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Abstract. We propose, test and apply a methodology integrating 1D magnetotelluric (MT) and magnetic data 

inversion, with a focus on the characterization of the cover-basement interface. It consists of a cooperative 

inversion workflow relying on standalone inversion codes. Probabilistic information about the presence of rock 20 

units is derived from MT and passed on to magnetic inversion through constraints combining such structural 

constraints with petrophysical prior information. First, we perform the 1D probabilistic inversion of MT data for 

all sites and recover the respective probabilities of observing the cover-basement interface, which we interpolate 

to the rest of the study area.  We then calculate the probabilities of observing the different rock units and partition 

the model into domains defined by combinations of rock units with non-zero probabilities. Third, we combine 25 

such domains with petrophysical information to apply spatially-varying, disjoint interval bound constraints to 

least-squares magnetic data inversion. We demonstrate the proof-of-concept using a realistic synthetic model 

reproducing features from the Mansfield area (Victoria, Australia) using a series of uncertainty indicators. We 

then apply the workflow to field data from the prospective mining region of Cloncurry (Queensland, Australia). 

Results indicate that our integration methodology efficiently leverages the complementarity between separate MT 30 

and magnetic data modelling approaches and can improve our capability to image the cover-basement interface. 

In the field application case, our findings also suggest that the proposed workflow may be useful to refine existing 

geological interpretations and to infer lateral variations within the basement.  
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1 Introduction  

Geophysical integration has been gaining traction in recent years, be it from the joint or cooperative point of 35 

views. A number of approaches for the joint modelling have been developed with the goal of exploiting the 

complementarities between different datasets (see for instance the reviews of Lelièvre and Farquharson, 2016, 

and Moorkamp et al., 2016, and references therein). As summarized in the review of Ren and Kalscheuer (2019), 

“joint inversion of multiple geophysical datasets can significantly reduce uncertainty and improve resolution of 

the resulting models”, be it for the modelling of a single property (e.g., resistivity for joint controlled-source 40 

electromagnetic and magnetotelluric MT data, or density for joint gravity anomaly and gradiometry data), or of 

multiple properties (e.g., the joint inversion of seismic and gravity data to model P-velocity and density). In the 

second case, joint inversion approaches can be grouped into two main categories based on the hypothesis they 

rely on. Structural approaches allow to jointly invert datasets with differing sensitivities to the properties of the 

subsurface through the premise that geology is such that spatial changes in inverted properties should be 45 

collocated. Structural constraints can then be used as a way to link two or more datasets jointly inverted for by 

encouraging structural similarity between the inverted models (Haber and Oldenburg, 1997; Gallardo and Meju, 

2003). Alternatively, petrophysical approaches utilise prior petrophysical information (e.g., from outcrops, 

boreholes, or the literature) to enforce certain statistics in the recovered model so that it resembles the 

petrophysical measurements’ (Lelièvre et al., 2012; Sun and Li, 2015; Giraud et al., 2017; Astic and Oldenburg, 50 

2019). Whereas structural and petrophysical approaches are well suited to exploit complementarities between 

datasets in a quantitative manner, running joint inversion might be, in practice, challenging and requires 

significantly more computing power than the separate inversions.  

In this contribution, we present a new multidisciplinary modelling workflow that, instead of the more common 

simultaneous joint inversions, relies on sequential, cooperative modelling. It follows the same objectives as the 55 

two categories of joint inversion mentioned above in that structural information is passed from one domain to the 

other and it uses petrophysical information to link domains. The development of the sequential inversion scheme 

we present was motivated by a similar idea as Lines et al. (1988) who states that “the inversion for a particular 

data set provides the input or initial model estimate for the inversion of a second data set”. A further motivation 

was to design a workflow capable of integrating the inversion of two or more datasets quantitatively using 60 

standalone modelling engines that run independently. The general concept behind the methodology we present is 

summarised in Figure 1. 

In this paper, the workflow is applied to the sequential inversion of magnetotelluric (MT) followed by magnetic 

data, taking into account the importance of robustly constraining the thickness of the regolith in hard rock imaging 

and mineral exploration. This is motivated by the relative paucity of works considering cooperative workflows to 65 

integrate MT and magnetic data together with the recent surge in interest for the characterisation of the depth-to-

basement interface in mineral exploration, despite these two geophysical methods being part of the geoscientists’ 

toolkit for depth-to-basement imaging. Historically, MT has often been integrated with other electromagnetic 

methods or with seismic data, and with gravity to a lower extent (see review of the topic of Moorkamp, 2017). It 

is, however, seldom modelled jointly with magnetic data unless a third dataset is considered (e.g., Oliver-Ocaño 70 

et al., 2019 ; Zhang et al., 2020; Gallardo et al., 2012; Le Pape et al., 2017). We surmise that this is because (1) 

the interest for integrating MT with other disciplines arose primarily in oil and gas and geothermal studies and 
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relied on structural similarity constraints for reservoir or (sub)salt imaging, (2) of the difference in terms of spatial 

coverage between the two methods elsewhere, (3) the differences in terms of sensitivity to exploration targets and 

(4) the difficulty to robustly correlate electrical conductivity and magnetic susceptibility. Bearing these 75 

considerations in mind, we developed a workflow incorporating MT and magnetic inversion with petrophysical 

information and geological prior knowledge.  

In the workflow we develop, we exploit the differences in sensitivity between MT and magnetic data. On the one 

hand, the MT method, used in a 1D probabilistic workflow as presented here, is well-suited to recover vertical 

resistivity variations and interfaces, especially in a sedimentary basin environment (Seillé and Visser, 2020). MT 80 

data are, however, poorly sensitive to resistors, especially when they are overlaid by conductors (e.g., Chave et 

al., 2012), which makes it difficult to differentiate between highly resistive features, such as intra-basement 

resistive intrusions. On the other hand, magnetic data inversion is more sensitive to lateral magnetic susceptibility 

changes and to the presence of vertical or tilted structures or anomalies. Bearing this in mind, we first derive 

structural information across the studied area in the form of probability distributions of the interfaces between 85 

geological units, extracted from the interpolation of the results the 1D probabilistic inversion of MT data. From 

there, the probability of occurrence of geological units can be estimated in 2D or 3D. These probabilities are used 

to divide the area into domains where only specific units can be observed (e.g., basement, sedimentary cover, or 

both). Such domains are then passed to magnetic data inversion, where they are combined with prior petrophysical 

information to derive spatially varying bound constraints that are enforced using the alternating direction method 90 

of multipliers or 2D or 3D inversion (see Ogarko et al., 2021a, for application to gravity data using geological 

prior information). Finally, uncertainty analysis of the recovered magnetic susceptibility model is performed and 

rock unit differentiation allows to control the compatibility of magnetic inversion results with the MT data. The 

workflow is summarised in Figure 1.  

 95 

Figure 1. Integrated MT-magnetic integration workflow summary showing the role of the different techniques. 
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The remained of this paper is organised as follows. We first introduce the methodology and summarise the MT 

and magnetic standalone modelling procedures we rely on. We then introduce the proof-of-concept in detail using 

a realistic synthetic case study based on a model of the Mansfield area (Victoria, Australia), which we use to 

explore the different possibilities for integrating MT-derived information and petrophysics offered by our 100 

workflow. Following this, we present a field application using data from Cloncurry (Queensland, Australia) where 

we tune our approach to the specificity of the area. Finally, this work is placed in the broader context of 

geoscientific modelling and perspectives for future work are exposed in the discussion section.  

2 Methodology  

2.1. MT inversion for interface probability  105 

The MT method is a natural source electromagnetic method. Simultaneous measurements of the fluctuations of 

the magnetic and electric fields are recorded at the Earth’s surface under the assumption of a source plane wave. 

The relationship between the input magnetic field H and the induced electrical field E, which depends on the 

distribution of the electrical conductivities in the subsurface, is described by the impedance tensor Z, as follows: 

𝐄 = 𝐙 ∙ 𝐇. (1) 

Resistivity models derived from MT data are found by forward modelling and inversion of the impedance tensor 110 

Z, generally using gradient-based deterministic methods (see, e.g., Rodi et al., 2012). Deterministic approaches 

provide a single solution which minimizes the objective function considered during the inversion, but limited 

information of the uncertainty around this model can be derived. A global characterization of the uncertainty is 

possible using a Bayesian inversion framework, but its expensive computing cost limits its application to 

approximated and/or fast forward modelling solvers (Conway et al., 2018; Manassero et al., 2020; Scalzo et al., 115 

2019). In this study we alleviate this by considering a 1D behaviour of the Earth. While this assumption can stand 

within layered sedimentary basins, it may fail in more complex geological environments. As we describe below, 

we account for this source of uncertainty within our Bayesian inversions. 

Within the context of Bayesian inversion, the solution of the inverse problem consists in a posterior probability 

distribution, calculated from an ensemble of models that fits the data within its error. The posterior probability 120 

distribution p(𝒎𝑴𝑻|𝒅𝑴𝑻) is obtained using Bayes’ theorem, defined as: 

p(𝒎𝑴𝑻|𝒅𝑴𝑻) ∝ p(𝒅𝑴𝑻|𝒎𝑴𝑻)  ×  p(𝒎𝑴𝑻). (2) 

The prior distribution p(𝒎𝑴𝑻) contains prior information on the model parameters 𝒎𝑴𝑻. In this work, we assume 

a relatively uninformed prior knowledge, using a uniform prior distribution on the electrical resistivity bounds 

with values set between 10−2 and 106 Ω.m. Using a uniform prior with such wide boundaries allows the inversion 

to be mainly data-driven and to remain independent from assumptions about the distribution of electrical 125 

resistivity into the Earth. A Gaussian likelihood function p(𝒅𝑴𝑻 | 𝒎𝑴𝑻) defining the data fit is used is used:  

p(𝒅𝑴𝑻 | 𝒎𝑴𝑻) ∝ exp (−
1

2
(𝒅𝑴𝑻 − 𝑔𝑀𝑇(𝒎𝑴𝑻))T 𝐂d

−1 (𝒅𝑴𝑻 − 𝑔𝑀𝑇(𝒎𝑴𝑻))) 
(3) 
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The term inside the exponential is the data misfit, which is the distance between observed data 𝒅𝑴𝑻 and simulated 

data 𝑔𝑀𝑇(𝒎𝑴𝑻), scaled by the data covariance matrix 𝐂𝑑, which defines data errors and their correlation across 

frequencies. We consider two main sources of uncertainty to calculate 𝐂𝑑:  

 data processing errors, which we model introducing a matrix 𝐂𝑝; 130 

 errors introduced by the violation of the 1D assumption when using 1D models, which we model 

introducing 𝐂𝑑𝑖𝑚. 

To calculate 𝐂𝑑, we first define 𝐂𝑝, the covariance matrix accounting for the EM noise and measurement errors, 

which is estimated during MT data processing. In this study we assume uncorrelated processing noise across 

frequencies, reducing 𝐂𝑝 to a diagonal matrix. Following this, we define 𝐂𝑑𝑖𝑚 as the covariance matrix accounting 135 

for the discrepancy between 1D models and the multi-dimensional Earth the data is sensitive to. The analysis of 

the characteristics of the MT phase tensor allows to detect 2D and 3D effects present in the MT data as a function 

of frequency (see Caldwell et. al., 2004).  

Following a dimensionality error model developed by Seillé and Visser (2020) for depth to cover mapping 

applications, we translate the phase tensor parameters into dimensionality uncertainties to compensate for the 140 

limitations of the 1D assumption when performing 1D inversion. This dimensionality uncertainty 𝐂𝑑𝑖𝑚 is added 

to the existing data uncertainty 𝐂𝑝, such that the inversion considers both sources of uncertainty in 𝐂𝑑, which we 

calculate as 𝐂𝑑 = 𝐂𝑝 + 𝐂𝑑𝑖𝑚. The 1D MT trans-dimensional Markov chain Monte Carlo algorithm used in this 

study (Seillé and Visser, 2020) solves for the resistivity distribution at depth, and the number of layers in the 

model and takes as input the determinant of the impedance tensor Z. The output of the probabilistic inversion 145 

consists in an ensemble of models describing the posterior probability distribution.  

In this paper, we are interested in the depth of the basement. For each MT sounding, each model of the model 

ensemble is analysed and the transitions from a conductive sedimentary layer into a resistive basement is extracted 

in order to construct a probability distribution of the depth to basement interface. This feature extraction relies on 

assumptions made on the electrical resistivity of the different lithologies expected, which are formulated on a case 150 

by case basis. We first calculate the depth to basement interface probability 𝑝𝑖𝑛𝑡  for each MT sounding. These 

probabilities are derived for each MT sites and can be interpolated on the mesh used for magnetic inversion. The 

interpolation of such probability distributions can be performed using different approaches and integrate various 

types of geophysical or geological constraints. In this work, we use a linear interpolation scheme in the synthetic 

case study, and the Bayesian Estimate Fusion algorithm of Visser and Markov (2019) in the case study. We note 155 

that other techniques could be used for a similar purpose, such as the Bayesian Ensemble Fusion (Visser, 2019; 

Visser et al., 2021), or discrete and polynomial trend interpolations (Grose et al., 2021). Following this, assuming 

a sedimentary basin lying on top of the basement, we can define for each model cell the probability of being in 

presence of the basement 𝑝𝑏𝑠𝑚𝑡  as:  

𝑝𝑏𝑠𝑚𝑡 = 𝑃𝑖𝑛𝑡 , (4) 

with 𝑃𝑖𝑛𝑡  the cumulative distribution function of the probability function 𝑝𝑖𝑛𝑡, from the surface downwards. 160 

Consequently, for each cell within the model, the probability of being in presence of sedimentary rocks, 𝑝𝑠𝑒𝑑 , is 

given as 𝑝𝑠𝑒𝑑 = 1 − 𝑝𝑏𝑠𝑚𝑡 . 

reviewer
Kommentar zu Text
site

reviewer
Kommentar zu Text
This fact is not further referred to or used elsewhere in the manuscript. Out of context?

reviewer
Notiz
Unclear how Pint is derived.



6 

 

This allows us to derive three domains characterised by 𝑝𝑠𝑒𝑑 = 0 (basement only), 𝑝𝑠𝑒𝑑 ∈ ]0,1[ (basement and 

non-basement units allowed) and 𝑝𝑠𝑒𝑑 = 1 (non-basement only) that will define the intervals used for the bounds 

constraints 𝐵 applied to magnetic data inversion as summarised below.  165 

2.2. Formulation of the magnetic data inverse problem  

In this section, we summarise the method used to enforce disjoint interval bound constraints during magnetic data 

inversion. We largely follow Ogarko et al. (2021a), which we extend to locally weighted bound constraints. The 

geophysical inverse problem is formulated in the least-squares sense (see chap. 3 in Tarantola, 2005). The cost 

function we minimize during inversion is given as:  170 

𝜃(𝒅𝒎𝒂𝒈,𝒎𝒎𝒂𝒈) = ‖𝒅𝒎𝒂𝒈 − 𝑔𝑚𝑎𝑔(𝒎𝒎𝒂𝒈)‖2
2  + α𝑚

2‖𝑾𝒎(𝒎
𝒎𝒂𝒈 −𝑚𝑝

𝑚𝑎𝑔
)‖

𝟐

2
+

α𝑔
2‖𝑾𝑔𝛻𝒎

𝒎𝒂𝒈‖
𝟐

2
,  

(5) 

where 𝒅𝒎𝒂𝒈 is the observed data and 𝑔𝑚𝑎𝑔(𝒎𝒎𝒂𝒈) the forward response produced by model 𝒎𝒎𝒂𝒈, a vector 

of ℝ𝑛, with 𝑛 is the total number of model-cells. The second term corresponds to the model damping (or 

smallness) term, with weight α𝑚, depth weighting operator 𝑾𝒎; 𝑚𝑝
𝑚𝑎𝑔

 is the prior model. The operator 𝑾𝒎 is 

defined following Portniaguine and Zhdanov (2002). The third term is the gradient damping (or smoothness) term. 

The diagonal matrix 𝑾𝑔 adjusts the strength of the regularization. It is modulated by α𝑔 (introduced in details in 175 

the next section). 

We solve eq. (4) while constraining the inversion using multiple bound constraints. The problem can be expressed 

in its generic form as:  

minimize 𝜃(𝒅,𝒎) (6) 

s.t. 𝑚𝑖  ∈  ℬ𝑖 , 1 ≤ 𝑖 ≤ 𝑛   

where ℬ𝑖  is the interval, or set of intervals, binding the ith model-cell. The general definition of 𝐵𝑖  is:  

𝐵𝑖 = ⋃ [𝑎𝑖,𝑙 , 𝑏𝑖,𝑙]
𝐿𝑖
𝑙=1 , with 𝑏𝑖,𝑙 > 𝑎𝑖,𝑙 , ∀ 𝑙 ∈ [1, 𝐿𝑖] and 𝑖 ∈ ℐ (7) 

where 𝑎𝑖,𝑙 and 𝑏𝑖,𝑙 define, the bounds of the inverted property 𝑙 is the index of the rock unit; 𝐿𝑖 is the number of 180 

bounds in the ith interval; ℐ contains the indices of the model-cells where the bound constraints are applied. A 

summary of the algorithm solving this problem using the alternating direction method of multipliers technique 

(ADMM) is given in Appendix A.  

2.3. Integration with MT modelling  

The set of intervals ℬ from eq. (6) and (7) can be defined homogenously across the entire model or accordingly 185 

with prior information. In the latter case, it allows to define spatially-varying bound constraints and to activate 

them only is selected parts of the study area. In the case presented by Ogarko et al. (2021a), probabilistic 

geological modelling was used to determine such bounds constraints for gravity inversion. The approach we 

propose here follows the same philosophy. Instead, we use probabilistic MT modelling, which can be used to 

estimate the observation probabilities of rock units. From such probabilities, we can then calculate the bounds 𝐵𝑖  190 

for the 𝑖th model-cell using: 
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𝐵𝑖 = ⋃ [𝑎𝑖,𝑙 , 𝑏𝑖,𝑙]

𝐿𝑖

𝑙=1
𝑃𝑖,𝑙>𝑃𝑡,𝑙

 , (8) 

where 𝑃𝑖,𝑙 is the observation probability for the 𝑙th rock unit; 𝑃𝑡,𝑙 is a threshold value above which the probability 

is considered sufficiently high to be considered. In what follows we use 𝑃𝑡,𝑙 = 0. 

2.4. Uncertainty metrics  

2.4.1. Model misfit 195 

In the synthetic study we present, we evaluate the capability of inversions to recover the causative model using 

the root-mean-square (RMS) misfit between the true and inverted models (RMS model misfit). We calculate this 

indicator as:  

𝐸𝑅𝑅𝑚 = √
𝟏

𝑛
∑(𝑚𝑖

𝑡𝑟𝑢𝑒 −𝑚𝑖
𝑖𝑛𝑣)

𝟐
𝑛

𝒊

, (9) 

where 𝒎𝒕𝒓𝒖𝒆 and 𝒎𝒊𝒏𝒗 are, respectively, the true and inverted models. 

2.4.2. Membership analysis 200 

In the context geophysical inverse modelling, membership analyses provide a quantitative estimation of 

interpretation uncertainty to interpretation of recovered petrophysical properties. Using the intervals defined in 

eq. (7) and eq. (8), we apply a triangular function to the inverted magnetic susceptibilities to determine the 

membership values to the different rock types. For the ith model cell, the membership value to the jth rock type ω𝑗
𝑖 

is calculated using ramp functions as:  205 

ω𝑗
𝑖 = 

{
  
 

  
 
1 𝑖𝑓 𝑚𝑖  ∈  𝐵𝑘  ∨  𝑚

𝑖 ≥ 𝑏𝑖,L 𝑖𝑓 𝑘 = 𝐿 ∨  𝑚
𝑖 ≤ 𝑎𝑖,1 𝑖𝑓 𝑖𝑓 𝑘 = 1  

𝑚𝑖 − 𝑏𝑖,j−1

𝑎𝑖,j − 𝑏𝑖,𝑗−1
 𝑖𝑓 𝑏𝑖,j−1 ≤ 𝑚

𝑖 ≤ 𝑎𝑖,j

𝑎𝑖,j+1 −𝑚
𝑖

𝑎𝑖,j+1 − 𝑏𝑖,𝑗
 𝑖𝑓 𝑏𝑖,j ≤ 𝑚

𝑖 ≤ 𝑎𝑖,j+1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(10) 

2.4.3. Total model entropy 

Using the membership values ω, we calculate the total model entropy of the model, 𝐻, which is the arithmetic 

mean of the information entropy (Shannon, 1948) of all model-cells:  

𝐻 =  −∑∑ω𝑘
𝑖

𝐿

𝑖=1

log(ω𝑘
𝑖 )

𝑀

𝑘=1

, (11) 

which is as a measure of geological uncertainty in probabilistic models and of the fuzziness of the interfaces 

(Wellmann and Regenauer-Lieb, 2012). 210 
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2.4.4. Jaccard distance 

In addition to calculating 𝐻, the membership values ω can be used to interpret the inversion results in terms of 

rock units. The index k of the rock unit the model-cell with a given inverted magnetic susceptibility value can be 

interpreted as is given as, for the ith model-cells:  

𝑘 = arg max
𝑗=1..𝐿

ω𝑗
𝑖 . (12) 

Calculating the index of the corresponding rock unit in each model-cell, we obtain a rock unit model 𝒎𝑼
𝒊𝒏𝒗.  215 

Using 𝒎𝑼
𝒊𝒏𝒗 and 𝒎𝑼

𝒕𝒓𝒖𝒆 (the latter being the true rock unit model), we calculate the Jaccard distance (Jaccard, 

1901), which is a metric quantifying the similarity between discrete models. In the context of geological 

modelling, it is reflective of the dissimilarity between geological models (Schweizer et al., 2017). Here, we use it 

to compare the inverted model and the true model as follows:  

𝐽 = 1 −
|𝒎𝑼

𝒕𝒓𝒖𝒆⋂𝒎𝑼
𝒊𝒏𝒗|

|𝒎𝑼
𝒕𝒓𝒖𝒆⋃𝒎𝑼

𝒊𝒏𝒗|
=
|𝒎𝑼

𝒕𝒓𝒖𝒆⋃𝒎𝑼
𝒊𝒏𝒗| − |𝒎𝑼

𝒕𝒓𝒖𝒆⋂𝒎𝑼
𝒊𝒏𝒗|

|𝒎𝑼
𝒕𝒓𝒖𝒆⋃𝒎𝑼

𝒊𝒏𝒗|
, 

(13) 

where ⋂ and ⋃ are the intersection and union of sets, respectively; |∙| is the cardinality operator, measuring the 220 

number of elements satisfying the condition. A useful and simple interpretation of J is that it represents the fraction 

of cells assigned with the incorrect rock unit. 

3 Synthetic case study  

The synthetic case study that we use to test our workflow was built using a structural geological framework 

initially introduced in Pakyuz-Charrier et al. (2018. It presents realistic geological features that reproduce field 225 

geological measurements from the Mansfield area (Victoria, Australia). The choice of resistivity and magnetic 

susceptibility values to populate the structural model was made to test the limits of this sequential, cooperative 

workflow and to show its potential to alleviate some of the limitations inherent to potential field and MT 

inversions. To this end, we selected a part of the synthetic model which features violate the hypothesis of a 2D 

model to challenge the workflow we propose.  230 

3.1. Survey setup 

The structural geological model was derived from foliations and contact points using the Geomodeller® software 

(Calcagno et al., 2008; Guillen et al., 2008; Lajaunie et al., 1997). It is constituted of a sedimentary syncline 

abutting a faulted contact with a folded basement. The model’s complexity was increased with the addition of a 

fault and an ultramafic intrusion. Details about the original 3D geological model are provided in Pakyuz-Charrier 235 

et al. (2018b). Here, we increased the maximum depth of the model to 3150 m and added padding in both 

horizontal directions. Figure 2a shows the non-padded 2D section extracted from the reference 3D geological 

model.  

We assigned magnetic susceptibility in the model considering non-magnetic sedimentary rocks in the basin units 

(lithologies 3, 5 and 6 in Table 1) and literature values (see Lampinen et al., 2016) to dolerite (lithology 4), diorite 240 

(lithology 2) and ultramafic rocks (lithology 1). We assign electrical resistivities assuming relatively conductive 
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sedimentary rocks and resistive basement and intrusive formations. Resistivities in sedimentary rocks might vary 

orders of magnitude, and mainly depend on porosity, which is linked to the degree of compaction and the type of 

lithology, and the salinity of pore fluid (Evans et al., 2012). The three sedimentary layers were assigned different 

resistivities values, of 30 Ωm, 10 Ωm and 50 Ωm for basin fill 3, 2 and 1 respectively (see Table 1), basin 1 being 245 

the oldest and deeper formation. Metamorphic and intrusive rocks as found in the crust generally present high 

resistivities (Evans et al., 2012). In what follows we focus on the modelling of data located along the line shown 

in Figure 2, simulating the modelling magnetic data in 2D, while considering 3D MT data. The modelled rock 

units and their petrophysical properties are given in Table 1. The geological, magnetic susceptibility and resistivity 

true models are shown in Figure 2.  250 

Table 1 Stratigraphic column showing geological topological relationships and average physical properties. Lithologies 

are indexed from 1 through 6 by order of genesis. 

Lithology index Geological relation Geological unit Magnetic 

susceptibility (SI) 

Electrical 

resistivity (Ωm) 

6 Sedimentary Basin fill 3 0 30 

5 Sedimentary Basin fill 2 0 10 

4 Intrusive Dolerite 0.025 5000 

3 Sedimentary Basin fill 1 0.0001 50 

2 Intrusive Diorite 0.025 5000 

1 Basement Ultramafic rocks 0.05 2000 

 

   

Figure 2. (a) True geological model (b) true magnetic susceptibility model and (c) true resistivity model with the 255 
simulated MT acquisition setup geometry in the top-left corner where triangles represent MT sites. The red dots in (b) 

represents the 2D magnetic data line; MT sites are marked in (c). The inset in the top-right corner shows a top view of 

the model with the magnetic data line in red and MT sites as triangles.  
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3.2. Simulation of geophysical data 

3.2.1. Magnetic data  260 

The core 2D model is discretised into 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 1 × 128 × 36 cells of dimensions equal to 127 × 127 ×

90 m3. We generate one magnetic datum (reduced to pole magnetic intensity) per cell along the horizontal axis, 

leading to 128 data point. To limit dispersion effects, we add 10 padding cells perpendicular to the profile and 

extend it by 36 cells at each extremity along its length, leading to 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 11 × 192 × 36 cells of 

dimensions 381 × 127 × 90 m3. The reference magnetic susceptibility model used for forward data computation 265 

is shown in Figure 2.  

Airborne magnetic data were simulated for a fixed wing aircraft flying at an altitude of 100 m above topography. 

The forward solver we use follows Bhattacharyya (1964) to model the total magnetic field anomaly. In this 

example, we model a magnetic field strength equal to 57,950 nT. It corresponds to the International Geomagnetic 

Reference Field for the Rawlinna station, Western Australia.  270 

We add normally distributed noise with an amplitude equal to 2.5% of the average amplitude of the data. We 

simulate noise contamination by adding noise sampled randomly from by a normal distribution characterised by 

a standard deviation of 3.8 nT and a mean value of 0 nT. For the simulation of geological “noise”, we then apply 

a Gaussian filter to such random noise to obtain spatially correlated values. The uncontaminated and noisy data 

are shown in Figure 3. For the inversion, the objective data misfit is set accordingly with the estimated noise.  275 

 

 

Figure 3. Simulated total magnetic field anomaly.  

3.2.2. MT data 

The synthetic MT data is computed using the complete 3D resistivity model derived from the 3D geological 280 

model, to simulate the influence of 3D effects. The core of the electrical conductivity model used the same 

discretization as the magnetic susceptibility model. Relationships between geological units and electrical 

resistivities follow Table 1. A padding zone was added in both horizontal directions and vertically, in order to 

satisfy the boundary conditions required by the forward solver. The final mesh has 160 x 160 x 62 cells in the 𝑥, 

𝑦 and 𝑧 directions, respectively. The ModEM 3D forward modelling code (Egbert and Kelbert, 2012; Kelbert et 285 

al., 2014) was used to simulate the MT responses of this model. The MT responses were computed at 256 stations 
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evenly spaced 1.016 km on a 16 × 16 grid (see inset in Figure 2). The frequency range spans from 10 KHz to 0.01 

Hz, with 6 frequencies per decades, for a total of 37 frequencies; 5% magnitude Gaussian white noise was added 

to the synthetic data before running the 1D inversions.  

In the following subsections, we present the results of the modelling of synthetic data along a 2D section (see 290 

Figure 2c) from the 3D resistivity volume, following the workflow proposed in Sect. 2. Along this section, 16 MT 

sites are used. We start with the modelling of MT data to derive constraints and prior information for the inversion 

of magnetic data.  

3.3. 1D Probabilistic inversion of MT data and derivation of cover-basement interface probabilities 

We perform the 1D MT inversions of each MT sounding independently, using a 1D trans-dimensional Markov 295 

chain Monte Carlo sampler (Seillé and Visser, 2020). The presence of 2D and 3D effects was compensated for 

using larger uncertainties, calculated using the workflow introduced in Seillé and Visser (2020) and summarized 

in Sect. 2.1.  

All the 1D trans-dimensional Bayesian inversions ran using 60 Markov chains with 106 iterations each. For each 

chain, a burn-in period of 750,000 samples (75% of the total) was applied to ensure convergence, after which we 300 

recorded 100 models equidistantly spaced. The model ensembles are then constituted by 6000 models for each 

MT site. An example of the posterior distribution for three MT sites is shown in Figure 4. The distribution of 

interfaces within the posterior ensemble of 1D models is described by a change-point histogram. Figure 4a and 

Figure 4b show the model posterior distribution for MT sites MT1, MT8 and MT16. 

From the posterior ensembles of models and interfaces, a depth to basement probability distribution is calculated 305 

independently for each MT site. For this synthetic case, we simply assume that the transition from the sedimentary 

cover to the basement occurs when a layer L1 of resistivity 𝜌1 < 𝜌𝑋 is followed by a layer L2 of resistivity 𝜌2 >

𝜌𝑋, with 𝜌𝑋 = 200 Ωm. As mentioned in Sect. 2.1, this process is applied to each model of the ensemble and 

allows the extractions of geological features of interest from the posterior model ensemble. If less than 0.1 % of 

the all transitions observed in the ensemble presents the feature defined earlier using 𝜌𝑋, we then assume that the 310 

transition is not observed. This situation occurs for MT sites MT14, MT15 and MT16 (see Figure 4c for site 

MT16). Figure 4 shows the interface probability and the depth to basement interface probability 𝑝𝑖𝑛𝑡  for three 

selected sites along the profile.  
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Figure 4. Example of posterior distribution of resistivity for three MT sites MT1 in (a), MT8 in (b) and MT16 in (c), 315 
located along the profile as shown in Figure 2, with the interface probability distribution and cover-basement interface 

probability distribution. The number of transitions observed in the posterior interface distribution is indicated. Site 

MT1 (a) is located in the western part of the profile in the basin, site MT8 (b) is located in the middle part of the profile, 

in the basin, and site MT16 (c) is located in the eastern part where the intrusive rock unit outcrops (see Figure 2c). 

High probabilities in the model posterior distribution is represented by warms colours, and low probabilities with cold 320 
colours. The dashed lines represent the 5th and the 95th percentiles of the model posterior distribution and the black 

line represents the median of the model posterior distribution. The values of ‘n’ correspond to the number of values 

used in the corresponding plots. 

3.4. Deriving constraints for magnetic inversion 

3.4.1. Bound constraints  325 

Starting from 𝑃𝑖𝑛𝑡  values calculated for each MT site, we interpolate the probabilities from MT onto the mesh 

used for magnetic data inversion. In this synthetic example, we use a linear interpolation scheme. The interpolated 

probabilities from MT are shown in Figure 5.  

The interpolated probabilities are used to define domains for the application of bound constraints during magnetic 

data inversion. In this example, we complement information from MT inversions with the assumption that dolerite 330 

outcrops and is mapped accurately (unit 4, intrusive, see Table 1 and Figure 2). Using this, we adjust the domains 

for the corresponding few model-cells at surface level, only at two locations where we assume these outcrop to 

be known. The domains for the bound constraints we obtain are shown in Figure 5c, domains 1 and 2 indicate 

parts of the model where MT inversion suggests a single rock unit. This means that in the corresponding model 

cells, a single interval will be used in the definition of the bound constraints, while two intervals will be used 335 

otherwise.  

3.4.2. Prior model  

The prior model for magnetic inversion is obtained using the MT derived rock unit probabilities (Figure 5a-c) and 

the magnetic susceptibility of the rock units given in Table 1. We calculate it as follows, for the ith model-cell:  

(𝒎𝒑
𝒎𝒂𝒈

)
𝒊
=∑𝜓𝑖

𝑗
𝑎𝑖,𝑗

𝐿

𝑗=1

. (14) 

We chose to use 𝑎𝑖,𝑗 , the lower bound for each rock unit (or group of rock units), as it constitutes the most 340 

conservative assumption about magnetic susceptibility from the range of plausible magnetic susceptibilities. The 

resulting prior model is shown in Figure 5d.  

reviewer
Kommentar zu Text
On what basis? What happens if you don't? I can only assume that you have good reasons to do so, but please explain here.

reviewer
Kommentar zu Text
Which ones?

reviewer
Kommentar zu Text
From the description in section 3.4.1 it remains completely unclear to me how the assignment of domains was obtained. Maybe it is implicitly written somewhere in the text, but I can't follow this.

reviewer
Notiz
I am unable to follow how the prior model was constructed. The classification shown in 5c has three types of units (sediments, basement, unknown). But table 1 contains values for sediments, basement, and intrusive? MOreover, table 1 does not provide a range of SI values but single values.
It remains unclear to me, how values are assigned to domains and how probabilities of 5a/b are used to transfer this to obtain a prior model. Please explain with words and state SI values explicitly here.

reviewer
Notiz
What is psi?



13 

 

 

Figure 5. Interpolated probability of sedimentary cover (a) and non-sedimentary units (b), corresponding domains (c), 

and (d) prior model from MT derived rock unit probabilities and magnetic susceptibility rock units observed in the 345 
area. The location of the simulated MT sites is reminded in (a).  

3.5. Inversion of magnetic data and uncertainty analysis 

In this section, we study the influence of MT-derived prior information onto magnetic inversion and estimate the 

related reduction of interpretation uncertainty. The different scenarios tested here are summarized in  

Table 2, while the corresponding in version results are shown in Figure 6. 350 

Table 2. Scenarios tested for the utilisation of MT-derived information in magnetic data inversion. ‘High confidence’ 

refers to the case where constraints are applied only where MT-derived rock units probabilities are equal to 1.  

Case scenario Prior model ADMM bound constraints Smoothness constraints 

(a) Unconstrained inversion Homogenous None Global 

(b) High confidence bounds 

constraints only (domains 1 and 

2 only) 

Homogenous 
Only where MT shows 

high confidence 
Global 

(c) Global bound constraints Homogenous 
Homogenous, all model-

cells 
Global 

(d) Global bound constraints 

with prior model 
MT-derived 

Homogenous, all model-

cells 
Global 

(e) Local bound constraints with 

prior model 
MT-derived Locally defined, all cells Global 

(f) Local bound constraints and 

smoothness, with prior model 
MT-derived Locally defined, all cells Locally weighted 
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Figure 6. Inversion results for the different scenarios tested. Cases (a) through (e) correspond to inversions using prior 

information and constraints summarised in  355 

Table 2. The brown lines materialise the interfaces between geological units in the true model. ERRm refers to the 

RMS model misfit.  

We complement the calculation of 𝐸𝑅𝑅𝑚 and 𝐽 (see values in Figure 6) with the membership analysis following 

eq. (10) as a measure of interpretation uncertainty. The resulting membership values are shown in Figure 7, where 

we added the values of the model’s information entropy 𝐻.  360 
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Figure 7. Membership values for the non-magnetic lithologies. Cases (a) through (e) correspond to inversions using 

prior information and constraints summarised in  

Table 2. The brown lines materialise the interfaces between geological units in the true model. H refers to the 

information entropy of the model (eq. 11). 365 

A visual comparison of the membership values in Figure 7e and Figure 7f with the MT-derived domains (Figure 

5c) indicates good consistency with MT domains (1) and (2) (single rock units inferred). It also shows that the 
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proposed workflow has the capability to improve the recovery of the sedimentary cover thickness significantly 

when compared to cases that do not use MT-derived ADMM constraints across the entire model (Figure 7a, b and 

c).  370 

To complete our analysis, we propose a simple metric combining two statistical indicators by weighting the RMS 

model misfit resulting from geophysical inversion (𝐸𝑅𝑅𝑚) with the corresponding entropy values (𝐻), which 

reflect geological interpretation uncertainty. Figure 8 shows the apparent relationship between the amount of prior 

information and constraints used in inversion and the proposed indicator. We observe a continuous reduction of 

𝐻 × 𝐸𝑅𝑅𝑚 from case (a) to (f), indicating a progression towards models that are closer to the true model and less 375 

ambiguous to interpret. Overall, together with values of the Jaccard distance J (Figure 6), our testing reveals that, 

using MT-derived ADMM constraints provides inversions results that are the closest to the true model. However, 

it also suggests that from case (c) to (f), the impact of additional constraints decreases comparatively to cases (a) 

to (c). It also indicates that using the prior model has a limited effect on inversion, as cases (a) and (c) show similar 

values in Figure 8 and the corresponding models in Figure 6 and Figure 7 present similar features.  380 

 

Figure 8. Uncertainty metric 𝑯 × 𝑬𝑹𝑹𝒎 for inversion cases (a) through (f). 

4 Field case study 

We propose an application example illustrating potential utilisations of the proposed sequential inversion 

workflow. Using observations made in the synthetic case, our aim here is to integrate MT with magnetic data 385 

inversion using the case relying on MT-derived ADMM bound constraints with homogenous starting model and 

smoothing constraints. We note that, to the best of our knowledge, this is the first time that the ADMM algorithm 

is used to constrain magnetic data inversion. 

We used existing results of the depth to basement derived using MT within a probabilistic workflow (Seillé et al., 

2021) in the Cloncurry area in Queensland (see Figure 9). These results are used to constrain the magnetic 390 

inversion. 

4.1. Geoscientific context and area of interest 

The depth to basement interface probability used for the magnetic inversion was derived by Seillé et al. (2021). 

Using a similar workflow as presented in sections 2.1 and 3.3, they derived a cover-basement interface distribution 

for each MT site using the model posterior distribution obtained using 1D probabilistic inversions. Then, a 395 
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probabilistic depth to basement interface across the survey area was derived combining these MT depth to 

basement estimates with drill-hole depth-to-basement estimates, constrained by a structural model in the form of 

interpreted faults across the area. The combination of estimates coming from different sources of information to 

derive a posterior distribution on the depth to basement was performed using the Bayesian Estimate Fusion 

algorithm of Visser and Markov (2019). This probabilistic workflow allowed to obtain a probabilistic map of the 400 

depth-to-basement interface. The structural model used during the Estimate Fusion assumed vertical faults, which 

is a valid assumption given the near vertical behaviour of the main faults in the area (Austin and Blenkinsop, 

2008; Case et al., 2018).  

The geological map of the area is shown in Figure 9.  

  405 

Figure 9. a) Geological map of the area. The small dots are the MT sites of the Cloncurry MT survey. The red line is 

the profile used in this study, and the red dots are the MT sites associated to this profile. b) Structural framework. 

Modified from Seillé et al. (2021). The Constantine Domain to the west and the Soldiers Cap Domain to the east are 

separated by the Mouth Margaret Fault; the red dashed line delineates the area we focus on. 

In this study, we focus on a 2D profile (L26, see location on map in Figure 9a), and invert the corresponding 410 

magnetic data extracted from the anomaly map shown in Figure 10a and Figure 10b. The choice of an East-West 

oriented profile was motivated by the North-South orientation of the main structures in the area and by the 

geological features the known geology and the geophysical measurements suggest. The profile is nearly 

perpendicular to these structures, making it suitable for use within a 2D inversion scheme. It crosses the North-

South oriented Mount Margaret Fault, which is thought to belong to the northern part of the regional Cloncurry 415 

Fault structure, a major crustal boundary that runs North-South over the Mount Isa Province (Austin and 

Blenkinsop, 2008; Blenkinsop, 2008). This boundary separates two major Paleoproterozoic sedimentary 

sequences (Austin and Blenkinsop, 2008). The geological modelling performed by Dhnaram and Greenwood 

(2013) also indicates that the Mount Margaret Fault separates two distincts domains, the Constantine Domain to 
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the West and the Soldier Caps Domain to the East. In our study area, the Constantine domain is covered by non-420 

magnetic cover constituted by Mesozoic and Cenozoic sediments, lying on what is believed to be consitituted by 

the Mount Fort Constantive volcanics, in some places intruded by the Williams supersuite pluton. On the eastern 

side, the Soldier Caps Domain is also covered by Mesozoic and Cenozoic sediments, and the basement is 

interpreted to be a succesion of volcanic and metamorphic rocks (Dhnaram and Greenwood, 2013). 

The depth to basement probabilistic surface derived by Seillé et al. (2021) along the W-E profile (see Figure 10c) 425 

presents a relatively shallow basement in the western part of the profile (~ 100 meters thick, with some lateral 

variations). In the eastern part of the profile, the model indicates that a two-steps fault system controls the 

thickening of the basin to the east. It reaches ~ 350 meters thickness in the eastern part. The depth to basement 

model along the profile shown in Figure 10c is relatively well constrained by MT and drill hole data. However, 

the interpolation method we used imposed spatial continuity between estimates that, using MT soundings with 430 

relatively large separation (2 km) and sparse drill holes, did not allow for the definition of small-scale depth to 

basement lateral variations. Significant lateral variations were allowed during the interpolation using the fault 

traces indicated by the structural data, defining areas where discontinuities are expected (in the location of the 

faults), to encourage a relaxation of the spatial continuity and to allow for sharp jumps. The magnetic data shown 

in Figure 10a suggest that other faults and other lateral discontinuities could exist. 435 

In this work, we assume a non-magnetic sedimentary cover, and a magnetic basement. In addition, we assume 

little to no remanent magnetization and little to no self-demagnetisation. Important remanence and self-

demagnetization can be observed in the vicinity of magnetite-rich IOCG deposits (e.g., Anderson and Logan, 

1992; Austin et al., 2013), but we consider that there is no indication of such features along L26. Further to this, 

we make this assumption for the sake of simplicity as the main object of this paper is the introduction of a new 440 

sequential inversion workflow and to show that it is applicable to field data. 

Under these premises, the features the magnetic data presents can be exploited to improve the image of the cover-

basement interface when integrated with prior information about the thickness of cover. In this context, the role 

of magnetic data inversion constrained by MT is therefore multiple:  

 to constrain the depth and extent of the magnetic anomalies and refine their geometry; 445 

 to analyse the compatibility between the constraints derived from MT and the magnetic data and resolve 

some small-scale structures not defined by the MT constrains; 

 to reduce the interpretation uncertainty of the cover-basement interface;  

 to propose new scenarios in relation to the composition of the basement (in terms of its magnetic 

susceptibility) and structure (through its lateral variations). 450 

The depth of the cover-basement interface probability shown in Figure 10c is used to derive the domains required 

by the spatially varying bound constraints using in magnetic inversion.  
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4.2. Constrained Magnetic data inversion  

4.2.1. Magnetic data preparation and extraction of prior information 

We use the gridded reduced-to-pole (RTP) magnetic data from the Geological Survey of Queensland shown in 455 

Figure 10 (https://geoscience.data.qld.gov.au/dataset/ds000018/resource/91106497-d463-4b83-8b01-

1c5539ab40b1, last accessed on 27/07/2021). Prior to the 2D inversion of the data along the line L26, we 

manipulate and reformat the data. To account for variations in the measurements in the vicinity of the line, we 

extract data from a 800 meters wide band around the profile (L26) (Figure 10a), as shown in more details Figure 

10a. To obtain data corresponding to a 2D rectilinear profile, we then calculate the weighted average of this subset 460 

of the dataset by assigning weights inversely proportional to the square of the distance of the measurement to L26, 

as illustrated in Figure 10b.  

  

Figure 10. Data preparation. (a) map view of the data in the region of interest. The grayed-out area corresponds to the 

zone considered for the averaging of the magnetic data. Red points are MT soundings considered in this study. Grey 465 
circles are others MT soundings not used in this study. (b) shows data for magnetic inversion (solid line) and the 

envelope of the data from the 800 meters band around L26 (light blue shade). The shades of blue represent the weight 

assigned to the data points in the calculation of the average: the lighter the shade, the lower the weight. c) Depth of the 

cover basement interface probability (Seillé et al., 2021). Red lines are the drill holes, and their bottom represent the 

intersection with the basement. The drill holes plotted are projected a distance up to 800 meters away from the profile.  470 

https://geoscience.data.qld.gov.au/dataset/ds000018/resource/91106497-d463-4b83-8b01-1c5539ab40b1
https://geoscience.data.qld.gov.au/dataset/ds000018/resource/91106497-d463-4b83-8b01-1c5539ab40b1
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We convert the interface probability shown in Figure 10c into basement and sedimentary rock probabilities using 

the method described in Section 2.1 and 3.4.1. We assume that the sedimentary basin domain overlies the 

basement domain, and derive the corresponding domains for the ADMM bound constraints using the domaining 

procedure described above. The resulting domains are shown in Figure 11. 

 475 

Figure 11. MT-derived domains for cases with (1) sedimentary units only, (2) sedimentary and non-sedimentary units 

and (3) non-sedimentary units only. 

In what follows, we assume that sedimentary rocks have a low magnetic susceptibility comprised within the range 

[-0.006, 0.006] SI, while the basement units, mainly composed of volcanic sequences, are modelled to have higher 

magnetic susceptibilities within the interval [0.015 0.09] SI.  480 

4.2.2. Inversion setup and results  

To reduce computing time, we truncate the sensitivity matrix of the magnetic data inverse problem under the 

assumption that model-cells beyond a given distance exert a negligible influence on the forward calculated data. 

The sensitivity domain is reduced to a 25 km-radius cylinder of infinite height and depth around each data point 

in a moving sensitivity domain approach (see examples in Čuma et al., 2012; Čuma and Zhdanov, 2014) that 485 

assumes negligible contribution of the models-cells beyond a certain distance from the measurement’s location. 

Using a similar approach, the results of Wilson et al. (2011), indicate that using a 25 km radius may result in 

approximately 98% accuracy in the calculation of the response, which we assume to suffice for the purpose of our 

application example. It our case, it allows a reduction of 67% of the size of the sensitivity matrix. We performed 

inversion using 12 threads on an Intel(R) Xeon(R) CPU E5-2630. 490 

To examine the impact of different type of constraints, we first perform inversions using minimum prior 

information and successively increase the amount of prior information from unconstrained inversion to using MT-

derived intervals for multiple bound constraints. The inversions we run consist of the following cases:  

(1) constrained by homogenous smoothness constraints; 

(2) constrained by homogenous smoothness constraints with lower and upper bound constraints; 495 

(3) constrained by homogenous smoothness constraints with global, multiple bound constraints; 

(4) constrained by homogenous smoothness constraints with local, multiple bound constraints derived from 

MT. 

The results for inversion cases (1) through (4) are shown in Figure 12.  
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 500 

Figure 12. Inversion results. (a) through (d) corresponds to inversion types (1) through (4), respectively. (e) shows the 

data fit for the 4 inversions shown. The grey shading shows the amplitude of the data shown in Figure 10 for calculating 

the weighted average of the inverted anomaly. The dashed lines mark the horizontal extension of areas where 

hypotheses made for magnetic inversion may be incompatible with the data.  

The inversions reached a satisfactory data fit, exception made for the constrained inversion 4 (see the data fit in 505 

Figure 12e). In that case a significant underfit of the magnetic data is observed within certain areas, which point 

to an incompatibility between the magnetic data and the constraints applied. Four areas in the central part of the 

model are slightly underfit, on length scales < 300 meters. On the eastern part of the profile, from 479 km East to 

the most eastern part of the profile, an important underfit is observed. At this stage, this data misfit can indicate 

that the constraints used are not appropriate. This could be due to an inexact positioning at depth of the structural 510 

constrains, or to a change in the petrophysical behaviour of the basement in certain areas, which would link 

differently the electrical properties of the depth to basement constrains to their magnetic properties. We propose 

a 5th inversion case where we adjust the bounds manually to examine hypotheses relaxing the constraints derived 

by the combination of MT inversions and the magnetic susceptibility of rocks in the area.  

From Figure 12, we identify five main areas where hypotheses made for the utilisation of MT-derived domains 515 

need to be adjusted. In each case, the domain allowing sedimentary units may be deeper than expected or the 

basement may be less susceptible. We test the plausibility of such alternative scenarios and adapt the MT-derived 

domains by adjusting the domains. We increased the depth of the non-sedimentary (i.e., basement) units in the 
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eastern part of the model and between the areas marked by dashed lines in Figure 12, where the basement-

sedimentary interface may be deeper than anticipated or the basement characterized by less susceptible rocks. The 520 

domains we use after adjustment are shown in Figure 13a, and inversion results in Figure 13b and c, respectively. 

Figure 13d proposes an automated interpretation using membership values ω using eq. (18); the question marks 

identify areas where the initial hypotheses have been revisited and which may require further investigations. The 

arrows point to parts of the model where the basement may be at the shallowest limit authorised by MT.  

 525 

Figure 13. (a) MT-derived domains adjusted following the adjustments suggested by magnetic data inversion, for 

domains with (1) sedimentary units only, (2) sedimentary and non-sedimentary units and (3) non-sedimentary units 

only. (b) is the inverted model for inversion case (5) and (c) is the inverted and field magnetic RTP data, with the 

horizontal extent of the locations where MT bounds were adjusted; (d) shows the membership values to the sedimentary 

and basement units obtained using eq. (10), overlaid with the original contours of MT-derived domains. In (c), the grey 530 
shading shows the envelope of the data shown in Figure 10 for calculating the weighted average of the inverted anomaly. 

Beyond the possibility to revisit hypotheses made at earlier stages of the workflow, we get insights into the 

structure and magnetic susceptibility of the basement. While electrical conductivity and magnetic susceptibility 

may be sensitive to change in rock type, there are scenarios where they exhibit differing sensitivity to texture and 

grain properties, respectively. For instance, metamorphism and alteration might affect electrical conductivity and 535 

magnetic susceptibility differently (Clark, 2014; Dentith et al., 2020). Under these circumstances, our results can 

provide insights into plausible geological processes given sufficient prior geological information about the 

deformation history. 
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4.3. Interpretation  

From a multi-physics modelling point of view, the results shown in the previous Sect. shows a general agreement 540 

between the MT-derived constraints and the magnetic data. However, the results also point to incompatibilities in 

a few parts of the model. We identified two major areas where incompatibility occurs:  

1) a smaller inconsistent areas in the western part of the survey;  

2) a large inconsistent area east of the Mount Margaret Fault. 

We interpret these incongruencies as being mainly due to the different sensitivities of the two geophysical methods 545 

to different geological features and to the petrophysical variability of the basement in the area.  

The greater depth extent of some of the lower magnetic susceptibility zones required by the magnetic data in the 

western part of the survey suggests that the depth to magnetic source is greater than suggested by the constraints. 

Adjustments to the constraints allowed a better data fit. A low magnetic response between kms 460 and 470 East 

(Figure 10) is assumed to be the response to low magnetic susceptibilities and is interpreted to be granitic 550 

intrusions of the William-Naraku Supersuite (Dhnaram and Greenwood, 2013). The presence of such intrusions 

offers a plausible explanation for the discrepancies between the magnetic and MT modelling. On the one hand, 

the MT data modelling might not able to distinguish between an electrically resistive basement and an electrically 

resistive intrusion, while the magnetic data modelling could not distinguish between a non-magnetic cover and a 

non-magnetic intrusion. On the other hand, magnetic data inversion can differentiate the low susceptibility 555 

intrusion from the higher susceptibility volcanic rocks, and the MT data is sensitive to the basal cover interface 

above both the volcanic rock and the intrusion. The constrained inversion permits detection of the lateral extent 

of the intrusion while estimating cover thickness. While detailed modelling of higher resolution data would be 

required to refine the geometry of these intrusive bodies, our modelling suggests that the intrusion could be 

modelled as several smaller intrusions.  560 

East of the Mount Margaret Fault, the incompatibility between the original MT-derived constraints and the 

magnetic data points to regional scale structures.  Drill hole observations indicate basement not exceeded 350 

meters depth. If we assume a high-susceptibility basement, which is common to the whole area (Dhnaram and 

Greenwood, 2013), the magnetic model requires a very thick non-magnetic cover layer to reconcile the data which 

is incompatible with our geological knowledge of the area. In that case, we need to reconsider our definition of 565 

the basement. The north-trending Mount Margaret Fault (see Figure 9) separates two geological domains 

exhibiting different basement characteristics. East of the Fault is the Soldiers Cap domain and is predominantly 

non-magnetic volcanic rocks. By relaxing the geological model constraints in that part of the model both 

sedimentary and non-sedimentary units are allowed (Figure 11a) and we can satisfactorily fit the data. The 

necessity of considering non-magnetic volcanic rocks in the Soldier Caps domain agrees with the magnetic 570 

modelling performed by Dhnaram and Greenwood (2013).  
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5 Discussion  

We have presented a workflow for sequential joint modelling of geophysical data, and applied it to synthetic and 

field measurements. In this study we used constraints in the form of interface probabilities derived from a 

probabilistic workflow driven by MT data, but it is general in nature and is not limited to a particular geological 575 

or geophysical modelling method to generate the inputs. This has allowed us to report the utilisation of the ADMM 

algorithm to constrain magnetic data inversion for the first time 

This workflow presents several advantages. It is computationally inexpensive by use of standalone inversions. 

The inversion of the MT dataset used to derive the constraints was performed only once. Then, a series of 

constrained magnetic inversions was run to test different geophysical and petrophysical hypotheses. It shows the 580 

example of a fast and flexible approach to test different structural and petrophysical assumptions while modelling 

data sensitive to different physical parameters. It allows to focus the modelling efforts on survey-specific features 

(anomalies, geological structures) when appropriate petrophysical information is available. However, as with 

generalizable methods, strengths become limitations under certain circumstances. For instance, in the case of MT 

and magnetic data inversions as proposed in this work, the electrical resistivity and magnetic susceptibility for the 585 

rock types of interest is dependent on a range of factors and processes (such as porosity, permeability, rock 

alteration, etc.) such that their correlation may be case-dependant (see Dentith et al., 2020; Dentith and Mudge, 

2014). While we may surmise that it remains reasonable to assume the existence of such correlation in hard rock 

scenarios, it may not always hold in basin environments. For example, one can easily think of a basin exploration 

case where electrical resistivity increases rapidly with increasing hydrocarbon concentration in reservoirs, while 590 

changes in magnetic susceptibility might make the use of magnetic data inversion redundant. In such case, other 

property pairings can be considered, such as electrical resistivity and seismic attributes (see examples of Le et al., 

2016; Tveit et al., 2020, who use seismic inversion to extract prior information for CSEM inversion). Further to 

this, the utilisation of magnetic data inversion for the deeper part of the crust is limited to depths shallower than 

the Curie point’s (typically from approximately 10 to a few 10s of kilometres under continents). For deeper 595 

imaging of the crust, the workflow we propose may be suited to the utilisation of gravity data with MT.  

An assumption worth examination is whether the study area is adequately represented by two geological domains. 

In the cases we investigated, these domains were defined by the probability of observing only two rock classes 

(basement and non-basement). While this assumption reduces the risk of misinterpretation as no hypotheses are 

made to distinguish between the different sedimentary units or rocks of different nature in the basement, it also 600 

then limits the interpretations that can be made from the results presented. We expect that provided that the rock 

units present ‘desirable’ features, i.e., distinctive magnetic susceptibility and resistivities (or other properties 

depending on the geophysical techniques considered) several rock types can be considered in the modelling. Such 

discriminative aspects of the petrophysics needs to be ascertained while defining the number of distinctive 

domains that may be present in the study area. This necessarily requires robust petrophysical data to be available 605 

given the strong constraint that these domains impart on inversion. However, in the absence of petrophysical data 

or the number and character of geological domains, the magnitude of misfit can inform whether a proposed 

number of domains is plausible, driving data acquisition or refinement of the conceptual geological model. 

Methods that exploit this approach remain to be investigated further in future case studies. 
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The application case was performed in 2D to illustrate the workflow. Extending the presented work to large scale 610 

problems in 3D is straightforward as the inversion methods employed in this study were designed for 3D 

modelling. The 1D MT modelling and interpolation schemes present excellent scalability. The Tomofast-x engine 

(Giraud et al., 2021b; Ogarko et al., 2021b) is implemented using 3D grids. It presents good scalability and it 

offers the possibility to reduce the size of the computation domain to save memory when calculating the sensitivity 

matrix in the same fashion as Čuma et al. (2012), and Čuma and Zhdanov (2014), for large-scale potential field 615 

data modelling. On this basis, the workflow presented here might be applicable to large datasets using, for 

instance, MT data from the EarthScope USArray MT program 

(http://www.usarray.org/researchers/obs/magnetotelluric/, last accessed on 10/09/2021) or the AusLAMP 

program (https://www.ga.gov.au/eftf/minerals/nawa/auslamp, last accessed on 10/09/2021) and combined with 

publicly available potential field data. Studies of this kind would span continents for crustal investigations to 620 

discover tectonic discontinuities and terrane interfaces. Current investigations on Tomofast-x comprise the 

application of wavelet compression operators to accelerate the inversion in the same way as Li and Oldenburg 

(2003) and Martin et al. (2013) and the development of joint inversions using the ADMM constraints for multiple 

bound constraints.  

Another straightforward extension of the workflow is the use of gravity data simultaneously with, or instead of, 625 

magnetic data since it is already implemented in Tomofast-x (Giraud et al., 2021b). Giraud et al. (2020) presented 

a synthetic MT-constrained gravity inversion, using a similar workflow as the one presented here. This would be 

of particular interest in the Cloncurry region (Queensland, Australia), where for instance, Moorkamp (2021) 

recently investigated the joint inversion of gravity and MT data, and where our workflow could be applied using 

the MT modelling results of Seillé et al. (2021).  630 

From a geophysical point of view, magnetic inversion is affected by the non-uniqueness of the solution to the 

inverse potential field problem despite prior information and constraints being used. The workflow could be 

improved by using a series of models representative of the geological archetypes that can be derived from the 

ensembles of 1D MT models. Geological archetypes are distinctly different structural configurations (or 

topologies) that plausibly exist for a given location with available data (Pakyuz-Charrier et al., 2019, Wellmann 635 

and Caumon, 2018). Identification of the archetypes could be achieved from the ensemble of geological model 

realisations in the same spirit as Pakyuz-Charrier et al. (2019), who use a Monte Carlo approach to generate a 

range of topologies which are then examined for distinct clusters which represent the archetypes.  

From a methodological point of view, it could be argued that simultaneous joint geophysical inversion combining 

structural and petrophysical constraints might outperform the workflow we proposed here. However, this would 640 

make the modelling process more demanding combined with limitations based on cases where determining the 

causitive relationships between petrophysics supporting joint approaches poses a challenge. The workflow we 

propose here presents a few advantages over a joint inversion scheme, in the sense that it does not require both 

datasets to be inverted simultaneously under a defined set of petrophysical and/or structural constraints. The time 

required to run a joint inversion being limited by the running time of the more computationally expensive 645 

technique, it can limit the range of tests to be performed. In this study, we could run rapidly many 2D constrained 

magnetic inversions, even if the 1D probabilistic inversions of the MT data (and posterior fusion) required 

significant longer running time compared to the 2D constrained magnetic inversion. This point would particularly 

http://www.usarray.org/researchers/obs/magnetotelluric/
https://www.ga.gov.au/eftf/minerals/nawa/auslamp
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be relevant in the case of large 3D datasets. This approach may represent a step in the modelling workflow which 

that is useful to explore, understand and refine structural and petrophysical relationships between different 650 

physical parameters before undertaking more demanding joint inversions.  

In the field application case presented here, the probabilistic depth to basement map to derive constraint assumed 

lateral continuity of the depth to basement estimates at a large scale, not accounting for small-scale lateral 

variations. Thus, uncertainty for depth to basement may be underestimated at some locations, in particular in 

between MT sites as shallow depths. In such cases, the existence of incompatibilities between MT-derived 655 

constraints and the magnetic data might require reconsidering the spatial continuity assumptions taken during the 

calculation of the probabilistic depth to basement surface. Extensions of this work may be devised to alleviate 

some of the limitations of the workflow. For instance, magnetic susceptibility from the inversion of magnetic data 

could be mapped back to a resistivity model in order to calculate forward MT data for validation (dashed line in 

Figure 1), or to constrain the next cycle of MT inversions in the case the workflow is extended to cooperative joint 660 

inversion. It would also be straightforward to use to a level-set inversion that can consider an arbitrary number of 

geological units (e.g., Giraud et al., 2021) using MT modelling as a source of prior information and constraints. 

We have used hard bounds using the ADMM algorithm, which can easily be complemented or replaced by the 

use of multi-modal petrophysical distributions as available in Tomofast-x (e.g., mixture models as in Giraud et 

al., 2017, 2019) as an alternative.  665 

6 Conclusion  

We have introduced, tested on synthetic, and applied to field data a cooperative inversion scheme for the 

integration of MT and magnetic inversions. We have shown that despite its simplicity, the workflow we propose 

efficiently leverages the complementarities between the two methods and has the capability to improve our 

understanding of the cover-basement interface and of the basement itself. We have tested our workflow on a 670 

synthetic study that illustrates the flexibility of the method and the different possibilities our workflow offers as 

well as their limitations. In the field application case (Cloncurry area, Queensland), we have shown how the 

quantitative integration of MT and magnetic data may bring insightful results on geological structural and 

petrophysical aspects, opening up new avenues for interpretations of the geology of the area and prompting future 

works.  675 
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The modified version of the structural model of Pakyuz-Charrier (2018) used here is given in Seillé and Giraud 

(2021). It also contains the synthetic MT and magnetic data used. The field data can be obtained from the 

Geological Survey of Queensland.  

The version of the Tomofast-x inversion code used here was made publicly available by Ogarko et al. (2021b); 700 

the latest version is available at: https://github.com/TOMOFAST/  

11 References  

Anderson, C. G. and Logan, K. J.: The history and current status of geophysical exploration at the Osborne Cu 

&amp; Au deposit, Mt. Isa, Explor. Geophys., 23, 1–7, doi:10.1071/EG992001, 1992. 

Astic, T. and Oldenburg, D. W.: A framework for petrophysically and geologically guided geophysical inversion 705 

using a dynamic Gaussian mixture model prior, Geophys. J. Int., 219, 1989–2012, doi:10.1093/gji/ggz389, 2019. 

Austin, J. and Blenkinsop, T.: The Cloncurry Lineament: Geophysical and geological evidence for a deep crustal 

structure in the Eastern Succession of the Mount Isa Inlier, Precambrian Res., 163, 50–68, 

doi:10.1016/j.precamres.2007.08.012, 2008. 

Austin, J. R., Schmidt, P. W. and Foss, C. A.: Magnetic modeling of iron oxide copper-gold mineralization 710 

constrained by 3D multiscale integration of petrophysical and geochemical data: Cloncurry District, Australia, 

Interpretation, 1, T63–T84, doi:10.1190/INT-2013-0005.1, 2013. 

Bhattacharyya, B. K.: Magnetic anomalies due to prism-shaped bodies with arbitrary polarization, Geophysics, 

29, 517–531, 1964. 

https://github.com/TOMOFAST/


28 

 

Blenkinsop, T.: Mount Isa inlier, Precambrian Res., 163, 1–6, doi:10.1016/j.precamres.2007.08.009, 2008. 715 

Boyd, S.: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, 

Found. Trends® Mach. Learn., 3, 1–122, doi:10.1561/2200000016, 2010. 

Calcagno, P., Chilès, J. P., Courrioux, G. and Guillen, A.: Geological modelling from field data and geological 

knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules, Phys. Earth 

Planet. Inter., 171, 147–157, doi:10.1016/j.pepi.2008.06.013, 2008. 720 

Case, G., Blenkinsop, T., Chang, Z., Huizenga, J. M., Lilly, R. and McLellan, J.: Delineating the structural controls 

on the genesis of iron oxide–Cu–Au deposits through implicit modelling: a case study from the E1 Group, 

Cloncurry District, Australia, Geol. Soc. London, Spec. Publ., 453, 349–384, doi:10.1144/SP453.4, 2018. 

Chave, A. D., Jones, A. G., Mackie, R. and Rodi, W.: The Magnetotelluric Method, Cambridge University Press, 

Cambridge., 2012. 725 

Clark, D. A.: Magnetic effects of hydrothermal alteration in porphyry copper and iron-oxide copper–gold systems: 

A review, Tectonophysics, 624–625, 46–65, doi:10.1016/j.tecto.2013.12.011, 2014. 

Conway, D., Simpson, J., Didana, Y., Rugari, J. and Heinson, G.: Probabilistic Magnetotelluric Inversion with 

Adaptive Regularisation Using the No-U-Turns Sampler, Pure Appl. Geophys., 175, 2881–2894, 

doi:10.1007/s00024-018-1870-5, 2018. 730 

Čuma, M. and Zhdanov, M. S.: Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs, 

Comput. Geosci., 62, 80–87, doi:10.1016/j.cageo.2013.10.004, 2014. 

Čuma, M., Wilson, G. A. and Zhdanov, M. S.: Large-scale 3D inversion of potential field data, Geophys. 

Prospect., 60, 1186–1199, doi:10.1111/j.1365-2478.2011.01052.x, 2012. 

Dentith, M. and Mudge, S. T.: Geophysics for the mineral exploration geologist., 2014. 735 

Dentith, M., Enkin, R. J., Morris, W., Adams, C. and Bourne, B.: Petrophysics and mineral exploration: a 

workflow for data analysis and a new interpretation framework, Geophys. Prospect., 68, 178–199, 

doi:10.1111/1365-2478.12882, 2020. 

Dhnaram, C. and Greenwood, M.: 3D MINERAL POTENTIAL OF THE QUAMBY AREA. [online] Available 

from: https://geoscience.data.qld.gov.au/report/cr089698, 2013. 740 

Egbert, G. D. and Kelbert, A.: Computational recipes for electromagnetic inverse problems, Geophys. J. Int., 189, 

251–267, doi:10.1111/j.1365-246X.2011.05347.x, 2012. 

Evans, R. L., Chave, A. D., Jones, A. G., Mackie, R. and Rodi, W.: Conductivity of Earth materials, in The 

Magnetotelluric Method, pp. 50–95, Cambridge University Press, Cambridge., 2012. 

Gallardo, L. a. and Meju, M. a.: Characterization of heterogeneous near-surface materials by joint 2D inversion 745 

of dc resistivity and seismic data, Geophys. Res. Lett., 30, doi:10.1029/2003GL017370, 2003. 

Gallardo, L. A., Fontes, S. L., Meju, M. A., Buonora, M. P. and de Lugao, P. P.: Robust geophysical integration 



29 

 

through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, 

magnetic, and gravity images: Example from Santos Basin, offshore Brazil, Geophysics, 77, B237–B251, 

doi:10.1190/geo2011-0394.1, 2012. 750 

Giraud, J., Pakyuz-Charrier, E., Jessell, M., Lindsay, M., Martin, R. and Ogarko, V.: Uncertainty reduction 

through geologically conditioned petrophysical constraints in joint inversion, GEOPHYSICS, 82, ID19–ID34, 

doi:10.1190/geo2016-0615.1, 2017. 

Giraud, J., Ogarko, V., Lindsay, M., Pakyuz-Charrier, E., Jessell, M. and Martin, R.: Sensitivity of constrained 

joint inversions to geological and petrophysical input data uncertainties with posterior geological analysis, 755 

Geophys. J. Int., 218, 666–688, doi:10.1093/gji/ggz152, 2019. 

Giraud, J., Seillé, H., Visser, G., Lindsay, M., and Jessell, M. (2020). Utilisation of stochastic MT inversion results 

to constrain potential field inversion. EGU General Assembly 2020, Online. https://doi.org/10.5194/egusphere-

egu2020-15067 

Giraud, J., Lindsay, M. and Jessell, M.: Generalization of level-set inversion to an arbitrary number of geological 760 

units in a regularized least-squares framework, GEOPHYSICS, 1–76, doi:10.1190/geo2020-0263.1, 2021a. 

Giraud, J., Ogarko, V., Martin, R., Jessell, M. and Lindsay, M.: Structural, petrophysical and geological 

constraints in potential field inversion using the Tomofast-x v1.0 open-source code, Geosci. Model Dev. Discuss. 

[preprint], in review, doi:https://doi.org/10.5194/gmd-2021-14, 2021b. 

Grose, L., Ailleres, L., Laurent, G. and Jessell, M.: LoopStructural 1.0: time-aware geological modelling, Geosci. 765 

Model Dev., 14, 3915–3937, doi:10.5194/gmd-14-3915-2021, 2021. 

Guillen, A., Calcagno, P., Courrioux, G., Joly, A. and Ledru, P.: Geological modelling from field data and 

geological knowledge. Part II. Modelling validation using gravity and magnetic data inversion, Phys. Earth Planet. 

Inter., 171, 158–169, doi:10.1016/j.pepi.2008.06.014, 2008. 

Haber, E. and Oldenburg, D.: Joint inversion: a structural approach, Inverse Probl., 13, 63–77, doi:10.1088/0266-770 

5611/13/1/006, 1997. 

Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et du Jura, Bull. la Société 

Vaudoise des Sci. Nat., 37, 547–579, doi:http://dx.doi.org/10.5169/seals-266450, 1901. 

Kelbert, A., Meqbel, N., Egbert, G. D. and Tandon, K.: ModEM: A modular system for inversion of 

electromagnetic geophysical data, Comput. Geosci., 66, 40–53, doi:10.1016/j.cageo.2014.01.010, 2014. 775 

Lajaunie, C., Courrioux, G. and Manuel, L.: Foliation fields and 3D cartography in geology: Principles of a 

method based on potential interpolation, Math. Geol., 29, 571–584, doi:10.1007/BF02775087, 1997. 

Lampinen, H., Occhipinti, S., Lindsay, M. and Laukamp, C.: Magnetic susceptibility of Edmund Basin, Capricorn 

Orogen, WA, ASEG Ext. Abstr., 2016, 1–8, doi:10.1071/aseg2016ab254, 2016. 

Le, C. V. A., Harris, B. D., Pethick, A. M., Takam Takougang, E. M. and Howe, B.: Semiautomatic and Automatic 780 

Cooperative Inversion of Seismic and Magnetotelluric Data, Surv. Geophys., 37, 845–896, doi:10.1007/s10712-



30 

 

016-9377-z, 2016. 

Lelièvre, P., Farquharson, C. and Hurich, C.: Joint inversion of seismic traveltimes and gravity data on 

unstructured grids with application to mineral exploration, Geophysics, 77, K1–K15, doi:10.1190/geo2011-

0154.1, 2012. 785 

Lelièvre, P. G. and Farquharson, C. G.: Integrated Imaging for Mineral Exploration, in Integrated Imaging of the 

Earth: Theory and Applications, pp. 137–166., 2016. 

Li, Y. and Oldenburg, D. ~W.: Fast inversion of large-scale magnetic data using wavelet transforms, Geophys. J. 

Int., 152, 251–265, doi:10.1046/j.1365-246X.2003.01766.x, 2003. 

Lines, L. R., Schultz, A. K. and Treitel, S.: Cooperative inversion of geophysical data, GEOPHYSICS, 53, 8–20, 790 

doi:10.1190/1.1442403, 1988. 

Manassero, M. C., Afonso, J. C., Zyserman, F., Zlotnik, S. and Fomin, I.: A reduced order approach for 

probabilistic inversions of 3-D magnetotelluric data I: general formulation, Geophys. J. Int., 223, 1837–1863, 

doi:10.1093/gji/ggaa415, 2020. 

Martin, R., Monteiller, V., Komatitsch, D., Perrouty, S., Jessell, M., Bonvalot, S. and Lindsay, M. D.: Gravity 795 

inversion using wavelet-based compression on parallel hybrid CPU/GPU systems: application to southwest 

Ghana, Geophys. J. Int., 195, 1594–1619, doi:10.1093/gji/ggt334, 2013. 

Moorkamp, M.: Integrating Electromagnetic Data with Other Geophysical Observations for Enhanced Imaging 

of the Earth: A Tutorial and Review, Surv. Geophys., 1–28, doi:10.1007/s10712-017-9413-7, 2017. 

Moorkamp, M.: Joint inversion of gravity and magnetotelluric data from the Ernest-Henry IOCG deposit with a 800 

variation of information constraint, in First International Meeting for Applied Geoscience & Energy Expanded 

Abstracts, pp. 1711–1715, Society of Exploration Geophysicists., 2021. 

Moorkamp, M., Heincke, B., Jegen, M., Hobbs, R. W. and Roberts, A. W.: Joint Inversion in Hydrocarbon 

Exploration, in Integrated Imaging of the Earth: Theory and Applications, pp. 167–189., 2016. 

Ogarko, V., Giraud, J., Martin, R. and Jessell, M.: Disjoint interval bound constraints using the alternating 805 

direction method of multipliers for geologically constrained inversion: Application to gravity data, 

GEOPHYSICS, 86, G1–G11, doi:10.1190/geo2019-0633.1, 2021a. 

Ogarko, V., Giraud, J. and Martin, R.: Tomofast-x v1.0 source code, , doi:10.5281/zenodo.4454220, 2021b. 

Oliver-Ocaño, F. M., Gallardo, L. A., Romo-Jones, J. M. and Pérez-Flores, M. A.: Structure of the Cerro Prieto 

Pull-apart basin from joint inversion of gravity, magnetic and magnetotelluric data, J. Appl. Geophys., 170, 810 

103835, doi:10.1016/j.jappgeo.2019.103835, 2019. 

Paige, C. C. and Saunders, M. A.: LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares, 

ACM Trans. Math. Softw., 8, 43–71, doi:10.1145/355984.355989, 1982. 

Pakyuz-Charrier, E., Lindsay, M., Ogarko, V., Giraud, J. and Jessell, M.: Monte Carlo simulation for uncertainty 

estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection 815 



31 

 

and parameterization, Solid Earth, 9, 385–402, doi:10.5194/se-9-385-2018, 2018. 

Pakyuz-Charrier, E., Jessell, M., Giraud, J., Lindsay, M. and Ogarko, V.: Topological analysis in Monte Carlo 

simulation for uncertainty propagation, Solid Earth, 10, 1663–1684, doi:10.5194/se-10-1663-2019, 2019. 

Pakyuz-Charrier, E. I. G.: Mansfield (Victoria, Australia) area original GeoModeller model and relevant MCUE 

outputs, , doi:10.5281/zenodo.848225, 2018. 820 

Le Pape, F., Jones, A. G., Jessell, M. W., Perrouty, S., Gallardo, L. A., Baratoux, L., Hogg, C., Siebenaller, L., 

Touré, A., Ouiya, P. and Boren, G.: Crustal structure of southern Burkina Faso inferred from magnetotelluric, 

gravity and magnetic data, Precambrian Res., 300, 261–272, doi:10.1016/j.precamres.2017.08.013, 2017. 

Ren, Z. and Kalscheuer, T.: Uncertainty and Resolution Analysis of 2D and 3D Inversion Models Computed from 

Geophysical Electromagnetic Data, Surv. Geophys., doi:10.1007/s10712-019-09567-3, 2019. 825 

Rodi, W. L., Mackie, R. L., Chave, A. D., Jones, A. G., Mackie, R. and Rodi, W.: The inverse problem, in The 

Magnetotelluric Method, pp. 347–420, Cambridge University Press, Cambridge., 2012. 

Scalzo, R., Kohn, D., Olierook, H., Houseman, G., Chandra, R., Girolami, M. and Cripps, S.: Efficiency and 

robustness in Monte Carlo sampling of 3-D geophysical inversions with Obsidian v0.1.2: Setting up for success, 

Geosci. Model Dev. Discuss., 1–28, doi:10.5194/gmd-2018-306, 2019. 830 

Schweizer, D., Blum, P. and Butscher, C.: Uncertainty assessment in 3-D geological models of increasing 

complexity, Solid Earth, 8, 515–530, doi:10.5194/se-8-515-2017, 2017. 

Seillé, H. and Giraud, J.: Synthetic dataset for the testing of an MT-Mag geophysical integration workflow, doi: 

10.5281/zenodo.5246582 , 2021. 

Seillé, H. and Visser, G.: Bayesian inversion of magnetotelluric data considering dimensionality discrepancies, 835 

Geophys. J. Int., 223, 1565–1583, doi:10.1093/gji/ggaa391, 2020. 

Seillé, H., Visser, G., Markov, J. and Simpson, J.: Probabilistic Cover‐Basement Interface Map in Cloncurry, 

Australia, Using Magnetotelluric Soundings, J. Geophys. Res. Solid Earth, 126, doi:10.1029/2021JB021883, 

2021. 

Shannon, C. E. E.: A Mathematical Theory of Communication, Bell Syst. Tech. J., 27, 379–423, 840 

doi:10.1002/j.1538-7305.1948.tb01338.x, 1948. 

Sun, J. and Li, Y.: Multidomain petrophysically constrained inversion and geology differentiation using guided 

fuzzy c-means clustering, Geophysics, 80, ID1–ID18, doi:10.1190/geo2014-0049.1, 2015. 

Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and 

Applied Mathematics., 2005. 845 

Tveit, S., Mannseth, T., Park, J., Sauvin, G. and Agersborg, R.: Combining CSEM or gravity inversion with 

seismic AVO inversion, with application to monitoring of large-scale CO2 injection, Comput. Geosci., 24, 1201–

1220, doi:10.1007/s10596-020-09934-9, 2020. 



32 

 

Visser, G.: Smart stitching: adding lateral priors to ensemble inversions as a post-processing step, ASEG Ext. 

Abstr., 2019, 1–4, doi:10.1080/22020586.2019.12073075, 2019. 850 

Visser, G. and Markov, J.: Cover thickness uncertainty mapping using Bayesian estimate fusion: leveraging 

domain knowledge, Geophys. J. Int., 219, 1474–1490, doi:10.1093/gji/ggz358, 2019. 

Visser, G., Seillé, H. and Markov, J.: Approximating Probabilistic Joint Inversion using Bayesian Spatial 

Ensemble Fusion, in Proceedings of the EGU General Assembly 2020, pp. EGU2020–4388, European 

Geophysical Union, Online., 2020. 855 

Wellmann, F. and Caumon, G.: 3-D Structural geological models: Concepts, methods, and uncertainties, edited 

by C. Schmelzback, pp. 1–121, Cambridge, Massachusetts., 2018. 

Wellmann, J. F. and Regenauer-Lieb, K.: Uncertainties have a meaning: Information entropy as a quality measure 

for 3-D geological models, Tectonophysics, 526–529, 207–216, doi:10.1016/j.tecto.2011.05.001, 2012. 

Wilson, G., Čuma, M. and Zhdanov, M. S.: Massively parallel 3D inversion of gravity and gravity gradiometry 860 

data, Preview, 2011, 29–34, doi:10.1071/pvv2011n152p29, 2011. 

Zhang, R., Li, T., Deng, X., Huang, X. and Pak, Y.: Two-dimensional data-space joint inversion of 

magnetotelluric, gravity, magnetic and seismic data with cross-gradient constraints, Geophys. Prospect., 68, 721–

731, doi:10.1111/1365-2478.12858, 2020. 

 865 

Appendix A 

We reformulate the geophysical inverse problem in eq. (5) in its ADMM form as: 

minimize 𝜃(𝒅,𝒎) + 𝑓(𝒛) (15) 

subject to 𝒎− 𝒛 = 0,  

where 𝑓 is the indicator function of ℬ (see eq. 5.1 in Boyd, 2011, for details).We solve this problem iteratively by 

alternating the updates of 𝒎 and 𝒛 following :  

𝒎𝑘+1 = argmin
𝒎
(𝜃(𝒅,𝒎) + 𝜏2‖𝑾𝑨𝑫𝑴𝑴(𝒎 − 𝒛𝑘 + 𝒖𝑘)‖2

2), (16) 

𝒛𝑘+1 = 𝜋ℬ(𝒎
𝑘+1 + 𝒖𝑘), (17) 

𝒖𝑘+1 = 𝒖𝑘 +𝒎𝑘+1 − 𝒛𝑘+1, (18) 

where 𝒖 is called a dual variable, 𝜏 𝜖 ℝ+ is the overall weight assigned to the ADMM constraints, and 𝑘 is the 870 

current iteration number; 𝑾𝑨𝑫𝑴𝑴 is a diagonal matrix we introduce here to define spatially varying weights 

assigned to the bound constraints during inversion. It controls the relative strength of the ADMM constraints in 

the different model cells. Here, we set it as a function of the MT inversion results 𝑷𝑴𝑻 such that 𝑾𝑨𝑫𝑴𝑴 =

𝒇(𝑷𝑴𝑻). The ADMM variable 𝒛 is calculated by the projection of 𝒙 onto ℬ as:  

𝜋ℬ(𝒙) = [𝜋ℬ1(𝑥1), 𝜋ℬ2(𝑥2), … , 𝜋ℬ𝑛(𝑥𝑛)], with (19) 
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𝜋ℬ𝑖(𝑥𝑖) = argmin
𝑦∈ℬ𝑖

‖𝑥𝑖 − 𝑦‖2 (20) 

The updated model 𝒎𝑘+1 is then calculated by solving the inverse problem using the LSQR algorithm of Paige 875 

and Saunders (1982). We refer the reader to Ogarko et al. (2021a) for more details. We illustrate the application 

of such projection using two intervals in Figure A 1.  

 

Figure A 1. Projection using 𝝅𝓑 as per eq. 19 using two intervals as follows: [0, 0.005], [0.025, +∞[. This example uses the 

intervals selected in the synthetic case study illustrating the proof-of-concept introduced in Sect. 3.  880 

 




