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Abstract. We propose, test and apply a methodology integrating 1D magnetotelluric (MT) and magnetic data
inversion, with a focus on the characterization of the cover-basement interface. It consists of a cooperative
inversion workflow relying on standalone inversion codes. Probabilistic information about the presence of rock
units is derived from MT and passed on to magnetic inversion through constraints combining structural constraints
with petrophysical prior information. First, we perform the 1D probabilistic inversion of MT data for all sites and
recover the respective probabilities of observing the cover-basement interface, which we interpolate to the rest of
the study area. We then calculate the probabilities of observing the different rock units and partition the model
into domains defined by combinations of rock units with non-zero probabilities. Third, we combine these domains
with petrophysical information to apply spatially-varying, disjoint interval bound constraints to least-squares
magnetic data inversion using the alternating direction method of multipliers (or ADMM). We demonstrate the
proof-of-concept using a realistic synthetic model reproducing features from the Mansfield area (Victoria,
Australia) using a series of uncertainty indicators. We then apply the workflow to field data from the prospective
mining region of Cloncurry (Queensland, Australia). Results indicate that our integration methodology efficiently
leverages the complementarity between separate MT and magnetic data modelling approaches and can improve
our capability to image the cover-basement interface. In the field application case, our findings also suggest that
the proposed workflow may be useful to refine existing geological interpretations and to infer lateral variations

within the basement.
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1 Introduction

Geophysical integration has been gaining traction in recent years, be it when two or more datasets are inverted
simultaneously (i.e., joint inversion) or when the inversion of a geophysical dataset is used to constrain another
(i.e., cooperative inversion). A number of approaches for joint modelling have been developed with the goal of
exploiting the complementarities between different datasets (see for instance the reviews of Leliévre and
Farquharson, 2016, and Moorkamp et al., 2016, and references therein). As summarized in the review of Ren and
Kalscheuer (2019), “joint inversion of multiple geophysical datasets can significantly reduce uncertainty and
improve resolution of the resulting models™. This statement remains valid, be it for the modelling of a single
property (e.g., resistivity for joint controlled-source electromagnetic and magnetotelluric MT data, or density for
joint gravity anomaly and gradiometric data), or of multiple properties (e.g., the joint inversion of seismic and
gravity data to model P-velocity and density). In the second case, joint inversion approaches can be grouped into
two main categories based on the hypothesis they rely on. Structural approaches allow to jointly invert datasets
with differing sensitivities to the properties of the subsurface through the premise that geology requires spatial
variations in inverted properties to be collocated. Structural constraints can then be used as a way to link two or
more datasets jointly inverted for by encouraging structural similarity between the inverted models (Haber and
Oldenburg, 1997; Gallardo and Meju, 2003). Alternatively, petrophysical approaches utilise prior petrophysical
information (e.g., from outcrops, boreholes, or the literature) to enforce certain statistics in the recovered model
s0 that it resembles the petrophysical measurements’ (Leliévre et al., 2012; Sun and Li, 2015; Giraud et al., 2017;
Astic and Oldenburg, 2019). Whereas structural and petrophysical approaches are well suited to exploit
complementarities between datasets in a quantitative manner, running joint geophysical inversion might be, in
practice, challenging due to, for instance, the risk of increased non-linearity of the inverse problem (see, e.g., the
L-surface using the cross-gradient constraints in Martin et al., 2021, and approaches adapting coupling during
inversion, e,g., Heincke et al., 2017), the necessity to balance the contribution of the different datasets and

regularisation terms (Bijani et al., 2017), and resolution mismatches (Piana Agostinetti and Bodin, 2018).

In this contribution, we present a new multidisciplinary modelling workflow that relies on sequential, cooperative
modelling. It follows the same objectives as the two categories of joint inversion mentioned above in that structural
information is passed from one domain to the other and it uses petrophysical information to link domains. The
development of the sequential inversion scheme we present is motivated by a similar idea as Lines et al. (1988)
who states that “the inversion for a particular data set provides the input or initial model estimate for the inversion
of a second data set”. A further motivation is to design a workflow capable of integrating the inversion of two or

more datasets quantitatively using standalone modelling engines that run independently.

In this paper, the workflow is applied to the sequential inversion of magnetotelluric (MT) followed by magnetic
data, taking into account the importance of robustly constraining the thickness of the regolith in hard rock imaging
and mineral exploration. This is motivated by the relative paucity of works considering cooperative workflows to
integrate MT and magnetic data together with the recent surge in interest for the characterisation of the depth-to-
basement interface in mineral exploration, despite these two geophysical methods being part of the geoscientists’
toolkit for depth-to-basement imaging. Historically, MT has often been integrated with other electromagnetic
methods or with seismic data (e.g., Gustafson et al., 2019; Peng et al., 2019) , and with gravity to a lower extent

(see review of the topic of Moorkamp, 2017). It is, however, seldom modelled jointly with magnetic data unless
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a third dataset is considered (e.g., Oliver-Ocafio et al., 2019 ; Zhang et al., 2020; Gallardo et al., 2012; Le Pape et
al., 2017). We surmise that this is because (1) the interest for integrating MT with other disciplines arose primarily
in oil and gas and geothermal studies and relied on structural similarity constraints for reservoir or (sub)salt
imaging, (2) of the difference in terms of spatial coverage between the two methods elsewhere, (3) the differences
in terms of sensitivity to exploration targets and (4) the difficulty to robustly correlate electrical conductivity and
magnetic susceptibility. Bearing these considerations in mind, we developed a workflow incorporating MT and

magnetic inversion with petrophysical information and geological prior knowledge.

In the workflow we develop, we exploit the differences in sensitivity between MT and magnetic data. On the one
hand, the MT method, used in a 1D probabilistic workflow as presented here, is well-suited to recover vertical
resistivity variations and interfaces, especially in a sedimentary basin environment (Seillé and Visser, 2020). MT
data are, however, poorly sensitive to resistors, particularly when they are overlaid by conductors (e.g., Chave et
al., 2012), which makes it difficult to differentiate between highly resistive features, such as intra-basement
resistive intrusions. On the other hand, magnetic data inversion is more sensitive to lateral magnetic susceptibility
changes and to the presence of vertical or tilted structures or anomalies. Bearing this in mind, we first derive
structural information across the studied area in the form of probability distributions of the interfaces between
geological units, extracted from the interpolation of probabilistic 1D MT data inversion. From there, the
probability of occurrence of geological units can be estimated in 2D or 3D. These probabilities are used to divide
the area into domains where only specific units can be observed (e.g., basement, sedimentary cover, or both). Such
domains are then passed to magnetic data inversion, where they are combined with prior petrophysical information
to derive spatially varying bound constraints that are enforced using the alternating direction method of multipliers
for 2D or 3D inversion (ADMM, see Ogarko et al., 2021a, for application to gravity data using geological prior
information, and Giraud et al., 2021c, for MT-constrained gravity inversion). Finally, uncertainty analysis of the
recovered magnetic susceptibility model is performed and rock unit differentiation allows to control the
compatibility of magnetic inversion results with the MT data. The workflow is summarised in Figure 1, as applied
to 1D MT inversions. In this paper, we apply this workflow to 2D magnetic data inversion, but it is applicable in
3D.

i Probabilistic 1D MT L Probability of cover- : ‘ ‘
; modelling basement interface i Standalone MT inversions +-

Interpolation to 2D/3D

Calculation of probabilities for the definition of domains,
allowing: basement only, non-basement only, or both

i Extraction of information

Assignment of density ranges from prior information

| Multiple bound constraints MT-constrained model | Standalone potential
: inversion (ADMM) ' fields inversion
Calculation of metrics
+
| Uncertainty analysis Interpretation

Figure 1. Integrated MT-magnetic integration workflow summary showing the role of the different techniques.
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The remainder of this paper is organised as follows. We first introduce the methodology and summarise the MT
and magnetic standalone modelling procedures we rely on. We then introduce the proof-of-concept in detail using
a realistic synthetic case study based on a geological model of the Mansfield area (Victoria, Australia), which we
use to explore the different possibilities for integrating MT-derived information and petrophysics offered by our
workflow. Following this, we present a field application using data from Cloncurry (Queensland, Australia) where
we tune our approach to the specificity of the area. Finally, this work is placed in the broader context of

geoscientific modelling and perspectives for future work are exposed in the discussion section.

2 Methodology
2.1. MT inversion for interface probability

The MT method is a natural source electromagnetic method. Simultaneous measurements of the fluctuations of
the magnetic and electric fields are recorded at the Earth’s surface under the assumption of a plane wave source.
The relationship between the input magnetic field H and the induced electrical field E, which depends on the

distribution of the electrical conductivities in the subsurface, is described by the impedance tensor Z, as follows:

E=Z-H. (1)

Resistivity models derived from MT data are found by forward modelling and inversion of the impedance tensor
Z, generally using gradient-based deterministic methods (see, e.g., Rodi et al., 2012). Deterministic approaches
provide a single solution which minimizes the objective function considered during the inversion, but limited
information of the uncertainty around this model can be derived. A global characterization of the uncertainty is
possible using a Bayesian inversion framework, but its expensive computing cost limits its application to
approximated (Conway et al., 2018; Scalzo et al., 2019) and/or fast forward modelling solvers(Manassero et al.,
2020). In this study, we alleviate this by considering a local 1D behaviour of the Earth. While this assumption can
stand within layered sedimentary basins, it may fail in more complex geological environments (Jones et al., 2012).

As we describe below, we account for this source of uncertainty in our Bayesian inversions.

Within the context of Bayesian inversion, the solution of the inverse problem consists of a posterior probability
distribution, calculated from an ensemble of models fitting the data within uncertainty. The posterior probability

distribution p(mM7|d™T) is obtained using Bayes’ theorem, defined as:

pmMT|d"") o p(@™"|[mM") x p(mMT). 2

The prior distribution p(m™T) contains prior information on the model parameters m™T . In this work, we assume
a relatively uninformed prior knowledge, using a uniform prior distribution on the logarithm of the electrical
resistivity bounds with values set between -2 and 6 log,, Q.- m. Using a uniform prior with such wide boundaries
allows the inversion to be mainly data-driven and to remain independent from assumptions about the distribution
of electrical resistivity into the Earth. A Gaussian likelihood function p(d™T | mMT) defining the data fit is used

is used:

p(dMT | mMT) e exp (—%(dMT _ gMT(mMT))T Cal (dMT _ gMT(mMT))) (3)
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The term inside the exponential is the data misfit, which is the distance between observed data d¥T and simulated
data gMT (mMT), scaled by the data covariance matrix C,, which defines data errors and their correlation across

frequencies. We consider two main sources of uncertainty to calculate C,:

s data processing errors, which we model introducing a matrix C,;

e errors introduced by the violation of the 1D assumption when using 1D models, which we model

introducing Cgy,.

Both sources of uncertainty are included in the calculation of C,, defined as C; = C,, + Cg;r,. In our calculation,
we first define C,, the covariance matrix accounting for the EM noise and measurement errors, which are
estimated during MT data processing. In this study we assume uncorrelated processing noise across frequencies,

reducing C,, to a diagonal matrix.

Following this, we define Cg;,, as the dimensionality covariance matrix accounting for the discrepancy between
1D models and the multi-dimensional Earth the data is sensitive to. To characterize and quantify this discrepancy,
and to translate it into a dimensionality error for use within 1D probabilistic inversion, we use the workflow
developed by Seillé and Visser (2020). We first analyse the characteristics of the MT phase tensor for all sites at
all frequencies. The MT phase tensor is derived from the impedance tensor Z. Characterizing the phase tensor
symmetry using its invariants (skewness p and ellipticity ), the presence of 2D and 3D structures affecting the
MT data as a function of frequency can be inferred (Caldwell et al., 2004). To quantify how much error non-1D
structures introduce in 1D modelling, Seillé and Visser (2020) developed a dimensionality error model . This
model is derived using a supervised machine learning approach (regression tree), trained on a large collection of
synthetic responses containing many 2D and 3D effects. As a result, it maps the phase tensor parameters derived
from the observed data into dimensionality uncertainties to compensate for the limitations of the 1D assumption
when performing 1D inversion, with larger errors assigned to data presenting important 2D/3D effects. This
dimensionality uncertainty Cy;,, is then added to the existing data processing uncertainty C,, such that the
inversion considers both sources of uncertainty in C,. This approach prevents 1D inversion from fitting 2D/3D
responses. When it is used in a probabilistic inversion scheme, it permits a correct estimation of model uncertainty

and a more robust characterization of the subsurface, avoiding inversion artefacts (Seillé and Visser, 2020).

We use a 1D MT trans-dimensional Markov chain Monte Carlo algorithm (Seillé and Visser, 2020). Trans-
dimensional Bayesian inversions have gained traction for applications to geophysical inversion (Malinverno,
2002, Sambridge et al., 2006, Bodin and Sambridge, 2009, Xiang et al., 2018) in recent years as an efficient means
to sample the model space. This algorithm solves for the resistivity distribution at depth and the number of layers
in the model. Having the number of layers treated as an unknown is convenient because it does not require to
formulate assumptions about the inversion regularization or the model parametrization. That is, the mesh
discretization and the natural parsimony of the trans-dimensional algorithms favour models that fit the data with

fewer model parameters, thereby penalizing complex models (Malinverno, 2002).

The output of the probabilistic inversion consists in an ensemble of models describing the posterior probability
distribution. Each model of the ensemble fits the input data, the logarithm of the determinant of the impedance

tensor Z, within uncertainty. From this ensemble of models can be extracted the “change-points™ distribution,
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which is the probability distribution of all discontinuities in the model ensemble, and which can be used to indicate
the most probable location of one or several discontinuities. In this paper, we focus on characterizing the depth of
the basement. Therefore, for each MT sounding, each model of the model ensemble is analysed and the transitions
from a conductive sedimentary layer into a resistive basement are extracted. For example, a transition from a
conductive to a resistive layer is defined when a layer of resistivity r; < r, is followed by a layer of resistivity
r; > 13, Where the threshold value . is selected using a priori knowledge on the resistivities of sediments and
basement rock units. The depth of the occurrences of such transitions for the full model ensemble constitutes a
histogram, which approximates the probability distribution of the depth to basement interface p;,;. This feature
extraction relies on assumptions made on the electrical resistivity of the different lithologies expected, which are
formulated on a case-by-case basis. We first calculate the depth to basement interface probability p;,,; for each
MT sounding. Following this, assuming a sedimentary basin lying on top of the basement, we can define the
probability of being in presence of the basement p,,,,. for each MT site as:

Posmt = Pine (4)
with P, the cumulative distribution function of the interface probability distribution p;,,, from the surface
downwards. Consequently, for each cell within the model, the probability of being in presence of sedimentary
rocks, Pseq, IS given as pseq = 1 — ppsme- These probabilities are derived for each MT site and can be interpolated
on the mesh used for magnetic inversion. The interpolation of such probability distributions can be performed
using different approaches and integrate various types of geophysical or geological constraints. We use a linear
interpolation scheme in the synthetic case study for the sake of simplicity. In the field application, we build up on
results of Seillé et al. (2021), who use the Bayesian Estimate Fusion algorithm of Visser and Markov (2019). We
note that other techniques could be used for a similar purpose, such as the Bayesian Ensemble Fusion (Visser,

2019; Visser et al., 2021), or discrete and polynomial trend interpolations (Grose et al., 2021).

In the context of depth to basement imaging, this allows us to derive three domains characterised by ps.q = 0
(basement only), ps.q € 10,1[ (basement and non-basement units) and ps.; = 1 (non-basement only) that will

define the intervals used for the bounds constraints B applied to magnetic data inversion as summarised below.

2.2. Formulation of the magnetic data inverse problem

In this section, we summarise the method used to enforce disjoint interval bound constraints during magnetic data
inversion. We largely follow Ogarko et al. (2021a), which we extend to locally weighted bound constraints and
magnetic data inversion. The geophysical inverse problem is formulated in the least-squares sense (see chap. 3 in

Tarantola, 2005). The cost function we minimize during inversion is given as:

6(d™*9, m™9) = ||d™*9 — g™ (m™9)||3 + am2||Wm(m’"“9 - mpm“g)“z + ®)

a 2| Wy vmmas |,
where d™?9 is the observed data and g™®9 (m™®9) the forward response produced by model m™®9, a vector
of R™, with n the total number of model-cells. The second term corresponds to the model damping (or smallness)
term, with weight o,,, W,, is a diagonal model covariance matrix whose elements can be set accordingly with
prior information to favour or prevent model changes during inversion. The prior model m,"“? can be chosen to

test hypotheses or accordingly with prior geological or geophysical knowledge. The third term is the gradient

6
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damping (or smoothness) term. The diagonal matrix W, adjusts the strength of the regularization in the different
model cells. It is weighted by a,,. Both o terms are positive scalars used to adjust the relative importance given to
the constraint terms in the cost function. Such terms are often derived manually but they can also be determined
more rigorously using the L-curve principle (Hansen and Johnston, 2001) or using the generalized cross-validation
approach (see Farquharson and Oldenburg, 2004 for a comparison of approaches ). Both the model and gradient
damping terms can be classified as Tikhonov regularization terms (Tikhonov and Arsenin, 1978) and are used to
ensure numerical stability of the inversion and to increase the degree of realism of inversion results through usage
of prior information. Generally speaking, the model damping term is used to ensure that departures from a
predefined model m;,"“g are minimized while minimising data misfit (first term of the equation). The gradient
damping is used to steer inversion towards models fitting the data while remaining as simple as possible from a
structural point of view. To balance the decreasing sensitivity of magnetic field data with the depth, we utilize the

integrated sensitivity technique of (Portniaguine and Zhdanov, 2002).

We note that W, and W, can be set using prior information or depending on the objective of the survey. In this
paper, we keep W, and W, as a the identity matrix in the field application but we use the possibility to set values
for W, that vary in each cell accordingly with prior uncertainty information from MT in the synthetic case. In the
latter, we follow Giraud et al. (2019a), who obtain W, using an uncertainty indicator calculated from probabilities

of observation of the rock units in the area.

We solve eq. (5) while constraining the inversion using multiple bound constraints (Ogarko et al., 2021b). The

problem can be expressed in its generic form as:

minimize 6(d, m) (6)
S.t.mi € Bi,l <i< n,

where B; is the interval, or set of intervals, binding the i model-cell. The general definition of B; is:

B, = U, @iy, byy], with by, > a;, V1€ [1,L;]andi €7, ™
where a;; and b;; define, the bounds of the inverted property [ is the index of the rock unit; L; is the number of
bounds that can be used in the i interval. In practice, it is less than or equal to the number of rock units used in
the modelling. A summary of the algorithm solving this problem using ADMM is given in Appendix A, with an
illustration shown in Figure A 1. The condition that the minimization of 6(d, m) is subject to in eq. 6 translates
the requirement of inversion to use prescribed ranges of magnetic susceptibility values accordingly with
petrophysical knowledge about, or measurements of, rocks present in the studied area. In other words, the
minimisation of 6(d, m) constrains the values of the recovered magnetic susceptibilities to lie within intervals
contained in B. From the way B is defined, a given element B; can contain any number of intervals, with values
arbitrarily chosen. This gives flexibility in the design of disjoint interval bound constraints applied in this fashion.
For instance, the intervals in B may either be spatially invariant when the same intervals are used everywhere
(i.e., global constraints), or, conversely, the elements of B can vary from one model-cell to the next (i.e., local

constraint). Application of these two case scenarios is shown in both the synthetic and application examples.
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2.3. Integration with MT modelling

The set of intervals B from eq. (6) and (7) can be defined homogenously across the entire model (i.e., no
preferential locations for forcing inversion to produce magnetic susceptibility values within the prescribed
intervals) or accordingly with prior information (i.e., the prescribed intervals may vary in space). In the latter case,
it allows to define spatially-varying bound constraints and to activate them only in selected parts of the study area.
In the case presented by Ogarko et al. (2021a), probabilistic geological modelling was used to determine such
bounds constraints for gravity inversion. The approach we propose here follows the same philosophy. Instead of
geological modelling, we use probabilistic MT modelling, which can be used to estimate the observation
probabilities of rock units, and port the method to magnetic data inversion. Using such probabilities, we calculate

the bounds B; for the i model-cell using by adapting equation (7):

Ly
B; = U lais bi] (8)
wi,ll;ll’t,l
where 1, ; is the observation probability for the I™ rock unit; ., is a threshold value above which the probability
is assumed sufficiently high to be considered in the definition of bound constraints. The bounds corresponding to
all units with a probability superior to 1, ; are used for the definition of B;. In the remainder of this paper, we use
Y., = 0. This implies that for the considered model-cell, all units modelled by MT which have a non-null
probability are used to define the bound constraints interval B;. In other words, the intervals corresponding to the
range of magnetic susceptibilities attached to all rock units with a probability superior to zero in said cell are used

as part of the disjoint interval bound constraints introduced in egs. 6-8. When vy, = 1, a single interval is used.

2.4. Uncertainty metrics

Inversion results are assessed using indicators calculated from the difference between reference and recovered
models. We calculate three complementary global indicators and one local indicator with the aim to characterize
the similarity between causative bodies and retrieved models in terms of both the petrophysical properties and
the corresponding rock units. These indicators are listed below in the order they are introduced in in this
subsection:

e root-mean-square model misfit, which measures the discrepancy between the inverted and true models
in terms of the values of physical properties inverted for;

o the membership value to the different intervals used as constraints. It is a local metric indicative of the
geological interpretation ambiguity from which two global metrics are calculated (average model entropy
and Jaccard distance);

e average model entropy, which is a statistical indicator that we use to estimate geological interpretation
uncertainty;

e Jaccard distance, which measures the dissimilarity between sets. We use it to evaluate the difference

between the recovered and true rock unit models.
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2.4.1. Model misfit

In the synthetic study we present, we evaluate the capability of inversions to recover the causative magnetic
susceptibility model using the commonly used root-mean-square (RMS) of the misfit between the true and

inverted models (RMS model misfit, ERR,,). We calculate this indicator as:

n
1 .
ERRp = |2 ) (mir —mim)’, ©
i
where m®™¢ and mi™ are, respectively, the true and inverted models.

2.4.2. Membership analysis

In the context geophysical inverse modelling, membership analyses provide a quantitative estimation of
interpretation uncertainty to interpretation of recovered petrophysical properties. We calculate the membership
values to rock units based on the distance between the recovered magnetic susceptibility and interval bounds, on
the premise that magnetic susceptibility intervals for the rock types, or group of rock types, do not overlap. We

distinguish between three cases:

e When the recovered magnetic susceptibility falls within an interval as defined in eq. 7-8, its membership
to the corresponding unit is set to 1 and 0 to the others.

e When the recovered value falls in between two intervals, the membership value is calculated for the two
corresponding units, all others being set to 0. In such case, the membership value is calculated from the
relative distance to the intervals’ respective upper and lower bound. Assuming that, for the i model-
cell, the magnetic susceptibility m' falls between intervals j — 1 and j, such that bij-q < mt < a;; as per

eqg. 8, the membership values w are calculated as:

i
Wl = m'—b;;_4
-1 =
a; — bi,j—l (10)
L—=1—
wi=1-wj_,

e When m! < min(B;) or m* > max(B,), it is assumed that m* belongs only to the unit corresponding to

the closest interval.

2.4.3.  Average model entropy

Using the membership values ®, we calculate the total model entropy of the model, H, which is the arithmetic

mean of the information entropy (Shannon, 1948) of all model-cells. Information entropy is calculated as:

H = —%i EL: ok log(w}'{), (11)

where L is the number of rock units. H is as a measure of geological uncertainty in probabilistic models and of
the fuzziness of the interfaces when the probabilities of observation of the different rock units are calculated

(Wellmann and Regenauer-Lieb, 2012), which can be useful in “quantifying the amount of missing information
9
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with regard to the position of a geological unit” (Schweizer et al., 2017). On this premise, we calculate H (eq. 11)
using the membership values to the different rock units to obtain metric reflecting the interpretation ambiguity of

inversion results.

2.4.4. Jaccard distance

In addition to calculating H, the membership values o can be used to interpret the inversion results in terms of

rock units. The index k of the rock unit a model-cell with a given inverted magnetic susceptibility value can be

interpreted as is given, for the i" model-cells, by:

k= L 12
arg ]Hzlili)i (,0] ( )

Calculating the index of the corresponding rock unit in each model-cell, we obtain a rock unit model mi™.

Using mi™ and m&™¢ (the latter being the true rock unit model), we calculate the Jaccard distance (Jaccard,
1901), which is a metric quantifying the similarity between discrete models. In the context of geological
modelling, it is reflective of the dissimilarity between geological models and can be used to complement
information entropy (Schweizer et al., 2017). Here, we use it to compare the recovered rock unit model and the
true model. It is calculated as follows:

true inv
J(mtre, mipv) = 1 — I%“BZ}"I (13)
where N and U are the intersection and union of sets, respectively; || is the cardinality operator, measuring the
number of elements satisfying the condition. A useful interpretation of J is that it represents the relative number
of cells assigned with the incorrect rock unit. In the case of a regular mesh where all model-cells have the same
dimension, it represents the relative volume of rock where units assigned to the two models compared coincide.
When comparing models recovered from inversion, it can be used to compare the similarity with a given rock unit

interpretation and a reference model.

3 Synthetic case study

The synthetic case study that we use to test our workflow is built using a structural geological framework initially
introduced in Pakyuz-Charrier et al. (2018). It presents geological features that reproduce field geological
measurements from the Mansfield area (Victoria, Australia). The choice of resistivity and magnetic susceptibility
values to populate the structural model was made to test the limits of this sequential, cooperative workflow and
to show its potential to alleviate some of the limitations inherent to potential field and MT inversions. To this end,
we have selected a part of the synthetic model where MT data is affected by 2D and 3D effects to challenge the
workflow we propose. The objective of this exercise is to assess the workflow’s efficacy to recover the sediment-

basement interface. The magnetic susceptibility model we use consists of 2D structures.

3.1. Survey setup

The structural geological model was derived from foliations and contact points using the Geomodeller® software
(Calcagno et al., 2008; Guillen et al., 2008; Lajaunie et al., 1997). It is constituted of a sedimentary syncline

10
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abutting a faulted contact with a folded basement. The model’s complexity was increased with the addition of a
fault and an ultramafic intrusion. Details about the original 3D geological model are provided in Pakyuz-Charrier
etal. (2018b). Here, we increase the maximum depth of the model to 3150 m and added padding in both horizontal

directions. Figure 2a shows the non-padded 2D section extracted from the reference 3D geological model.

We assign magnetic susceptibility in the model considering non-magnetic sedimentary rocks in the basin units
(lithologies 3, 5 and 6 in Table 1) and literature values (see Lampinen et al., 2016) to dolerite (lithology 4), diorite
(lithology 2) and ultramafic rocks (lithology 1). We assign electrical resistivities assuming relatively conductive
sedimentary rocks and resistive basement and intrusive formations. Resistivities in sedimentary rocks might vary
orders of magnitude, and mainly depend on porosity, which is linked to the degree of compaction and the type of
lithology, and the salinity of pore fluid (Evans et al., 2012). The three sedimentary layers are assigned different
resistivities values, of 30 Qm, 10 Qm and 50 Qm for basin fill 3, 2 and 1 respectively (see Table 1), with basement
being the oldest and deepest formation. Metamorphic and intrusive rocks as found in the crust generally present
high resistivities (Evans et al., 2012). In what follows, we model data located along the line shown in Figure 2,
simulating the modelling magnetic data along a 2D profile (using a 3D mesh and a 3D forward solver), while
considering 3D MT data. The modelled rock units and their petrophysical properties are given in Table 1. The
geological, magnetic susceptibility and resistivity true models are shown in Figure 2.

Table 1 Stratigraphic column showing geological topological relationships and average physical properties. Lithologies
are indexed from 1 through 6 by order of genesis.

Lithology index | Geological relation Geological unit Magnetic Electrical
(temporal order) susceptibility (SI) resistivity (Qm)

6 Sedimentary Basin fill 3 0 30
5 Sedimentary Basin fill 2 0 10
4 Intrusive Dolerite 0.025 5000
3 Sedimentary Basin fill 1 0.0001 50
2 Intrusive Diorite 0.025 5000
1 Basement Ultramafic rocks 0.05 2000
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Figure 2. (a) True geological model (b) true magnetic susceptibility model and (c) true resistivity model with the
simulated MT acquisition setup geometry in the top-left corner where triangles represent MT sites. The red dots in (b)
represents the 2D magnetic data line; MT sites are marked in (c). The inset in the top-right corner shows a top view of
the model with the magnetic data line in red and MT sites as triangles.

3.2. Simulation of geophysical data
3.2.1. Magnetic data

The core 2D model is discretised into N, X N, X N, = 1 x 128 x 36 rectangular prisms of dimensions equal to
127 x 127 x 90 m®. We generate one magnetic datum (reduced to pole magnetic intensity) per cell along the
horizontal axis, leading to 128 data points. To account for lateral effects, we add 10 padding cells perpendicular
to the profile and extend it by 36 cells at each extremity along its length, leading to N, X N, x N, = 11 X 192 X
36 cells of dimensions 381 x 127 x 90 m3. The reference magnetic susceptibility model used for forward data

computation is shown in Figure 2.

Airborne magnetic data are simulated for a fixed wing aircraft flying at an altitude of 100 m above topography.
We model magnetic data using prismatic model-cells assuming magnetic linearity, isotropy and the absence of
remanent magnetization. The forward solver we use in this work follows the formulation of Bhattacharyya (1964).
In this example, we model a magnetic field strength equal to 57,950 nT, reduced to the pole. The magnetic field
strength we chose corresponds to the International Geomagnetic Reference Field for the Rawlinna station,

Western Australia.

We add normally distributed noise with an amplitude equal to 2.5% of the average amplitude of the data. We
simulate noise contamination by adding noise sampled randomly from by a normal distribution characterised by

a standard deviation of 3.8 nT and a mean value of 0 nT. For the simulation of geological “noise”, we then apply
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a Gaussian filter to such random noise to obtain spatially correlated values. The uncontaminated and noisy data

are shown in Figure 3. For the inversion, the objective data misfit is set accordingly with the estimated noise level.

Simulated total magnetic field anomaly
T T T T T
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Figure 3. Simulated total magnetic field anomaly.
3.2.2. MT data

The synthetic MT data is computed using the complete 3D resistivity model derived from the 3D geological
model. The 3D resistivity model and the MT responses can be found online (Giraud and Seillé 2022). The core of
the electrical conductivity model used the same discretization as the magnetic susceptibility model (cells of
dimension 127 x 127 x 90 méin the core of the model). More than 1000 km padding is added to the horizontal
and vertical dimensions to satisfy the boundary conditions required by the forward solver. The final 3D mesh is
discretized into N, X N, X N, = 160 x 160 x 62 cells. Relationships between geological units and electrical
resistivities follow Table 1. The ModEM 3D forward modelling code (Egbert and Kelbert, 2012; Kelbert et al.,
2014) is used to simulate the MT responses of this model. The MT responses are computed at 256 stations evenly
spaced 1.016 km on a grid of 16 x 16 sites (see inset in Figure 2). The frequencies we use spans the 10 KHz to
0.01 Hz range, with 6 frequencies per decades, for a total of 37 frequencies; 5% magnitude Gaussian white noise
is added to the synthetic data before running the 1D inversions.

In the following subsections, we present the results of the modelling of synthetic MT data along a 2D section (see
Figure 2c) of the 3D resistivity volume, following the workflow proposed in Sect. 2. Along this section, 16 MT
sites are used as mentioned above. We start with the modelling of MT data to derive constraints and prior

information for the inversion of magnetic data.

3.3. 1D Probabilistic inversion of MT data and derivation of cover-basement interface probabilities

We perform the 1D MT inversions of the 16 MT soundings independently using the 1D trans-dimensional
Bayesian inversion described in Sect. 2.1. Synthetic data for three MT sites are shown in Figure 4a. The Phase
tensor skewness B and ellipticity A are also shown. We can observe that data presenting large values of || (up to
10 degrees) and A (up to 0.5), which indicate 2D/3D effects (Caldwell et al, 2004), are assigned with larger

uncertainties to compensate for these effects.
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All the inversions ran using 60 Markov chains with 108 iterations each. For each chain, a burn-in period of 750,000
samples (75% of the total) is applied to ensure convergence, after which we recorded 100 models equidistantly

spaced within the chain. The model ensembles are then constituted by 6000 models for each MT site.

The model posterior distribution for three MT sites is shown in Figure 4b. The interface probability within the
posterior ensemble of 1D models is described by a change point histogram. From the posterior ensembles of
models and interfaces, a cover-basement interface probability distribution p;,. is calculated independently for
each MT site (see Figure 4a). For this synthetic case, we assume a simple layer transition rule: transition from the
sedimentary cover into the basement occurs when a layer L1 of resistivity p; < py is followed by a layer L2 of
resistivity p, > py, with py = 200 Qm. This value of py is chosen assuming a-priori knowledge of the sediment
resistivity in the area (which, for this synthetic case does not exceed 50 Qm). Even without prior information, this
assumption would be correct in most real cases, given that sediments are generally conductive, with resistivities
ranging from 1 to 100 Qm (Evans et al., 2012). The depths at which transitions that satisfy this rule occur form a
1D histogram, which we define as p;,,; after normalization (see Section 2.1 for details). Here, the use of more
resistive threshold values does not have a significant effect on the calculation of p;,,.. This process is applied to
each model of the ensemble and allows the extractions of features of interest from the posterior model ensemble.
If less than 0.1 % of all transitions observed in the ensemble presents the feature defined earlier using py, we then
assume that the transition is not observed. This situation occurs for MT sites MT14, MT15 and MT16 (see Figure
2c¢ for their location), where the intrusion outcrops and the transition into the basement is not detectable assuming
the transition rule described above.

Figure 4 shows the interface probability and the cover-basement interface probability distribution p,,, for the
three MT sites. For each MT site, the probability to be located in the sedimentary cover, py., (defined as pgoq =
1 — Py, , Pin: being the cumulative distribution function of the interface probability distribution p;,;, see Sect.
2.1) is calculated for all depths. Figure 5b shows p,,., for each location along the profile. We observe that MT
sites located in areas affected by significant 2D/3D effects, such as MT10 (see Figure 2c, Figure 4b and Figure
5b), will have assigned larger uncertainties prior to the inversion. This will translate in the model posterior
distribution as a relatively flat cover basement interface probability distribution p;,., and therefore a sediment

probability distribution pg., relatively uninformative for the magnetic constrained inversion.
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Figure 4. Example of posterior a) response and b) resistivity distributions for three MT sites MT1 in (left), MT6 in
(middle) and MT10 in (right), located along the profile as shown in Figure 2. In a) the phase tensor skewness  and
ellipticity A are shown. In b) the change points (interface probability distribution), the cover-basement interface
probability distribution p;,; and the sedimentary cover probability distribution p,.4 are shown. Sites MT1 and MT6
are located in in the basin, site MT10 is located in the area most affected by 2D/3D effects (see Figure 2c for location).
High probabilities in the model posterior distribution is represented by warms colours, and low probabilities with cold
colours. The dashed lines represent the 5" and the 95" percentiles of the model posterior distribution and the black
line represents the median of the model posterior distribution. The white line is the true 1D model extracted beneath
the MT station.

3.4. Deriving constraints for magnetic inversion
3.4.1. Bound constraints

Starting from p;,; values calculated for each MT site, we interpolate p,., from MT onto the mesh used for
magnetic data inversion. In this synthetic example, we use a linear interpolation scheme. The interpolated

probabilities from MT are shown in Figure 5.

The interpolated probabilities p,,,: are used to define domains for the application of bound constraints during
magnetic data inversion. The domains are derived from MT probabilities as introduced in 2.3. We remind that we
use 1, = 0 in eq. (8) as a threshold for the minimum probability value allowing usage of the bounds of the "
rock unit when defining domains. This implies that everwhere pesmt > 0, the corresponding bounds are used in the
ADMM constraints. We divide the model into areas where the allowed magnetic susceptibility ranges correspond
to rock units with probabilities superior to zero. In this example, we complement information from MT inversions

with the assumption that dolerite outcrops are mapped accurately at surface level (unit 4, intrusive, see Table 1
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and Figure 2). Using this, we adjust the domains for the corresponding few model-cells at surface level, only at
two locations where outcrops are known based on the availability of a geological map. The domains for the bound
constraints we obtain are shown in Figure 5d, with domains 1 and 2 indicating parts of the model where MT
inversion suggests a single rock unit. This means that in the corresponding model cells, a single interval will be
used in the definition of the bound constraints, while intervals corresponding to two rock units (i.e., basement and

sediments) will be used otherwise. The intervals we use are as follows:

e Domain 1 (sediments only): [-0.0001, 0.0002] Sl
e Domain 2 (non-sediment units only): [0.024 0.055] SI
e Domain 3 (sediments and non-sediment units): [-0.0001, 0.0002] u [0.024 0.055] SI

3.4.2.  Prior model and constraints from MT probabilities

The prior model for magnetic inversion is obtained using the MT derived rock unit probabilities (Figure 5b-c) and
the magnetic susceptibility of the rock units given in Table 1. It is populated using the lower bound values of the

interval defining the domains that the different model cells belong to. For the i" model-cell, we have:

L
(my0), = > wlay,. (14)
j=1

We remind that 1/){ is the probability of the j™ rock unit in the i" model-cell, and that L is the number of rock units.
We chose to use a;;, which is the lower bound of the corresponding rock unit (or group of rock units), as it
constitutes the most conservative assumption about magnetic susceptibility from the range of plausible magnetic

susceptibilities. The resulting prior model is shown in Figure 5e.

Another way of using probabilistic information to constrain inversion was proposed by Giraud et al. (2019a), who
use probabilities derived from automated geological modelling to calculate an uncertainty indicator defining W .
In such case, W, reflects the degree of certainty in the prior model as it reaches its maximum values in areas
where geological modelling shows little uncertainty, and minimum where geological uncertainty is the highest.
The rationale behind this approach is to encourage inversion to produce homogenous changes where the presence
of given rock units is well constrained and to leave more freedom to inversion where geological uncertainty is
higher. Here, we follow the same principle, which we transpose to MT-derived probabilities. The matrix W, is

derived as follows.

We first calculate the information entropy h (Shannon, 1948) for each model-cell. Taking the example of the it"

model-cell, we have:

L
B= = yilog(y)). (15)
j=1
We then use its normalized complementary to obtain W ,:

. max h — ht
Wi = _ 16
9  maxh—minh (16)
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470  This way, W, = 0 where uncertainty is maximum (i.e., where ¥; = 1, in our case) and W, = 1 where one of
the units is predicted with a probability of 1 by MT (green dots in Figure 5b and Figure 5c¢). The probabilities used

in this calculation are shown in Figure 5b and Figure 5c, and the resulting W, values are shown in Figure 5f.
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Figure 5. Probability of interfaces between sedimentary cover p;,; and basements as recovered from MT inversion
475 shown at the location of each MT site (a), interpolated probability of sedimentary cover written ¥* (b) and non-

sedimentary units, written ¥? (c), corresponding domains (d), prior model from MT derived rock unit probabilities

and magnetic susceptibility rock units observed in the area (), and the weights W, assigning local values to the

smoothness constraints (f). The location of the simulated MT sites is reminded in (a). The brown lines materialise the

interfaces between geological units in the true model. In (b) and (c), the green dots show model-cells where a single unit
480 is allowed when defining the domains shown in (c).
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3.5.

Inversion of magnetic data and uncertainty analysis

In this section, we study the influence of MT-derived prior information onto magnetic inversion and estimate the

related reduction of interpretation uncertainty. In what follows, we consider that the prediction from MT can be

considered with ‘high confidence’ when the probability of one of the units is predicted with a probability of 1.

We perform inversions for six case scenarios, consisting of:

(@)

(b)

(©)

(d)

(€)

()

Unconstrained inversion: we assume no prior geological, petrophysical or MT information; a
homogenous prior model populated with magnetic susceptibility of 0 Sl is used; no bound constraints
are applied; smoothness constraints are applied globally.

High confidence bounds constraints only: we assume knowledge of only domains 1 and 2 derived by MT
(a single unit with 100% confidence) to inform ADMM bound constraints and that no probabilistic
information is available elsewhere; ADMM bound constraints are applied only in domain 1 and 2; a
homogenous prior model populated with magnetic susceptibility of 0 Sl is used; smoothness constraints
are applied globally.

Global bound constraints: we assume knowledge of the magnetic susceptibility of units that may be
present in the area without MT or geological information; ADMM bound constraints allowing all units
everywhere in the model are applied; a homogenous prior model populated with magnetic susceptibility
of 0 Sl is used; smoothness constraints are applied globally.

Global bound constraints with prior model: we assume knowledge of a prior model derived from MT but
with the lack of probabilistic information; ADMM bound constraints allowing all units everywhere in
the model are applied; a prior model derived from MT prior information is used; smoothness constraints
are applied globally.

Local bound constraints with prior model: we assume knowledge of a prior model derived from
probabilistic MT information to derive spatially varying ADMM bound constraints; a prior model
derived from MT prior information is used; ADMM bound constraints are applied locally using
information from MT; smoothness constraints are applied globally.

Local bound constraints and smoothness, with prior model: we assume knowledge of a prior model
derived from MT with probabilistic information to derive spatially varying ADMM bound constraints
and spatially-varying smoothness constraints; a prior model derived from MT prior information is used;
smoothness constraints are applied locally using information from MT; locally-weighted smoothness
constraints are applied by populating calculating W, (Figure 5f ) using eq. (16) as summarized in 3.4.2.

This is the case that uses prior information the most.

The different scenarios tested in the synthetic example are summarized in Table 2. The corresponding inversion

results are shown in Figure 6. We note that magnetic susceptibility models shown in this section are equivalent

from the magnetic data inversion point of view as they present similar data misfit, which we assume to be

acceptable when of the same magnitude as the estimated noise in the data.
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Table 2. Scenarios tested for the utilisation of MT-derived information in magnetic data inversion. ‘High confidence’
refers to the case where constraints are applied only to models cells with MT-derived rock unit probabilities equal to
1. The values 10* and 3.10° were obtained based on an L-curve using 400 inversions and were fine-tuned for each

520

scenario.
. . ADMM bound Smoothness

Case scenario Prior model : . Uy oy
constraints constraints

_(a) Un.constramed Homogenous | None Global 0 3.10°

inversion

(b) High confidence Only where MT

bounds constraints only Homogenous | shows high Global 0 3.108

(domains 1 and 2 only) confidence
Homogenous,

(c) Global bound Homogenous | identical in all Global 104 1.2.10°

constraints
model-cells

(d) Global bound Homogenous,

constraints with prior MT-derived | identical in all Global 104 1.2.10°

model model-cells

(e) Local bound .

constraints with prior MT-derived Locally defined, Global 10 1.1.10°
all cells

model

(f) Local bound

constraints and_ _ MT-derived Locally defined, chally 104 6.5.105

smoothness, with prior all cells weighted

model
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Figure 6. Inversion results for the different scenarios tested. Cases (a) through (f) correspond to inversions using
prior information and constraints summarised in Table 2.

525  We complement the calculation of ERR,, and J (see values in Figure 6) with a membership analysis following eq.
(10) as a measure of interpretation uncertainty. The resulting membership values are shown in Figure 7, where

we added the values of the inverted model’s information entropy H (eg. 11).
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Figure 7. Membership values for the non-magnetic lithologies. Cases (a) through (f) correspond to inversions using
530 prior information and constraints summarised in Table 2. The brown lines materialise the interfaces between geological
units in the true model. H refers to the information entropy of the model (eq. 11).

A visual comparison of the membership values in Figure 7e and Figure 7f with the MT-derived domains (Figure
5d) indicates good consistency with MT domains (1) and (2) (single rock units inferred). It also shows that the

proposed workflow has the capability to improve the recovery of key features investigated here (i.e., the location
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of the basement-sediments interface) significantly when compared to cases that do not use MT-derived ADMM
constraints across the entire model (Figure 7a, b and c).

To complete our analysis, we visualise the metric values reported in Figure 6 and Figure 7 in the cross-plot shown
in Figure 8. It shows the relationship between the amount of prior information infused in the constraints used in
inversion and the indicators we propose to use. The rationale behind this visualisation is to provide a consolidated
view of the metrics used in this synthetic case. We use it to investigate the existence of empirical relationships
between uncertainty and degree of integration between MT and magnetic inversion. Two main observations can
be made. First, the use of ADMM constraints at all locations of the model reduces interpretation ambiguity (lower
H value for cases c, d, e, and f). Second, the use of MT-derived ADMM constraints produces models closer to the
causative model by reducing both the model misfit ERR, and Jaccard distance J (cases b, e, f). While ERRn,
measures the discrepancy between the true model’s magnetic susceptibility and the inverted model, the Jaccard
distance measures the misfit in terms of the corresponding rock unit interpretation. The concurrent reduction of
both ERRr, and J with the utilisation of MT-derived ADMM constraints supports our qualitative interpretation of
Figure 6 and Figure 7, pointing to the conclusion that exploiting probabilistic information to derive constraints

for magnetic data reduces model misfit while supporting geological interpretability.
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Figure 8. Cross-plot of H and ERR,,, with colour coding using J for inversion cases (a) through (f) as per Table 2.
Grey and brown shading separate the different types of constraints configurations: local vs global constraints,
ADMM bound constraints applied everywhere or only at specific locations.

4 Field application in the Cloncurry district

We propose an application example illustrating the proposed sequential inversion workflow in the Cloncurry
district (Queensland, Australia, see Figure 9). Using observations made in the synthetic case, we integrate MT
with magnetic data inversion using the case relying on MT-derived ADMM bound constraints, using a

homogenous starting model and smoothing constraints.

We use existing results of the depth to basement derived using MT within a probabilistic workflow (Seillé et al.,

2021) in an area of the Cloncurry district. These results are used to constrain the magnetic inversion.
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4.1. Geoscientific context and area of interest

The depth to basement interface probability used to constrain the magnetic inversion was derived as part of a
previous study using a similar workflow as presented in sections 2.1 and 3.3, details about the survey can be found
in Seillé et al.(2021) and are summarised in what follows. The study consisted in modelling the full Cloncurry
MT dataset using 1D probabilistic inversions. For each MT site, the cover-basement interface probability
distribution p;,,, was extracted from the inversion model ensembles. In this area, the threshold used to discriminate
between sedimentary and basement rocks was set to 800 Qm due to the presence of relatively resistive sediments.
The set of 1D cover-basement interface probability distribution p;,,, was then interpolated spatially across the
survey area using the Bayesian Estimate Fusion algorithm of Visser and Markov (2019). This algorithm generates
an ensemble of 2D surfaces, given discrete input estimates of the location of an interface. In that study, two types
of depth to basement estimates were combined: the cover-basement interface probability distribution p;,,, derived
from the MT, and the depth to basement estimated from drill hole data. In total, 457 MT sites and 540 drillhole
estimations are combined. Significant lateral variations are allowed during the interpolation using the fault traces
indicated by structural geological data, defining areas where basement discontinuities are expected (at the location
of faults). A relaxation of the spatial continuity between estimates located on different sides of a given fault is
encouraged, allowing for discontinuities in the interpolated 2D surfaces (Visser and Markov, 2019). These faults
are assumed to be vertical, which is a valid assumption given the near vertical behaviour of the main faults in the
area (Austin and Blenkinsop, 2008; Case et al., 2018).The combination of estimates coming from different sources

of information in this form permitted to calculate a probabilistic depth to basement interface across the survey

area.
Mount Margaret Fault
~——— Constantine Domain «— Soldiers Cap Domain —M —
0= Mlag-MT profile I LeQend
+ Cloncurry MT Survey Boomarra Metamorphics |
Corella Formation
Dolerite |
Malakoff Granite |
Millungera Basin succession (|
— Mount Fort Constantine Volcanics Tl
é Soldiers Cap Group
é Toole Creek Volcanics [ ]
g ©Co0CLo0OoQOCKOWCOO Wiggle Waterhole Metagabbro [l
Williams Supersuite (]

450000 460000 470000 480000 490000 500000
East (m)

Figure 9. Interpreted solid geological map of the area (Dhnaram and Greenwood, 2013). The small dots are the MT
sites of the Cloncurry MT survey. The red line is the profile used in this study, and the red dots are the MT sites
associated to this profile. The Constantine Domain to the west and the Soldiers Cap Domain to the east are separated
by the Mouth Margaret Fault. The red dashed line delineates the area we focus on.

In this study, we focus on a 2D profile (L26, see location on map in Figure 9a), and invert the corresponding
magnetic data extracted from the anomaly map shown in Figure 10a and Figure 10b. The choice of an East-West

oriented profile is motivated by the North-South orientation of the main structures in the area and by the geological
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features the known geology and the geophysical measurements suggest. The profile is nearly perpendicular to
these structures, making it suitable for use within a 2D inversion scheme. It crosses the North-South oriented
Mount Margaret Fault, which is thought to belong to the northern part of the regional Cloncurry Fault structure,
a major crustal boundary that runs North-South over the Mount Isa Province (Austin and Blenkinsop, 2008,
Blenkinsop, 2008). This boundary separates two major Paleoproterozoic sedimentary sequences (Austin and
Blenkinsop, 2008). The geological modelling performed by Dhnaram and Greenwood (2013) also indicates that
the Mount Margaret Fault separates two distinct domains, the Constantine Domain to the West and the Soldier
Caps Domain to the East. In our study area, the Constantine domain is covered by non-magnetic cover constituted
by Mesozoic and Cenozoic sediments, lying on what is believed to be consitituted by the Mount Fort Constantine
volcanics, in some places intruded by the Williams supersuite pluton. On the eastern side, the Soldier Caps
Domain is also covered by Mesozoic and Cenozoic sediments, and the basement is interpreted to be a succesion

of volcanic and metamorphic rocks (Dhnaram and Greenwood, 2013).

The depth to basement probabilistic surface derived by Seillé et al. (2021) along the W-E profile (see Figure 10c)
presents shallow basement depths in the western part of the profile (top basement at a depth of approximately 100
meters , with some lateral variations). In the eastern part of the profile, the model indicates that a two-step fault
system controls the thickening of the basin to the east. It reaches ~ 350 meters thickness in the eastern part. The
depth to basement model along the profile shown in Figure 10c is relatively well constrained by MT and the drill
hole data used in the interpolation process. However, the interpolation method we used imposed spatial continuity
between estimates., Due to the relatively large separation between soundings (2 km) and the sparsity of drill holes,
it did not allow for the definition of small-scale depth to basement lateral variations. In contrast, magnetic data

shown in Figure 10a suggest that small-scales variations due to faults and other lateral discontinuities could exist.

In this work, we assume a non-magnetic sedimentary cover, and a magnetic basement. In addition, we assume
little to no remanent magnetization and little to no self-demagnetisation. Important remanence and self-
demagnetization can be observed in the vicinity of magnetite-rich Iron Oxide Copper Gold ore deposits (e.g.,
Anderson and Logan, 1992; Austin et al., 2013), but we consider that there is no indication of such features along
L26. Further to this, we make this assumption for the sake of simplicity as the main object of this paper is the

introduction of a new sequential inversion workflow and to show that it is applicable to field data.

Under these premises, the features the magnetic data presents can be exploited to improve the image of the cover-
basement interface when integrated with prior information about the thickness of cover. In this context, the role
of magnetic data inversion constrained by MT is therefore multiple:

e to constrain the depth and extent of the magnetic anomalies and refine their geometry;

e to analyse the compatibility between the constraints derived from MT and the magnetic data and to
resolve some small-scale structures not defined by the MT constrains;

e to reduce the interpretation uncertainty of the cover-basement interface;

e to propose new scenarios in relation to the composition of the basement (in terms of its magnetic

susceptibility) and structure (through its lateral variations).

The depth of the cover-basement interface probability shown in Figure 10c is used to derive the domains required

by the spatially varying bound constraints used in magnetic inversion.
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4.2. Constrained Magnetic data inversion
4.2.1. Magnetic data preparation and extraction of prior information

We use the gridded reduced-to-pole (RTP) magnetic data from the Geological Survey of Queensland shown in
Figure 10 (https://geoscience.data.gld.gov.au/dataset/ds000018/resource/91106497-d463-4b83-8b01-
1c5539ab40b1, last accessed on_09/03/2022). Prior to the 2D inversion of the data along the line L26, we

manipulate and reformat the data. To account for variations in the measurements in the vicinity of the line, we
extract data from a 800 meters wide band around the profile (L26) (Figure 10a), as shown in more details in Figure
10a. To obtain data corresponding to a 2D rectilinear profile, we then calculate the weighted average of this subset
of the dataset by assigning weights inversely proportional to the square of the distance of the measurement to L26,
as illustrated in Figure 10b. The envelope of the data is obtained from the lower and upper limits observed within
the band considered in the calculation of the weighted average. As a consequence, it reflects the variability of
magnetic data perpendicularly to L26. Areas with departures from a narrow envelope may be indicative of zones
where the 2D hypothesis made for inversion could be challenged.

a) Magnetic RTP data
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Figure 10. Data preparation. (a) map view of the data in the region of interest. The grayed-out area corresponds to the
zone considered for the averaging of the magnetic data. Red points are MT soundings considered in this study. Grey
circles are others MT soundings not used in this study. (b) shows data for magnetic inversion (solid line) and the
envelope of the data from the 800 meters band around L26 (light blue shade). The shades of blue represent the weight
assigned to the data points in the calculation of the average: the lighter the shade, the lower the weight. ¢) Cover-
basement interface probability p;,. (Seillé et al., 2021). Red lines are the drill holes, and their bottom represent the
intersection with the basement. The drill holes plotted are projected a distance up to 800 meters away from the profile.
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We convert the interface probability shown in Figure 10c into basement and sedimentary rock probabilities using
the method described in Section 2.1 and 3.4.1. We assume that the sedimentary basin domain overlies the
basement domain, and derive the corresponding domains for the ADMM bound constraints using the domaining
procedure described above. The resulting domains are shown in Figure 11.

MT-derived domains Domain
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Figure 11. MT-derived domains for cases with (1) sedimentary units only, (2) sedimentary and non-sedimentary units
and (3) non-sedimentary units only. The magnetic susceptibilities for the different domains are indicated on the Figure.

In what follows, we assume that sedimentary rocks have a low magnetic susceptibility comprised within the range
[-0.006, 0.006] SI, while the basement units, mainly composed of volcanic sequences, are modelled to have higher
magnetic susceptibilities within the interval [0.015 0.09] SI. The intervals we use for domains 1, 2, and 3 are given

as:

e Domain 1 (sediments only): [-0.006, 0.006] Sl
e Domain 2 (basement and sediments): [-0.006, 0.006] U [0.015, 0.09] SI
e Domain 3 (basement only): [0.015, 0.09] Sl

4.2.2. Inversion setup and results

To reduce computing time, we truncate the sensitivity matrix of the magnetic data inverse problem under the
assumption that model-cells beyond a given distance exert a negligible influence on the forward calculated data.
The sensitivity domain is reduced to a 25 km-radius cylinder of infinite height and depth around each data point
in a moving sensitivity domain approach (see examples in Cuma et al., 2012; Cuma and Zhdanov, 2014) that
assumes negligible contribution of the models-cells beyond a certain distance from the measurement’s location.
Using a similar approach, the results of Wilson et al. (2011), indicate that using a 25 km radius may result in
approximately 98% accuracy in the calculation of the response. We assume that is suffices for the purpose of our
application example, which we use mainly as a proof-of-concept using real world data. In this application example,
we use a 3D mesh discretized into N, X N, X N, = 331 X 9 X 116 rectangular prisms of dimensions equal to
220 x 250 x 10 m®.Using a moving sensitivity domain approach leads to a reduction of 67% of the size of the
sensitivity matrix and of the relating computational cost. We performed inversion using 12 threads on an Intel(R)
Xeon(R) CPU E5-2630, but we note that all inversions shown here can be performed on a laptop computer.

To examine the impact of different type of constraints, we first perform inversions using minimum prior
information and successively increase the amount of prior information from unconstrained inversion to using MT-

derived intervals for multiple bound constraints. In the scenarios investigated here, we perform inversion using
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global smoothness constraints (W, = I), global (i.e., uniformly applied) and local (i.e., spatially-varying) ADMM

bound constraints. The inversions we run consist of the following cases:

680 (1) constrained by global smoothness constraints;
(2) constrained by global smoothness constraints with lower and upper bound constraints;
(3) constrained by global smoothness constraints with global, multiple bound constraints;
(4) constrained by global smoothness constraints with local, ADMM bound constraints defined from MT
probabilities.

685 The constraints uses in each case are summarised in Table 3.

Table 3. Scenarios tested for the utilisation of MT-derived information in the field case and corresponding o weights
used in the inversion.

. . ADMM bound Smoothness
Case scenario Prior model ; .
constraints constraints
(1) Unconstrained inversion | Homogenous | None Global
Homogenous,
(2) lower and upper ADMM Homogenous | identical in all Global
bounds constraints
model-cells
Homogenous,
(c) Global bound constraints | Homogenous identical in all Global
model-cells
(d) local ADMM bound local, varying
constraints derived from MT | Homogenous accordingly with Global
probabilities domains

Similarly to the synthetic case, we determine the value of a,, and a, for each case using an L-curve analysis. This
690  step is performed starting from a coarse model discretisation by doubling the cell-size in each direction to be able
to run several hundreds of inversions in a short time. This is followed by fine tuning on the finer mesh shown here
to account for slight variations in the optimum «,, and «, values caused by changes in model discretization. The

results for inversion cases (1) through (4) are shown in Figure 12.
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Figure 12. Inversion results. (a) through (d) correspond to inversion types (1) through (4), respectively; (e) shows the
data fit for the 4 inversions shown. The grey shading shows the amplitude of the data shown in Figure 10 for calculating
the weighted average of the inverted anomaly. The dashed lines mark the horizontal extension of areas where
hypotheses made for magnetic inversion may be incompatible with the data.

The inversions reached a satisfactory data fit, exception made for the constrained inversion 4 (see the data fit in
Figure 12e). In that case a significant underfit of the magnetic data is observed within certain areas, which point
to an incompatibility between the magnetic data and the constraints applied. Four areas in the central part of the
model are slightly underfit, as shown by double arrows between approximately 458 km and 470 km Easting. On
the eastern part of the profile, from 479 km East to the most eastern part of the profile, an important underfit is
observed as marked by the rightmost double arrow in Figure 12e. At this stage, this data misfit can indicate that
the constraints used are not appropriate. This could be due to an inexact positioning at depth of the structural
constrains, or to a change in the petrophysical behaviour of the basement in certain areas, which would link
differently the electrical properties of the depth to basement constrains to their magnetic properties. The underfit
observed in Figure 12e for case 4 is likely to be due to the magnetic susceptibilities allowed in Domain 3, with
minimum values of 0.015 SI compared to -0.006 Sl for domains 1 and 3. Compared to Figure 12a-c, the model in
Figure 12d presents higher magnetic susceptibilities at depth in the East below approximately 200 m depth, which
is clearly due to the constraints (see domains in Figure 11). In comparison, Figure 12a-c show lower magnetic
susceptibilities in this part of the model with some values between -0.006 SI bound and 0 SI.
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We propose a 5™ inversion case where we adjust the bounds manually to examine hypotheses relaxing the

constraints derived by the combination of MT inversions and the magnetic susceptibility of rocks in the area.

From Figure 12, we identify five main areas where hypotheses made for the utilisation of MT-derived domains
need to be adjusted. In each case, the domain allowing sedimentary units may be deeper than expected or the
basement may be less susceptible. We test the plausibility of such alternative scenarios by adapting the MT-
derived domains by adjusting the domains. We increased the depth of the non-sedimentary (i.e., basement) units
in the eastern part of the model and between the areas delimited by dashed lines in Figure 12d. From a geological
point of view, this corresponds to adjusting our working hypothesis to a case where rocks previously identified as
basement only may be less susceptible than expected. The domains we use after adjustment are shown in Figure
13a, and inversion results in Figure 13b and c, respectively. Figure 13d proposes an automated interpretation using
membership values w using eq. (10); the question mark characters shown in Figure 13d identify areas where the
initial hypotheses have been revisited from a structural point of view by modifying the domains but which may
still require further investigations such as the use of different interval bounds to simulate lateral petrophysical
variations within the basement. This could be a way to assess the natural heterogeneity that can occur within
basement units due to geological events still unaccounted for in the modelling. The arrows point to parts of the
model where the basement constrains may be poorly resolved because located outside of the coverage of the MT
stations and only constrained by few sparse drill hole estimates (Figure 10a and Figure 10c). . We note that this
possible interpretation needs to be taken with caution between approximately 462 and 464 km easting as marked
by the asterisk sign (*) in Figure 12e and Figure 13c because it corresponds to a zone of the study area where the
assumption of a 2D model taken for the magnetic inversion might not hold. This is corroborated by visual
inspection of the vicinity of L26 beyond the greyed-out area between 462 and 464 km Easting in Figure 10a.
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Figure 13. (a) MT-derived domains adjusted following the adjustments suggested by magnetic data inversion, for
domains with (1) sedimentary units only, (2) sedimentary and non-sedimentary units and (3) non-sedimentary units
only. (b) is the inverted model for inversion case (5) and (c) is the inverted and field magnetic RTP data, with the
horizontal extent of the locations where MT bounds are adjusted; (d) shows the membership values to the sedimentary
and basement units obtained using eq. (10), overlaid with the original contours of MT-derived domains. In (c), the grey
shading shows the envelope of the data shown in Figure 10 for calculating the weighted average of the inverted anomaly.

Beyond the possibility to review hypotheses made at earlier stages of the workflow, we get insights into the
structure and magnetic susceptibility of the basement. While electrical conductivity and magnetic susceptibility
may be sensitive to change in rock type, there are scenarios where they exhibit differing sensitivity to texture and
grain properties, respectively. For instance, metamorphism and alteration might affect electrical conductivity and
magnetic susceptibility differently (Clark, 2014; Dentith et al., 2020). Under these circumstances, our results can
provide indications about plausible geological processes given sufficient prior geological information about the

deformation history.

4.3. Interpretation

From a multi-physics modelling point of view, the results presented in the previous section show a general
agreement between the MT-derived constraints and the magnetic data. However, the results also show

incompatibilities in a few parts of the model. We identified two major areas where incompatibility occurs:

1) a smaller inconsistent area in the western part of the survey;

2) a large inconsistent area east of the Mount Margaret Fault.

We interpret these incongruencies as being mainly due to the different sensitivities of the two geophysical methods

to different geological features and to the petrophysical variability of the basement in the area.
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The greater depth extent of some of the lower magnetic susceptibility zones required by the magnetic data in the
western part of the survey suggests that the depth to magnetic source is greater than suggested by the constraints.
Adjustments to the constraints allowed a better data fit. A low magnetic response between kms 460 and 470 East
(Figure 10) is assumed to be the consequence of low magnetic susceptibility contrasts and is interpreted to be
granitic intrusions of the Williams Supersuite (Dhnaram and Greenwood, 2013). The presence of such intrusions
offers a plausible explanation for the discrepancies between the magnetic and MT modelling. On the one hand,
MT data modelling might not able to distinguish between an electrically resistive basement and an electrically
resistive intrusion, while magnetic data modelling could not distinguish between the non-magnetic cover and a
non-magnetic intrusion. On the other hand, magnetic data inversion can differentiate the low susceptibility
intrusion from the higher susceptibility volcanic rocks, and the MT data is sensitive to the basal cover interface
above both the volcanic rock and the intrusion. The constrained inversion permits detection of the lateral extent
of the intrusion while estimating cover thickness. While detailed modelling of higher resolution data would be
required to refine the geometry of these intrusive bodies, our modelling suggests that the intrusion could be

modelled as several smaller intrusions.

East of the Mount Margaret Fault, the incompatibility between the original MT-derived constraints and the
magnetic data points to regional scale structures. Drill hole observations indicating basement do not exceed 350
meters depth. If we assume a high-susceptibility basement, which is common to the whole area (Dhnaram and
Greenwood, 2013), the magnetic model requires a very thick non-magnetic cover layer to reconcile the data which
is incompatible with our geological knowledge of the area. In that case, we need to reconsider our definition of
the basement. The north-trending Mount Margaret Fault (see Figure 9) separates two geological domains
exhibiting different basement characteristics. East of the Fault is the Soldiers Cap domain, which is predominantly
composed of non-magnetic volcanic rocks. By relaxing the geological model constraints in that part of the model
both sedimentary and non-sedimentary units are allowed (Figure 11a) and we can satisfactorily fit the data. The
necessity of considering non-magnetic volcanic rocks in the Soldier Caps domain is in agreement with the

magnetic modelling performed by Dhnaram and Greenwood (2013).

5 Discussion

We have presented a workflow for sequential joint modelling of geophysical data, and applied it to synthetic and
field measurements. In this study, we used constraints in the form of interface probabilities derived from a
probabilistic workflow driven by MT data. This workflow is general in nature and is not limited to a particular
geological or geophysical modelling method to generate the inputs. This has allowed us to report the utilisation
of the ADMM algorithm to constrain magnetic data inversion using disjoint interval bound constraints for the first

time.
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The workflow we proposed presents several advantages. It is computationally inexpensive by use of standalone
inversions. The inversion of the MT dataset used to derive the constraints is performed only once. Then, a series
of constrained magnetic inversions is run to test different geophysical and petrophysical hypotheses. It shows the
example of a fast and flexible approach to test different structural and petrophysical assumptions while modelling
data sensitive to different physical parameters. It allows to focus the modelling efforts on survey-specific features
(anomalies, geological structures) when appropriate petrophysical information is available. However, as with
generalizable methods, strengths become limitations under certain circumstances. For instance, in the case of MT
and magnetic data inversions as proposed in this work, the electrical resistivity and magnetic susceptibility for the
rock types of interest is dependent on a range of factors and processes (such as porosity, permeability, rock
alteration, etc.) such that their correlation may be case-dependant (see Dentith et al., 2020; Dentith and Mudge,
2014). While we may surmise that it remains reasonable to assume the existence of such correlation in hard rock
scenarios, it may not always hold in basin environments. For example, one can easily think of a basin exploration
case where electrical resistivity increases rapidly with increasing hydrocarbon concentration in reservoirs, while
the absence of changes in magnetic susceptibility might make the use of magnetic data inversion redundant. In
such case, property pairings other than magnetic susceptibility and resistivity could be considered, such as
electrical resistivity and seismic attributes (see examples of Le et al., 2016 and Tveit et al., 2020, who use seismic
inversion to extract prior information for CSEM inversion). Further to this, the utilisation of magnetic data
inversion for the deeper part of the crust is limited to depths shallower than the Curie point (typically from
approximately 10 to a few 10s of kilometres under continents). For deeper imaging of the crust, the workflow we

propose may be best suited to the utilisation of gravity data with MT.

An assumption worth examination is whether the study area is adequately represented by two geological domains.
In the cases we investigated, these domains are defined by the probability of observing only two rock classes
(basement and non-basement). While this assumption reduces the risk of misinterpretation as no hypotheses are
made to distinguish between different sedimentary units or rocks of different nature in the basement, it also then
limits the interpretations that can be made from inversion results. We expect that provided that the rock units
present discriminative features, i.e., distinctive magnetic susceptibility and resistivities (or other properties
depending on the geophysical techniques considered) several rock types can be considered in the modelling. Such
discriminative aspects of the petrophysics needs to be ascertained while defining the number of distinctive
domains that may be present in the study area. Ideally, robust petrophysical data is available given the strong
constraint that these domains may impart on inversion. However, in the absence of petrophysical data or the
number and character of geological domains, literature values or broad intervals can be used to define constraints.
In these cases, the magnitude of data misfit can inform whether a proposed number of domains or magnetic
susceptibility ranges are plausible, driving data acquisition or refinement of the conceptual geological model.

Methods that exploit this approach remain to be investigated further in future case studies.

The application case is performed in 2D to illustrate the workflow. Extending the presented work to large scale
problems in 3D is straightforward as the inversion methods employed in this study are designed for 3D modelling.
The 1D MT modelling and interpolation schemes present excellent scalability. The Tomofast-x engine (Giraud et
al., 2021b; Ogarko et al., 2021a) is implemented using 3D grids. It presents good scalability and it offers the
possibility to reduce the size of the computation domain to save memory when calculating the sensitivity matrix
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in the same fashion as Cuma et al. (2012), and Cuma and Zhdanov (2014), for large-scale potential field data
modelling. Ongoing developments on Tomofast-x comprise the application of wavelet compression operators to
accelerate the inversion in the same way as Li and Oldenburg (2003) and Martin et al. (2013) while maintaining
modelling error sufficiently low, as well as the development of joint inversions using the ADMM constraints for

multiple bound constraints.

Another straightforward extension of the workflow is the use of gravity data simultaneously with, or instead of,
magnetic data since it is already implemented in Tomofast-x (Giraud et al., 2021b). Giraud et al. (2020) presented
a synthetic MT-constrained gravity inversion, using a similar workflow as the one presented here. This would be
of particular interest in the Cloncurry region (Queensland, Australia), where for instance, Moorkamp (2021)
recently investigated the joint inversion of gravity and MT data, and where our workflow could be applied using
the MT modelling results of Seillé et al. (2021).

From a geophysical point of view, magnetic inversion is affected by the non-uniqueness of the solution to the
inverse potential field problem despite prior information and constraints being used. The workflow could be
improved by using a series of models representative of the geological archetypes that can be derived from the
ensembles of 1D MT models. Geological archetypes are distinctly different structural configurations (or
topologies) that plausibly exist for a given location with available data (Pakyuz-Charrier et al., 2019, Wellmann
and Caumon, 2018). Identification of the archetypes could be achieved from the ensemble of geological model
realisations in the same spirit as Pakyuz-Charrier et al. (2019), who use a Monte Carlo approach to generate a

range of topologies which are then examined for distinct clusters representing the archetypes.

From a methodological point of view, it could be argued that simultaneous joint geophysical inversion combining
structural and petrophysical constraints might outperform the workflow we propose here. However, this would
make the modelling process more demanding combined with limitations based on cases where determining the
causitive relationships between petrophysics supporting joint approaches poses a challenge. The workflow we
propose here presents a few advantages over a joint inversion scheme, in the sense that it does not require both
datasets to be inverted simultaneously under a defined set of petrophysical and/or structural constraints. The time
required to run a joint inversion being limited by the running time of the more computationally expensive
technique, it can limit the range of tests to be performed. In this study, we could run rapidly many 2D constrained
magnetic inversions, even if the 1D probabilistic inversions of the MT data (and posterior fusion) required
significant longer running time compared to the 2D constrained magnetic inversion. This point would particularly
be relevant in the case of large 3D datasets. This approach may represent an exploratory step in joint inversion
workflows to explore, understand and refine structural and petrophysical relationships between different physical

parameters before undertaking more demanding joint inversions.

In the field application case presented here, the probabilistic depth to basement is derived assuming lateral
continuity of the depth to basement estimates at a large scale, not accounting for small-scale lateral variations.
Thus, uncertainty for depth to basement may be underestimated at some locations, in particular in between MT
sites as shallow depths. In such cases, the existence of incompatibilities between MT-derived constraints and the
magnetic data might require reconsidering the spatial continuity assumptions taken during the calculation of the

probabilistic depth to basement surface. Extensions of this work may be devised to alleviate some of the
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limitations of the workflow. For instance, magnetic susceptibility from the inversion of magnetic data could be
mapped back to a resistivity model to calculate forward MT data for validation (dashed line in Figure 1), or to
constrain the next cycle of MT inversions in the case the workflow is extended to cooperative joint inversion. It
would also be straightforward to use to a level-set inversion that can consider an arbitrary number of geological
units (e.g., Giraud et al., 2021, Rashidifard et al., 2021) using MT modelling as a source of prior information and
constraints. We have used hard bounds using the ADMM algorithm, which can easily be complemented or
replaced by the use of multi-modal petrophysical distributions as available in Tomofast-x (e.g., mixture models

as in Giraud et al., 2017, 2019) as an alternative.

6 Conclusion

We have introduced, tested on synthetic, and applied to field data a cooperative inversion scheme for the
integration of MT and magnetic inversions. We have shown that despite its simplicity, the workflow we propose
efficiently leverages the complementarities between the two methods and has the capability to improve our
understanding of the cover-basement interface and of the basement itself. We have tested our workflow on a
synthetic study that illustrates the flexibility of the method and the different possibilities our workflow offers as
well as their limitations. In the field application case (Cloncurry area, Queensland), we have shown how the
quantitative integration of MT and magnetic data may bring insightful results on geological structural and
petrophysical aspects, opening up new avenues for interpretations of the geology of the area and prompting future

works.
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Appendix A

We reformulate the geophysical inverse problem in eq. (5) in its ADMM form as:

minimize 6(d, m) + f(z) a7
subjecttom —z =0,
where f is the indicator function of B (see eq. 5.1 in Boyd, 2011, for details).We solve this problem iteratively by

alternating the updates of m and z following :

m*t = argmin(6(d, m) + 72| W app (m — 2% + w)3), (18)
Zk+1 — 7T'B(mk+1 + uk)’ (19)
wktl = Yk 4kt — gk (20)

where u is called a dual variable, T € R* is the overall weight assigned to the ADMM constraints, and k is the
current iteration number; W,ppy IS @ diagonal matrix we introduce here to define spatially varying weights
assigned to the bound constraints during inversion. It controls the relative strength of the ADMM constraints in
the different model cells. Here, we set it locally as a function of the MT inversion results P, such that Wp iy =

f(Pyr). The ADMM variable z is calculated by the projection of x onto B as:

mg(x) = [T[Bl (x1), 73, (x2), ..., T3, (xn)], with (21)
1z, (x;) = argmin||x; — y|l, (22)
YEB;
The updated model m**? is then calculated by solving the inverse problem using the LSQR algorithm of Paige

and Saunders (1982). We refer the reader to Ogarko et al. (2021a) for more details. We illustrate the application

of such projection using two intervals in Figure A 1.
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1125 Figure A 1. Projection using g as per eg. 19 using two intervals as follows: [0, 0.005], [0.025, +oo].
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