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Abstract. We propose, test and apply a methodology integrating 1D magnetotelluric (MT) and magnetic data 

inversion, with a focus on the characterization of the cover-basement interface. It consists of a cooperative 20 

inversion workflow relying on standalone inversion codes. Probabilistic information about the presence of rock 

units is derived from MT and passed on to magnetic inversion through constraints combining structural constraints 

with petrophysical prior information. First, we perform the 1D probabilistic inversion of MT data for all sites and 

recover the respective probabilities of observing the cover-basement interface, which we interpolate to the rest of 

the study area. We then calculate the probabilities of observing the different rock units and partition the model 25 

into domains defined by combinations of rock units with non-zero probabilities. Third, we combine these domains 

with petrophysical information to apply spatially-varying, disjoint interval bound constraints to least-squares 

magnetic data inversion using the alternating direction method of multipliers (or ADMM). We demonstrate the 

proof-of-concept using a realistic synthetic model reproducing features from the Mansfield area (Victoria, 

Australia) using a series of uncertainty indicators. We then apply the workflow to field data from the prospective 30 

mining region of Cloncurry (Queensland, Australia). Results indicate that our integration methodology efficiently 

leverages the complementarity between separate MT and magnetic data modelling approaches and can improve 

our capability to image the cover-basement interface. In the field application case, our findings also suggest that 

the proposed workflow may be useful to refine existing geological interpretations and to infer lateral variations 

within the basement.  35 
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1 Introduction  

Geophysical integration has been gaining traction in recent years, be it when two or more datasets are inverted 

simultaneously (i.e., joint inversion) or when the inversion of a geophysical dataset is used to constrain another 

(i.e., cooperative inversion). A number of approaches for joint modelling have been developed with the goal of 

exploiting the complementarities between different datasets (see for instance the reviews of Lelièvre and 40 

Farquharson, 2016, and Moorkamp et al., 2016, and references therein). As summarized in the review of Ren and 

Kalscheuer (2019), “joint inversion of multiple geophysical datasets can significantly reduce uncertainty and 

improve resolution of the resulting models”. This statement remains valid, be it for the modelling of a single 

property (e.g., resistivity for joint controlled-source electromagnetic and magnetotelluric MT data, or density for 

joint gravity anomaly and gradiometric data), or of multiple properties (e.g., the joint inversion of seismic and 45 

gravity data to model P-velocity and density). In the second case, joint inversion approaches can be grouped into 

two main categories based on the hypothesis they rely on. Structural approaches allow to jointly invert datasets 

with differing sensitivities to the properties of the subsurface through the premise that geology requires spatial 

variations in inverted properties to be collocated. Structural constraints can then be used as a way to link two or 

more datasets jointly inverted for by encouraging structural similarity between the inverted models (Haber and 50 

Oldenburg, 1997; Gallardo and Meju, 2003). Alternatively, petrophysical approaches utilise prior petrophysical 

information (e.g., from outcrops, boreholes, or the literature) to enforce certain statistics in the recovered model 

so that it resembles the petrophysical measurements’ (Lelièvre et al., 2012; Sun and Li, 2015; Giraud et al., 2017; 

Astic and Oldenburg, 2019). Whereas structural and petrophysical approaches are well suited to exploit 

complementarities between datasets in a quantitative manner, running joint geophysical inversion might be, in 55 

practice, challenging due to, for instance, the risk of increased non-linearity of the inverse problem (see, e.g., the 

L-surface using the cross-gradient constraints in Martin et al., 2021, and approaches adapting coupling during 

inversion, e,g., Heincke et al., 2017), the necessity to balance the contribution of the different datasets and 

regularisation terms (Bijani et al., 2017), and resolution mismatches (Piana Agostinetti and Bodin, 2018).  

In this contribution, we present a new multidisciplinary modelling workflow that relies on sequential, cooperative 60 

modelling. It follows the same objectives as the two categories of joint inversion mentioned above in that structural 

information is passed from one domain to the other and it uses petrophysical information to link domains. The 

development of the sequential inversion scheme we present is motivated by a similar idea as Lines et al. (1988) 

who states that “the inversion for a particular data set provides the input or initial model estimate for the inversion 

of a second data set”. A further motivation is to design a workflow capable of integrating the inversion of two or 65 

more datasets quantitatively using standalone modelling engines that run independently.  

In this paper, the workflow is applied to the sequential inversion of magnetotelluric (MT) followed by magnetic 

data, taking into account the importance of robustly constraining the thickness of the regolith in hard rock imaging 

and mineral exploration. This is motivated by the relative paucity of works considering cooperative workflows to 

integrate MT and magnetic data together with the recent surge in interest for the characterisation of the depth-to-70 

basement interface in mineral exploration, despite these two geophysical methods being part of the geoscientists’ 

toolkit for depth-to-basement imaging. Historically, MT has often been integrated with other electromagnetic 

methods or with seismic data (e.g., Gustafson et al., 2019; Peng et al., 2019) , and with gravity to a lower extent 

(see review of the topic of Moorkamp, 2017). It is, however, seldom modelled jointly with magnetic data unless 
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a third dataset is considered (e.g., Oliver-Ocaño et al., 2019 ; Zhang et al., 2020; Gallardo et al., 2012; Le Pape et 75 

al., 2017). We surmise that this is because (1) the interest for integrating MT with other disciplines arose primarily 

in oil and gas and geothermal studies and relied on structural similarity constraints for reservoir or (sub)salt 

imaging, (2) of the difference in terms of spatial coverage between the two methods elsewhere, (3) the differences 

in terms of sensitivity to exploration targets and (4) the difficulty to robustly correlate electrical conductivity and 

magnetic susceptibility. Bearing these considerations in mind, we developed a workflow incorporating MT and 80 

magnetic inversion with petrophysical information and geological prior knowledge.  

In the workflow we develop, we exploit the differences in sensitivity between MT and magnetic data. On the one 

hand, the MT method, used in a 1D probabilistic workflow as presented here, is well-suited to recover vertical 

resistivity variations and interfaces, especially in a sedimentary basin environment (Seillé and Visser, 2020). MT 

data are, however, poorly sensitive to resistors, particularly when they are overlaid by conductors (e.g., Chave et 85 

al., 2012), which makes it difficult to differentiate between highly resistive features, such as intra-basement 

resistive intrusions. On the other hand, magnetic data inversion is more sensitive to lateral magnetic susceptibility 

changes and to the presence of vertical or tilted structures or anomalies. Bearing this in mind, we first derive 

structural information across the studied area in the form of probability distributions of the interfaces between 

geological units, extracted from the interpolation of probabilistic 1D MT data inversion. From there, the 90 

probability of occurrence of geological units can be estimated in 2D or 3D. These probabilities are used to divide 

the area into domains where only specific units can be observed (e.g., basement, sedimentary cover, or both). Such 

domains are then passed to magnetic data inversion, where they are combined with prior petrophysical information 

to derive spatially varying bound constraints that are enforced using the alternating direction method of multipliers 

for 2D or 3D inversion (ADMM, see Ogarko et al., 2021a, for application to gravity data using geological prior 95 

information, and Giraud et al., 2021c, for MT-constrained gravity inversion). Finally, uncertainty analysis of the 

recovered magnetic susceptibility model is performed and rock unit differentiation allows to control the 

compatibility of magnetic inversion results with the MT data. The workflow is summarised in Figure 1, as applied 

to 1D MT inversions. In this paper, we apply this workflow to 2D magnetic data inversion, but it  is applicable in 

3D.  100 

 

Figure 1. Integrated MT-magnetic integration workflow summary showing the role of the different techniques. 
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The remainder of this paper is organised as follows. We first introduce the methodology and summarise the MT 

and magnetic standalone modelling procedures we rely on. We then introduce the proof-of-concept in detail using 

a realistic synthetic case study based on a geological model of the Mansfield area (Victoria, Australia), which we 105 

use to explore the different possibilities for integrating MT-derived information and petrophysics offered by our 

workflow. Following this, we present a field application using data from Cloncurry (Queensland, Australia) where 

we tune our approach to the specificity of the area. Finally, this work is placed in the broader context of 

geoscientific modelling and perspectives for future work are exposed in the discussion section.  

2 Methodology  110 

2.1. MT inversion for interface probability  

The MT method is a natural source electromagnetic method. Simultaneous measurements of the fluctuations of 

the magnetic and electric fields are recorded at the Earth’s surface under the assumption of a plane wave source. 

The relationship between the input magnetic field H and the induced electrical field E, which depends on the 

distribution of the electrical conductivities in the subsurface, is described by the impedance tensor Z, as follows: 115 

𝐄 = 𝐙 ∙ 𝐇. (1) 

Resistivity models derived from MT data are found by forward modelling and inversion of the impedance tensor 

Z, generally using gradient-based deterministic methods (see, e.g., Rodi et al., 2012). Deterministic approaches 

provide a single solution which minimizes the objective function considered during the inversion, but limited 

information of the uncertainty around this model can be derived. A global characterization of the uncertainty is 

possible using a Bayesian inversion framework, but its expensive computing cost limits its application to 120 

approximated (Conway et al., 2018; Scalzo et al., 2019) and/or fast forward modelling solvers(Manassero et al., 

2020). In this study, we alleviate this by considering a local 1D behaviour of the Earth. While this assumption can 

stand within layered sedimentary basins, it may fail in more complex geological environments (Jones et al., 2012). 

As we describe below, we account for this source of uncertainty in our Bayesian inversions. 

Within the context of Bayesian inversion, the solution of the inverse problem consists of a posterior probability 125 

distribution, calculated from an ensemble of models fitting the data within uncertainty. The posterior probability 

distribution p(𝒎𝑴𝑻|𝒅𝑴𝑻) is obtained using Bayes’ theorem, defined as: 

p(𝒎𝑴𝑻|𝒅𝑴𝑻) ∝ p(𝒅𝑴𝑻|𝒎𝑴𝑻)  ×  p(𝒎𝑴𝑻). (2) 

The prior distribution p(𝒎𝑴𝑻) contains prior information on the model parameters 𝒎𝑴𝑻. In this work, we assume 

a relatively uninformed prior knowledge, using a uniform prior distribution on the logarithm of the electrical 

resistivity bounds with values set between -2 and 6 𝑙𝑜𝑔10 Ω.∙ m. Using a uniform prior with such wide boundaries 130 

allows the inversion to be mainly data-driven and to remain independent from assumptions about the distribution 

of electrical resistivity into the Earth. A Gaussian likelihood function p(𝒅𝑴𝑻 | 𝒎𝑴𝑻) defining the data fit is used 

is used:  

p(𝒅𝑴𝑻 | 𝒎𝑴𝑻) ∝ exp (−
1

2
(𝒅𝑴𝑻 − 𝑔𝑀𝑇(𝒎𝑴𝑻))T 𝐂d

−1 (𝒅𝑴𝑻 − 𝑔𝑀𝑇(𝒎𝑴𝑻))) (3) 
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The term inside the exponential is the data misfit, which is the distance between observed data 𝒅𝑴𝑻 and simulated 

data 𝑔𝑀𝑇(𝒎𝑴𝑻), scaled by the data covariance matrix 𝐂𝑑, which defines data errors and their correlation across 135 

frequencies. We consider two main sources of uncertainty to calculate 𝐂𝑑: 

 data processing errors, which we model introducing a matrix 𝐂𝑝; 

 errors introduced by the violation of the 1D assumption when using 1D models, which we model 

introducing 𝐂𝑑𝑖𝑚. 

Both sources of uncertainty are included in the calculation of 𝐂𝑑, defined as 𝐂𝑑 = 𝐂𝑝 + 𝐂𝑑𝑖𝑚. In our calculation, 140 

we first define 𝐂𝑝, the covariance matrix accounting for the EM noise and measurement errors, which are 

estimated during MT data processing. In this study we assume uncorrelated processing noise across frequencies, 

reducing 𝐂𝑝 to a diagonal matrix.  

Following this, we define 𝐂𝑑𝑖𝑚 as the dimensionality covariance matrix accounting for the discrepancy between 

1D models and the multi-dimensional Earth the data is sensitive to. To characterize and quantify this discrepancy, 145 

and to translate it into a dimensionality error for use within 1D probabilistic inversion, we use the workflow 

developed by Seillé and Visser (2020). We first analyse the characteristics of the MT phase tensor for all sites at 

all frequencies. The MT phase tensor is derived from the impedance tensor Z. Characterizing the phase tensor 

symmetry using its invariants (skewness β and ellipticity λ), the presence of 2D and 3D structures affecting the 

MT data as a function of frequency can be inferred (Caldwell et al., 2004). To quantify how much error non-1D 150 

structures introduce in 1D modelling, Seillé and Visser (2020) developed a dimensionality error model . This 

model is derived using a supervised machine learning approach (regression tree), trained on a large collection of 

synthetic responses containing many 2D and 3D effects. As a result, it maps the phase tensor parameters derived 

from the observed data into dimensionality uncertainties to compensate for the limitations of the 1D assumption 

when performing 1D inversion, with larger errors assigned to data presenting important 2D/3D effects. This 155 

dimensionality uncertainty 𝐂𝑑𝑖𝑚 is then added to the existing data processing uncertainty 𝐂𝑝, such that the 

inversion considers both sources of uncertainty in 𝐂𝑑. This approach prevents 1D inversion from fitting 2D/3D 

responses. When it is used in a probabilistic inversion scheme, it permits a correct estimation of model uncertainty 

and a more robust characterization of the subsurface, avoiding inversion artefacts (Seillé and Visser, 2020).  

We use a 1D MT trans-dimensional Markov chain Monte Carlo algorithm (Seillé and Visser, 2020). Trans-160 

dimensional Bayesian inversions have gained traction for applications to geophysical inversion (Malinverno, 

2002, Sambridge et al., 2006, Bodin and Sambridge, 2009, Xiang et al., 2018) in recent years as an efficient means 

to sample the model space. This algorithm solves for the resistivity distribution at depth and the number of layers 

in the model. Having the number of layers treated as an unknown is convenient because it does not require to 

formulate assumptions about the inversion regularization or the model parametrization. That is, the mesh 165 

discretization and the natural parsimony of the trans-dimensional algorithms favour models that fit the data with 

fewer model parameters, thereby penalizing complex models (Malinverno, 2002).  

The output of the probabilistic inversion consists in an ensemble of models describing the posterior probability 

distribution. Each model of the ensemble fits the input data, the logarithm of the determinant of the impedance 

tensor Z, within uncertainty. From this ensemble of models can be extracted the “change-points” distribution, 170 
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which is the probability distribution of all discontinuities in the model ensemble, and which can be used to indicate 

the most probable location of one or several discontinuities. In this paper, we focus on characterizing the depth of 

the basement. Therefore, for each MT sounding, each model of the model ensemble is analysed and the transitions 

from a conductive sedimentary layer into a resistive basement are extracted. For example, a transition from a 

conductive to a resistive layer is defined when a layer of resistivity 𝑟1  <  𝑟𝑥 is followed by a layer of resistivity 175 

𝑟1 >  𝑟𝑥, where the threshold value 𝑟𝑥  is selected using a priori knowledge on the resistivities of sediments and 

basement rock units. The depth of the occurrences of such transitions for the full model ensemble constitutes a 

histogram, which approximates the probability distribution of the depth to basement interface 𝑝𝑖𝑛𝑡 . This feature 

extraction relies on assumptions made on the electrical resistivity of the different lithologies expected, which are 

formulated on a case-by-case basis. We first calculate the depth to basement interface probability 𝑝𝑖𝑛𝑡  for each 180 

MT sounding. Following this, assuming a sedimentary basin lying on top of the basement, we can define the 

probability of being in presence of the basement 𝑝𝑏𝑠𝑚𝑡  for each MT site as:  

𝑝𝑏𝑠𝑚𝑡 = 𝑃𝑖𝑛𝑡 , (4) 

with 𝑃𝑖𝑛𝑡  the cumulative distribution function of the interface probability distribution 𝑝𝑖𝑛𝑡, from the surface 

downwards. Consequently, for each cell within the model, the probability of being in presence of sedimentary 

rocks, 𝑝𝑠𝑒𝑑, is given as 𝑝𝑠𝑒𝑑 = 1 − 𝑝𝑏𝑠𝑚𝑡 . These probabilities are derived for each MT site and can be interpolated 185 

on the mesh used for magnetic inversion. The interpolation of such probability distributions can be performed 

using different approaches and integrate various types of geophysical or geological constraints. We use a linear 

interpolation scheme in the synthetic case study for the sake of simplicity. In the field application, we build up on 

results of Seillé et al. (2021), who use the Bayesian Estimate Fusion algorithm of Visser and Markov (2019). We 

note that other techniques could be used for a similar purpose, such as the Bayesian Ensemble Fusion (Visser, 190 

2019; Visser et al., 2021), or discrete and polynomial trend interpolations (Grose et al., 2021). 

In the context of depth to basement imaging, this allows us to derive three domains characterised by 𝑝𝑠𝑒𝑑 = 0 

(basement only), 𝑝𝑠𝑒𝑑 ∈ ]0,1[ (basement and non-basement units) and 𝑝𝑠𝑒𝑑 = 1 (non-basement only) that will 

define the intervals used for the bounds constraints ℬ applied to magnetic data inversion as summarised below.  

2.2. Formulation of the magnetic data inverse problem  195 

In this section, we summarise the method used to enforce disjoint interval bound constraints during magnetic data 

inversion. We largely follow Ogarko et al. (2021a), which we extend to locally weighted bound constraints and 

magnetic data inversion. The geophysical inverse problem is formulated in the least-squares sense (see chap. 3 in 

Tarantola, 2005). The cost function we minimize during inversion is given as:  

𝜃(𝒅𝒎𝒂𝒈, 𝒎𝒎𝒂𝒈) = ‖𝒅𝒎𝒂𝒈 − 𝑔𝑚𝑎𝑔(𝒎𝒎𝒂𝒈)‖2
2  + α𝑚

2‖𝑾𝒎(𝒎𝒎𝒂𝒈 − 𝒎𝒑
𝒎𝒂𝒈

)‖
2

2
+

α𝑔
2‖𝑾𝑔𝛻𝒎𝒎𝒂𝒈‖

2

2
,  

(5) 

where 𝒅𝒎𝒂𝒈 is the observed data and 𝑔𝑚𝑎𝑔(𝒎𝒎𝒂𝒈) the forward response produced by model 𝒎𝒎𝒂𝒈, a vector 200 

of ℝ𝑛, with 𝑛 the total number of model-cells. The second term corresponds to the model damping (or smallness) 

term, with weight α𝑚, 𝑾𝒎 is a diagonal model covariance matrix whose elements can be set accordingly with 

prior information to favour or prevent model changes during inversion. The prior model 𝑚𝑝
𝑚𝑎𝑔

 can be chosen to 

test hypotheses or accordingly with prior geological or geophysical knowledge. The third term is the gradient 
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damping (or smoothness) term. The diagonal matrix 𝑾𝑔 adjusts the strength of the regularization in the different 205 

model cells. It is weighted by α𝑔. Both α terms are positive scalars used to adjust the relative importance given to 

the constraint terms in the cost function. Such terms are often derived manually but they can also be determined 

more rigorously using the L-curve principle (Hansen and Johnston, 2001) or using the generalized cross-validation 

approach (see Farquharson and Oldenburg, 2004 for a comparison of approaches ). Both the model and gradient 

damping terms can be classified as Tikhonov regularization terms (Tikhonov and Arsenin, 1978) and are used to 210 

ensure numerical stability of the inversion and to increase the degree of realism of inversion results through usage 

of prior information. Generally speaking, the model damping term is used to ensure that departures from a 

predefined model 𝒎𝒑
𝒎𝒂𝒈

 are minimized while minimising data misfit (first term of the equation). The gradient 

damping is used to steer inversion towards models fitting the data while remaining as simple as possible from a 

structural point of view. To balance the decreasing sensitivity of magnetic field data with the depth, we utilize the 215 

integrated sensitivity technique of (Portniaguine and Zhdanov, 2002). 

We note that 𝑾𝑚 and 𝑾𝑔 can be set using prior information or depending on the objective of the survey. In this 

paper, we keep 𝑾𝑚 and 𝑾𝑔 as a the identity matrix in the field application but we use the possibility to set values 

for 𝑾𝑔 that vary in each cell accordingly with prior uncertainty information from MT in the synthetic case. In the 

latter, we follow Giraud et al. (2019a), who obtain 𝑾𝑔 using an uncertainty indicator calculated from probabilities 220 

of observation of the rock units in the area.  

We solve eq. (5) while constraining the inversion using multiple bound constraints (Ogarko et al., 2021b). The 

problem can be expressed in its generic form as:  

minimize 𝜃(𝒅, 𝒎) (6) 

s.t. 𝑚𝑖  ∈  ℬ𝑖 , 1 ≤ 𝑖 ≤ 𝑛,   

where ℬ𝑖  is the interval, or set of intervals, binding the ith model-cell. The general definition of ℬ𝑖  is:  

ℬ𝑖 = ⋃ [𝑎𝑖,𝑙 , 𝑏𝑖,𝑙]
𝐿𝑖
𝑙=1 , with 𝑏𝑖,𝑙 > 𝑎𝑖,𝑙 , ∀ 𝑙 ∈ [1, 𝐿𝑖] and 𝑖 ∈ ℐ, (7) 

where 𝑎𝑖,𝑙 and 𝑏𝑖,𝑙 define, the bounds of the inverted property 𝑙 is the index of the rock unit; 𝐿𝑖 is the number of 225 

bounds that can be used in the ith interval. In practice, it is less than or equal to the number of rock units used in 

the modelling. A summary of the algorithm solving this problem using ADMM is given in Appendix A, with an 

illustration shown in Figure A 1. The condition that the minimization of 𝜃(𝒅, 𝒎) is subject to in eq. 6 translates 

the requirement of inversion to use prescribed ranges of magnetic susceptibility values accordingly with 

petrophysical knowledge about, or measurements of, rocks present in the studied area. In other words, the 230 

minimisation of 𝜃(𝒅, 𝒎) constrains the values of the recovered magnetic susceptibilities to lie within intervals 

contained in 𝓑. From the way 𝓑 is defined, a given element ℬ𝑖  can contain any number of intervals, with values 

arbitrarily chosen. This gives flexibility in the design of disjoint interval bound constraints applied in this fashion. 

For instance, the intervals in 𝓑 may either be spatially invariant when the same intervals are used everywhere 

(i.e., global constraints), or, conversely, the elements of 𝓑 can vary from one model-cell to the next (i.e., local 235 

constraint). Application of these two case scenarios is shown in both the synthetic and application examples.  



 

8 

 

2.3. Integration with MT modelling  

The set of intervals ℬ from eq. (6) and (7) can be defined homogenously across the entire model (i.e., no 

preferential locations for forcing inversion to produce magnetic susceptibility values within the prescribed 

intervals) or accordingly with prior information (i.e., the prescribed intervals may vary in space). In the latter case, 240 

it allows to define spatially-varying bound constraints and to activate them only in selected parts of the study area. 

In the case presented by Ogarko et al. (2021a), probabilistic geological modelling was used to determine such 

bounds constraints for gravity inversion. The approach we propose here follows the same philosophy. Instead of 

geological modelling, we use probabilistic MT modelling, which can be used to estimate the observation 

probabilities of rock units, and port the method to magnetic data inversion. Using such probabilities, we calculate 245 

the bounds 𝐵𝑖  for the 𝑖th model-cell using by adapting equation (7): 

𝐵𝑖 = ⋃ [𝑎𝑖,𝑙 , 𝑏𝑖,𝑙]

𝐿𝑖

𝑙=1
𝜓𝑖,𝑙>𝜓𝑡,𝑙

 , (8) 

where 𝜓𝑖,𝑙 is the observation probability for the 𝑙th rock unit; 𝜓𝑡,𝑙  is a threshold value above which the probability 

is assumed sufficiently high to be considered in the definition of bound constraints. The bounds corresponding to 

all units with a probability superior to 𝜓𝑡,𝑙 are used for the definition of 𝐵𝑖. In the remainder of this paper, we use 

𝜓𝑡,𝑙 = 0. This implies that for the considered model-cell, all units modelled by MT which have a non-null 250 

probability are used to define the bound constraints interval 𝐵𝑖 . In other words, the intervals corresponding to the 

range of magnetic susceptibilities attached to all rock units with a probability superior to zero in said cell are used 

as part of the disjoint interval bound constraints introduced in eqs. 6-8. When 𝜓𝑡,𝑙 = 1, a single interval is used.  

2.4. Uncertainty metrics  

Inversion results are assessed using indicators calculated from the difference between reference and recovered 255 

models. We calculate three complementary global indicators and one local indicator with the aim to characterize 

the similarity between causative bodies and retrieved models in terms of both the petrophysical properties and 

the corresponding rock units. These indicators are listed below in the order they are introduced in in this 

subsection:  

 root-mean-square model misfit, which measures the discrepancy between the inverted and true models 260 

in terms of the values of physical properties inverted for;  

 the membership value to the different intervals used as constraints. It is a local metric indicative of the 

geological interpretation ambiguity from which two global metrics are calculated (average model entropy 

and Jaccard distance);  

 average model entropy, which is a statistical indicator that we use to estimate geological interpretation 265 

uncertainty; 

 Jaccard distance, which measures the dissimilarity between sets. We use it to evaluate the difference 

between the recovered and true rock unit models. 
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2.4.1. Model misfit 

In the synthetic study we present, we evaluate the capability of inversions to recover the causative magnetic 270 

susceptibility model using the commonly used root-mean-square (RMS) of the misfit between the true and 

inverted models (RMS model misfit, 𝐸𝑅𝑅𝑚). We calculate this indicator as:  

𝐸𝑅𝑅𝑚 = √
1

𝑛
∑(𝑚𝑖

𝑡𝑟𝑢𝑒 − 𝑚𝑖
𝑖𝑛𝑣)

2
𝑛

𝑖

, (9) 

where 𝒎𝒕𝒓𝒖𝒆 and 𝒎𝒊𝒏𝒗 are, respectively, the true and inverted models.  

2.4.2. Membership analysis 

In the context geophysical inverse modelling, membership analyses provide a quantitative estimation of 275 

interpretation uncertainty to interpretation of recovered petrophysical properties. We calculate the membership 

values to rock units based on the distance between the recovered magnetic susceptibility and interval bounds, on 

the premise that magnetic susceptibility intervals for the rock types, or group of rock types, do not overlap. We 

distinguish between three cases:  

 When the recovered magnetic susceptibility falls within an interval as defined in eq. 7-8, its membership 280 

to the corresponding unit is set to 1 and 0 to the others.  

 When the recovered value falls in between two intervals, the membership value is calculated for the two 

corresponding units, all others being set to 0. In such case, the membership value is calculated from the 

relative distance to the intervals’ respective upper and lower bound. Assuming that, for the ith model-

cell, the magnetic susceptibility 𝑚𝑖 falls between intervals 𝑗 − 1 and 𝑗, such that 𝑏𝑖,j−1 ≤ 𝑚𝑖 ≤ 𝑎𝑖,j as per 285 

eq. 8, the membership values ω are calculated as:  

{
ω𝑗−1

𝑖 =
𝑚𝑖 − 𝑏𝑖,j−1

𝑎𝑖,j − 𝑏𝑖,𝑗−1

ω𝑗
𝑖 = 1 − ω𝑗−1

𝑖

  

 

 

(10) 

 When 𝑚𝑖 < min (𝐵𝑖) or 𝑚𝑖 > max (𝐵𝑖), it is assumed that 𝑚𝑖 belongs only to the unit corresponding to 

the closest interval. 

2.4.3. Average model entropy 

Using the membership values ω, we calculate the total model entropy of the model, 𝐻, which is the arithmetic 290 

mean of the information entropy (Shannon, 1948) of all model-cells. Information entropy is calculated as:  

𝐻 =  −
1

𝑛
∑ ∑ ω𝑘

𝑖

𝐿

𝑖=1

log(ω𝑘
𝑖 ) ,

𝑛

𝑘=1

 (11) 

where 𝐿 is the number of rock units. 𝐻 is as a measure of geological uncertainty in probabilistic models and of 

the fuzziness of the interfaces when the probabilities of observation of the different rock units are calculated 

(Wellmann and Regenauer-Lieb, 2012), which can be useful in “quantifying the amount of missing information 



 

10 

 

with regard to the position of a geological unit” (Schweizer et al., 2017). On this premise, we calculate 𝐻 (eq. 11) 295 

using the membership values to the different rock units to obtain metric reflecting the interpretation ambiguity of 

inversion results.  

2.4.4. Jaccard distance 

In addition to calculating 𝐻, the membership values ω can be used to interpret the inversion results in terms of 

rock units. The index k of the rock unit a model-cell with a given inverted magnetic susceptibility value can be 300 

interpreted as is given, for the ith model-cells, by:  

𝑘 = arg max
𝑗=1..𝐿

ω𝑗
𝑖 . (12) 

Calculating the index of the corresponding rock unit in each model-cell, we obtain a rock unit model 𝒎𝑼
𝒊𝒏𝒗.  

Using 𝒎𝑼
𝒊𝒏𝒗 and 𝒎𝑼

𝒕𝒓𝒖𝒆 (the latter being the true rock unit model), we calculate the Jaccard distance (Jaccard, 

1901), which is a metric quantifying the similarity between discrete models. In the context of geological 

modelling, it is reflective of the dissimilarity between geological models and can be used to complement 305 

information entropy (Schweizer et al., 2017). Here, we use it to compare the recovered rock unit model and the 

true model. It is calculated as follows:  

𝐽(𝒎𝑼
𝒕𝒓𝒖𝒆, 𝒎𝑼

𝒊𝒏𝒗) = 1 −
|𝒎𝑼

𝒕𝒓𝒖𝒆⋂𝒎𝑼
𝒊𝒏𝒗|

|𝒎𝑼
𝒕𝒓𝒖𝒆⋃𝒎𝑼

𝒊𝒏𝒗|
, 

(13) 

where ⋂ and ⋃ are the intersection and union of sets, respectively; |∙| is the cardinality operator, measuring the 

number of elements satisfying the condition. A useful interpretation of J is that it represents the relative number 

of cells assigned with the incorrect rock unit. In the case of a regular mesh where all model-cells have the same 310 

dimension, it represents the relative volume of rock where units assigned to the two models compared coincide. 

When comparing models recovered from inversion, it can be used to compare the similarity with a given rock unit 

interpretation and a reference model. 

3 Synthetic case study  

The synthetic case study that we use to test our workflow is built using a structural geological framework initially 315 

introduced in Pakyuz-Charrier et al. (2018). It presents geological features that reproduce field geological 

measurements from the Mansfield area (Victoria, Australia). The choice of resistivity and magnetic susceptibility 

values to populate the structural model was made to test the limits of this sequential, cooperative workflow and 

to show its potential to alleviate some of the limitations inherent to potential field and MT inversions. To this end, 

we have selected a part of the synthetic model where MT data is affected by 2D and 3D effects to challenge the 320 

workflow we propose. The objective of this exercise is to assess the workflow’s efficacy to recover the sediment-

basement interface. The magnetic susceptibility model we use consists of 2D structures.  

3.1. Survey setup 

The structural geological model was derived from foliations and contact points using the Geomodeller® software 

(Calcagno et al., 2008; Guillen et al., 2008; Lajaunie et al., 1997). It is constituted of a sedimentary syncline 325 
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abutting a faulted contact with a folded basement. The model’s complexity was increased with the addition of a 

fault and an ultramafic intrusion. Details about the original 3D geological model are provided in Pakyuz-Charrier 

et al. (2018b). Here, we increase the maximum depth of the model to 3150 m and added padding in both horizontal 

directions. Figure 2a shows the non-padded 2D section extracted from the reference 3D geological model.  

We assign magnetic susceptibility in the model considering non-magnetic sedimentary rocks in the basin units 330 

(lithologies 3, 5 and 6 in Table 1) and literature values (see Lampinen et al., 2016) to dolerite (lithology 4), diorite 

(lithology 2) and ultramafic rocks (lithology 1). We assign electrical resistivities assuming relatively conductive 

sedimentary rocks and resistive basement and intrusive formations. Resistivities in sedimentary rocks might vary 

orders of magnitude, and mainly depend on porosity, which is linked to the degree of compaction and the type of 

lithology, and the salinity of pore fluid (Evans et al., 2012). The three sedimentary layers are assigned different 335 

resistivities values, of 30 Ωm, 10 Ωm and 50 Ωm for basin fill 3, 2 and 1 respectively (see Table 1), with basement 

being the oldest and deepest formation. Metamorphic and intrusive rocks as found in the crust generally present 

high resistivities (Evans et al., 2012). In what follows, we model data located along the line shown in Figure 2, 

simulating the modelling magnetic data along a 2D profile (using a 3D mesh and a 3D forward solver), while 

considering 3D MT data. The modelled rock units and their petrophysical properties are given in Table 1. The 340 

geological, magnetic susceptibility and resistivity true models are shown in Figure 2.  

Table 1 Stratigraphic column showing geological topological relationships and average physical properties. Lithologies 

are indexed from 1 through 6 by order of genesis. 

Lithology index 

(temporal order) 

Geological relation Geological unit Magnetic 

susceptibility (SI) 

Electrical 

resistivity (Ωm) 

6 Sedimentary Basin fill 3 0 30 

5 Sedimentary Basin fill 2 0 10 

4 Intrusive Dolerite 0.025 5000 

3 Sedimentary Basin fill 1 0.0001 50 

2 Intrusive Diorite 0.025 5000 

1 Basement Ultramafic rocks 0.05 2000 

 



 

12 

 

   345 

Figure 2. (a) True geological model (b) true magnetic susceptibility model and (c) true resistivity model with the 

simulated MT acquisition setup geometry in the top-left corner where triangles represent MT sites. The red dots in (b) 

represents the 2D magnetic data line; MT sites are marked in (c). The inset in the top-right corner shows a top view of 

the model with the magnetic data line in red and MT sites as triangles.  

3.2. Simulation of geophysical data  350 

3.2.1. Magnetic data  

The core 2D model is discretised into 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 1 × 128 × 36 rectangular prisms of dimensions equal to 

127 × 127 × 90 m3. We generate one magnetic datum (reduced to pole magnetic intensity) per cell along the 

horizontal axis, leading to 128 data points. To account for lateral effects, we add 10 padding cells perpendicular 

to the profile and extend it by 36 cells at each extremity along its length, leading to 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 11 × 192 ×355 

36 cells of dimensions 381 × 127 × 90 m3. The reference magnetic susceptibility model used for forward data 

computation is shown in Figure 2.  

Airborne magnetic data are simulated for a fixed wing aircraft flying at an altitude of 100 m above topography. 

We model magnetic data using prismatic model-cells assuming magnetic linearity, isotropy and the absence of 

remanent magnetization. The forward solver we use in this work follows the formulation of Bhattacharyya (1964). 360 

In this example, we model a magnetic field strength equal to 57,950 nT, reduced to the pole. The magnetic field 

strength we chose corresponds to the International Geomagnetic Reference Field for the Rawlinna station, 

Western Australia.  

We add normally distributed noise with an amplitude equal to 2.5% of the average amplitude of the data. We 

simulate noise contamination by adding noise sampled randomly from by a normal distribution characterised by 365 

a standard deviation of 3.8 nT and a mean value of 0 nT. For the simulation of geological “noise”, we then apply 
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a Gaussian filter to such random noise to obtain spatially correlated values. The uncontaminated and noisy data 

are shown in Figure 3. For the inversion, the objective data misfit is set accordingly with the estimated noise level.  

  

Figure 3. Simulated total magnetic field anomaly.  370 

3.2.2. MT data 

The synthetic MT data is computed using the complete 3D resistivity model derived from the 3D geological 

model. The 3D resistivity model and the MT responses can be found online (Giraud and Seillé 2022). The core of 

the electrical conductivity model used the same discretization as the magnetic susceptibility model (cells of 

dimension 127 × 127 × 90 m3 in the core of the model). More than 1000 km padding is added to the horizontal 375 

and vertical dimensions to satisfy the boundary conditions required by the forward solver. The final 3D mesh is 

discretized into 𝑁𝑥 ×  𝑁𝑦 × 𝑁𝑧 = 160 × 160 × 62 cells. Relationships between geological units and electrical 

resistivities follow Table 1. The ModEM 3D forward modelling code (Egbert and Kelbert, 2012; Kelbert et al., 

2014) is used to simulate the MT responses of this model. The MT responses are computed at 256 stations evenly 

spaced 1.016 km on a grid of 16 × 16 sites (see inset in Figure 2). The frequencies we use spans the 10 KHz to 380 

0.01 Hz range, with 6 frequencies per decades, for a total of 37 frequencies; 5% magnitude Gaussian white noise 

is added to the synthetic data before running the 1D inversions.  

In the following subsections, we present the results of the modelling of synthetic MT data along a 2D section (see 

Figure 2c) of the 3D resistivity volume, following the workflow proposed in Sect. 2. Along this section, 16 MT 

sites are used as mentioned above. We start with the modelling of MT data to derive constraints and prior 385 

information for the inversion of magnetic data.  

3.3. 1D Probabilistic inversion of MT data and derivation of cover-basement interface probabilities 

We perform the 1D MT inversions of the 16 MT soundings independently using the 1D trans-dimensional 

Bayesian inversion described in Sect. 2.1. Synthetic data for three MT sites are shown in Figure 4a. The Phase 

tensor skewness β and ellipticity λ are also shown. We can observe that data presenting large values of |β| (up to 390 

10 degrees) and λ (up to 0.5), which indicate 2D/3D effects (Caldwell et al, 2004), are assigned with larger 

uncertainties to compensate for these effects.  
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All the inversions ran using 60 Markov chains with 106 iterations each. For each chain, a burn-in period of 750,000 

samples (75% of the total) is applied to ensure convergence, after which we recorded 100 models equidistantly 

spaced within the chain. The model ensembles are then constituted by 6000 models for each MT site.  395 

The model posterior distribution for three MT sites is shown in Figure 4b. The interface probability within the 

posterior ensemble of 1D models is described by a change point histogram. From the posterior ensembles of 

models and interfaces, a cover-basement interface probability distribution 𝑝𝑖𝑛𝑡  is calculated independently for 

each MT site (see Figure 4a). For this synthetic case, we assume a simple layer transition rule: transition from the 

sedimentary cover into the basement occurs when a layer L1 of resistivity 𝜌1 < 𝜌𝑋 is followed by a layer L2 of 400 

resistivity 𝜌2 > 𝜌𝑋, with 𝜌𝑋 = 200 Ωm. This value of 𝜌𝑋 is chosen assuming a-priori knowledge of the sediment 

resistivity in the area (which, for this synthetic case does not exceed 50 Ωm). Even without prior information, this 

assumption would be correct in most real cases, given that sediments are generally conductive, with resistivities 

ranging from 1 to 100 Ωm (Evans et al., 2012). The depths at which transitions that satisfy this rule occur form a 

1D histogram, which we define as 𝑝𝑖𝑛𝑡 after normalization (see Section 2.1 for details). Here, the use of more 405 

resistive threshold values does not have a significant effect on the calculation of 𝑝𝑖𝑛𝑡 . This process is applied to 

each model of the ensemble and allows the extractions of features of interest from the posterior model ensemble. 

If less than 0.1 % of all transitions observed in the ensemble presents the feature defined earlier using 𝜌𝑋, we then 

assume that the transition is not observed. This situation occurs for MT sites MT14, MT15 and MT16 (see Figure 

2c for their location), where the intrusion outcrops and the transition into the basement is not detectable assuming 410 

the transition rule described above.  

Figure 4 shows the interface probability and the cover-basement interface probability distribution 𝒑𝑖𝑛𝑡  for the 

three MT sites. For each MT site, the probability to be located in the sedimentary cover, 𝑝𝑠𝑒𝑑 (defined as 𝑝𝑠𝑒𝑑 = 

1 − 𝑃𝑖𝑛𝑡  , 𝑃𝑖𝑛𝑡  being the cumulative distribution function of the interface probability distribution 𝑝𝑖𝑛𝑡, see Sect. 

2.1) is calculated for all depths. Figure 5b shows 𝑝𝑠𝑒𝑑 for each location along the profile. We observe that MT 415 

sites located in areas affected by significant 2D/3D effects, such as MT10 (see Figure 2c, Figure 4b and Figure 

5b), will have assigned larger uncertainties prior to the inversion. This will translate in the model posterior 

distribution as a relatively flat cover basement interface probability distribution 𝑝𝑖𝑛𝑡 , and therefore a sediment 

probability distribution 𝑝𝑠𝑒𝑑  relatively uninformative for the magnetic constrained inversion.  
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 420 

Figure 4. Example of posterior a) response and b) resistivity distributions for three MT sites MT1 in (left), MT6 in 

(middle) and MT10 in (right), located along the profile as shown in Figure 2. In a) the phase tensor skewness β and 

ellipticity λ are shown. In b) the change points (interface probability distribution), the cover-basement interface 

probability distribution 𝒑𝒊𝒏𝒕 and the sedimentary cover probability distribution 𝒑𝒔𝒆𝒅 are shown. Sites MT1 and MT6 

are located in in the basin, site MT10 is located in the area most affected by 2D/3D effects (see Figure 2c for location). 425 
High probabilities in the model posterior distribution is represented by warms colours, and low probabilities with cold 

colours. The dashed lines represent the 5th and the 95th percentiles of the model posterior distribution and the black 

line represents the median of the model posterior distribution. The white line is the true 1D model extracted beneath 

the MT station.  

3.4. Deriving constraints for magnetic inversion 430 

3.4.1. Bound constraints  

Starting from 𝑝𝑖𝑛𝑡  values calculated for each MT site, we interpolate 𝑝𝑠𝑒𝑑 from MT onto the mesh used for 

magnetic data inversion. In this synthetic example, we use a linear interpolation scheme. The interpolated 

probabilities from MT are shown in Figure 5.  

The interpolated probabilities 𝑝𝑏𝑠𝑚𝑡  are used to define domains for the application of bound constraints during 435 

magnetic data inversion. The domains are derived from MT probabilities as introduced in 2.3. We remind that we 

use 𝜓𝑡,𝑙 = 0 in eq. (8) as a threshold for the minimum probability value allowing usage of the bounds of the 𝑙th 

rock unit when defining domains. This implies that everwhere pbsmt > 0, the corresponding bounds are used in the 

ADMM constraints. We divide the model into areas where the allowed magnetic susceptibility ranges correspond 

to rock units with probabilities superior to zero. In this example, we complement information from MT inversions 440 

with the assumption that dolerite outcrops are mapped accurately at surface level (unit 4, intrusive, see Table 1 
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and Figure 2). Using this, we adjust the domains for the corresponding few model-cells at surface level, only at 

two locations where outcrops are known based on the availability of a geological map. The domains for the bound 

constraints we obtain are shown in Figure 5d, with domains 1 and 2 indicating parts of the model where MT 

inversion suggests a single rock unit. This means that in the corresponding model cells, a single interval will be 445 

used in the definition of the bound constraints, while intervals corresponding to two rock units (i.e., basement and 

sediments) will be used otherwise. The intervals we use are as follows:  

 Domain 1 (sediments only): [-0.0001, 0.0002] SI 

 Domain 2 (non-sediment units only): [0.024 0.055] SI 

 Domain 3 (sediments and non-sediment units): [-0.0001, 0.0002] ∪ [0.024 0.055] SI 450 

3.4.2. Prior model and constraints from MT probabilities 

The prior model for magnetic inversion is obtained using the MT derived rock unit probabilities (Figure 5b-c) and 

the magnetic susceptibility of the rock units given in Table 1. It is populated using the lower bound values of the 

interval defining the domains that the different model cells belong to. For the ith model-cell, we have: 

(𝒎𝒑
𝒎𝒂𝒈

)
𝑖

= ∑ 𝜓𝑖
𝑗
𝑎𝑖,𝑗

𝐿

𝑗=1

. (14) 

We remind that 𝜓𝑖
𝑗
 is the probability of the jth rock unit in the ith model-cell, and that 𝐿 is the number of rock units. 455 

We chose to use 𝑎𝑖,𝑗 , which is the lower bound of the corresponding rock unit (or group of rock units), as it 

constitutes the most conservative assumption about magnetic susceptibility from the range of plausible magnetic 

susceptibilities. The resulting prior model is shown in Figure 5e.  

Another way of using probabilistic information to constrain inversion was proposed by Giraud et al. (2019a), who 

use probabilities derived from automated geological modelling to calculate an uncertainty indicator defining 𝑾𝑔. 460 

In such case, 𝑾𝑔 reflects the degree of certainty in the prior model as it reaches its maximum values in areas 

where geological modelling shows little uncertainty, and minimum where geological uncertainty is the highest. 

The rationale behind this approach is to encourage inversion to produce homogenous changes where the presence 

of given rock units is well constrained and to leave more freedom to inversion where geological uncertainty is 

higher. Here, we follow the same principle, which we transpose to MT-derived probabilities. The matrix 𝑾𝑔 is 465 

derived as follows.  

We first calculate the information entropy 𝒉 (Shannon, 1948) for each model-cell. Taking the example of the ith 

model-cell, we have:  

ℎ𝑖 = − ∑ 𝜓𝑗
𝑖

𝐿

𝑗=1

log(𝜓𝑗
𝑖). (15) 

We then use its normalized complementary to obtain 𝑾𝑔:  

𝑊𝑔
𝑖 =

max 𝒉 − 𝒉𝑖

max 𝒉 − min 𝒉
. (16) 
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This way, 𝑾𝒈 = 𝟎 where uncertainty is maximum (i.e., where 𝝍𝟏 = 𝝍𝟐 in our case) and 𝑾𝒈 = 𝟏 where one of 470 

the units is predicted with a probability of 1 by MT (green dots in Figure 5b and Figure 5c). The probabilities used 

in this calculation are shown in Figure 5b and Figure 5c, and the resulting 𝑾𝒈 values are shown in Figure 5f.  

 

Figure 5. Probability of interfaces between sedimentary cover 𝒑𝒊𝒏𝒕 and basements as recovered from MT inversion 

shown at the location of each MT site (a), interpolated probability of sedimentary cover written 𝝍𝟏 (b) and non-475 
sedimentary units, written 𝝍𝟐 (c), corresponding domains (d), prior model from MT derived rock unit probabilities 

and magnetic susceptibility rock units observed in the area (e), and the weights 𝑾𝒈 assigning local values to the 

smoothness constraints (f). The location of the simulated MT sites is reminded in (a). The brown lines materialise the 

interfaces between geological units in the true model. In (b) and (c), the green dots show model-cells where a single unit 

is allowed when defining the domains shown in (c).  480 
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3.5. Inversion of magnetic data and uncertainty analysis 

In this section, we study the influence of MT-derived prior information onto magnetic inversion and estimate the 

related reduction of interpretation uncertainty. In what follows, we consider that the prediction from MT can be 

considered with ‘high confidence’ when the probability of one of the units is predicted with a probability of 1. 

We perform inversions for six case scenarios, consisting of:  485 

(a) Unconstrained inversion: we assume no prior geological, petrophysical or MT information; a 

homogenous prior model populated with magnetic susceptibility of 0 SI is used; no bound constraints 

are applied; smoothness constraints are applied globally. 

(b) High confidence bounds constraints only: we assume knowledge of only domains 1 and 2 derived by MT 

(a single unit with 100% confidence) to inform ADMM bound constraints and that no probabilistic 490 

information is available elsewhere; ADMM bound constraints are applied only in domain 1 and 2; a 

homogenous prior model populated with magnetic susceptibility of 0 SI is used; smoothness constraints 

are applied globally.  

(c) Global bound constraints: we assume knowledge of the magnetic susceptibility of units that may be 

present in the area without MT or geological information; ADMM bound constraints allowing all units 495 

everywhere in the model are applied; a homogenous prior model populated with magnetic susceptibility 

of 0 SI is used; smoothness constraints are applied globally. 

(d) Global bound constraints with prior model: we assume knowledge of a prior model derived from MT but 

with the lack of probabilistic information; ADMM bound constraints allowing all units everywhere in 

the model are applied; a prior model derived from MT prior information is used; smoothness constraints 500 

are applied globally.  

(e) Local bound constraints with prior model: we assume knowledge of a prior model derived from 

probabilistic MT information to derive spatially varying ADMM bound constraints; a prior model 

derived from MT prior information is used; ADMM bound constraints are applied locally using 

information from MT; smoothness constraints are applied globally. 505 

(f) Local bound constraints and smoothness, with prior model: we assume knowledge of a prior model 

derived from MT with probabilistic information to derive spatially varying ADMM bound constraints 

and spatially-varying smoothness constraints; a prior model derived from MT prior information is used; 

smoothness constraints are applied locally using information from MT; locally-weighted smoothness 

constraints are applied by populating calculating 𝑾𝑔 (Figure 5f ) using eq. (16) as summarized in 3.4.2. 510 

This is the case that uses prior information the most.  

The different scenarios tested in the synthetic example are summarized in Table 2. The corresponding inversion 

results are shown in Figure 6. We note that magnetic susceptibility models shown in this section are equivalent 

from the magnetic data inversion point of view as they present similar data misfit, which we assume to be 

acceptable when of the same magnitude as the estimated noise in the data.  515 
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Table 2. Scenarios tested for the utilisation of MT-derived information in magnetic data inversion. ‘High confidence’ 

refers to the case where constraints are applied only to models cells with MT-derived rock unit probabilities equal to 

1. The values 104 and 3.106 were obtained based on an L-curve using 400 inversions and were fine-tuned for each 

scenario. 

Case scenario Prior model 
ADMM bound 

constraints 

Smoothness 

constraints 
α𝑚 α𝑔 

(a) Unconstrained 

inversion 
Homogenous None Global 0 3.106 

(b) High confidence 

bounds constraints only 

(domains 1 and 2 only) 

Homogenous 

Only where MT 

shows high 

confidence 

Global 0 3.106 

(c) Global bound 

constraints 
Homogenous 

Homogenous, 

identical in all 

model-cells 

Global 104 1.2.105 

(d) Global bound 

constraints with prior 

model 

MT-derived 

Homogenous, 

identical in all 

model-cells 

Global 104 1.2.105 

(e) Local bound 

constraints with prior 

model 

MT-derived 
Locally defined, 

all cells 
Global 104 1.1.105 

(f) Local bound 

constraints and 

smoothness, with prior 

model 

MT-derived 
Locally defined, 

all cells 

Locally 

weighted 
104 6.5.105 

 520 
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Figure 6. Inversion results for the different scenarios tested. Cases (a) through (f) correspond to inversions using 

prior information and constraints summarised in Table 2. 

We complement the calculation of 𝐸𝑅𝑅𝑚 and 𝐽 (see values in Figure 6) with a membership analysis following eq. 525 

(10) as a measure of interpretation uncertainty. The resulting membership values are shown in Figure 7, where 

we added the values of the inverted model’s information entropy 𝐻 (eq. 11).  
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Figure 7. Membership values for the non-magnetic lithologies. Cases (a) through (f) correspond to inversions using 

prior information and constraints summarised in Table 2. The brown lines materialise the interfaces between geological 530 
units in the true model. H refers to the information entropy of the model (eq. 11). 

A visual comparison of the membership values in Figure 7e and Figure 7f with the MT-derived domains (Figure 

5d) indicates good consistency with MT domains (1) and (2) (single rock units inferred). It also shows that the 

proposed workflow has the capability to improve the recovery of key features investigated here (i.e., the location 
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of the basement-sediments interface) significantly when compared to cases that do not use MT-derived ADMM 535 

constraints across the entire model (Figure 7a, b and c).  

To complete our analysis, we visualise the metric values reported in Figure 6 and Figure 7 in the cross-plot shown 

in Figure 8. It shows the relationship between the amount of prior information infused in the constraints used in 

inversion and the indicators we propose to use. The rationale behind this visualisation is to provide a consolidated 

view of the metrics used in this synthetic case. We use it to investigate the existence of empirical relationships 540 

between uncertainty and degree of integration between MT and magnetic inversion. Two main observations can 

be made. First, the use of ADMM constraints at all locations of the model reduces interpretation ambiguity (lower 

H value for cases c, d, e, and f). Second, the use of MT-derived ADMM constraints produces models closer to the 

causative model by reducing both the model misfit ERRm and Jaccard distance 𝐽 (cases b, e, f). While ERRm 

measures the discrepancy between the true model’s magnetic susceptibility and the inverted model, the Jaccard 545 

distance measures the misfit in terms of the corresponding rock unit interpretation. The concurrent reduction of 

both ERRm and 𝐽 with the utilisation of MT-derived ADMM constraints supports our qualitative interpretation of 

Figure 6 and Figure 7, pointing to the conclusion that exploiting probabilistic information to derive constraints 

for magnetic data reduces model misfit while supporting geological interpretability.  

 550 

Figure 8. Cross-plot of 𝑯 and 𝑬𝑹𝑹𝒎 with colour coding using J for inversion cases (a) through (f) as per Table 2. 

Grey and brown shading separate the different types of constraints configurations: local vs global constraints, 

ADMM bound constraints applied everywhere or only at specific locations.  

4 Field application in the Cloncurry district 

We propose an application example illustrating the proposed sequential inversion workflow in the Cloncurry 555 

district (Queensland, Australia, see Figure 9). Using observations made in the synthetic case, we integrate MT 

with magnetic data inversion using the case relying on MT-derived ADMM bound constraints, using a 

homogenous starting model and smoothing constraints.  

We use existing results of the depth to basement derived using MT within a probabilistic workflow (Seillé et al., 

2021) in an area of the Cloncurry district. These results are used to constrain the magnetic inversion. 560 
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4.1. Geoscientific context and area of interest 

The depth to basement interface probability used to constrain the magnetic inversion was derived as part of a 

previous study using a similar workflow as presented in sections 2.1 and 3.3, details about the survey can be found 

in Seillé et al.(2021) and are summarised in what follows. The study consisted in modelling the full Cloncurry 

MT dataset using 1D probabilistic inversions. For each MT site, the cover-basement interface probability 565 

distribution 𝑝𝑖𝑛𝑡  was extracted from the inversion model ensembles. In this area, the threshold used to discriminate 

between sedimentary and basement rocks was set to 800 Ωm due to the presence of relatively resistive sediments. 

The set of 1D cover-basement interface probability distribution 𝑝𝑖𝑛𝑡  was then interpolated spatially across the 

survey area using the Bayesian Estimate Fusion algorithm of Visser and Markov (2019). This algorithm generates 

an ensemble of 2D surfaces, given discrete input estimates of the location of an interface. In that study, two types 570 

of depth to basement estimates were combined: the cover-basement interface probability distribution 𝑝𝑖𝑛𝑡  derived 

from the MT, and the depth to basement estimated from drill hole data. In total, 457 MT sites and 540 drillhole 

estimations are combined. Significant lateral variations are allowed during the interpolation using the fault traces 

indicated by structural geological data, defining areas where basement discontinuities are expected (at the location 

of faults). A relaxation of the spatial continuity between estimates located on different sides of a given fault is 575 

encouraged, allowing for discontinuities in the interpolated 2D surfaces (Visser and Markov, 2019). These faults 

are assumed to be vertical, which is a valid assumption given the near vertical behaviour of the main faults in the 

area (Austin and Blenkinsop, 2008; Case et al., 2018).The combination of estimates coming from different sources 

of information in this form permitted to calculate a probabilistic depth to basement interface across the survey 

area.  580 

 

Figure 9. Interpreted solid geological map of the area (Dhnaram and Greenwood, 2013). The small dots are the MT 

sites of the Cloncurry MT survey. The red line is the profile used in this study, and the red dots are the MT sites 

associated to this profile. The Constantine Domain to the west and the Soldiers Cap Domain to the east are separated 

by the Mouth Margaret Fault. The red dashed line delineates the area we focus on. 585 

In this study, we focus on a 2D profile (L26, see location on map in Figure 9a), and invert the corresponding 

magnetic data extracted from the anomaly map shown in Figure 10a and Figure 10b. The choice of an East-West 

oriented profile is motivated by the North-South orientation of the main structures in the area and by the geological 
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features the known geology and the geophysical measurements suggest. The profile is nearly perpendicular to 

these structures, making it suitable for use within a 2D inversion scheme. It crosses the North-South oriented 590 

Mount Margaret Fault, which is thought to belong to the northern part of the regional Cloncurry Fault structure, 

a major crustal boundary that runs North-South over the Mount Isa Province (Austin and Blenkinsop, 2008, 

Blenkinsop, 2008). This boundary separates two major Paleoproterozoic sedimentary sequences (Austin and 

Blenkinsop, 2008). The geological modelling performed by Dhnaram and Greenwood (2013) also indicates that 

the Mount Margaret Fault separates two distinct domains, the Constantine Domain to the West and the Soldier 595 

Caps Domain to the East. In our study area, the Constantine domain is covered by non-magnetic cover constituted 

by Mesozoic and Cenozoic sediments, lying on what is believed to be consitituted by the Mount Fort Constantine 

volcanics, in some places intruded by the Williams supersuite pluton. On the eastern side, the Soldier Caps 

Domain is also covered by Mesozoic and Cenozoic sediments, and the basement is interpreted to be a succesion 

of volcanic and metamorphic rocks (Dhnaram and Greenwood, 2013). 600 

The depth to basement probabilistic surface derived by Seillé et al. (2021) along the W-E profile (see Figure 10c) 

presents shallow basement depths in the western part of the profile (top basement at a depth of approximately 100 

meters , with some lateral variations). In the eastern part of the profile, the model indicates that a two-step fault 

system controls the thickening of the basin to the east. It reaches ~ 350 meters thickness in the eastern part. The 

depth to basement model along the profile shown in Figure 10c is relatively well constrained by MT and the drill 605 

hole data used in the interpolation process. However, the interpolation method we used imposed spatial continuity 

between estimates., Due to the relatively large separation between soundings (2 km) and the sparsity of drill holes, 

it did not allow for the definition of small-scale depth to basement lateral variations. In contrast, magnetic data 

shown in Figure 10a suggest that small-scales variations due to faults and other lateral discontinuities could exist. 

In this work, we assume a non-magnetic sedimentary cover, and a magnetic basement. In addition, we assume 610 

little to no remanent magnetization and little to no self-demagnetisation. Important remanence and self-

demagnetization can be observed in the vicinity of magnetite-rich Iron Oxide Copper Gold ore deposits (e.g., 

Anderson and Logan, 1992; Austin et al., 2013), but we consider that there is no indication of such features along 

L26. Further to this, we make this assumption for the sake of simplicity as the main object of this paper is the 

introduction of a new sequential inversion workflow and to show that it is applicable to field data. 615 

Under these premises, the features the magnetic data presents can be exploited to improve the image of the cover-

basement interface when integrated with prior information about the thickness of cover. In this context, the role 

of magnetic data inversion constrained by MT is therefore multiple:  

 to constrain the depth and extent of the magnetic anomalies and refine their geometry; 

 to analyse the compatibility between the constraints derived from MT and the magnetic data and to 620 

resolve some small-scale structures not defined by the MT constrains; 

 to reduce the interpretation uncertainty of the cover-basement interface;  

 to propose new scenarios in relation to the composition of the basement (in terms of its magnetic 

susceptibility) and structure (through its lateral variations). 

The depth of the cover-basement interface probability shown in Figure 10c is used to derive the domains required 625 

by the spatially varying bound constraints used in magnetic inversion.  



 

25 

 

4.2. Constrained Magnetic data inversion  

4.2.1. Magnetic data preparation and extraction of prior information 

We use the gridded reduced-to-pole (RTP) magnetic data from the Geological Survey of Queensland shown in 

Figure 10 (https://geoscience.data.qld.gov.au/dataset/ds000018/resource/91106497-d463-4b83-8b01-630 

1c5539ab40b1, last accessed on 09/03/2022). Prior to the 2D inversion of the data along the line L26, we 

manipulate and reformat the data. To account for variations in the measurements in the vicinity of the line, we 

extract data from a 800 meters wide band around the profile (L26) (Figure 10a), as shown in more details in Figure 

10a. To obtain data corresponding to a 2D rectilinear profile, we then calculate the weighted average of this subset 

of the dataset by assigning weights inversely proportional to the square of the distance of the measurement to L26, 635 

as illustrated in Figure 10b. The envelope of the data is obtained from the lower and upper limits observed within 

the band considered in the calculation of the weighted average. As a consequence, it reflects the variability of 

magnetic data perpendicularly to L26. Areas with departures from a narrow envelope may be indicative of zones 

where the 2D hypothesis made for inversion could be challenged.  

 640 

Figure 10. Data preparation. (a) map view of the data in the region of interest. The grayed-out area corresponds to the 

zone considered for the averaging of the magnetic data. Red points are MT soundings considered in this study. Grey 

circles are others MT soundings not used in this study. (b) shows data for magnetic inversion (solid line) and the 

envelope of the data from the 800 meters band around L26 (light blue shade). The shades of blue represent the weight 

assigned to the data points in the calculation of the average: the lighter the shade, the lower the weight. c) Cover-645 
basement interface probability 𝒑𝒊𝒏𝒕 (Seillé et al., 2021). Red lines are the drill holes, and their bottom represent the 

intersection with the basement. The drill holes plotted are projected a distance up to 800 meters away from the profile.  

https://geoscience.data.qld.gov.au/dataset/ds000018/resource/91106497-d463-4b83-8b01-1c5539ab40b1
https://geoscience.data.qld.gov.au/dataset/ds000018/resource/91106497-d463-4b83-8b01-1c5539ab40b1
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We convert the interface probability shown in Figure 10c into basement and sedimentary rock probabilities using 

the method described in Section 2.1 and 3.4.1. We assume that the sedimentary basin domain overlies the 

basement domain, and derive the corresponding domains for the ADMM bound constraints using the domaining 650 

procedure described above. The resulting domains are shown in Figure 11. 

 

Figure 11. MT-derived domains for cases with (1) sedimentary units only, (2) sedimentary and non-sedimentary units 

and (3) non-sedimentary units only. The magnetic susceptibilities for the different domains are indicated on the Figure.  

In what follows, we assume that sedimentary rocks have a low magnetic susceptibility comprised within the range 655 

[-0.006, 0.006] SI, while the basement units, mainly composed of volcanic sequences, are modelled to have higher 

magnetic susceptibilities within the interval [0.015 0.09] SI. The intervals we use for domains 1, 2, and 3 are given 

as:  

 Domain 1 (sediments only): [-0.006, 0.006] SI 

 Domain 2 (basement and sediments): [-0.006, 0.006] ∪ [0.015, 0.09] SI  660 

 Domain 3 (basement only): [0.015, 0.09] SI 

4.2.2. Inversion setup and results  

To reduce computing time, we truncate the sensitivity matrix of the magnetic data inverse problem under the 

assumption that model-cells beyond a given distance exert a negligible influence on the forward calculated data. 

The sensitivity domain is reduced to a 25 km-radius cylinder of infinite height and depth around each data point 665 

in a moving sensitivity domain approach (see examples in Čuma et al., 2012; Čuma and Zhdanov, 2014) that 

assumes negligible contribution of the models-cells beyond a certain distance from the measurement’s location. 

Using a similar approach, the results of Wilson et al. (2011), indicate that using a 25 km radius may result in 

approximately 98% accuracy in the calculation of the response. We assume that is suffices for the purpose of our 

application example, which we use mainly as a proof-of-concept using real world data. In this application example, 670 

we use a 3D mesh discretized into 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 331 × 9 × 116 rectangular prisms of dimensions equal to 

220 × 250 × 10 m3.Using a moving sensitivity domain approach leads to a reduction of 67% of the size of the 

sensitivity matrix and of the relating computational cost. We performed inversion using 12 threads on an Intel(R) 

Xeon(R) CPU E5-2630, but we note that all inversions shown here can be performed on a laptop computer. 

To examine the impact of different type of constraints, we first perform inversions using minimum prior 675 

information and successively increase the amount of prior information from unconstrained inversion to using MT-

derived intervals for multiple bound constraints. In the scenarios investigated here, we perform inversion using 
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global smoothness constraints (𝑾𝑔 = 𝑰), global (i.e., uniformly applied) and local (i.e., spatially-varying) ADMM 

bound constraints.The inversions we run consist of the following cases:  

(1) constrained by global smoothness constraints; 680 

(2) constrained by global smoothness constraints with lower and upper bound constraints; 

(3) constrained by global smoothness constraints with global, multiple bound constraints; 

(4) constrained by global smoothness constraints with local, ADMM bound constraints defined from MT 

probabilities. 

The constraints uses in each case are summarised in Table 3.  685 

Table 3. Scenarios tested for the utilisation of MT-derived information in the field case and corresponding α weights 

used in the inversion.  

Case scenario Prior model 
ADMM bound 

constraints 

Smoothness 

constraints 

(1) Unconstrained inversion Homogenous None Global 

(2) lower and upper ADMM 

bounds constraints 
Homogenous 

Homogenous, 

identical in all 

model-cells 

Global 

(c) Global bound constraints Homogenous 

Homogenous, 

identical in all 

model-cells 

Global 

(d) local ADMM bound 

constraints derived from MT 

probabilities 

Homogenous 

local, varying 

accordingly with 

domains 

Global 

 

Similarly to the synthetic case, we determine the value of α𝑚 and α𝑔 for each case using an L-curve analysis. This 

step is performed starting from a coarse model discretisation by doubling the cell-size in each direction to be able 690 

to run several hundreds of inversions in a short time. This is followed by fine tuning on the finer mesh shown here 

to account for slight variations in the optimum α𝑚 and α𝑔 values caused by changes in model discretization. The 

results for inversion cases (1) through (4) are shown in Figure 12.  
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 695 

Figure 12. Inversion results. (a) through (d) correspond to inversion types (1) through (4), respectively; (e) shows the 

data fit for the 4 inversions shown. The grey shading shows the amplitude of the data shown in Figure 10 for calculating 

the weighted average of the inverted anomaly. The dashed lines mark the horizontal extension of areas where 

hypotheses made for magnetic inversion may be incompatible with the data. 

The inversions reached a satisfactory data fit, exception made for the constrained inversion 4 (see the data fit in 700 

Figure 12e). In that case a significant underfit of the magnetic data is observed within certain areas, which point 

to an incompatibility between the magnetic data and the constraints applied. Four areas in the central part of the 

model are slightly underfit, as shown by double arrows between approximately 458 km and 470 km Easting. On 

the eastern part of the profile, from 479 km East to the most eastern part of the profile, an important underfit is 

observed as marked by the rightmost double arrow in Figure 12e. At this stage, this data misfit can indicate that 705 

the constraints used are not appropriate. This could be due to an inexact positioning at depth of the structural 

constrains, or to a change in the petrophysical behaviour of the basement in certain areas, which would link 

differently the electrical properties of the depth to basement constrains to their magnetic properties. The underfit 

observed in Figure 12e for case 4 is likely to be due to the magnetic susceptibilities allowed in Domain 3, with 

minimum values of 0.015 SI compared to -0.006 SI for domains 1 and 3. Compared to Figure 12a-c, the model in 710 

Figure 12d presents higher magnetic susceptibilities at depth in the East below approximately 200 m depth, which 

is clearly due to the constraints (see domains in Figure 11). In comparison, Figure 12a-c show lower magnetic 

susceptibilities in this part of the model with some values between -0.006 SI bound and 0 SI.  
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 We propose a 5th inversion case where we adjust the bounds manually to examine hypotheses relaxing the 

constraints derived by the combination of MT inversions and the magnetic susceptibility of rocks in the area.  715 

From Figure 12, we identify five main areas where hypotheses made for the utilisation of MT-derived domains 

need to be adjusted. In each case, the domain allowing sedimentary units may be deeper than expected or the 

basement may be less susceptible. We test the plausibility of such alternative scenarios by adapting the MT-

derived domains by adjusting the domains. We increased the depth of the non-sedimentary (i.e., basement) units 

in the eastern part of the model and between the areas delimited by dashed lines in Figure 12d. From a geological 720 

point of view, this corresponds to adjusting our working hypothesis to a case where rocks previously identified as 

basement only may be less susceptible than expected. The domains we use after adjustment are shown in Figure 

13a, and inversion results in Figure 13b and c, respectively. Figure 13d proposes an automated interpretation using 

membership values ω using eq. (10); the question mark characters shown in Figure 13d identify areas where the 

initial hypotheses have been revisited from a structural point of view by modifying the domains but which may 725 

still require further investigations such as the use of different interval bounds to simulate lateral petrophysical 

variations within the basement. This could be a way to assess the natural heterogeneity that can occur within 

basement units due to geological events still unaccounted for in the modelling. The arrows point to parts of the 

model where the basement constrains may be poorly resolved because located outside of the coverage of the MT 

stations and only constrained by few sparse drill hole estimates (Figure 10a and Figure 10c). . We note that this 730 

possible interpretation needs to be taken with caution between approximately 462 and 464 km easting as marked 

by the asterisk sign (*) in Figure 12e and Figure 13c because it corresponds to a zone of the study area where the 

assumption of a 2D model taken for the magnetic inversion might not hold. This is corroborated by visual 

inspection of the vicinity of L26 beyond the greyed-out area between 462 and 464 km Easting in Figure 10a. 
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 735 

Figure 13. (a) MT-derived domains adjusted following the adjustments suggested by magnetic data inversion, for 

domains with (1) sedimentary units only, (2) sedimentary and non-sedimentary units and (3) non-sedimentary units 

only. (b) is the inverted model for inversion case (5) and (c) is the inverted and field magnetic RTP data, with the 

horizontal extent of the locations where MT bounds are adjusted; (d) shows the membership values to the sedimentary 

and basement units obtained using eq. (10), overlaid with the original contours of MT-derived domains. In (c), the grey 740 
shading shows the envelope of the data shown in Figure 10 for calculating the weighted average of the inverted anomaly. 

Beyond the possibility to review hypotheses made at earlier stages of the workflow, we get insights into the 

structure and magnetic susceptibility of the basement. While electrical conductivity and magnetic susceptibility 

may be sensitive to change in rock type, there are scenarios where they exhibit differing sensitivity to texture and 

grain properties, respectively. For instance, metamorphism and alteration might affect electrical conductivity and 745 

magnetic susceptibility differently (Clark, 2014; Dentith et al., 2020). Under these circumstances, our results can 

provide indications about plausible geological processes given sufficient prior geological information about the 

deformation history. 

4.3. Interpretation  

From a multi-physics modelling point of view, the results presented in the previous section show a general 750 

agreement between the MT-derived constraints and the magnetic data. However, the results also show 

incompatibilities in a few parts of the model. We identified two major areas where incompatibility occurs:  

1) a smaller inconsistent area in the western part of the survey;  

2) a large inconsistent area east of the Mount Margaret Fault. 

We interpret these incongruencies as being mainly due to the different sensitivities of the two geophysical methods 755 

to different geological features and to the petrophysical variability of the basement in the area.  
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The greater depth extent of some of the lower magnetic susceptibility zones required by the magnetic data in the 

western part of the survey suggests that the depth to magnetic source is greater than suggested by the constraints. 

Adjustments to the constraints allowed a better data fit. A low magnetic response between kms 460 and 470 East 

(Figure 10) is assumed to be the consequence of low magnetic susceptibility contrasts and is interpreted to be 760 

granitic intrusions of the Williams Supersuite (Dhnaram and Greenwood, 2013). The presence of such intrusions 

offers a plausible explanation for the discrepancies between the magnetic and MT modelling. On the one hand, 

MT data modelling might not able to distinguish between an electrically resistive basement and an electrically 

resistive intrusion, while magnetic data modelling could not distinguish between the non-magnetic cover and a 

non-magnetic intrusion. On the other hand, magnetic data inversion can differentiate the low susceptibility 765 

intrusion from the higher susceptibility volcanic rocks, and the MT data is sensitive to the basal cover interface 

above both the volcanic rock and the intrusion. The constrained inversion permits detection of the lateral extent 

of the intrusion while estimating cover thickness. While detailed modelling of higher resolution data would be 

required to refine the geometry of these intrusive bodies, our modelling suggests that the intrusion could be 

modelled as several smaller intrusions.  770 

East of the Mount Margaret Fault, the incompatibility between the original MT-derived constraints and the 

magnetic data points to regional scale structures. Drill hole observations indicating basement do not exceed 350 

meters depth. If we assume a high-susceptibility basement, which is common to the whole area (Dhnaram and 

Greenwood, 2013), the magnetic model requires a very thick non-magnetic cover layer to reconcile the data which 

is incompatible with our geological knowledge of the area. In that case, we need to reconsider our definition of 775 

the basement. The north-trending Mount Margaret Fault (see Figure 9) separates two geological domains 

exhibiting different basement characteristics. East of the Fault is the Soldiers Cap domain, which is predominantly 

composed of non-magnetic volcanic rocks. By relaxing the geological model constraints in that part of the model 

both sedimentary and non-sedimentary units are allowed (Figure 11a) and we can satisfactorily fit the data. The 

necessity of considering non-magnetic volcanic rocks in the Soldier Caps domain is in agreement with the 780 

magnetic modelling performed by Dhnaram and Greenwood (2013).  

5 Discussion  

We have presented a workflow for sequential joint modelling of geophysical data, and applied it to synthetic and 

field measurements. In this study, we used constraints in the form of interface probabilities derived from a 

probabilistic workflow driven by MT data. This workflow is general in nature and is not limited to a particular 785 

geological or geophysical modelling method to generate the inputs. This has allowed us to report the utilisation 

of the ADMM algorithm to constrain magnetic data inversion using disjoint interval bound constraints for the first 

time. 
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The workflow we proposed presents several advantages. It is computationally inexpensive by use of standalone 

inversions. The inversion of the MT dataset used to derive the constraints is performed only once. Then, a series 790 

of constrained magnetic inversions is run to test different geophysical and petrophysical hypotheses. It shows the 

example of a fast and flexible approach to test different structural and petrophysical assumptions while modelling 

data sensitive to different physical parameters. It allows to focus the modelling efforts on survey-specific features 

(anomalies, geological structures) when appropriate petrophysical information is available. However, as with 

generalizable methods, strengths become limitations under certain circumstances. For instance, in the case of MT 795 

and magnetic data inversions as proposed in this work, the electrical resistivity and magnetic susceptibility for the 

rock types of interest is dependent on a range of factors and processes (such as porosity, permeability, rock 

alteration, etc.) such that their correlation may be case-dependant (see Dentith et al., 2020; Dentith and Mudge, 

2014). While we may surmise that it remains reasonable to assume the existence of such correlation in hard rock 

scenarios, it may not always hold in basin environments. For example, one can easily think of a basin exploration 800 

case where electrical resistivity increases rapidly with increasing hydrocarbon concentration in reservoirs, while 

the absence of changes in magnetic susceptibility might make the use of magnetic data inversion redundant. In 

such case, property pairings other than magnetic susceptibility and resistivity could be considered, such as 

electrical resistivity and seismic attributes (see examples of Le et al., 2016 and Tveit et al., 2020, who use seismic 

inversion to extract prior information for CSEM inversion). Further to this, the utilisation of magnetic data 805 

inversion for the deeper part of the crust is limited to depths shallower than the Curie point (typically from 

approximately 10 to a few 10s of kilometres under continents). For deeper imaging of the crust, the workflow we 

propose may be best suited to the utilisation of gravity data with MT.  

An assumption worth examination is whether the study area is adequately represented by two geological domains. 

In the cases we investigated, these domains are defined by the probability of observing only two rock classes 810 

(basement and non-basement). While this assumption reduces the risk of misinterpretation as no hypotheses are 

made to distinguish between different sedimentary units or rocks of different nature in the basement, it also then 

limits the interpretations that can be made from inversion results. We expect that provided that the rock units 

present discriminative features, i.e., distinctive magnetic susceptibility and resistivities (or other properties 

depending on the geophysical techniques considered) several rock types can be considered in the modelling. Such 815 

discriminative aspects of the petrophysics needs to be ascertained while defining the number of distinctive 

domains that may be present in the study area. Ideally, robust petrophysical data is available given the strong 

constraint that these domains may impart on inversion. However, in the absence of petrophysical data or the 

number and character of geological domains, literature values or broad intervals can be used to define constraints. 

In these cases, the magnitude of data misfit can inform whether a proposed number of domains or magnetic 820 

susceptibility ranges are plausible, driving data acquisition or refinement of the conceptual geological model. 

Methods that exploit this approach remain to be investigated further in future case studies.  

The application case is performed in 2D to illustrate the workflow. Extending the presented work to large scale 

problems in 3D is straightforward as the inversion methods employed in this study are designed for 3D modelling. 

The 1D MT modelling and interpolation schemes present excellent scalability. The Tomofast-x engine (Giraud et 825 

al., 2021b; Ogarko et al., 2021a) is implemented using 3D grids. It presents good scalability and it offers the 

possibility to reduce the size of the computation domain to save memory when calculating the sensitivity matrix 
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in the same fashion as Čuma et al. (2012), and Čuma and Zhdanov (2014), for large-scale potential field data 

modelling. Ongoing developments on Tomofast-x comprise the application of wavelet compression operators to 

accelerate the inversion in the same way as Li and Oldenburg (2003) and Martin et al. (2013) while maintaining 830 

modelling error sufficiently low, as well as the development of joint inversions using the ADMM constraints for 

multiple bound constraints.  

Another straightforward extension of the workflow is the use of gravity data simultaneously with, or instead of, 

magnetic data since it is already implemented in Tomofast-x (Giraud et al., 2021b). Giraud et al. (2020) presented 

a synthetic MT-constrained gravity inversion, using a similar workflow as the one presented here. This would be 835 

of particular interest in the Cloncurry region (Queensland, Australia), where for instance, Moorkamp (2021) 

recently investigated the joint inversion of gravity and MT data, and where our workflow could be applied using 

the MT modelling results of Seillé et al. (2021).  

From a geophysical point of view, magnetic inversion is affected by the non-uniqueness of the solution to the 

inverse potential field problem despite prior information and constraints being used. The workflow could be 840 

improved by using a series of models representative of the geological archetypes that can be derived from the 

ensembles of 1D MT models. Geological archetypes are distinctly different structural configurations (or 

topologies) that plausibly exist for a given location with available data (Pakyuz-Charrier et al., 2019, Wellmann 

and Caumon, 2018). Identification of the archetypes could be achieved from the ensemble of geological model 

realisations in the same spirit as Pakyuz-Charrier et al. (2019), who use a Monte Carlo approach to generate a 845 

range of topologies which are then examined for distinct clusters representing the archetypes.  

From a methodological point of view, it could be argued that simultaneous joint geophysical inversion combining 

structural and petrophysical constraints might outperform the workflow we propose here. However, this would 

make the modelling process more demanding combined with limitations based on cases where determining the 

causitive relationships between petrophysics supporting joint approaches poses a challenge. The workflow we 850 

propose here presents a few advantages over a joint inversion scheme, in the sense that it does not require both 

datasets to be inverted simultaneously under a defined set of petrophysical and/or structural constraints. The time 

required to run a joint inversion being limited by the running time of the more computationally expensive 

technique, it can limit the range of tests to be performed. In this study, we could run rapidly many 2D constrained 

magnetic inversions, even if the 1D probabilistic inversions of the MT data (and posterior fusion) required 855 

significant longer running time compared to the 2D constrained magnetic inversion. This point would particularly 

be relevant in the case of large 3D datasets. This approach may represent an exploratory step in joint inversion 

workflows to explore, understand and refine structural and petrophysical relationships between different physical 

parameters before undertaking more demanding joint inversions.  

In the field application case presented here, the probabilistic depth to basement is derived assuming lateral 860 

continuity of the depth to basement estimates at a large scale, not accounting for small-scale lateral variations. 

Thus, uncertainty for depth to basement may be underestimated at some locations, in particular in between MT 

sites as shallow depths. In such cases, the existence of incompatibilities between MT-derived constraints and the 

magnetic data might require reconsidering the spatial continuity assumptions taken during the calculation of the 

probabilistic depth to basement surface. Extensions of this work may be devised to alleviate some of the 865 
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limitations of the workflow. For instance, magnetic susceptibility from the inversion of magnetic data could be 

mapped back to a resistivity model to calculate forward MT data for validation (dashed line in Figure 1), or to 

constrain the next cycle of MT inversions in the case the workflow is extended to cooperative joint inversion. It 

would also be straightforward to use to a level-set inversion that can consider an arbitrary number of geological 

units (e.g., Giraud et al., 2021, Rashidifard et al., 2021) using MT modelling as a source of prior information and 870 

constraints. We have used hard bounds using the ADMM algorithm, which can easily be complemented or 

replaced by the use of multi-modal petrophysical distributions as available in Tomofast-x (e.g., mixture models 

as in Giraud et al., 2017, 2019) as an alternative.  

6 Conclusion  

We have introduced, tested on synthetic, and applied to field data a cooperative inversion scheme for the 875 

integration of MT and magnetic inversions. We have shown that despite its simplicity, the workflow we propose 

efficiently leverages the complementarities between the two methods and has the capability to improve our 

understanding of the cover-basement interface and of the basement itself. We have tested our workflow on a 

synthetic study that illustrates the flexibility of the method and the different possibilities our workflow offers as 

well as their limitations. In the field application case (Cloncurry area, Queensland), we have shown how the 880 

quantitative integration of MT and magnetic data may bring insightful results on geological structural and 

petrophysical aspects, opening up new avenues for interpretations of the geology of the area and prompting future 

works.  
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Appendix A 

We reformulate the geophysical inverse problem in eq. (5) in its ADMM form as: 

minimize 𝜃(𝒅, 𝒎) + 𝑓(𝒛) (17) 

subject to 𝒎 − 𝒛 = 0,  

where 𝑓 is the indicator function of ℬ (see eq. 5.1 in Boyd, 2011, for details).We solve this problem iteratively by 

alternating the updates of 𝒎 and 𝒛 following :  1115 

𝒎𝑘+1 = arg min
𝒎

(𝜃(𝒅, 𝒎) + 𝜏2‖𝑾𝐴𝐷𝑀𝑀(𝒎 − 𝒛𝑘 + 𝒖𝑘)‖2
2), (18) 

𝒛𝑘+1 = 𝜋ℬ(𝒎𝑘+1 + 𝒖𝑘), (19) 

𝒖𝑘+1 = 𝒖𝑘 + 𝒎𝑘+1 − 𝒛𝑘+1, (20) 

where 𝒖 is called a dual variable, 𝜏 𝜖 ℝ+ is the overall weight assigned to the ADMM constraints, and 𝑘 is the 

current iteration number; 𝑾𝐴𝐷𝑀𝑀  is a diagonal matrix we introduce here to define spatially varying weights 

assigned to the bound constraints during inversion. It controls the relative strength of the ADMM constraints in 

the different model cells. Here, we set it locally as a function of the MT inversion results 𝑷𝑀𝑇  such that 𝑾𝐴𝐷𝑀𝑀 =

𝒇(𝑷𝑀𝑇). The ADMM variable 𝒛 is calculated by the projection of 𝒙 onto ℬ as:  1120 

𝜋ℬ(𝒙) = [𝜋ℬ1
(𝑥1), 𝜋ℬ2

(𝑥2), … , 𝜋ℬ𝑛
(𝑥𝑛)], with (21) 

𝜋ℬ𝑖
(𝑥𝑖) = arg min

𝑦∈ℬ𝑖

‖𝑥𝑖 − 𝑦‖2 (22) 

The updated model 𝒎𝑘+1 is then calculated by solving the inverse problem using the LSQR algorithm of Paige 

and Saunders (1982). We refer the reader to Ogarko et al. (2021a) for more details. We illustrate the application 

of such projection using two intervals in Figure A 1.  
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Figure A 1. Projection using 𝝅𝓑 as per eq. 19 using two intervals as follows: [0, 0.005], [0.025, +∞].  1125 

 

 

  


