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Abstract. We propose, test and apply a methodology integrating 1D magnetotelluric (MT) and magnetic data
inversion, with a focus on the characterization of the cover-basement interface. It consists of a cooperative
inversion workflow relying on standalone inversion codes. Probabilistic information about the presence of rock
units is derived from MT and passed on to magnetic inversion through constraints combining such structural
constraints with petrophysical prior information. First, we perform the 1D probabilistic inversion of MT data for
all sites and recover the respective probabilities of observing the cover-basement interface, which we interpolate
to the rest of the study area. We then calculate the probabilities of observing the different rock units and partition
the model into domains defined by combinations of rock units with non-zero probabilities. Third, we combine
such domains with petrophysical information to apply spatially-varying, disjoint interval bound constraints to
least-squares magnetic data inversion. We demonstrate the proof-of-concept using a realistic synthetic model
reproducing features from the Mansfield area (Victoria, Australia) using a series of uncertainty indicators. We
then apply the workflow to field data from the prospective mining region of Cloncurry (Queensland, Australia).
Results indicate that our integration methodology efficiently leverages the complementarity between separate MT
and magnetic data modelling approaches and can improve our capability to image the cover-basement interface.
In the field application case, our findings also suggest that the proposed workflow may be useful to refine existing

geological interpretations and to infer lateral variations within the basement.
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1 Introduction

Geophysical integration has been gaining traction in recent years, be it from the joint or cooperative point of
views. A number of approaches for the joint modelling have been developed with the goal of exploiting the
complementarities between different datasets (see for instance the reviews of Leliévre and Farquharson, 2016,
and Moorkamp et al., 2016, and references therein). As summarized in the review of Ren and Kalscheuer (2019),
“joint inversion of multiple geophysical datasets can significantly reduce uncertainty and improve resolution of
the resulting models”, be it for the modelling of a single property (e.g., resistivity for joint controlled-source
electromagnetic and magnetotelluric MT data, or density for joint gravity anomaly and gradiometry data), or of
multiple properties (e.g., the joint inversion of seismic and gravity data to model P-velocity and density). In the
second case, joint inversion approaches can be grouped into two main categories based on the hypothesis they
rely on. Structural approaches allow to jointly invert datasets with differing sensitivities to the properties of the
subsurface through the premise that geology is such that spatial changes in inverted properties should be
collocated. Structural constraints can then be used as a way to link two or more datasets jointly inverted for by
encouraging structural similarity between the inverted models (Haber and Oldenburg, 1997; Gallardo and Meju,
2003). Alternatively, petrophysical approaches utilise prior petrophysical information (e.g., from outcrops,
boreholes, or the literature) to enforce certain statistics in the recovered model so that it resembles the
petrophysical measurements’ (Leliévre et al., 2012; Sun and Li, 2015; Giraud et al., 2017; Astic and Oldenburg,
2019). Whereas structural and petrophysical approaches are well suited to exploit complementarities between
datasets in a quantitative manner, running joint inversion might be, in practice, challenging and requires

significantly more computing power than the separate inversions.

In this contribution, we present a new multidisciplinary modelling workflow that, instead of the more common
simultaneous joint inversions, relies on sequential, cooperative modelling. It follows the same objectives as the
two categories of joint inversion mentioned above in that structural information is passed from one domain to the
other and it uses petrophysical information to link domains. The development of the sequential inversion scheme
we present was motivated by a similar idea as Lines et al. (1988) who states that “the inversion for a particular
data set provides the input or initial model estimate for the inversion of a second data set”. A further motivation
was to design a workflow capable of integrating the inversion of two or more datasets quantitatively using
standalone modelling engines that run independently. The general concept behind the methodology we present is

summarised in Figure 1.

In this paper, the workflow is applied to the sequential inversion of magnetotelluric (MT) followed by magnetic
data, taking into account the importance of robustly constraining the thickness of the regolith in hard rock imaging
and mineral exploration. This is motivated by the relative paucity of works considering cooperative workflows to
integrate MT and magnetic data together with the recent surge in interest for the characterisation of the depth-to-
basement interface in mineral exploration, despite these two geophysical methods being part of the geoscientists’
toolkit for depth-to-basement imaging. Historically, MT has often been integrated with other electromagnetic
methods or with seismic data, and with gravity to a lower extent (see review of the topic of Moorkamp, 2017). It
is, however, seldom modelled jointly with magnetic data unless a third dataset is considered (e.g., Oliver-Ocafio
et al., 2019 ; Zhang et al., 2020; Gallardo et al., 2012; Le Pape et al., 2017). We surmise that this is because (1)

the interest for integrating MT with other disciplines arose primarily in oil and gas and geothermal studies and
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relied on structural similarity constraints for reservoir or (sub)salt imaging, (2) of the difference in terms of spatial
coverage between the two methods elsewhere, (3) the differences in terms of sensitivity to exploration targets and
(4) the difficulty to robustly correlate electrical conductivity and magnetic susceptibility. Bearing these
considerations in mind, we developed a workflow incorporating MT and magnetic inversion with petrophysical

information and geological prior knowledge.

In the workflow we develop, we exploit the differences in sensitivity between MT and magnetic data. On the one
hand, the MT method, used in a 1D probabilistic workflow as presented here, is well-suited to recover vertical
resistivity variations and interfaces, especially in a sedimentary basin environment (Seillé and Visser, 2020). MT
data are, however, poorly sensitive to resistors, especially when they are overlaid by conductors (e.g., Chave et
al., 2012), which makes it difficult to differentiate between highly resistive features, such as intra-basement
resistive intrusions. On the other hand, magnetic data inversion is more sensitive to lateral magnetic susceptibility
changes and to the presence of vertical or tilted structures or anomalies. Bearing this in mind, we first derive
structural information across the studied area in the form of probability distributions of the interfaces between
geological units, extracted from the interpolation of the results the 1D probabilistic inversion of MT data. From
there, the probability of occurrence of geological units can be estimated in 2D or 3D. These probabilities are used
to divide the area into domains where only specific units can be observed (e.g., basement, sedimentary cover, or
both). Such domains are then passed to magnetic data inversion, where they are combined with prior petrophysical
information to derive spatially varying bound constraints that are enforced using the alternating direction method
of multipliers or 2D or 3D inversion (see Ogarko et al., 20214, for application to gravity data using geological
prior information). Finally, uncertainty analysis of the recovered magnetic susceptibility model is performed and
rock unit differentiation allows to control the compatibility of magnetic inversion results with the MT data. The

workflow is summarised in Figure 1.

Probabilistic 1D MT Probability of cover-
modelling basement interface

Interpolation to 2D/3D

{

Calculation of probabilities for the definition of domains,
allowing: basement only, non-basement only, or both

Standalone MT inversions «-;

v

E Extraction of information

Assignment of density ranges from prior information

v
Standalone potential
fields inversion

Multiple bound MT-constrained model

constraints inversion

Calculation of metrics

4

Uncertainty analysis Interpretation -~

Figure 1. Integrated M T-magnetic integration workflow summary showing the role of the different techniques.
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The rem. 1 of this paper is organised as follows. We first introduce the methodology and summarise the MT
and magnetic standalone modelling procedures we rely on. We then introduce the proof-of-concept in detail using
a realistic synthetic case study based on a model of the Mansfield area (Victoria, Australia), which we use to
explore the different possibilities for integrating MT-derived information and petrophysics offered by our
workflow. Following this, we present a field application using data from Cloncurry (Queensland, Australia) where
we tune our approach to the specificity of the area. Finally, this work is placed in the broader context of
geoscientific modelling and perspectives for future work are exposed in the discussion section.

2 Methodology
2.1. MT inversion for interface probability

The MT method is a natural source electromagnetic method. Simultaneous measurements of the fluctuations of
the magnetic and electric fields are recorded at the Earth’s surface under the assumption of a source plane wave.
The relationship between the input magnetic field H and the induced electrical field E, which depends on the

distribution of the electrical conductivities in the subsurface, is described by the impedance tensor Z, as follows:

E=Z-H. (1)

Resistivity models derived from MT data are found by forward modelling and inversion of the impedance tensor
Z, generally using gradient-based deterministic methods (see, e.g., Rodi et al., 2012). Deterministic approaches
provide a single solution which minimizes the objective function considered during the inversion, but limited
information of the uncertainty around this model can be derived. A global characterization of the uncertainty is
possible using a Bayesian inversion framework, but its expensive computing cost limits its application to
approximated and/or fast forward modelling solvers (Conway et al., 2018; Manassero et al., 2020; Scalzo et al.,
2019). In this study we alleviate this by considering a 1D behaviour of the Earth. While this assumption can stand
within layered sedimentary basins, it may fail in more complex geological environments. As we describe below,

we account for this source of uncertainty within our Bayesian inversions.

Within the context of Bayesian inversion, the solution of the inverse problem consists in a posterior probability
distribution, calculated from an ensemble of models that fits the data within its error. The posterior probability

distribution p(m™7|d™T) is obtained using Bayes’ theorem, defined as:

pmMT|@"") o p(@™"|mM") x p(mMT). )

The prior distribution p(m™T) contains prior information on the model parameters m™ . In this work, we assume
a relatively uninformed prior knowledge, using a uniform prior distribution on the electrical resistivity bounds
with values set between 1072 and 10° Q. m. Using a uniform prior with such wide boundaries allows the inversion
to be mainly data-driven and to remain independent from assumptions about the distribution of electrical

resistivity into the Earth. A Gaussian likelihood function p(d™" | mMT) defining the data fit is used is used:

p(dMT | mMT) o« exp <_%(dMT _ gMT(mMT))T CEI (dMT _ gMT(mMT))> (3)
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The term inside the exponential is the data misfit, which is the distance between observed data d¥T and simulated
data gMT (mMT), scaled by the data covariance matrix C,, which defines data errors and their correlation across

frequencies. We consider two main sources of uncertainty to calculate C,:

s data processing errors, which we model introducing a matrix C,;

e errors introduced by the violation of the 1D assumption when using 1D models, which we model

introducing Cy,.

To calculate Cg4, we first define C,,, the covariance matrix accounting for the EM noise and measurement errors,
which is estimated during MT data processing. In this study we assume uncorrelated processing noise across
frequencies, reducing C, to a diagonal matrix. Following this, we define C;,, as the covariance matrix accounting
for the discrepancy between 1D models and the multi-dimensional Earth the data is sensitive to. The analysis of
.- characteristics of the MT phase tensor allows to detect 2D and 3D effects present in the MT data as a function

of frequency (see Caldwell et. al., 2004).

Following a dimensionality error model developed by Seillé and Visser (2020) for depth to cover mapping
applications, we translate the phase tensor parameters into dimensionality uncertainties to compensate for the
limitations of the 1D assumption when performing 1D inversion. This dimensionality uncertainty C;,,, is added
to the existing data uncertainty C,, such that the inversion considers both sources of uncertainty in C,, which we
calculate as C; = Cp, + Cgj. The 1D MT trans-dimensional Markov chain Monte Carlo algorithm used in this
study (Seillé and Visser, 2020) solves for the resistivity distribution at depth, and the number of layers in the
model and takes as input the determinant of the impedance tensor Z. The output of the probabilistic inversion

consists in an ensemble of models describing the posterior probability distribution.

In this paper, we are interested in the depth of the basement. For each MT sounding, each model of the model
ensemble is analysed and the transitions from a conductive sedimentary layer into a resistive basement is extracted
in order to construct a probability distribution of the depth to basement interface. This feature extraction relies on
assumptions made on the electrical resistivity of the different lithologies expected, which are formulated on a case
by case basis. We first calculate the depth to basement interface probability p;,; for each MT sounding. These
probabilities are derived for each MT sites and can be interpolated on the mesh used for magnetic inversion. The
interpolation of such probability distr.22..ons can be performed using different approaches and integrate various
types of geophysical or geological constraints. In this work, we use a linear interpolation scheme in the synthetic
case study, and the Bayesian Estimate Fusion algorithm of Visser and Markov (2019) in the case study. We note
that other techniques could be used for a similar purpose, such as the Bayesian Ensemble Fusion (Visser, 2019;
Visser et al., 2021), or discrete and polynomial trend interpolations (Grose et al., 2021). Following this, assuming
a sedimentary basin lying on top of the basement, we can define for each model cell the probability of being in

presence of the basement py o as:

Posmt = Pine, 4
with Pt amulative distribution function of the probability function p;,;, from the surface downwards.

Consequently, for each cell within the model, the probability of being in presence of sedimentary rocks, pgeq, is

given as pseq = 1 — Ppsme-


reviewer
Kommentar zu Text
site

reviewer
Kommentar zu Text
This fact is not further referred to or used elsewhere in the manuscript. Out of context?

reviewer
Notiz
Unclear how Pint is derived.

Done. Thanks.

giraud9
Note
We have expanded on this and provided more information. We have added more details about the MT phase tensor. We use the phase tensor parameters later in the text to describe how we consider non-1Dness during the MT inversion.  


giraud9
Note
We have added more information about this aspect to make this clear. We detail more clearly how we derive P_int. In section 3.3, the derivation of this probability is also described and illustrated.

giraud9
Highlight

giraud9
Sticky Note
Thanks.


165

170

178

180

185

190

This allows us to derive three domains characterised by pg.q; = 0 (basement only), ps.qs € 10,1[ (basement and
non-basement units allowed) and p,;.4 = 1 (non-basement only) that will define the intervals used for the bounds

constraints B applied to magnetic data inversion as summarised below.

2.2. Formulation of the magnetic data inverse problem

In this section, we summarise the method used to enforce disjoint interval bound constraints during magnetic data
inversion. We largely follow Ogarko et al. (2021a), which we extend to locally weighted bound constraints. The
geophysical inverse problem is formulated in the least-squares sense (see chap. 3 in Tarantola, 2005). The cost

function we minimize during inversion is given as:

6(d™9,mma9) = [|d™9 — g9 (m™)[2 + || Wi (™9 — m99)||2 + (5)

a 2| W, rmmes|,
where d™9 is the observed data and g™ (m™%9) the forward response produced by model m™®9, a vector
of R™, with n is the total number of model-cells. The second term corresponds to the model damping (or
smallness) term, with weight a,,,, depth weighting operator W,,,; m;”‘lg is the prior model. The operator W,,, is
defined following Portniaguine and Zhdanov (2002). The third term is the gradient damping (or smoothness) term.
The diagonal matrix W, adjusts the strength of the regularization. It is modulated by o, (introduced in details in

the next section).

We solve eq. (4) while constraining the inversion using multiple bound constraints. The problem can be expressed

in its generic form as:

minimize 6(d, m) (6)
S.t.ml- € Bivl <i<n

where B; is the interval, or set of intervals, binding the i model-cell. The general definition of B; is:

B; = UL, [aiy, biy], with by, > a;, V1€ [1,L;]and i €7 )
where a;; and b;; define, the bounds of the inverted property [ is the index of the rock unit; L; is the number of
bounds in the i interval; 7 contains the indices of the model-cells where the bound constraints are applied. A
summary of the algorithm solving this problem using the alternating direction method of multipliers technique
(ADMM) is given in Appendix A.

2.3. Integration with MT modelling

The set of intervals B from eq. (6) and (7) can be defined homogenously across the entire model or accordingly
with prior information. In the latter case, it allows to define spatially-varying bound constraints and to activate
them only is selected parts of the study area. In the case presented by Ogarko et al. (2021a), probabilistic
geological modelling was used to determine such bounds constraints for gravity inversion. The approach we
propose here follows the same philosophy. Instead, we use probabilistic MT modelling, which can be used to
estimate the observation probabilities of rock units. From such probabilities, we can then calculate the bounds B;

for the i*" model-cell using:
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B; = U [ais biy] (8)

=1
Pi1>Pt,

where P, ; is the observation probability for the ' rock unit; P, , is a threshold value above which the probability

is considered sufficiently high to be considered. In what follows we use P;; = 0.
2.4, Uncertainty metrics

2.4.1. Model misfit

In the synthetic stuc - /e present, we evaluate the capability of inversions to recover the causative model using
the root-mean-square (RMS) misfit between the true and inverted models (RMS model misfit). We calculate this
indicator as:

n
1 .
ERRy = |2 (mime —mim)’, ©)
n i
where m®™*¢ and m™ are, respectively, the true and inverted models.

2.4.2. Membership analysis

In the context geophysical inverse modelling, membership analyses provide a quantitative estimation of
interpretation uncertainty to interpretation of recovered petrophysical properties. Using the intervals defined in
eq. (7) and eq. (8), we apply a triangular function to the inverted magnetic susceptibilities to determine the
membership values to the different rock types. For the it model cell, the membership value to the j™ rock type w]‘f

is calculated using ramp functions as:

lifm' € Bpvm 2b ifk=LVm<a,ififk=1
m'— by y

—b lf bi,j—; _m < al-,]-
ol = Qij = -t (10)
a"'+1 —-m ) .
0L lfbi]' <m'< al-j+1
Qijr1 = by ' '
0 otherwise

2.4.3. Total model entropy

Using the membership values (0, we calculate the total model entropy of the model, H, which is the arithmetic

mean of the information entropy (Shannon, 1948) of all model-cells:

M

H= — wl, log(cofc), (11)

L
k=1i=1
which is as a measure of geological uncertainty in probabilistic models and of the fuzziness of the interfaces
(Wellmann and Regenauer-Lieb, 2012).
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2.4.4. Jaccard distance

In addition to calculating H, the membership values o can be used to interpret the inversion results in terms of

rock units. The index k of the rock unit the model-cell with a given inverted magnetic susceptibility value can be

interpreted as is given as, for the i model-cells:

k= L 12
arg ]Hzlili)i (,0] ( )

Calculating the index of the corresponding rock unit in each model-cell, we obtain a rock unit model mi*.

Using mi™ and m&™¢ (the latter being the true rock unit model), we calculate the Jaccard distance (Jaccard,
1901), which is a metric quantifying the similarity between discrete models. In the context of geological
modelling, it is reflective of the dissimilarity between geological models (Schweizer et al., 2017). Here, we use it

to compare the inverted model and the true model as follows:

|mienmir| B |mieumi®| — |lmi*enmi™| (13)

P2 e Umi| [mieUmi] ’

where N and U are the intersection and union of sets, respectively; || is the cardinality operator, measuring the
number of elements satisfying the condition. A useful and simple interpretation of J is that it represents the fraction
of cells assigned with the incorrect rock unit.

3 Synthetic case study

The synthetic case study that we use to test our workflow was built using a structural geological framework
initially introduced in Pakyuz-Charrier et al. (2018, It presents realistic geological features that reproduce field
geological measurements from the Mansfield area (\/ ctoria, Australia). The choice of resistivity and magnetic
susceptibility values to populate the structural model was made to test the limits of this sequential, cooperative
workflow and to show its potential to alleviate some of the limitations inherent to potential field and MT
inversions. To this end, we selected a part of the synthetic model which features violate the hypothesis of a 2D

model to challenge the workflow we propose.

3.1. Survey setup

The structural geological model was derived from foliations and contact points using the Geomodeller® software
(Calcagno et al., 2008; Guillen et al., 2008; Lajaunie et al., 1997). It is constituted of a sedimentary syncline
abutting a faulted contact with a folded basement. The model’s complexity was increased with the addition of a
fault and an ultramafic intrusion. Details about the original 3D geological model are provided in Pakyuz-Charrier
et al. (2018b). Here, we increased the maximum depth of the model to 3150 m and added padding in both
horizontal directions. Figure 2a shows the non-padded 2D section extracted from the reference 3D geological
model.

We assigned magnetic susceptibility in the model considering non-magnetic sedimentary rocks in the basin units
(lithologies 3, 5 and 6 in Table 1) and literature values (see Lampinen et al., 2016) to dolerite (lithology 4), diorite

(lithology 2) and ultramafic rocks (lithology 1). We assign electrical resistivities assuming relatively conductive
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sedimentary rocks and resistive basement and intrusive formations. Resistivities in sedimentary rocks might vary

orders of magnitude, and mainly depend on porosity, which is linked to the degree of compaction and the type of

lithology, and the salinity of pore fluid (Evans et al., 2012). The three sedimentary layers were assigned different

resistivities values, of 30 Qm, 10 Qm and 50 Qm for basin fill 3, 2 and 1 respectively (see Table 1), basin 1 being

the oldest and deeper formation. Metamorphic and intrusive rocks as found in the crust generally present high

resistivities (Evans et al., 2012). In what follows we focus on the modelling of data located along the line shown

in Figure 2, simulating the modelling magnetic data in 2D, while considering 3D MT data. The modelled rock

units and their petrophysical properties are given in Table 1. The geological, magnetic susceptibility and resistivity

true models are shown in Figure 2.

Table 1 Stratigraphic column showing geological topological relationships and average physical properties. Lithologies
are indexed from 1 through 6 by order of genesis.

Lithology index | Geological relation Geological unit Magnetic Electrical
susceptibility (SI) resistivity (Qm)
6 Sedimentary Basin fill 3 0 30
5 Sedimentary Basin fill 2 0 10
4 Intrusive Dolerite 0.025 5000
3 Sedimentary Basin fill 1 0.0001 50
2 Intrusive Diorite 0.025 5000
1 Basement Ultramafic rocks 0.05 2000
— (a) Geological model Unit index Geological model
Eo = . - O
4 6
81 . | Bz
= Intrusive 4w
=) i 3£
= 2 Z
8 1
E 3L I I 1 Basement I I 1 1l
> 0 2 4 6 8 10 12 14 16 0 5000 10000 15000
Horizontal position (km) Easting (m)
— (b) True magnetic susceptibility model SI
o0
& 0.05
=l
=l
z 0.025
%)
=
8
£3 0
]
~ 0 2 4 6 8 10 12 14 16
Horizontal position (xm)
. (¢) True resistivity model
E 0 MT1 MT2 MT3 MT4 MTS MT6 MT7 MT: MT9 MT10
v v v v v v v ‘ v A .
= E
g1 30 ]
E 5000 =
2L 5000 102 &
2, 2000 | &
§ 10

o
[\S]
N

6 8 10 12
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Figure 2. (a) True geological model (b) true magnetic susceptibility model and (c) true resistivity model with the
simulated MT acquisition setup geometry in the top-left corner where triangles represent MT sites. The red dots in (b)
represents the 2D magnetic data line; MT sites are marked in (c). The inset in the top-right corner shows a top view of

the model with the magnetic data line in red and MT sites as triangles.
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3.2. Simulation of geophysical data
3.2.1. Magnetic data

The core 2D model is discretised into N,, X N,, X N, = 1 X 128 X 36 cells of dimensions equal to 127 X 127 X
90 m°. We generate one magnetic datum (reduced to pole magnetic intensity) per cell along the horizontal axis,
leading to 128 data point. To limit dispersion effects, we add 10 padding cells perpendicular to the profile and
extend it by 36 cells at each extremity along its length, leading to N, X N,, X N, = 11 x 192 x 36 cells of
dimensions 381 x 127 x 90 m®. The reference magnetic susceptibility model used for forward data computation

is shown in Figure 2.

Airborne magnetic data were simulated for a fixed wing aircraft flying at an altitude of 100 m above topography.
The forward solver we use follows Bhattacharyya (1964) to model the total magnetic field anomaly. In this
example, we model a magnetic field strength equal to 57,950 nT. It corresponds to the International Geomagnetic
Reference Field for the Rawlinna station, Western Australia.

We add normally distributed noise with an amplitude equal to 2.5% of the average amplitude of the data. We
simulate noise contamination by adding noise sampled randomly from by a normal distribution characterised by
a standard deviation of 3.8 nT and a mean value of 0 nT. For the simulation of geological “noise”, we then apply
a Gaussian filter to such random noise to obtain spatially correlated values. The uncontaminated and noisy data

are shown in Figure 3. For the inversion, the objective data misfit is set accordingly with the estimated noise.

Simulated total magnetic field anomaly

T T T T T T

500
400
£ 300
2
=
200 .
'E' noise-free data

100 —* noisy data

| |

2 4 6 8 10 12 14 16
horizontal dsitance along profile [km]

Figure 3. Simulated total magnetic field anomaly.
3.2.2. MT data

The synthetic MT data is computed using the complete 3D resistivity model derived from the 3D geological
model, to simulate the influence of 3D effects. The core of the electrical conductivity model used the same
discretization as the magnetic susceptibility model. Relationships between geological units and electrical
resistivities follow Table 1. A padding zone was added in both horizontal directions and vertically, in order to
satisfy the boundary conditions required by the forward solver. The final mesh has 160 x 160 x 62 cells in the x,
y and z directions, respectively. The ModEM 3D forward modelling code (Egbert and Kelbert, 2012; Kelbert et
al., 2014) was used to simulate the MT responses of this model. The MT responses were computed at 256 stations
10
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evenly spaced 1.016 kmona 16 x 16 grid (see inset in Figure 2). The frequency range spans from 10 KHz to 0.01
Hz, with 6 frequencies per decades, for a total of 37 frequencies; 5% magnitude Gaussian white noise was added

to the synthetic data before running the 1D inversions.

In the following subsections, we present the results of the modelling of synthetic data along a 2D section (see
Figure 2c) from the 3D resistivity volume, following the workflow proposed in Sect. 2. Along this section, 16 MT
sites are used. We start with the modelling of MT data to derive constraints and prior information for the inversion

of magnetic data.

3.3. 1D Probabilistic inversion of MT data and derivation of cover-basement interface probabilities

We perform the 1D MT inversions of each MT sounding independently, using a 1D trans-dimensional Markov
chain Monte Carlo sampler (Seillé and Visser, 2020). The presence of 2D and 3D effects was compensated for
using larger uncertainties, calculated using the workflow introduced in Seillé and Visser (2020) and summarized
in Sect. 2.1.

All the 1D trans-dimensional Bayesian inversions ran using 60 Markov chains with 10° iterations each. For each
chain, a burn-in period of 750,000 samples (75% of the total) was applied to ensure convergence, after which we
recorded 100 models equidistantly spaced. The model ensembles are then constituted by 6000 models for each
MT site. An example of the posterior distribution for three MT sites is shown in Figure 4. The distribution of
interfaces within the posterior ensemble of 1D models is described by a change-point histogram. Figure 4a and
Figure 4b show the model posterior distribution for MT sites MT1, MT8 and MT16.

From the posterior ensembles of models and interfaces, a depth to basement probability distribution is calculated
independently for each MT site. For this synthetic case, we simply assume that the transition from the sedimentary
cover to the basement occurs when a layer L1 of resistivity p; < py is followed by a layer L2 of resistivity p, >
Px, With py = 200 Qm. As mentioned in Sect. 2.1, this process is applied to each model of the ensemble and
allows the extractions of geological features of interest from the posterior model ensemble. If less than 0.1 % of
the all transitions observed in the ensemble presents the feature defined earlier using py, we then assume that the
transition is not observed. This situation occurs for MT sites MT14, MT15 and MT16 (see Figure 4c for site
MT16). Figure 4 shows the interface probability and the depth to basement interface probability p;,. for three

selected sites along the profile.
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Figure 4. Example of posterior distribution of resistivity for three MT sites MT1 in (a), MT8 in (b) and MT16 in (c),
located along the profile as shown in Figure 2, with the interface probability distribution and cover-basement interface
probability distribution. The number of transitions observed in the posterior interface distribution is indicated. Site
MT1 (a) is located in the western part of the profile in the basin, site MT8 (b) is located in the middle part of the profile,
in the basin, and site MT16 (c) is located in the eastern part where the intrusive rock unit outcrops (see Figure 2c).
High probabilities in the model posterior distribution is represented by warms colours, and low probabilities with cold
colours. The dashed lines represent the 5" and the 95" percentiles of the model posterior distribution and the black
line represents the median of the model posterior distribution. The values of ‘n’ correspond to the number of values
used in the corresponding plots.

3.4. Deriving constraints for magnetic inversion
3.4.1. Bound constraints

Starting from P;,,; values calculated for each MT site, we interpolate the probabilities from MT onto the mesh
used for magnetic data inversion. In this synthetic example, we use a linear interpolation scheme. The interpolated

probabilities from MT are shown in Figure 5.

The interpolated probabilities are used to define domains for the application of bound constraints during magnetic
data inversion. In this example, we complement information from MT inversions with the assumption that dolerite
outcrops and is mapped accurately (unit 4, intrusive, see Table 1 and Figure 2). Using this, we adjust the domains
for the corresponding few model-cells at surface level, only at two locations where we assume these outcrop to
<< «nown. The domains for the bound constraints we obtain are shown in Fiaure 5¢, domains 1 and 2 indicate
parts of the model where MT inversion suggests a single rock unit. This mcz:.C that in the corresponding model
cells, a single interval will be used in the definition of the bound constraints, while two intervals will be used

otherwise.

3.4.2. Prior model

The prior model for magnetic inversion is obtained using the MT derived rock unit probabilities (Figure 5a-c) and

the magnetic susceptibility of the rock units given in Table 1. We calculate it as follows, for the ith model-cell:

L
(my9), = > wlay;. (14)
j=1

We chose to use a; ;, the lower bound for each rock unit (or group of rock units), as it constitutes the most
conservative assumption about magnetic susceptibility from the range of plausible magnetic susceptibilities. The

resulting prior model is shown in Figure 5d.
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Figure 5. Interpolated probability of sedimentary cover (a) and non-sedimentary units (b), corresponding domains (c),
and (d) prior model from MT derived rock unit probabilities and magnetic susceptibility rock units observed in the
area. The location of the simulated MT sites is reminded in (a).

345

3.5. Inversion of magnetic data and uncertainty analysis

In this saction, we study the influence of MT-derived prior information onto magnetic inversion and estimate the

related . cudction of interpretation uncertainty. The different scenarios tested here are summarized in
350 Table 2, while the corresponding in version results are shown in Figure 6.

Table 2. Scenarios tested for the utilisation of MT-derived information in magnetic data inversion. ‘High confidence’
refers to the case where constraints are applied only where MT-derived rock units probabilities are equal to 1.

Case scenario Prior model | ADMM bound constraints | Smoothness constraints
(a) Unconstrained inversion Homogenous | None Global
(b) H  onfidence bo_unds Only where MT shows
constiuiis only (domains 1 and | Homogenous hi . Global
igh confidence
2 only)
(c) Global bound constraints Homogenous |c_|e?lr: ogenous, all model- Global
(d_) Glopal bound constraints MT-derived Homogenous, all model- Global
with prior model cells
(e)_ Local bound constraints with MT-derived | Locally defined, all cells Global
prior model
(f) Local boun(_j constraints and MT-derived | Locally defined, all cells Locally weighted
smoothness, with prior model
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Figure 6. Inversion results for the different scenarios tested. Cases (a) through (¢, currespond to inversions using prior
355 information and constraints summarised in

Table 2. The brown lines materialise the interfaces between geological units in the true model. ERRm refers to the
RMS model misfit.

We complement the calculation of ERR,,, and J (see values in Figure 6) with the membership analysis following
eg. (10) as a measure of interpretation uncertainty. The resulting membership values are shown in Figure 7, where

360  we added the values of the model’s information entropy H.
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Figure 7. Membership values for the non-magnetic lithologies. Cases (a) through (e) correspond to inversions using
prior information and constraints summarised in

Table 2. The brown lines materialise the interfaces between geological units in the true model. H refers to the
365 information entropy of the model (eq. 11).

A visual comparison of the membership values in Figure 7e and Figure 7f with the MT-derived domains (Figure

5c¢) indicates good consistency with MT domains (1) and (2) (single rock units inferred). It also shows that the
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proposed workflow has the capability to improve the recovery of the sedimentary cover thickness significantly

when compared to cases that do not use MT-derived ADMM constraints across the entire model (Figure 7a, b and

c).

To complete our analysis, we propose a simple metric combining two statistical indicators by weighting the RMS
model misfit resulting from geophysical inversion (ERR,,) with the corresponding entropy values (H), which
reflect geological interpretation uncertainty. Figure 8 shows the apparent relationship between the amount of prior
information and constraints used in inversion and the proposed indice -~ We observe a continuous reduction of
H X ERR,, from case (a) to (f), indicating a progression towards models that are closer to the true model and less
ambiguous to interpret. Overall, together with values of the Jaccard distance J (Figure 6), our testing reveals that,
using MT-derived ADMM constraints provides inversions results that are the closest to the true model. However,
it also suggests that from case (c) to (f), the impact of additional constraints decreases comparatively to cases (a)
to (c). It also indicates that using the prior model has a limited effect on inversion, as cases (a) and (c) show similar

values in Figure 8 and the corresponding models in Figure 6 and Figure 7 present similar features.
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Figure 8. Uncertainty metric H X ERR,,, for inversion cases (a) through (f).

4 Field case study

We propose an application example illustrating potential utilisations of the proposed sequential inversion
workflow. Using observations made in the synthetic case, our aim here is to integrate MT with magnetic data
inversion using the case relying on MT-derived ADMM bound constraints with homogenous starting model and
smoothing constraints. We note that, to the best of our knowledge, this is the first time that the ADMM algorithm

is used to constrain magnetic data inversion.

We used existing results of the depth to basement derived using MT within a probabilistic workflow (Seillé et al.,
2021) in the Cloncurry area in Queensland (see Figure 9). These results are used to constrain the magnetic

inversion.

4.1. Geoscientific context and area of interest

The depth to basement interface probability used for the magnetic inversion was derived by Seillé et al. (2021).
Using a similar workflow as presented in sections 2.1 and 3.3, they derived a cover-basement interface distribution

for each MT site using the model posterior distribution obtained using 1D probabilistic inversions. Then, a
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probabilistic depth to basement interface across the survey area was derived combining these MT depth to
basement estimates with drill-hole depth-to-basement estimates, constrained by a structural model in the form of
interpreted faults across the area. The combination of estimates coming from different sources of information to
derive a posterior distribution on the depth to basement was performed using the Bayesian Estimate Fusion
algorithm of Visser and Markov (2019). This probabilistic workflow allowed to obtain a probabilistic map of the
depth-to-basement interface. The structural model used during the Estimate Fusion assumed vertical faults, which
is a valid assumption given the near vertical behaviour of the main faults in the area (Austin and Blenkinsop,
2008; Case et al., 2018).

The geological map of the area is shown in Figure 9.
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Figure 9. a) Geological map of the area. The small dots are the MT sites of the Cloncurry MT survey. The red line is
the profile used in this study, and the red dots are the MT sites associated to this profile. b) Structural framework.
Modified from Seillé et al. (2021). The Constantine Domain to the west and the Soldiers Cap Domain to the east are
separated by the Mouth Margaret Fault; the red dashed line delineates the area we focus on.
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In this study, we focus on a 2D profile (L26, see location on map in Figure 9a), and invert the corresponding
magnetic data extracted from the anomaly map shown in Figure 10a and Figure 10b. The choice of an East-West
oriented profile was motivated by the North-South orientation of the main structures in the area and by the
geological features the known geology and the geophysical measurements suggest. The profile is nearly
perpendicular to these structures, making it suitable for use within a 2D inversion scheme. It crosses the North-
South oriented Mount Margaret Fault, which is thought to belong to the northern part of the regional Cloncurry
Fault structure, a major crustal boundary that runs North-South over the Mount Isa Province (Austin and
Blenkinsop, 2008; Blenkinsop, 2008). This boundary separates two major Paleoproterozoic sedimentary
sequences (Austin and Blenkinsop, 2008). The geological modelling performed by Dhnaram and Greenwood

(2013) also indicates that the Mount Margaret Fault separates two distincts domains, the Constantine Domain to
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the West and the Soldier Caps Domain to the East. In our study area, the Constantine domain is covered by non-
magnetic cover constituted by Mesozoic and Cenozoic sediments, lying on what is believed to be consitituted by
the Mount Fort Constantive volcanics, in some places intruded by the Willian — persuite pluton. On the eastern
side, the Soldier Caps Domain is also covered by Mesozoic and Cenozoic sediments, and the basement is

interpreted to be a succesion of volcanic and metamorphic rocks (Dhnaram and Greenwood, 2013).

The depth to basement probabilistic surface derived by Seillé et al. (2021) along the W-E profile (see Figure 10c)
presents a relatively shallow basement in the western part of the profile (~ 100 meters thick, with some lateral
variations). In the eastern part of the profile, the model indicates that a ...0-steps fault system controls the
thickening of the basin to the east. It reaches ~ 350 meters thickness in the eastern part. The depth to basement
model along the profile shown in Figure 10c is relatively well constrained by MT and drill hole data. However,
the interpolation method we used imposed spatial continuity between estimates that, using MT soundings with
relatively large separation (2 km) and sparse drill holes, did not allow for the definit  of small-scale depth to
basement lateral variations. Significant lateral variations were allowed during the interpolation using the fault
traces indicated by the structural data, defining areas where discontinuities are expected (in the location of the
faults), to encourage a relaxation of the spatial continuity and to allow for sharp jumps. The magnetic data shown

in Figure 10a suggest that other faults and other lateral discontinuities could exist.

In this work, we assume a non-magnetic sedimentary cover, and a magnetic basement. In addition, we assume
little to no remanent magnetization and little to no self-demagnetisation. Important remanence and self-
demagnetization can be observed in the vicinity of magnetite-rich IOCG deposits (e.g., Anderson and Logan,
1992; Austin et al., 2013), but we consider that there is no indication of such features along L26. Further to this,
we make this assumption for the sake of simplicity as the main object of this paper is the introduction of a new

sequential inversion workflow and to show that it is applicable to field data.

Under these premises, the features the magnetic data presents can be exploited to improve the image of the cover-
basement interface when integrated with prior information about the thickness of cover. In this context, the role

of magnetic data inversion constrained by MT is therefore multiple:

e to constrain the depth and extent of the magnetic anomalies and refine their geometry;

e toanalyse the compatibility between the constraints derived from MT and the magnetic data and resolve
some small-scale structures not defined by the MT constrains;

e to reduce the interpretation uncertainty of the cover-basement interface;

e to propose new scenarios in relation to the composition of the basement (in terms of its magnetic

susceptibility) and structure (through its lateral variations).

The depth of the cover-basement interface probability shown in Figure 10c is used to derive the domains required

by the spatially varying bound constraints using in magnetic inversion.
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4.2. Constrained Magnetic data inversion
4.2.1. Magnetic data preparation and extraction of prior information

We use the gridded reduced-to-pole (RTP) magnetic data from the Geological Survey of Queensland shown in
Figure 10 (https://geoscience.data.gld.gov.au/dataset/ds000018/resource/91106497-d463-4b83-8b01-
1c5539ab40b1, last accessed on 27/07/2021). Prior to the 2D inversion of the data along the line L26, we

manipulate and reformat the data. To account for variations in the measurements in the vicinity of the line, we

extract data from a 800 meters wide band around the profile (L26) (Figure 10a), as shown in more details Figure
10a. To obtain data corresponding to a 2D rectilinear profile, we then calculate the weighted average of this subset
of the dataset by assigning weights inversely proportional to the square of the distance of the measurement to L26,
as illustrated in Figure 10b.
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Figure 10. Data preparation. (a) map view of the data in the region of interest. The grayed-out area corresponds to the
zone considered for the averaging of the magnetic data. Red points are MT soundings considered in this study. Grey
circles are others MT soundings not used in this study. (b) shows data for magnetic inversion (solid line) and the
envelope of the data from the 800 meters band around L26 (light blue shade). The shades of blue represent the weight
assigned to the data points in the calculation of the average: the lighter the shade, the lower the weight. ¢) Depth of the
cover basement interface probability (Seillé et al., 2021). Red lines are the drill holes, and their bottom represent the
intersection with the basement. The drill holes plotted are projected a distance up to 800 meters away from the profile.
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We convert the interface probability shown in Figure 10c into basement and sedimentary rock probabilities using
the method described in Section 2.1 and 3.4.1. We assume that the sedimentary basin domain overlies the
basement domain, and derive the corresponding domains for the ADMM bound constraints using the domaining

procedure described above. The resulting domains are shown in Figure 11.
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Figure 11. MT-derived domains for cases with (1) sedimentary units only, (2) sedimentary and non-sedimentary units
and (3) non-sedimentary units only.

In what follows, we assume that sedimentary rocks have a low magnetic susceptibility comprised within the range
[-0.006, 0.006] SI, while the basement units, mainly composed of volcanic sequences, are modelled to have higher
magnetic susceptibilities within the interval [0.015 0.09] SI.

4.2.2. Inversion setup and results

To reduce computing time, we truncate the sensitivity matrix of the magnetic data inverse problem under the
assumption that model-cells beyond a given distance exert a negligible influence on the forward calculated data.
The sensitivity domain is reduced to a 25 km-radius cylinder of infinite height and depth around each data point
in a moving sensitivity domain approach (see examples in Cuma et al., 2012; Cuma and Zhdanov, 2014) that
assumes negligible contribution of the models-cells beyond a certain distance from the measurement’s location.
Using a similar approach, the results of Wilson et al. (2011), indicate that using a 25 km radius may result in
approximately 98% accuracy in the calculation of the response, which we assume to suffice for the purpose of our
application example. It our case, it allows a reduction of 67% of the size of the sensitivity matrix. We performed
inversion using 12 tt.zz2.ds on an Intel(R) Xeon(R) CPU E5-2630.

To examine the impact of different type of constraints, we first perform inversions using minimum prior
information and successively increase the amount of prior information from unconstrained inversion to using MT-

derived intervals for multiple bound constraints. The inversions we run consist of the following cases:

(1) constrained by homogenous smoothness constraints;

(2) constrained by homogenous smoothness constraints with lower and upper bound constraints;

(3) constrained by homogenous smoothness constraints with global, multiple bound constraints;

(4) constrained by homogenous smoothness constraints with local, multiple bound constraints derived from
MT.

The results for inversion cases (1) through (4) are shown in Figure 12.
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Figure 12. Inversion results. (a) through (d) corresponds to inversion types (1) through (4), respectively. (e) shows the
data fit for the 4 inversions shown. The grey shading shows the amplitude of the data shown in Figure 10 for calculating
the weighted average of the inverted anomaly. The dashed lines mark the horizontal extension of areas where
hypotheses made for magnetic inversion may be incompatible with the data.

The inversions reached a satisfactory data fit, exception made for the constrained inversion 4 (see the data fit in
Figure 12e). In that case a significant underfit of the magnetic data is observed within certain areas, which point
to an incompatibility between the magnetic data and the constraints applied. Four areas in the central part of the
model are slightly underfit, on length scales < 300 meters. On the eastern part of the profile, from 479 km East to
the most eastern part of the profile, an important underfit is observed. At this stage, this data misfit can indicate
that the constraints used are not appropriate. This could be due to an inexact positioning at depth of the structural
constrains, or to a change in the petrophysical behaviour of the basement in certain areas, which would link
differently the electrical properties of the depth to basement constrains to their magnetic properties. We propose
a 5™ inversion case where we adjust the bounds manually to examine hypotheses relaxing the constraints derived

by the combination of MT inversions and the magnetic susceptibility of rocks in the area.

From Figure 12, we identify five main areas where hypotheses made for the utilisation of MT-derived domains
need to be adjusted. In each case, the domain allowing sedimentary units may be deeper expected or the
basement may be less st~ ptible. We test the plausibility of such alternative scenarios and adapt the MT-derived

domains by adjusting the domains. We increased the depth of the non-sedimentary (i.e., basement) units in the
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eastern part of the model and between the areas marked by dashed lines in Figure 12, where the basement-
sedimentary interface may be deeper than anticipated or the basement characterized by less susceptible rocks. The
domains we use after adjustment are shown in Figure 13a, and inversion results in Figure 13b and c, respectively.
Figure 13d proposes an automated interpretation using membership values w using eq. (18); t " uestion marks

identify areas where the initial hypotheses have been revisited and which may require further investigations. The

arrows point to parts of the model where the basement may be at the shallowest | authorised by MT.
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Figure 13. (a) MT-derived domains adjusted following the adjustments suggested by magnetic data inversion, for
domains with (1) sedimentary units only, (2) sedimentary and non-sedimentary units and (3) non-sedimentary units
only. (b) is the inverted model for inversion case (5) and (c) is the inverted and field magnetic RTP data, with the
horizontal extent of the locations where M T bounds were adjusted; (d) shows the membership values to the sedimentary
and basement units obtained using eq. (10), overlaid with the original contours of MT-derived domains. In (c), the grey
shading shows the envelope of the data shown in Figure 10 for calculating the weighted average of the inverted anomaly.

Beyond the possibility to revisit hypotheses made at earlier stages of the workflow, we get insights into the
structure and magnetic susceptibility of the basement. While electrical conductivity and magnetic susceptibility
may be sensitive to change in rock type, there are scenarios where they exhibit differing sensitivity to texture and
grain properties, respectively. For instance, metamorphism and alteration might affect electrical conductivity and
magnetic susceptibility differently (Clark, 2014; Dentith et al., 2020). Under these circumstances, our results can
provide insights into plausible geological processes given sufficient prior geological information about the

deformation history.
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4.3. Interpretation

From a multi-physics modelling point of view, the results shown in the previous Sect. shows a general agreement
between the MT-derived constraints and the magnetic data. However, the results also point to incompatibilities in
a few parts of the model. We identified two major areas where incompatibility occurs:

1) a-smaller inconsistent areas in the western part of the survey;
2) a large inconsistent area east of the Mount Margaret Fault.

We interpret these incongruencies as being mainly due to the different sensitivities of the two geophysical methods
to different geological features and to the petrophysical variability of the basement in the area.

The greater depth extent of some of the lower magnetic susceptibility zones required by the magnetic data in the
western part of the survey suggests that the depth to magnetic source is greater than suggested by the constraints.
Adjustments to the constraints allowed a better data fit. A low magnetic response between kms 460 and 470 East
(Figure 10) is assumed to be the response to low magnetic susceptibilities and is interpreted to be granitic
intrusions of the William-Naraku Supersuite (Dhnaram and Greenwood, 2013). The presence of such intrusions
offers a plausible explanation for the discrepancies between the magnetic and MT modelling. On the one hand,
the MT data modelling might not able to distinguish between an electrically resistive basement and an electrically
resistive intrusion, while the magnetic data modelling could not distinguish between a non-magnetic cover and a
non-magnetic intrusion. On the other hand, magnetic data inversion can differentiate the low susceptibility
intrusion from the higher susceptibility volcanic rocks, and the MT data is sensitive to the basal cover interface
above both the volcanic rock and the intrusion. The constrained inversion permits detection of the lateral extent
of the intrusion while estimating cover thickness. While detailed modelling of higher resolution data would be
required to refine the geometry of these intrusive bodies, our modelling suggests that the intrusion could be

modelled as several smaller intrusions.

East of the Mount Margaret Fault, the incompatibility between the original MT-derived constraints and the
magnetic data points to regional scale structures. Drill hole observations indicate basement not exceeded 350
meters depth. If we assume a high-susceptibility basement, which is common to the whole area (Dhnaram and
Greenwood, 2013), the magnetic model requires a very thick non-magnetic cover layer to reconcile the data which
is incompatible with our geological knowledge of the area. In that case, we need to reconsider our definition of
the basement. The north-trending Mount Margaret Fault (see Figure 9) separates two geological domains
exhibiting different basement characteristics. East of the Fault is the Soldiers Cap domain and is predominantly
non-magnetic volcanic rocks. By relaxing the geological model constraints in that part of the model both
sedimentary and non-sedimentary units are allowed (Figure 11a) and we can satisfactorily fit the data. The
necessity of considering non-magnetic volcanic rocks in the Soldier Caps domain agrees with the magnetic
modelling performed by Dhnaram and Greenwood (2013).

23


reviewer
Durchstreichen


575

580

585

590

595

600

605

5 Discussion

We have presented a workflow for sequential joint modelling of geophysical data, and applied it to synthetic and
field measurements. In this study we used constraints in the form of interface probabilities derived from a
probabilistic workflow driven by MT data, but it is general in nature and is not limited to a particular geological
or geophysical modelling method to generate the inputs. This has allowed us to report the utilisation of the ADMM

algorithm to constrain magnetic data inversion for the first time

This workflow presents several advantages. It is computationally inexpensive by use of standalone inversions.
The inversion of the MT dataset used to derive the constraints was performed only once. Then, a series of
constrained magnetic inversions was run to test different geophysical and petrophysical hypotheses. It shows the
example of a fast and flexible approach to test different structural and petrophysical assumptions while modelling
data sensitive to different physical parameters. It allows to focus the modelling efforts on survey-specific features
(anomalies, geological structures) when appropriate petrophysical information is available. However, as with
generalizable methods, strengths become limitations under certain circumstances. For instance, in the case of MT
and magnetic data inversions as proposed in this work, the electrical resistivity and magnetic susceptibility for the
rock types of interest is dependent on a range of factors and processes (such as porosity, permeability, rock
alteration, etc.) such that their correlation may be case-dependant (see Dentith et al., 2020; Dentith and Mudge,
2014). While we may surmise that it remains reasonable to assume the existence of such correlation in hard rock
scenarios, it may not always hold in basin environments. For example, one can easily think of a basin exploration
case where electrical resistivity increases rapidly with increasing hydrocarbon concentration in reservoirs, while
changes in magnetic susceptibility might make the use of magnetic data inversion redundant. In such case, other
property pairings can be considered, such as electrical resistivity and seismic attributes (see examples of Le et al.,
2016; Tveit et al., 2020, who use seismic inversion to extract prior information for CSEM inversion). Further to
this, the utilisation of magnetic data inversion for the deeper part of the crust is limited to depths shallower than
the Curie point’s (typically from approximately 10 to a few 10s of kilometres under continents). For deeper

imaging of the crust, the workflow we propose may be suited to the utilisation of gravity data with MT.

An assumption worth examination is whether the study area is adequately represented by two geological domains.
In the cases we investigated, these domains were defined by the probability of observing only two rock classes
(basement and non-basement). While this assumption reduces the risk of misinterpretation as no hypotheses are
made to distinguish between the different sedimentary units or rocks of different nature in the basement, it also
then limits the interpretations that can be made from the results presented. We expect that provided that the rock
units present ‘desirable’ features, i.e., distinctive magnetic susceptibility and resistivities (or other properties
depending on the geophysical techniques considered) several rock types can be considered in the modelling. Such
discriminative aspects of the petrophysics needs to be ascertained while defining the number of distinctive
domains that may be present in the study area. This necessarily requires robust petrophysical data to be available
given the strong constraint that these domains impart on inversion. However, in the absence of petrophysical data
or the number and character of geological domains, the magnitude of misfit can inform whether a proposed
number of domains is plausible, driving data acquisition or refinement of the conceptual geological model.

Methods that exploit this approach remain to be investigated further in future case studies.
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The application case was performed in 2D to illustrate the workflow. Extending the presented work to large scale
problems in 3D is straightforward as the inversion methods employed in this study were designed for 3D
modelling. The 1D MT modelling and interpolation schemes present excellent scalability. The Tomofast-x engine
(Giraud et al., 2021b; Ogarko et al., 2021b) is implemented using 3D grids. It presents good scalability and it
offers the possibility to reduce the size of the computation domain to save memory when calculating the sensitivity
matrix in the same fashion as Cuma et al. (2012), and Cuma and Zhdanov (2014), for large-scale potential field
data modelling. On this basis, the workflow presented here might be applicable to large datasets using, for
instance, MT data from the EarthScope USArray MT program
(http://www.usarray.org/researchers/obs/magnetotelluric/, last accessed on 10/09/2021) or the AusLAMP

program (https://www.ga.gov.au/eftf/minerals/nawa/auslamp, last accessed on 10/09/2021) and combined with

publicly available potential field data. Studies of this kind would span continents for crustal investigations to
discover tectonic discontinuities and terrane interfaces. Current investigations on Tomofast-x comprise the
application of wavelet compression operators to accelerate the inversion in the same way as Li and Oldenburg
(2003) and Martin et al. (2013) and the development of joint inversions using the ADMM constraints for multiple
bound constraints.

Another straightforward extension of the workflow is the use of gravity data simultaneously with, or instead of,
magnetic data since it is already implemented in Tomofast-x (Giraud et al., 2021b). Giraud et al. (2020) presented
a synthetic MT-constrained gravity inversion, using a similar workflow as the one presented here. This would be
of particular interest in the Cloncurry region (Queensland, Australia), where for instance, Moorkamp (2021)
recently investigated the joint inversion of gravity and MT data, and where our workflow could be applied using
the MT modelling results of Seillé et al. (2021).

From a geophysical point of view, magnetic inversion is affected by the non-uniqueness of the solution to the
inverse potential field problem despite prior information and constraints being used. The workflow could be
improved by using a series of models representative of the geological archetypes that can be derived from the
ensembles of 1D MT models. Geological archetypes are distinctly different structural configurations (or
topologies) that plausibly exist for a given location with available data (Pakyuz-Charrier et al., 2019, Wellmann
and Caumon, 2018). Identification of the archetypes could be achieved from the ensemble of geological model
realisations in the same spirit as Pakyuz-Charrier et al. (2019), who use a Monte Carlo approach to generate a

range of topologies which are then examined for distinct clusters which represent the archetypes.

From a methodological point of view, it could be argued that simultaneous joint geophysical inversion combining
structural and petrophysical constraints might outperform the workflow we proposed here. However, this would
make the modelling process more demanding combined with limitations based on cases where determining the
causitive relationships between petrophysics supporting joint approaches poses a challenge. The workflow we
propose here presents a few advantages over a joint inversion scheme, in the sense that it does not require both
datasets to be inverted simultaneously under a defined set of petrophysical and/or structural constraints. The time
required to run a joint inversion being limited by the running time of the more computationally expensive
technique, it can limit the range of tests to be performed. In this study, we could run rapidly many 2D constrained
magnetic inversions, even if the 1D probabilistic inversions of the MT data (and posterior fusion) required

significant longer running time compared to the 2D constrained magnetic inversion. This point would particularly
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be relevant in the case of large 3D datasets. This approach may represent a step in the modelling workflow which
...... is useful to explore, understand and refine structural and petrophysical relationships between different

physical parameters before undertaking more demanding joint inversions.

In the field application case presented here, the probabilistic depth to basement map to derive constraint-assumed
lateral continuity of the depth to basement estimates at a large scale, not accounting for c...all-scale lateral
variations. Thus, uncertainty for depth to basement may be underestimated at some locations, in particular in
between MT sites as shallow depths. In such cases, the existence of incompatibilities between MT-derived
constraints and the m 00 2tic data might require reconsidering the spatial continuity assumptions taken during the
calculation of the probabilistic depth to basement surface. Extensions of this work may be devised to alleviate
some of the limitations of the workflow. For instance, magnetic susceptibility from the inversion of magnetic data
could be mapped back to a resistivity model in order to calculate forward MT data for validation (dashed line in
Figure 1), or to constrain the next cycle of MT inversions in the case the workflow is extended to cooperative joint
inversion. It would also be straightforward to use to a level-set inversion that can consider an arbitrary number of
geological units (e.g., Giraud et al., 2021) using MT modelling as a source of prior information and constraints.
We have used hard bounds using the ADMM algorithm, which can easily be complemented or replaced by the
use of multi-modal petrophysical distributions as available in Tomofast-x (e.g., mixture models as in Giraud et
al., 2017, 2019) as an alternative.

6 Conclusion

We have introduced, tested on synthetic, and applied to field data a cooperative inversion scheme for the
integration of MT and magnetic inversions. We have shown that despite its simplicity, the workflow we propose
efficiently leverages the complementarities between the two methods and has the capability to improve our
understanding of the cover-basement interface and of the basement itself. We have tested our workflow on a
synthetic study that illustrates the flexibility of the method and the different possibilities our workflow offers as
well as their limitations. In the field application case (Cloncurry area, Queensland), we have shown how the
quantitative integration of MT and magnetic data may bring insightful results on geological structural and
petrophysical aspects, opening up new avenues for interpretations of the geology of the area and prompting future

works.

7 Authors’ contribution

JG and HS designed the study with inputs from the rest of the authors. JG and HS and generated the magnetic and
MT synthetic data, respectively. JG performed the magnetic data inversions. JG redacted the manuscript with
inputs from HS who is the main contributor to MT-related aspects, and comments from the rest of the authors. HS
performed the synthetic MT data modelling, with support from GV. HS and GV derived the MT depth to basement
results used in the case study. ML and MJ provided geological support and knowledge. ML participated in both
the geological and geophysical interpretation of the results and edited the relevant sections of the manuscript. ML
provided detailed comments during its redaction. GV participated in the design of the methodology and the

interpretation of results.

26


reviewer
Kommentar zu Text
either which or that

reviewer
Durchstreichen

reviewer
Eingefügter Text
at

reviewer
Durchstreichen
constraints

giraud9
Note
Thanks, we have corrected this.

giraud9
Sticky Note
Corrected. 

giraud9
Sticky Note
Corrected. Thanks. 


685

690

695

700

705

710

VO and JG worked together on the development of functionalities of Tomofast-x that are introduced and applied
in the presented work. All authors provided feedback on the different versions of the manuscript and during the
progress of the study.

8 Competing interests

The authors declare that they have no conflict of interest.

9 Acknowledgements

JG, ML and MJ are supported, in part, by Loop — 25 Enabling Stochastic 3D Geological Modelling
(LP170100985) and the Mineral Exploration Cooperative Research Centre whose activities are funded by the
Australian Government's Cooperative Research Centre Program. This is MinEx CRC Document 2021/36. ML is
supported by ARC DECRA DE190100431. HS and GV are supported by the CSIRO Deep Earth Imaging Future

Science Platform. We acknowledge the developers of the ModEM code to make it available.

10 Data and code availability

The modified version of the structural model of Pakyuz-Charrier (2018) used here is given in Seillé and Giraud
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Appendix A

We reformulate the geophysical inverse problem in eq. (5) in its ADMM form as:

minimize 6(d, m) + f(z) (15)
subjecttom —z =0,
where f is the indicator function of B (see eq. 5.1 in Boyd, 2011, for details).We solve this problem iteratively by

alternating the updates of m and z following :

m**t = argmin(6(d, m) + 7| Wapww (m — 2 + uOII3), (16)
Zk+1 =g (mk+1 + uk)’ (17)
Wl = Yk mkt — gk (18)

where u is called a dual variable, T € R* is the overall weight assigned to the ADMM constraints, and k is the
current iteration number; W 4pym 1S @ diagonal matrix we introduce here to define spatially varying weights
assigned to the bound constraints during inversion. It controls the relative strength of the ADMM constraints in
the different model cells. Here, we set it as a function of the MT inversion results Py such that W pym =

f(Pyr)- The ADMM variable z is calculated by the projection of x onto B as:

T[B (x) = [T[Bl (xl)l T[Bz (xz), ey T[Bn (xn)]! Wlth (19)
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875  The updated model m*** is then calculated by solving the inverse problem using the LSQR algorithm of Paige
and Saunders (1982). We refer the reader to Ogarko et al. (2021a) for more details. We illustrate the application
of such projection using two intervals in Figure A 1.

T projection using two intervals

v =x line
== = = Projection
Allowed range of values
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Figure A 1. Projection using 1t as per eq. 19 using two intervals as follows: [0, 0.005], [0.025, +oo[. This example uses the

880 intervals selected in the synthetic case study illustrating the proof-of-concept introduced in Sect. 3.
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