Prp21AlmasGrssiSps: (Prp = pyrope, Alm = almandine, Grs = grossular, and Sps =
spessartine) for garnet, QuadssJdssAer (Quad = Ferrosilite + enstatite + wollastonite, Jd = jadeite,
Ae = aegirine) for omphacite, and Caz.02Feo.75Al232Si0.16[Si04][Si207]O(OH) for epidote. The
compositions of garnet and omphacite are shown in Figure 2 and are within the range of natural
mineral compositions of eclogite from Tibet. The chemical composition of representative epidote
minerals in Tibet shows that the Fe content of epidote exposed in eclogite is in the range of 0.13-
0.25 (Xee=Fe**/(Fe3*+Al**)) (Huang et al., 2015; Li et al., 2017; Liu et al., 2016), while the Fe
content of epidote in this study is 0.24, which is within the Fe content range of natural epidote.
The samples used in this study are representative of garnet, omphacite, and epidote minerals in
natural eclogites from Tibet. The garnet, omphacite, and epidote with high-quality grains are
separated from the eclogite specimens. The above three samples are crushed into 30x40 um? chips
with a single crystal thickness of 15 um in our experiment.

3.2 Synchrotron X-ray diffraction
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The high-pressure and high-temperature experiment is conducted by a BX90 externally-heated

diamond anvil cell (EHDAC) with +15<opening angles. The above three single crystals are

loaded into the BX90 EHDAC equipped with a pair of 500 um culet-size diamond anvils and

tungsten carbide (WC) seats (Figure S1). The rhenium (Re) gasket is pre-indented to a thickness

of ~60 um, and a cylindrical hole with a diameter of 360 um is drilled as a sample chamber. Gold

powder is also loaded as the pressure calibrant (Fei et al., 2007), and neon is loaded as the

pressure transmitting medium through the GeoSoilEnviroCARS (GSECARS) gas loading system

(Rivers et al., 2008). The quasi-hydrostatic condition in the sample chamber can be maintained up

to ~20 GPa using the neon pressure transmitting medium (Finkelstein et al., 2017). On the other

hand, high temperature can significantly decrease the deviatoric stress conditions in the sample

chamber. Moreover, previous studies demonstrate that the deviatoric stress disappears at the

temperatures of 650 K with neon as the pressure transmitting medium (Klotz et al., 2009; Meng et

al., 1993). Therefore, the hydrostatic/quasi-hydrostatic conditions can be maintained within the P-

T range of our experiment (~700 K, 25 GPa). An automated pressure-driven membrane system is

utilized to generate increasing pressure up to 25.6 GPa. High-temperature conditions up to 700 K

are provided by the heating resistor. Before collecting data, the temperature in the sample chamber

will be stabilized for 5 minutes and the temperature fluctuation is less than 1 K. Setup details for

the employed thermocouples and heaters can be found in our previous articles (Xu et al., 2019,

2020b; Ye et al., 2021).

In-situ synchrotron single-crystal X-ray diffraction (XRD) experiments were performed at

experimental station 13-BM-C of the Advanced Photon Source, Argonne National Laboratory. The

detailed experimental process and associated parameters can be seen in our previous studies (Xu et
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al., 2017, 2018, 2020a; Zhang et al., 2017a). The diffraction images and the lattice parameters
were analyzed by the Bruker APEX3 software package (Dera et al., 2013). The representative
single-crystal X-ray diffraction patterns are shown in Figure S2. The specific unit-cell parameters

of the above three samples at each P-T condition can be found in Table S1.

4 Results and discussions
4.1 EoS of main minerals for eclogite
The pressure-volume-temperature (P-V-T) data in this study are fitted by the third-order Birch-
Murnaghan-EoS (BM3-Eo0S) (Birch, 1947) in combination with the Holland-Powell thermal-
pressure EoS (Holland and Powell, 2011) to obtain the thermal EoS parameters. The volume is
calculated in P-T space starting with an isothermal compression and followed by a path along an
isochor curve to the final temperature. The pressure at a given volume and temperature consists of
the following two parts:
P(V.T)=P(V.,To)+Py (V.T) (1)

The first term corresponds to the pressure calculated by the BM3-EoS for compression at room

temperature (To). The zero-pressure volume (Vro), the isothermal bulk modulus (Krg), and its

pressure derivate (Kro") with the following form:

PV.T,) =31 DKyg (Vi V)" (Ve /v)5’3}><{1+(3/ 9)(Kee'=4)| (o V)™ —1}}
(2

The second term is the additional pressure generated by heating along an isochor. The thermal-

pressure is following the equation:

_ O I
Pth(V'T)_av,OKTO(gOJ[exp(@E/T)—l exp(HE/TO)—lJ N
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the thermal expansion coefficient at room temperature. The Einstein temperature ¢e in this study

where & =

, ¢o is the value of ¢ at the reference temperature To and ayp is

are selected and recalculated from the literature (Faccincani et al., 2021; Gottschalk, 2004).

The thermal EoS parameters are derived using the EoSFit program at high-pressure and room-
temperature and high-pressure and high-temperature conditions (Angel et al., 2014) and are shown
in Table S2. Under ambient pressure and temperature conditions, the measured Vy values of garnet,
omphacite, and epidote are 1566.05(25) AS, Vo = 423.48(24) A%, and Vo = 461.57(23) A3,
respectively. The fitting parameters under high-pressure and room-temperature yield Ko = 170 (1)
GPa, Ko’ = 3.74 (22) for garnet, Kyo = 121 (2) GPa, Ko’ = 3.90 (35) for omphacite, and Ko = 122
(1) GPa, Ko’ = 2.51 (16) for epidote, respectively.

To evaluate the quality of BM3-E0S fitting in this study, the relationship between the Eulerian
strain ( gz = [(VO AY )2/3 —1}) and the normalized pressure (F. = P/[B fe (2 fe +1)5/2J) of
the main minerals for eclogite is plotted in Figure S3. Linear fitting of the three sets of data
exhibited a negative slope, indicating that the pressure derivative of the bulk modulus (Kro') is less
than 4, which is consistent with our BM3-EoS fittings. The intercept value was obtained by
weighted linear regression of the data points, showing that Fg(0)=171 (2) GPa for garnet,
Fe(0)=123 (2) for omphacite, and Fg(0)=122 (1) for epidote, respectively. The results are
consistent with the fitted isothermal bulk modulus (Kt = 170 (1) GPa for garnet, Ko = 121 (2)
GPa for omphacite, and Ky = 122 (1) GPa for epidote, respectively) within the error range.
Accordingly, the Ko and Kro' obtained by the BM3-EoS fitting are reasonable. Using the V, fixed
at ambient conditions to fit third-order Birch-Murnaghan and Holland-Powell thermal-pressure

EoS (BM3-HP-E0S), the available EoS parameters, Krg = 170 (1) GPa, Ko’ = 3.82 (14), and ag =
10
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2.71 (5) x10°5 K1 for garnet; Kro = 121 (3) GPa, Ko’ = 3.97 (34), and ao = 3.73 (20) x10° K1 for
omphacite; and Ko = 124 (2) GPa, Ko’ = 2.04 (15), and ao = 3.04 (13) x10° K™ for epidote are
derived. The P-V-T data fitted through the BM3-HP-EoS model are shown in Figure 3.

4.2 Comparison with previous studies

4.2.1 Garnet

The thermal EoS parameters of garnet are obtained by fitting the P-V-T data to the BM3-Eo0S. We
compare our results with those of previous studies (Arimoto et al., 2015; Gré&ux and Yamada,
2014; Lu et al., 2013; Milani et al., 2015, 2017; Xu et al., 2019; Zou et al., 2012). The Ko of end-
member garnet, pyrope, almandine, grossular, and spessartine crystals is between 158 and 179
GPa, and the bulk modulus of almandine is the largest among the above (Table S3). From Table
S3, it can be seen that bulk modulus of powder XRD (Arimoto et al., 2015; Gré&ux and Yamada,
2014; Pavese et al., 2001; Zou et al., 2012) are larger than those of single-crystal XRD (Milani et
al., 2015, 2017) with the same composition. The Ko of solid solution garnets (Beyer et al., 2021;
Jiang et al., 2004; Lu et al., 2013; Xu et al., 2019) is also between 158 and 179 GPa mentioned
above and will be affected by the end-member components. The Kro=170 (1) GPa in this study is
reasonable within this range. The obtained Ko’ =3.82 (14) in this study is slightly lower than that
in previous studies. The Eulerian strain and the normalized pressure of the garnet shown in Figure
S3(a) exhibit a negative slope, which indicating Ko’ is less than 4. Moreover, compared with the
previous results, the obtained value of Kro' in this study is within the error range (Supporting
Information Text S1). However, there is no obvious correlation between the fitted Ko and Ko’ for
minerals of different compositions (Fig. S4); hence, the Kro may not be precise when Kro' is fixed.
For the ao, the andradite has the largest value (3.16 (2)x10° K'), and the grossular has the
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smallest value (2.09 (2)x10° K1) among the end-member garnets. The thermal expansion
coefficient of Prp21AlmazGrsziSps: (2.71 (5)x10° K1) in this study is comparable with previous
studies, but the influence of composition still needs to be considered.

4.2.2 Omphacite

Many studies have focused on the thermoelastic properties of omphacite (Hao et al., 2019;
Nishihara et al., 2003; Pandolfo et al., 2012b, 2012a; Xu et al., 2019; Zhang et al., 2016) (Table
S3). Most of the results are obtained by the single-crystal XRD method, except for the result of
Nishihara et al. (2003), which was obtained from powder XRD. Ko’ shows a higher value of 6.9
(12) in the study of Nishihara et al. (2003), while in others, Ko’ is between 4 and 5.7, and the
result of Ko’ (3.97) in this study is slightly lower than the above values. Additionally, according to
the results shown in Table S3, the bulk moduli of omphacite are in the range of 115-123 GPa. In
the study of Xu et al. (2019), an increase in the iron content would decrease Ko, and they also
discussed the reasons for the discrepancy in Ko in detail, such as the effective ionic radius,
pressure transmitting medium, and experimental pressure range. Comparing our results with Xu et
al. (2019), we conclude that the incorporation of Fe would reduce the bulk modulus. However,
except for Fe content, there does not seem to be a significant correlation between the other
components and the bulk modulus of omphacite. The ao of the Di-Jd solid solution is similar (2.64
(2) x10° K1-2.8 (3)x10° K1) but less than that of QuadssJdssAes (3.73 (20) x10° K1) and
QuadszJdzzAex (3.4 (4)x10° K1). It may be inferred that the Ae contents affect thermal expansion.
4.2.3 Epidote

The thermal EoS parameters of epidote in this study are compared with those reported in previous
studies (Fan et al., 2014; Gatta et al., 2011; Holland et al., 1996; Li et al., 2020; Qin et al., 2016)

12
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(Table S3). Although the bulk modulus appears to be related to the Fe3* content, it does not show a
good correlation. Increasing the content of Fe®* can enhance the bulk modulus, but the result in
Holland et al. (1996) shows an abnormally large value of 162 (4) GPa, which is much higher than
the 111-133 GPa resulting from other studies. This may be attributed to the fixed Ko’ at 4 and
powder XRD methods used in the study of Holland et al. (1996). Furthermore, the Kro’ obtained
from powder XRD (Fan et al., 2014; Gatta et al., 2011) is also larger than that from single-crystal
XRD (Qin et al., 2016). The possible reasons for these discrepancies are complicated. Li et al.
(2020) conducted a detailed study on this topic. Previous studies on ao and (cK+/JT)e of epidote
are limited. The ao (3.04 (13) x10° K1) in this study is lower than that of Gatta et al. (2011) (5.1

(2) x10° K1) and Li et al. (2020) (3.8 (5) x10° K1),

5 Implications

In the Himalayan-Tibetan system, lithospheric removal is proposed to occur in either the breakoff
of the subducted slab of the Indian continental lithosphere (Chung et al., 2005; Turner et al., 1993)
or convective removal of the thickened lower part of the lithosphere (Miller et al., 1999). The
metamorphic eclogitization taking place in the subducted slab and the lowermost crust has been
deduced as the possible cause of subducted slab break-off and the convective removal of the lower
crust (Krystopowicz and Currie, 2013). Increased density in the eclogitized subducted slab and the
lower crust will promote the above two lithospheric removal modes if the lower crust is weak
enough for the negative buoyancy of the mantle lithosphere to be detached. Therefore, to better
consider the role of eclogite density variations in the process of lithospheric removal, we model
the density of minerals and eclogite aggregates along with the geotherms of Tibet and discuss the

13
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effects of the degree of eclogitization on lithospheric removal.

The eclogite chemical data collected in Tibet and examined in our study come from a great

number of eclogite samples collected in previous studies (e.g. Chan et al., 2009; Liu et al., 2019;

Yang et al., 2009; Zhai et al., 2011a). The eclogite samples consist of garnet, omphacite, epidote,

amphibole, zoisite, symplectite along with minor phengite, quartz, rutile, and rare apatite, ilmenite,

and titanite as accessory minerals. Since the eclogite samples have suffered retrograde

metamorphism, we assume that is largely composed of garnet and omphacite plus slight epidote

before retrograde metamorphism. The accessory phases observed in natural eclogite are excluded

because of their minimal abundance of less than 5%. Based on the mineral composition data of

exposed eclogite in Tibet (Fig. S6) (e.g. Cheng et al., 2015; Dong et al., 2018; Huang et al., 2015;

Jin et al., 2019; Li et al., 2017; Zhai et al., 2011b, 2011a), the components of eclogite are 50

vol. % garnet + 45 vol. % omphacite + 5 vol. % epidote (parameterized as a value out of 100)

using the normal distribution.

We take into account two different delamination modes, namely, delamination caused by the

separation of the Neo-Tethyan slab (detachment of the subducted Neo-Tethyan oceanic slab) in the

Paleozoic and convective removal of the lower crust of the subducted Indian continent beneath the

Lhasa terrane during the Cenozoic. The temperature and pressure conditions of exposed eclogites

in the Paleozoic and Cenozoic are somewhat consistent with the geothermal lines provided by

previous studies (Fig. S7). The two different delamination modes reflect relatively cold geotherms

and hot geotherms, respectively. Therefore, these geothermal lines are used in our models. The

thermal EoS parameters of eclogitic garnet, omphacite, and epidote are derived through the BM3-

HP-Eo0S shown in supporting information Table S2.
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5.1 The density of main minerals for eclogite along the geothermal profile in Tibet

Tibetan eclogite is mainly composed of garnet, and omphacite, with a few epidotes. As shown in
Figure 2, the exposed minerals differ in composition. The specific composition of minerals
constrains the density. Therefore, we refer to the thermoelastic parameters of Xu et al. (2019) and
Nishihara et al. (2003) to depict the density distribution of different components (Fe content) of
garnet and omphacite under Tibetan geothermal lines, respectively. The corresponding
thermoelastic parameters can be seen in Table S3. The mineral compositions of previous studies
are within the range of the Tibetan constituents collected in this study (Fig. 2).

The density distribution of minerals along with relatively cold Tibetan geothermal conditions is
shown in Figure 4 (the results along with hot geotherms can be seen in supporting information Fig.
S8). The result clearly shows that the density of garnet is linked with the iron content. The density
of garnet (Prp21Alma7GrsziSpsa, with 47 mol. % almandine) in this study is higher than that of
low-Fe garnet (Prp2sAlmssGrsssSpsi, with 38 mol. % almandine) (Xu et al., 2019) by 2.22% but
lower than that of high-Fe garnet (PrpiaAlme2GrsisAdrsSps;, with 62 mol. % almandine) (Xu et al.,
2019) by 3.82% at ~80 km (Fig. 4a). With increasing depth, the density of high-Fe garnet
increases by a larger amplitude. This discrepancy may be caused by its smaller degree of thermal
expansion (2.56 (44)x10° K1). Accordingly, the influence of pressure on the density is greater
than that of temperature, which leads to faster increases in density with depth. The density of
omphacite does not show obvious characteristics related to its composition. The density of
omphacite (QuadssldisAez, with 7 mol. % aegirine) in this study is lower than that of high-Fe
omphacite (QuadssJdozAez, with 20 mol. % aegirine) (Xu et al., 2019), Quadr2Jdos (Nishihara et
al., 2003), and QuadszJds2Ae; (with 1 mol. % aegirine) (Xu et al., 2019) by 1.95%, 1.47%, and
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0.83%, respectively, at ~80 km (Fig. 4b). The presence of iron in certain quantities does increase
the density of omphacite, but the density of omphacite is also affected by other elements, such as
calcium and magnesium. Moreover, thermal EoS parameters are also of vital importance to
calculate the density. The relatively low thermal expansion of QuadzzJdzs (2.7 (3)x10° K1) and
Quads7JdsAe; (with 1 mol. % aegirine) (2.8 (3)x10-° K1) may further enhance the increasing rate
of density with depth. It is worth noting that the densities of QuadssldssAe; (with 7 mol. %
aegirine) in this study and QuadszJds2Ae: (with 1 mol. % aegirine) of Xu et al. (2019) are the same
under ambient conditions but inconsistent under high-pressure and high-temperature conditions.
Therefore, the Ko and Kro' of the two omphacites are somewhat consistent with each other, while
the thermal expansion and (K+/JT)p are different. Collectively, the thermal EoS parameters are of
the essence in the derivation of the mineral density.

5.2 The density of eclogite in Tibet

Eclogitized crust and lithospheric mantle may be potential factors causing delamination (Faccenda
et al., 2009; Krystopowicz and Currie, 2013). The density of eclogite and peridotite can provide
new constraints to control the breakoff of the subducted slab and convective removal of the
lithosphere in the process of delamination. Therefore, we plot the density distribution of eclogite
with different garnet contents and peridotite along the Paleozoic and Cenozoic Tibetan geotherms,
as shown in Figure 5. In our model, the mineral composition of Tibetan eclogite is in the range of
40 vol. % garnet + 55 vol. % omphacite + 5 vol. % epidote to 60 vol. % garnet + 35 vol. %
omphacite + 5 vol. % epidote based on the exposed eclogite in Tibet (the composition of epidote is
only 5 vol. % default due to its low content in this study). The composition of surrounding
peridotite consists of 70 vol. % olivine + 25 vol. % orthopyroxene + 3 vol. % clinopyroxene + 2
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vol. % spinel (Yang et al., 2019; Zhao et al., 2021). The densities of eclogite and peridotite
aggregates are obtained considering their arithmetic mean. The densities of each mineral under

specific temperature and pressure conditions are derived by the following formula:

V(T.0) ZxM
V(T,P)" N, xV,

p(T,P)= (4)

where Vq is the reference unit cell volume at ambient conditions, M is molecular weight, Z is the
number of formula units in the unit cell and N, is the Avogadro number.

Most changes in the deep conditions of the Earth are progressing slowly, so there is adequate
time for recrystallization to relieve the maximum stress point (Robertson, 1988; Skinner, 1966).
Here, we assume that the elastic-plastic interaction among different minerals and possible
deviations from hydrostatic conditions are ignored and the density of the eclogite aggregate can be
obtained by the arithmetic mean as follows:

p=24pn(T.P) (5)
where the subscript i denotes the ith mineral of the upper mantle, and X is the volume proportion
of each mineral.

The densities of Tibetan eclogite (with the garnet composition of PrpaiAlmasGrssiSpsi, the
omphacite  composition of  QuadsJdssAe;, and the epidote  composition  of
Caz.02F€0.75Al2.32Si0.16(S104)(Si207)O(0OH)) and peridotite (with the olivine composition of
Fosg.9Fai0.1, the orthopyroxene composition of Engg sFSe7W0o.7, the clinopyroxene composition of
Quadsg 5Jd11 5, and the spinel composition of
(Mgo.790F€0.204Ni0.005 Ti0.001)1.000(Al0.821Cro.158F€0.021)2.00004) in this study along the Paleozoic
geothermal line are shown in Figure 5a. The results show that the increase in garnet has a

profound influence on the density of eclogite. For every 10% increase in garnet, the density of
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eclogite increases by ~1.7%. The garnet content in Tibetan eclogite is estimated to be 40 vol. %-60
vol. % (Fig. S6). The densities of this part of eclogite are 3.54-3.66 g/cm?, which is approximately
7.4%-11.2% more than that of peridotite (3.29 g/cmq) at ~80 km. The density difference between
eclogite and peridotite is 0.24 g/cm3-0.37 g/cm? (Fig. 5b). At the same time, we also consider the
density of eclogite aggregates without epidote (Fig. S6). The results show that 5 vol. % epidote
has little effect on the density of eclogite, especially eclogite with garnet contents of 50 vol. %-60
vol. % (Fig. S9). To account for the role of iron, the density distributions of high-Fe
(Prp12AlmszGrsigAdrsSps; and QuadssldzzAex and low-Fe eclogite (Prp2sAlmssGrsssSps: and
QuadszJds2Aes) are plotted to better constrain the range of eclogite density (Fig. S10) (Xu et al.,
2019). For high-Fe and low-Fe eclogites, the densities of eclogite increase by ~1.9% and ~1.4%
for each 10% increase in garnet, respectively. The densities of eclogite are 3.64 g/cm®-3.78 g/cm?3
for high-Fe content and 3.53 g/cm3-3.63 g/cm?® for low-Fe content at ~80 km. Furthermore, the
densities of high-Fe and low-Fe eclogites are 10.6%-14.9% and 7.2%-10.3% higher than the
surrounding peridotite, respectively. For a more straightforward comparison, taking eclogite
containing 50 vol. % garnet as an example (Fig. S11), the densities of high-Fe eclogite, low-Fe
eclogite, and Tibetan eclogite at ~80 km are 3.71 g/cm?, 3.58 g/cm?, and 3.61 g/cm?, respectively.
An increase in the iron content can substantially increase the density of eclogite, although it will
be constrained by the thermal EoS parameters of minerals.

Similarly, we also discuss the density profile along the Cenozoic geothermal line, which can be
seen in supporting information Text S2. In any case, the density difference caused by eclogite may
be one of the prominent factors instigating the delamination process.

5.3 Influence of the degree of eclogitization on the density of the subducted slab
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Eclogite in the mantle, which is believed to be 5%-10% denser than peridotite (Garber et al.,
2018), is responsible for the excess compositional density. Furthermore, some calculations
propose that the degree of eclogitization of the subducted slab is a key factor in the delamination
process (Matchette-Downes et al., 2019). To investigate the influence of the degree of
eclogitization in the delamination process, we plot the density variations with different mineral
compositions under different degrees of eclogitization (Fig. 6). We consider eclogitization in the
lithospheric mantle of the subducted slab, here the degree of eclogitization refers to the amount of
eclogite in the lithospheric mantle. In our preferred model, the 7-km thick subducted oceanic crust
becomes eclogite, while the lithospheric mantle constrains a different amount of eclogite. Since
the subducted Indian oceanic slab might be fragmented into several pieces, the longitudinal size of
the fractured slab is postulated to be 60 km (Peng et al., 2016). Our estimated average density of
the fragmented slab with various degrees of eclogitization is shown in Figure 6a. The results
clearly show that the density increases monotonically with the garnet content and the degree of
eclogitization. The garnet content is of profound importance to the density of eclogite. The higher
the proportion of garnet is, the greater the density increases with increasing degrees of
eclogitization. The garnet content in Tibetan eclogite is estimated to be between 40-60 vol. %.
Taking garnet with an average volume percentage of 50 vol. % in Tibetan eclogite as an example,
the density of eclogitized subducted slabs ranges from 3.35 g/cm? with 10% eclogitization to 3.61
g/cm? with 100 vol. % eclogitization. For a garnet content of 50 vol.%, the density increases by
0.029 g/cm?® per 10 vol. % increase in the degree of eclogitization. The density will increase with
increasing garnet contents, from 0.006 g/cm? for 10 vol. % to 0.051 g/cm? for 90 vol. %. The
densities of high-Fe and low-Fe eclogitized fragmented slabs are also shown in Figure S12. The
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high-Fe content shows that the density variation increases with the degree of eclogitization from
0.007 g/cm? for 10 vol. % to 0.064 g/cm? for 90 vol. % garnet, while the low-Fe content shows a
density change from 0.004 g/cm?®for 10 vol. % garnet to 0.045 g/cm? for 90 vol. % garnet.

5.4 Delamination in Tibet

The development of delamination is associated with the instability of the lower crust and the
mantle lithosphere. The eclogitization of the subducted slab and lower crust plays a vital role in
the process of delamination due to the high density of eclogite, which makes the formation denser
than the surrounding mantle lithosphere and provides critical negative buoyancy (Gogiis and Ueda,
2018; Krystopowicz and Currie, 2013). The densities of the eclogitic lower crust and mantle
lithosphere during slab subduction and convective removal are sufficiently higher than that of the
asthenosphere and are good candidates for the initiation of destabilization.

5.4.1 Subducted slab breakoff

A series of collisional breakoff events is proposed to have occurred throughout 60-45 Ma in Tibet
(Chung et al., 2005, 2009; Ma et al., 2014; Zhu et al., 2015). The formation of eclogite
presumably kick-starts slab breakoff during the subduction of the Indian oceanic plate underthrust
below the southern margin of Tibet. The subducted Indian oceanic slab fragmented into several
pieces, due to what has been identified as a high-velocity anomaly (Peng et al., 2016; Shi et al.,
2020b). The seismological evidence of high density (Hetéyi et al., 2007), high Ve (Schulte-
Pelkum et al., 2005), and low longitudinal/transverse (Ve/Vs) ratios (Wittlinger et al., 2009) further
confirms that there may be variable degrees of eclogitization beneath Tibet. Figure 6 shows the
density profile of subducted slabs with different garnet compositions, different degrees of
eclogitization, and variable densities compared with the surrounding peridotite. An increasing
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degree of eclogitization and an enhanced garnet content in eclogite increases the density difference
between the slab and the surrounding peridotite. Previous studies have made preliminary estimates
of the average density from the isostatic balance and geoid anomalies and postulated that the
density excess could be between 0-0.19 g/cm® (Matchette-Downes et al., 2019). For Tibetan
eclogite containing 40 vol. %-60 vol. % garnet, if the lithospheric mantle is a mixture of peridotite
and eclogite with a density anomaly of 0.19 g/cm?, our model requires a range of 44%-70%
degrees of eclogitization. If the eclogite is high-Fe, only a 30%-48% degree of eclogitization is
needed to produce the density difference (Fig. S12), while an eclogitization degree is in the range
of 49%-74% is needed for the low-Fe eclogite. However, some seismological data show that the
crust or lithospheric mantle being only ~30% eclogitized might cause gravitational instability in
Tibet (Matchette-Downes et al., 2019; Shi et al., 2020a), which is lower than our estimation. Our
results clearly show that density excess is closely linked with garnet content and eclogitization
degree. If eclogite has a high garnet content, a relatively low degree of eclogitization could
instigate the delamination of slab breakoff.

On the other hand, the presence of a weak lower crust and a vertical conduit to accommodate
asthenosphere influx is also necessary for the delamination process. The weak layer between the
residual crustal and downward peeling lithosphere layer (and/or lower crust) (Gogiis and Ueda,
2018) could promote the initiation and propagation of delamination. Therefore, very high
temperatures and relatively low lower-crustal viscosities are also other controlling factors of
delamination (G6gus and Pysklywec, 2008; Morency, 2004). Here, we assume that the length of
the fractured slab is 60 km, which drops 80 km over 45 Ma and that the viscosity of the
asthenosphere is 5*10%° Pa S (Wang et al., 2019). By using Stokes’ Law (Supporting Information
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Text S3), ignoring the thermal disturbance, and assuming the most ideal conditions, the density
difference caused by eclogite needs to be at least 0.15 g/cm?® to produce such delamination. The
result is close to those discussed above in gravity anomalies.

In particular, the presence of eclogite with a greater abundance of garnet, a higher-Fe content,
and a greater degree of eclogitization would instigate the delamination process of slab breakoff.
5.4.2 Removal of the eclogitized lower crust
The thickened lower crust undergoes “convective removal” due to gravitational instability, which
is another type of delamination that occurred in Tibet from 25 Ma to 0 Ma (Chung et al., 2005;
Nomade et al., 2004). The convective removal of the lithosphere during delamination corresponds
to higher temperature conditions (Craig et al., 2020). In this circumstance, the density of Tibetan
eclogite is 6.9%-10.8% denser than the surrounding peridotite at ~60 km (Fig. 5b), which is
analogous to the results in the case of subducted slab detachment. This result is also in ample
agreement with the result obtained by Garber et al. (2018), which noted that eclogite is 5%-10%
denser than peridotite. The density difference between eclogite and peridotite is 0.22 g/cm3-0.35
g/cm® with 40 vol. %-60 vol. % garnet in Tibet (Fig. 5d). During this stage, it is believed that
delamination of the thickened, eclogitized lower crust has occurred. Similarly, Stokes’ law can be
used considering ideal conditions without any thermal disturbance. If the falling block is assumed
to be approximately 30 km in the longitudinal direction and the viscosity of the asthenosphere is
5*10%° Pa 8, the falling block can drop by 70-110 km within 25 Ma. For eclogite with a high-Fe
content, a density difference of 0.35 g/cm3-0.50 g/cm® makes the fragmented block capable of
falling 105-155 km, while the density difference of 0.24 g/cm3-0.33 g/cm? with a low-Fe content
makes the block able to fall 75-102 km (Fig. S13). The fragmented block with a high-Fe content
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can fall a larger distance at the same time, indicating that the high-Fe content is more likely to

promote the occurrence of delamination. This result is consistent with the high-velocity

anomalous blocks identified at 100-200 km by seismic tomography (Peng et al., 2016; Shi et al.,

2016, 2020a).

In summary, density contrasts can provide a stimulus for the initiation of instability. It is accepted

that eclogite with a high garnet content and a high Fe content and a high proportion of eclogite in

the lithospheric mantle may have strongly promoted delamination during the process of India-Asia

collision from the perspective of density.

6. Conclusion

The P-V-T EoS of the main minerals of eclogite is combined with its mineral composition

and the geothermal line to derive the density of Tibetan eclogite in this study. We offer a new

perspective by obtaining the thermal EoS for the main minerals of eclogite in a single experiment.

The thermal EoS parameters of the main minerals of eclogite are derived by fitting the P-V-T data

to the HT-BM-EoS. The density of minerals along the Tibetan geotherm shows that the density is

closely related to its composition and thermal EoS parameters. Increasing iron contents increase

the density of minerals, but if the molecular masses of two minerals are similar, the thermal EoS

parameters play a pivotal role. The garnet content profoundly increases the density of eclogite. For

every 10 vol. % increase in garnet, the density of eclogite increases by approximately 1.7%. The

density of Tibetan eclogite is approximately 7-11% denser than that of the surrounding peridotite.

An increasing proportion of garnet, Fe content, and degree of eclogitization enhance the density

difference to facilitate the delamination process. For Tibetan eclogite containing 40-60 vol. %
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garnet, 44-70% degrees of eclogitization can produce the same density difference as obtained by

the isostatic balance and the geoid anomaly. According to a rough calculation, the fragmented

block will fall 70-155 km. A high-Fe content is more likely to promote delamination. Eclogite is a

good candidate for the initiation of instability and may be more susceptible to inducing the

breakoff of the subducted slab or the gravitational removal of the lower crust during the process of

the India-Asia collision.
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Figure 1. (a) Schematic geological map of the Tibetan Plateau (modified from Chung et al. 2005

and Wang et al. 2010). (b) Interpretive geological cartoon of India-Asia collision evolution. 70-65

Ma: The flat Neo-Tethyan oceanic slab subducts beneath Tibet with the closure of the Neo-Tethys

Ocean. 65-42 Ma: The rollback of the Neo-Tethyan slab breaks off after densification by

eclogitization. 42-25 Ma: The subduction of the Indian continent continued at a low subduction

angle beneath the Lhasa terrane and was accompanied by heavy thermal perturbation. 25-0 Ma:

The thickened eclogitic lower crust undergoes the “convective removal” of delamination due to

gravitational instability.
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Figure 2. Composition of garnet and omphacite in eclogites from Tibet and this study. The gray

solid circles represent the components of garnet and omphacite collected from previous studies in

Tibet (e.g. Chan et al., 2009; Liu et al., 2019; Song et al., 2003; Weller et al., 2016; Yang et al.,

2009; Zhai et al., 2011a). The green solid circles are garnet and omphacite with different Fe

contents according to Xu et al. (2019). The orange solid circles are omphacite according to

Nishihara et al. (2003). The red solid circles are the components of garnet and omphacite in this

study. Prp = pyrope, Alm = almandine, Grs = grossular, Sps = spessartine, Quad = Ferrosilite +

enstatite + wollastonite, Jd = jadeite, and Ae = aegirine.
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Figure 3. Pressure-volume-temperature relations of garnet (a), omphacite (b), and epidote (c).

Isothermal compression curves are calculated by using the thermoelastic parameters obtained in

this study.
(@) ()
at4r This study Garnet ——— This study Omphacite
Xu et al. (2019) a0l Xu et al. (2019)
4.08 I- Xu etal. (2019) i Xuetal. (2019) Quad, Jd, Ae,
F‘rpMAIm,v,Grs_gAdrBSps, Nishihara et al. (2003)
402 | u | 336 Quad,Jd,,
e
L 396t 3391 Quad,_Jd, Ae,
2 3.30
£ 30 -
S 3.90 - Prp, Alm, Grs, Sps, Quad, Jd Ae,
o
327 |
3.84 |
Prp, Alm,_Grs_Sps,
o 324 -
3.78 |
1 " 1 " 1 N 1 N 1 N 1 N L " 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Depth (km) Depth (km)

Figure 4. Density profiles of garnet (a) and omphacite (b) along with the cold Tibetan geothermal

line (Wang et al., 2013). The garnets of Prp21Alma7GrsziSps: and Prp2sAlmssGrszsSps: are from

Xu et al. (2019). The omphacites of QuadssJdz2zAez and QuadszJdaAe; are from Xu et al. (2019)

and Quadr2Jdzs is from Nishihara et al. (2003).
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Figure 5. Density profiles of eclogite and peridotite assemblages ((a) and (b)) and density
difference between eclogite and peridotite ((c) and (d)) in Tibet along the Paleozoic and Cenozoic
geothermal lines under the conditions of Neo-Tethyan oceanic slab detachment (a) (Wang et al.,
2013) and subduction of the Indian continental margin beneath the Lhasa terrane (b) (Craig et al.,
2020). The percentage represents the content of garnet in eclogite, of which epidote accounts for 5
vol. % by default. The orange curve and black curve show the density profile of peridotite with a
composition of 70 vol. % olivine + 25 vol. % orthopyroxene + 3 vol. % clinopyroxene + 2 vol. %
spinel. The orange line shows the density of peridotite in the lithospheric mantle along the
Paleozoic (a) (Wang et al., 2013) and Cenozoic (b) (Craig et al., 2020) geothermal lines, and the
black curve indicates that the density of peridotite in the surrounding lithospheric mantle is along

the Paleozoic (a) (Nabélek and Nabélek, 2014) and Cenozoic (b) (Wang et al., 2013) geothermal
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lines in Tibet. The shaded region is the density range of the asthenosphere (Chen and Tenzer, 2019;

Levin, 2006; Panza et al., 2020; Singh and Mahatsente, 2020).
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Figure 6. (a) The effect of eclogitization on the density of the subducted slab at ~80 km (2.6 GPa
and 625 <C) along the Paleozoic geothermal line. The percentage on the right represents the
content of garnet and the content of epidote is fixed at 5 vol. % by default. The content of garnets
in Tibet is between 40 vol. % and 60 vol. %. The density represents the average density of the
subducted slab with the entire eclogitic ocean lower crust and partially eclogitized lithospheric
mantle, where the degree of eclogitization refers to the lithospheric mantle. The rufous line
represents the average density of surrounding peridotite in this study. The blue shading indicates
the possible degree of eclogitization. (b) Density difference between eclogite with different
degrees of eclogitization and surrounding peridotite. The red dashed solid line represents a density
excess of 0.19 g/cm? from the isostatic balance and the geoid anomaly (Matchette-Downes et al.,

2019).
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