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Abstract. Middle-Late Jurassic high Sr/Y granitic intrusions are extensively exposed in the Liaodong Peninsula, in the

eastern part of the North China Craton (NCC). However, the genesis of the high Sr/Y signature in these intrusions has not

been studied in detail. In this study, we report results of zircon U-Pb dating, Hf isotopic analysis and zircon and whole-rock

geochemical data for the Late Jurassic Zhoujiapuzi granite in the middle part of the Liaodong Peninsula. The Zhoujiapuzi15
granite is high-K (calc-alkaline) and peraluminous in nature, with high SiO2 (68.1–73.0 wt %) and Al2O3 (14.5–16.8 wt %),

low in TFe2O3 (1.10–2.49 wt %) and MgO (0.10–0.44 wt %), and with high Sr/Y (19.9–102.0) and LaN/YbN (14.59–80.40).

Morphological and chemical studies on zircon grains show that there are two stages of zircon growth, interpreted as

magmatic evolution in two distinct stages. The early stage of zircons (ESZ) reflects a crystallization environment of low

oxygen fugacity and high TZr-Ti (Ti-in-zircon thermometer values: 669–792℃); the late stage of zircons (LSZ) formed with20
high oxygen fugacity and lower TZr-Ti (498–720℃). LA-ICP-MS U-Pb zircon dating yielded the formation ages of the ESZ

and LSZ of ~162±1 Ma and ~158±1 Ma, respectively, with similar εHf(t) values in the range of -26.3– -22.8. Interpretation

of the elemental and isotopic data suggests that the Zhoujiapuzi granite was a I-type granite derived from partial melting of

basement in the region: ~2.17 Ga Liaoji granites. The high Sr/Y signature is most likely inherited from these source rocks.

Based on the geochemical features and regional geological data, we propose that the Liaodong Peninsula in the Late Jurassic25
was part of a mature continental arc, with extensive melting of thick crust above the Paleo-Pacific subduction zone.

1 Introduction

The Liaodong Peninsula is located in the northeast of the North China Craton (NCC). The northeast NCC was influenced by

three main tectonic regimes in the Mesozoic, related to the subduction of the Paleo-Asian, Paleo-Pacific and Mongol-

Okhotsk oceans (Tang et al., 2018). The superposition of these different regimes resulted in changing tectonic and magmatic30
patterns over time.

Middle-Late Jurassic granitic rocks are extensively exposed in the northern parts of the Liaodong Peninsula, such as the
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Yutun diorite, Xiaoheishan granodiorite, Heigou monzogranite (Wu et al., 2005), Wulong two-mica Monzogranite (Yang et

al., 2018), and Huangdi biotite monzogranite (Xue et al., 2020). Most of these rocks are characterized by high Sr /Y, and plot

within the adakite field on Sr/Y-Y and LaN/YbN-YbN diagrams (Wu et al., 2005a; Yang et al., 2015a, 2018). Adakite and35
geochemically similar high Sr/Y igneous rocks have been proposed to represent several tectonic environments (Defant and

Drummond, 1990; Castillo et al., 1999; Gao et al., 2004; Kamei et al., 2009; Ma et al., 2013; Ma et al., 2015; Ou et al., 2017;

Yang et al., 2020). The Middle-Late Jurassic granitic rocks in the Liaodong Peninsula are commonly proposed to be the

products of partial melting of thickened mafic crust with garnet in the residue (Wu et al., 2005a; Yang et al., 2015a, 2018;

Tang et al., 2018).40
In recent years, some studies have proposed that the high Sr/Y ratio in granitic rocks can be inherited from a high Sr/Y

source (Kamei et al., 2009; Ma et al., 2015; Zhan et al., 2020). However, the source composition has not been fully

considered in the petrogenesis of the high Sr/Y rocks in the Liaodong Peninsula. Hence, the petrogenesis of the Middle-Late

Jurassic high Sr/Y rocks needs to be reevaluated, based on more detailed work and a consideration of possible sources. This

petrogenesis is of significance for understanding the Jurassic tectonics of the Liaodong Peninsula, and the NCC in general.45
In this paper, we examined the high Sr/Y Zhoujiapuzi granite from the Xiuyan area, in the middle of the Liaodong

Peninsula. Zircons are analysed for U-Pb-Hf isotopes and trace element geochemistry, and by Raman spectroscopy. These

results are integrated with whole-rock geochemistry. We focus on the zircons, because of their potential to reveal the origins

of the pluton (Belousova et al., 2002; Wang et al., 2007; Breiter et al., 2014; Zhao et al., 2014), and so provide a case study

for the evolution of plutonic magma systems in general. Based on observations of the CL images and chemical analysis, two50
zircon growth stages can be distinguished. We first determine the crystallization environments of the two zircon growth

stages, and then decipher the petrogenesis, source characteristics and origin of the high Sr/Y signature of the pluton as a

whole. Integrated with previous studies, our study provides insights into the tectonic evolution of the Liaodong Peninsula in

the Late Jurassic.

2 Geological setting55

The Zhoujiapuzi granite is located in the middle of the Liaodong Peninsula, at the northeastern margin of the NCC (Fig. 1).

The Paleoproterozoic Liaohe Group is the basement in the study area, including the Lieryu, Gaojiayu, Dashiqiao and Gaixian

formations. Although stratigraphic terms are used, these rocks are metamorphic, and the group consists of leptynite, leptite,

granulite, amphibolite, marble and phyllite. The protoliths of the Liaohe Group include marine volcanics, clastics, carbonates

and claystones. The formation age of the metasedimentary rocks in the Liaohe Group is 2.0–1.9 Ga (Wan et al., 2006; Li et60
al., 2015). It is in unconformable contact with the overlying strata of the Mesoproterozoic Cuocaogou Formation and

Xiaoling Formation.

In the Mesozoic, the region of the Liaodong Peninsula was influenced by the circum-Pacific tectonic regime, the

Mongol-Okhotsk tectonic regime and the Paleo-Asian Ocean tectonic regime. The joint influence of multiple tectonic
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regimes resulted in intensive magmatism during the Mesozoic (Fig. 1b). These Mesozoic magmatic rocks can be divided into65
three stages, namely: Triassic (233–212 Ma), Jurassic (180–156 Ma) and Early Cretaceous (131–117 Ma) (Wu et al., 2005b).

The Triassic magmatic rocks are less exposed, mainly alkaline rocks, diabase, diorites and granites (Wu et al., 2005b).

Among them, the granites mainly have A-type affinity, and may have formed in an extensional setting (Tang et al., 2018;

Wang et al., 2019). Magmatism has been related to either the subduction of the Paleo-Pacific slab, closure of the Paleo-Asian

Ocean, or the collision between the NCC and the Yangtze Craton (Tang et al., 2018; Wang et al., 2019). The majority of the70
Jurassic magmatic rocks are monzogranite, tonalite and granodiorite, which are generally calc-alkaline I-type granites, and

show characteristics of adakite-like rocks. Some of them, exposed near later extensional structures, have undergone regional

ductile deformation. These Jurassic magmatic rocks are generally considered to relate to the subduction of the Paleo-Pacific

slab (Li et al., 2004; Zhai et al., 2004). In the Early Cretaceous, basic-acidic-alkaline rocks were widely developed. Among

them, the granites have mainly A- and I-type affinities. These rocks are generally considered to have formed in an intense75
extension environment, which is connected with either the rollback or low-angle subduction of the Paleo-Pacific slab (Wu et

al., 2005c; Zheng et al., 2018).

3 Samples and petrography

The Zhoujiapuzi granite is located to the east of Xiuyan City, in the middle of the Liaodong Peninsula (Fig. 1b). It intruded

into the Lieryu Formation of the Liaohe Group. Eight samples of the Zhoujiapuzi granite were collected at locations shown80
in Fig. 1c.

The Zhoujiapuzi granite is generally grey in colour and with fine-grained texture (Fig. 2a). The mineral assemblage

contains K-feldspar (~50 %), quartz (~25 %), plagioclase (~20 %) and biotite (~5 %) as well as accessory minerals such as

zircon, ilmenite, magnetite and apatite. K-feldspar are euhedral or subhedral, always exhibit cross-hatched twinning (Fig. 2b).

Quartz is usually xenomorphic, and have indented boundaries and wavy extinction (Fig. 2b-d). Plagioclase always exhibits85
polysynthetic twinning and have sericitization in places (Fig. 2c). Biotite mainly fills in the interstices between the other

minerals (Fig. 2c, d).

4 Analytical methods

The cathodoluminescence (CL) images of zircon were obtained by the Chengpu geological Testing Co. Ltd, Langfang, China

using the TIMA analysis. The LA-ICP-MS zircon U-Pb analyses were performedusing an Agilent Technologies 7700x ICP-90
MS with a Teledyne Cetac Technologies Analyte Excite laser-ablation system at Nanjing FocuMS Contract Testing Co. Ltd.

The analyses were carried out with a 35 μm spot size at 8 Hz repetition rate for 40 seconds. The raw ICP-MS data were

processed using ICPMSDataCal software (Liu et al., 2010). Date reduction were completed using the Isoplot4.15 (Ludwig,

2003). The instrument description and analytical procedure are described in detail by Zeng et al. (2018).
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The in-situ Lu-Hf isotopic analyses of zircon were performed by LA-MC-ICP-MS using a Teledyne Cetac laser-95
ablation system and a Nu Plasma II MC-ICP-MS at Nanjing FocuMS Contract Testing Co. Ltd. The 193 nm ArF excimer

laser was focused on zircon surface with fluence of 6.0J/cm2. The ablation protocol employed a spot diameter of 50 um at 8

Hz repetition rate for 40 seconds. A more detailed description of the method was described by Zeng et al. (2018).

Zircon Raman analyses were carried out using an RM2000 laser Raman spectrometer at the State Key Laboratory of

Nuclear Resources and Environment, East China University of Technology. The selected incident wavelengths were 532 and100
785 nm in order to clearly identify the luminescence bands due to low concentration impurities. The beam power was 20

mW. The Leica 50× objective was employed.

Six fresh rock samples were selected for geochemical analysis. The elemental analyses were conducted at Analytical

Chemistry & Testing Services (ALS) Chemex (Guangzhou) Ltd. Major oxides were analyzed using wave-dispersive X-ray

fluorescence (XRF) (ME-XRF26). Analytical precision was better than ± 0.01%. Trace element abundances were measured105
by the lithium borate dissolution method and ICP-MS (ME-MS81). The analytical uncertainties of the rare earth element

(REE) and high field strength element (HFSE) are <5%. Analytical uncertainties are in the range of 5%–10% for the other

elements. Detailed analytical procedures refer to Zhang et al. (2019) and Nash et al. (2020).

5 Analytical results

The data for major and trace elements, Raman microprobe data, zircon trace elements, zircon U-Pb ages, and zircon Hf110
isotopes are shown in Tables S1, S2, S3, S4 and S5, respectively.

5.1 Whole-rock major and trace element compositions

SiO2 contents ranging from 68.11 wt.% to 73.02 wt.% (average 71.71 wt.%). Contents of Na2O and K2O are 3.81–4.65 wt.%

and 4.32–4.71 wt.%, respectively, with Na2O/K2O ratio of 0.82–1.08 and total alkalis (Na2O + K2O) of 8.38–8.97. All

samples plot in the field of granite in the TAS classification except one (Fig. 3a). These samples have Al2O3 contents of115
14.49–16.83 wt.% (average 15.09 wt.%), CaO contents of 1.04–1.98 wt.% (average 1.38 wt.%) and A/CNK values of 1.05–

1.10 (average 1.07). In the A/NK–A/CNK diagram (Fig. 3b), all samples plot in the peraluminous field (Fig. 3b). The granite

samples have low TFe2O3 (TFe2O3 = all Fe calculated as Fe2O3) contents and MgO contents ranging from 1.10–2.49 wt %

and 0.10–0.44 wt %, respectively, with Mg# (Mg#=100*molar Mg/(Mg+Fe)) values of 15–26.

The samples of the Zhoujiapuzi granite exhibit variable REEs, with total REEs ranging from 59 to 302 ppm. The120
LaN/YbN values of the Zhoujiapuzi granite range from 14.59 to 80.40 (average 38.27), showing right-declined REE patterns

(Fig. 4a). The samples have Eu/Eu* of 0.62–1.94 and Ce/Ce* of 0.94–1.16. In the primitive mantle-normalized trace element

diagram (Fig. 4b), the samples show negative anomalies of HFSEs (e.g., Nb, Ta, Ti and P) and positive anomalies of La and

LILEs (e.g., K, Rb, Ba, U, La, Ce). The Zhoujiapuzi granite is characterized by high contents of Sr (309–551 ppm) and low

contents of Y (5.01–15.5 ppm) and Yb (0.43–1.40 ppm), with high Sr/Y ratios of 19.94–102.04 (average 65.50).125
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5.2 Zircon CL images, Raman spectra and REE elements

CL images of zircons from the Zhoujiapuzi granite are shown in Fig. 5. Zircons commonly have crystal sizes between 120

and 200 μm, and have length/width ratios of 2:1–4:1, with euhedral, stubby to elongate prisms. According to the CL images,

there were two stages for zircon growth, and the zircons can be divided individually and collectively into: the early stage of

zircon (ESZ) and the late stage of zircon (LSZ). The ESZ is characterized by bright CL intensity and widely-spaced130
oscillatory zoning patterns. The LSZ is characterized by extremely low CL emission and narrowly-spaced oscillatory zoning

patterns.

Six ESZ spots and six LSZ spots were analyzed for Raman spectra. The ESZ have antisymmetric stretching vibration

(B1g) of the SiO4 tetrahedra (v3 (SiO4)) Raman band of 1005–1007 cm-1 and half-width of the v3 (SiO4) Raman band (b)

values of 6.0–8.1 cm-1, while the LSZ have v3 (SiO4) Raman band of 1004–1007 cm-1 and b values of 5.4–9.0 cm-1.135
Twenty ESZ spots and eighteen LSZ spots were analyzed for trace and rare earth elements. The ESZ spots have lower U

content (28–677 ppm) than that of the LSZ spots (U=641–3842 ppm). In the chondrite-normalized REE element diagram

(Fig. 6a, b), both the ESZ and LSZ characterized by HREE enrichment relative to LREE with positive Ce anomalies and

negative Eu anomalies. The ESZ spots have ΣREE of 49–1115 ppm (average 390 ppm), ΣLREE of 3–72 ppm (average 14

ppm) and ΣHREE of 46–1100 ppm (average 377 ppm), whereas the LSZ spots have ΣREE of 327–1632 ppm (average 895140
ppm), ΣLREE of 2–14 ppm (average 6 ppm) and ΣHREE of 325–1627 ppm (average 889 ppm). Hence, the REE content of

the ESZ is significantly lower than that of the LSZ, and the difference between the two is mainly in HREE content. The ESZ

spots have δEu of 0.07–0.60 (average 0.28) and δCe of 1.26–166.54 (average 45.49). The LSZ spots have δEu of 0.08–0.24

(average 0.13) and δCe of 4.23–271.90 (average 94.37). These results indicate that the ESZ have a weaker negative Eu

anomaly and a weaker positive Ce anomaly than those of the LSZ.145
Some zircons have inherited cores, which have corroded and rounded shapes, such as the 1# in XY-001 and 6# and 41#

in XY-008 (Fig. 5). These inherited zircons have oscillatory zoning in CL images. The inherited zircon spots have ΣREE of

602–1517 ppm, and show depletion of LREE, enrichment of HREE, a positive Ce anomaly (δCe of 1.52–216.08) and a

negative Eu anomaly (δEu of 0.07–0.13) (Fig. 6c).

5.3 Zircon U–Pb and Hf isotope composition150

Seventy-seven spots were analysed for U-Pb isotope composition from samples XY-001 and XY-008. In the U-Pb Concordia

diagram (Fig. 7a, d), both the ESZ and LSZ spots are clustered on the Concordia curve. Overall, the ages of LSZ are

generally older than those of ESZ (Fig. 8). On a single zircon, the 206Pb/238U age of the ESZ is older than that of the LSZ (Fig.

5). In sample XY-001, 13 spots from ESZ define a weighted mean 206Pb/238U age of 160.8±1.3 Ma (1σ, MSWD=0.62; Fig.

7b), and 19 spots from LSZ define a weighted mean 206Pb/238U age of 157.8±0.8 Ma (1σ, MSWD=0.42; Fig. 7c). In sample155
XY-008, 19 spots from ESZ define a weighted mean 206Pb/238U age of 161.5±1.1 Ma (1σ, MSWD=0.32; Fig. 7e), and 16

spots from LSZ define a weighted mean 206Pb/238U age of 157.8±0.9 Ma (1σ, MSWD=0.39; Fig. 7f). The other 10 spots with
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distinctly older ages (207Pb/206Pb ages ranging from 2494 to 2132 Ma) were obtained on inherited cores. Their ages are

discordant, suggesting that these inherited cores were variably influenced by lead loss. Among these, 9 spots define a

discordia line with an upper intercept age of 2167 ± 12 Ma (MSWD=0.59) (Fig. 7g), which is concordant with the weighted160
mean 207Pb/206Pb ages of 2167 ± 12 Ma (1σ, MSWD = 0.54; Fig. 7h).

Twenty-four zircons were analyzed for Lu-Hf isotope composition. The variation in Hf isotopic data is limited, between

9 spots from ESZ and 8 spots from LSZ. 17 spots exhibit a range of 176Hf/177Hf ratios from 0.281921 to 0.282030, which

converts to εHf(t) values between -26.3 to -22.8 (Fig. 9), and two-stage Hf model (TDM2) ages of 2650 to 2889 Ma by using

the U-Pb age for each zircon. Six analytical spots, which define the Concordia upper intercept age of 2167 Ma, show165
176Hf/177Hf radios and εHf(t) values of 0.281443 to 0.281496 and -0.7 to 1.2, respectively, with TDM2 age of 2646 Ma to 2788

Ma by using the upper intercept age.

6 Discussion

6.1 Significance of the two stages of zircon

Generally, zircon with high U content can easily break down into the metamict state because of the radiation damage to the170
lattice caused by α-particles originating from the decay of uranium (Mezger and Krogstad, 1997). The physical and structural

changes often lead to the loss of Pb and addition of trace elements such as LREE. In this study, the LSZ are characterized by

high U content. Hence, the metamictization degree of the zircons must be taken into consideration. Data from LSZ spots plot

on the Concordia curve, indicating no obvious Pb loss. The internal structure of LSZ is relatively intact, with obvious

oscillatory zoning, and few cracks, implying that the physical and structural of the LSZ remained unchanged. Nasdala et al.175
(1998) suggested that the metamictization of zircon can be well characterized by Raman spectroscopy. The half-width of the

v3(SiO4) Raman band (b) of 10 cm-1 and 20 cm-1 are proposed to approximately distinguish well-crystallized, intermediate

and metamict zircons (Nasdala et al., 1998). The LSZ have b values of 5.4–9.2, characterizing them as well-crystallized.

Therefore, the above features indicate that the LSZ are not metamict. Consequently, it can be concluded that the U-Pb

isotope and trace element systematics of the LSZ have not been changed by metamictization.180
Both the ESZ and LSZ have oscillatory zoning patterns, and their chondrite-normalized REE patterns are characterized

by steeply positive slopes from the LREE to HREE with strong negative Eu anomalies and pronounced positive Ce

anomalies. The above characteristics are consistent with those of igneous zircon (Hoskin and Schaltegger, 2003). Although

hydrothermal zircon can also have oscillatory zoning patterns similar to magmatic zircons, there are obvious differences in

trace elements between the magmatic and hydrothermal zircon (Hoskin et al., 2005). In the discrimination diagram (Fig. 10),185
both the spots of ESZ and LSZ fall in or near the magmatic field, which is obviously different from hydrothermal zircon.

Hence, the above characteristics indicate that both the ESZ and LSZ from the Zhoujiapuzi granite have a magmatic origin.

The ESZ was overgrown continuously by the LSZ. In addition, the contact between the ESZ and LSZ is euhedral. Such

core-mantle overgrowth relationships indicate that both the ESZ and LSZ formed in two stages of the same magmatism (i.e.
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the ESZ are not xenocrysts or inherited zircons). Furthermore, the similar Hf isotopic data of the ESZ and LSZ is also190
consistent with this interpretation. The obvious difference in internal structure and trace element composition between the

ESZ and LSZ could be due to significant and abrupt changes in their crystallization environments (Wang et al., 2007).

Watson and Harrison (2005) found that the Ti content of zircon has a strong dependence on temperature (T), and obtain

a Ti-in-zircon thermometer (TZr-Ti). Since then, Ferry and Watson (2007) suggested that the solubility of Ti in zircon depends

not only on T and activity of TiO2 (aTiO2) but also on the activity of SiO2 (aSiO2), and revised the TZr-Ti. We use the TZr-Ti195
from Ferry and Watson (2007) and the recommended values (aSiO2=1, aTiO2 = 0.6) for the activity of SiO2 and TiO2, due to

the presence of ilmenite and quartz and lack of sphene and rutile in the Zhoujiapuzi granite. The TZr-Ti from the ESZ and LSZ

are 669–792 ℃ (average 734 ℃) and 498–720℃ (average 621 ℃), respectively, i.e. the ESZ formed at higher temperatures

than the LSZ. The U content shows a significant negative correlation with T (Fig. 11a).

Cerium exists in magmas as both Ce3+ and Ce4+. Because the 0.84-Å radius of the Zr4+ ion is more closely matched by200
the Ce4 + (0.97-Å radius) than the Ce3 + (1.143-Å radius) (all ionic radii are from Shannon, 1976), Ce4 + is more compatible in

the zircon structure than the Ce3 +. Hence, zircon Ce4 +/Ce3 + ratio is a useful tool for evaluating the oxygen fugacity condition

of crystallization environment (Ballard et al., 2002). In this study, the Ce4 +/Ce3 + ratio of the ESZ and LSZ are 6.30–153.36

(average 32.51) and 21.81–5773.06 (average 787.39), respectively (the calculation method after Ballard et al., 2002). As

shown in the Ce4 +/Ce3 +-U diagram (Fig. 11b), U has a significant positive correlation with Ce4 +/Ce3 +. This result implies205
that the LSZ formed in a higher oxygen fugacity environment than the ESZ.

The Zr/Hf ratio in zircon has a negative correlation with the degree of fractionation in the parent melt (Breiter et al.,

2014). The Zr/Hf ratios of the ESZ (39–56) are obviously higher than those of the LSZ (21–40) (Fig. 11c). Hence, the above

features reflect that the LSZ crystallized from a later and more evolved magma. The lowest Zr/Hf value of the LSZ is less

than 25, which indicates that the Zhoujiapuzi granite finally evolved into a highly fractionated granite due to crystallization210
differentiation. It is consistent that all the samples of the Zhoujiapuzi granite are characterized by relatively high SiO2 and

total alkali contents, low TFe2O3, MgO and CaO contents, and enrichment of Rb, Th and U (Xiao et al., 2014).

The absence of enclaves and disequilibrium textures in the Zhoujiapuzi granite and uniform εHf(t) values of the ESZ

and LSZ do not support magma mixing and wall-rock assimilation. Consequently, the abrupt change between the

crystallization environment of the ESZ and LSZ is not due to the magma mixing or contamination during magma evolution.215
Therefore, we propose that the ESZ was formed in a relatively deep magma chamber, which had low oxygen fugacity, low

Zr saturation and high temperature. The low Th, U and REE, and widely-spaced oscillatory zoning patterns indicate a low

growth rate of zircon (Hoskin and Schaltegger, 2003; Wang et al., 2011). In contrast, the LSZ was formed during the ascent

and/or at the emplacement location of the magma. At this stage, the oxygen fugacity significantly increased, the temperature

decreased, and Zr saturation increased due to the crystallization differentiation. In this environment, the crystallization rate220
of zircon significantly increased, forming the zircons with a higher content of Th, U and REE elements, low CL emission

and narrowly-spaced oscillatory zoning patterns. As shown in the U-206Pb/238U age diagram (Fig. 11d), the 206Pb/238U ages of

the ESZ are relatively scattered, while the 206Pb/238U age of the LSZ are mainly concentrated around 157–158 Ma. This

https://doi.org/10.5194/se-2021-129
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.



8

phenomenon indicates that the cooling rate of magma in the deeper magma chamber was relatively slow, thus the zircon

crystallized continuously over a relatively long period. The magma finally solidified in a relatively short period, so the zircon225
crystallized rapidly.

Zircon U-Pb dating is the most commonly used method in magmatic rock dating. A weighted mean age or upper

intercept age is usually obtained to represent the emplacement time of a magmatic rock. However, this study shows that

zircons in magmatic rocks record two different magmatic evolution stages: in the deeper magma chamber and in the ascent

passage or/and emplacement site. Previous studies, such as Wang et al. (2007), Zhao et al. (2014) and Chen et al. (2020),230
also show that zircons can crystallize continually or intermittently in a single phase of magmatism, showing several growth

zones of clearly different internal structure and distinct time difference. Some scholars even regard that the age difference of

different stages can be more than dozens of Ma (Wang et al., 2007). Therefore, if the zircon ages in the same magmatic rock

have a large range of variation, this could be caused by the zircons recording different stages in magmatic evolution, related

to different levels of magma within the crust and/or different temperature regimes. It is notable that the bulk petrology and235
geochemistry of the host pluton does not record and reveal this two-stage magmatic evolution, which can only be detected in

the zircon analysis.

6.2 Genetic type: I-type affinity

The samples of the Zhoujiapuzi granite have A/KNC < 1.1, relatively high Na2O (3.96–4.65 wt.%) and lack peraluminous

minerals (e.g. cordierite, andalusite, muscovite and garnet), which are clearly different from S-type granites (Chappell and240
White, 1992). With the rise of the degree of crystallization, P2O5 contents (generally>0.1 wt.%) increase in S-type granites,

accompanied by an increase/immutability in SiO2 (Wolf and London, 1994). However, the Zhoujiapuzi granite samples have

low P2O5 contents (0.02 – 0.08 wt.%), and decrease with increasing SiO2 (Fig. 12a), which is also inconsistent with the

characteristics of S-type granite (Chappell and White, 1992). Additionally, Rb has a negative correlation with Y (Fig. 12b),

which has been considered as an indicator of I-type granite rather than S-type granite (Jiang et al., 2018). Thus, the245
Zhoujiapuzi granite is not an S-type granite.

Although the samples of the Zhoujiapuzi granite have high 10000Ga / Al ratios of (2.74–3.13) akin to A-type granites,

the low Zr (113–242 ppm) and Zr+Nb+Ce+Y (152.0–382.6 ppm) contents are distinct from the diagnostic features of A-type

granites (Whalen et al., 1987). This observation is consistent with the Zhoujiapuzi granite lacking alkaline mafic minerals

(Zhang et al., 2017). Wu et al. (2017) suggested that a high formation temperature is one of the most important250
characteristics of A-type granite. Zircon saturation thermometry (TZrn) and Ti-in-zircon thermometer (TZr-Ti) are two methods

for estimating magma temperatures. As discussed before, TZr-Ti is negatively correlated with the U content, which indicates

that the crystallization temperature of zircon gradually decreases with magma. Hence, the initial magma temperature should

be greater than or equal to the highest Ti temperature (792 ℃). Zircon saturation thermometry was introduced by Watson

and Harrison (1983) and is suitable for non-peralkaline crustal source rocks. The calculated TZrn values for the Zhoujiapuzi255
granite are in the range of 803-870 °C. Because the Zhoujiapuzi granite contains abundant inherited zircons, the initial
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magma temperature should be lower than or equal to the lowest TZrn (803 ℃) (Miller et al., 2003). Therefore, the initial

magma temperature of the Zhoujiapuzi granite was at a range of 792–803 ℃, which is significantly lower than that of the

typically A-type granite (>900 ℃, Skjerlie and Johnston, 1992; Douce, 1997). Furthermore, the Zhoujiapuzi granite samples

show similar trends to the Late Jurassic granitoids in the Liaodong peninsula, which are typical I-type granites (Fig. 12).260
Therefore, we conclude that the Zhoujiapuzi granite is a highly fractionated I-type granite.

6.3 Petrogenesis of the high Sr/Y granite

The samples of the Zhoujiapuzi granite have high Sr/Y and (La/Yb)N ratios and low Y and Yb contents (Fig. 13a) consistent

with the geochemical signatures of modern adakites (Defant and Drummond, 1990). However, other geochemical parameters

of the Zhoujiapuzi granite, such as the high K2O / Na2O ratio (0.93 –1.22), low Al2O3 content (14.49 –15.02%, except one)265

and Sr content (in half of the samples lower than 400 ppm), are obviously different from typical adakites (K2O/Na2O≤0.42,

Al2O3≥ 15 %, Sr>400 ppm, Defant and Drummond., 1990; Drummond et al., 1996, Martin et al., 2005). A variety of

petrogenetic models have been proposed for the origin of high Sr/Y magmatic rocks, such as partial melting of subducting

oceanic crust (Model A, Defant and Drummond, 1990), delaminated lower continental crust (LCC) (Model B, Kay and Kay,

1993; Xu et al., 2002), differentiation of basaltic arc magma (Model C, Castillo et al., 1999), magma mixing between270
mantle-derived mafic and crust-derived silicic magmas (Model D, Ma et al., 2013), partial melting of thickened basaltic LCC

(Model E, Gao et al., 2004; Ou et al., 2017), or melting of a high Sr/Y (and La/Yb) source (Model F, Kamei et al., 2009; Ma

et al., 2015).

6.3.1 Model A: Partial melting of subducting oceanic crust

The partial melting of the young, hot and hydrated subducted oceanic slab in the garnet stability field is the classical275
formation model of adakite (high Sr/Y rock) (Defant and Drummond, 1990). Studies have shown that the rock with this

genetic model generally has the characteristics of high mantle components (such as MgO, CaO and Cr) because of the

involvement of mantle magma (Wang et al., 2018). However, this phenomenon was not seen in the Zhoujiapuzi granite. In

addition, the Zhoujiapuzi granite has high K2O/Na2O ratios (0.92–1.22, average 1.13), which is inconsistent with the slab-

derived adakites (K2O/Na2O= ~0.4, Martin et al., 2005). Moreover, the low εHf(t) values (-26.3 to -22.8) of the Zhoujiapuzi280
granite are also inconsistent with the magmas derived from the partial melting of oceanic crust, which generally have

depleted isotopic character (Zhan et al., 2020). In summary, the Zhoujiapuzi granite is difficult to explain by Model A.

6.3.2 Model B: Delaminated lower continental crust (LCC)

High-density, garnet-bearing mafic lower crust delaminating or foundering into the asthenosphere mantle and subsequent

interaction with mantle peridotite could produce high Sr/Y magmas (Kay and Kay 1993). Because the melt formed by partial285
melting of the delaminated lower crust would interact with mantle peridotite during magma ascent, the high Sr/Y magmas
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related to this petrogenetic model generally have high MgO (>1.5 %) and Mg# (>50) (Gao et al., 2004; Ou et al., 2017). The

MgO (0.10– 0.44) and Mg# (15– 26) values of Zhoujiapuzi granite are significantly lower than the above values. Due to the

high temperature of the asthenosphere (1200 ℃, Parsons and McKenzie, 1978; King et al., 2015), rocks formed by partial

melting of the delaminated lower crust should possess a high-temperature fingerprint. As mentioned before, the initial290
magma temperature of the Zhoujiapuzi granite was ~800 ℃, which is markedly lower than the temperature of the

asthenosphere. Therefore, the petrogenetic model of delaminated lower continental crust (Model B) is also inconsistent with

the Zhoujiapuzi granite.

6.3.3 Model C: Differentiation of basaltic arc magma

Low-pressure fractional crystallization (involving olivine + clinopyroxene + plagioclase + amphibole+ titanomagnetite) or295
high-pressure fractional crystallization (involving garnet) from basaltic magmas have been proposed as two ways to generate

adakitic characteristics (Castillo et al., 1999; Macpherson et al., 2006). As shown in the La/Sm versus La diagram (Fig. 14a),

increasing La content with constant La/Sm shows that fractional crystallization rather than partial melting is the main factor

controlling the composition of the Zhoujiapuzi granite. Hence, the samples of Zhoujiapuzi granite displayed variable Eu and

Sr contents, implying that the plagioclase is likely a fractional phase. Separation of titanomagnetite could explain the300
positive in TFe2O3 with increasing TiO2 content (Fig. 14b), consistent with the occurrences of magnetite in some studied

rocks. This possible mineral assemblage of fractional crystallization is also reflected by the chemical variations in the Sr/Y-Y

diagram (Fig. 13b).

However, fractionation of olivine and clinopyroxene is inconsistent with the depletion of HREE (e.g., Yb) given their

low distribution coefficients for these elements in mafic-intermediate magmas (Dunn and Sen, 1994). Moreover, the305
crystallization of amphibole would result in a negative correlation between the (Dy/Yb)N and (La/Yb)N (Davidson et al.,

2007), which is not seen in the Zhoujiapuzi granite (Fig. 14c). No positive correlations between Dy/Yb and Sr/Y ratios and

SiO2 contents (Figure 14d, e) suggest that fractional crystallization of garnet was not a significant process for the

Zhoujiapuzi granite (Macpherson et al., 2006). Therefore, both the low-pressure and high-pressure crystallization

fractionation of basaltic melts could be ruled out for the negligible fractional crystallization of olivine, clinopyroxene, garnet310
and amphibole.

In addition, crystal fractionation of basaltic melts can only form minor volumes of granitic melts, the ratio of the two is

about 9:1 (Zeng et al., 2016). However, in the Liaodong Peninsula, most of the Middle-Late Jurassic magmatic rocks are

acidic, mafic-ultramafic rocks are only reported in the Huaziyu area (lamprophyre dikes, Jiang et al., 2005), and cover a

much smaller area than the Zhoujiapuzi granite. For these reasons, it is highly improbable that Zhoujiapuzi granite was315
derived by differentiation of basaltic magma (Model C).

6.3.4 Model D: Magma mixing between mantle-derived mafic and crust-derived silicic magmas

The Zhoujiapuzi granite has high K2O/Na2O ratio (>1) and A/CNK value (>1), together with the absence of mafic
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microgranular enclaves (MMEs), felsic xenocrysts and melting texture of plagioclase, implying that the mantle-derived

magma is unlikely to have played an important role in the genesis of the Zhoujiapuzi granite (Castro et al., 1991). In addition,320
the Zhoujiapuzi granite is characterized by the development of biotite, but lacks amphibole and pyroxene. These features,

coupled with the high A/CNK value, are consistent with an origin as a crust-derived granitoid, but obviously different from

the granitoids formed by crust-mantle-derived magma mixing (Barbarin, 1990). Moreover, granites formed by magma

mixing generally have variations in εHf(t) values, high MgO, TFe2O3, CaO and Cr contents and low SiO2 content (Ma et al.,

2013; Wang et al., 2018). These features are obviously inconsistent with the Zhoujiapuzi granite in this study. Hence, magma325
mixing of mantle-derived and crust-derived magmas (Model D) is also unlikely to have produced the Zhoujiapuzi granite.

6.3.5 Model E: Partial melting of thickened basaltic LCC

Experimental studies have shown that the partial melt of basaltic LCC in the garnet stabilization zone (> 40 km, i.e. ~1.2

GPa) can produce magma with a high Sr/Y ratio (Rapp et al., 2003 and references therein). In these scenarios, high Sr/Y and

overall adakitic affinity are caused by leaving garnet as residual phases (e.g. Gao et al., 2004). Based on geochemical data330
for the Zhoujiapuzi granites, partial melting of thickened basaltic LCC is also unlikely to account for the high Sr/Y

Zhoujiapuzi granite (Model E). This conclusion is based on the following observations:

(1) This ratio of (Gd/Yb)N is the most important feature to judge whether garnet is involvement in magma genesis (Ma

et al., 2012). If the (Gd/Yb)N ratio of the source is similar to the average value of the LCC (1.71, Rudnick and Gao, 2003),

partial melting of these crustal materials controlled by garnet at high pressure can produce melt with (Gd/Yb)N of 5.8 (Huang335
and He, 2010). In contrast, the (Gd/Yb)N values (1.22–5.06, average 2.69) of the Zhoujiapuzi granite are relatively low. (2)

Melt in equilibrium with a garnet-rich residue will result in positive correlations between the Dy/Yb and Sr/Y ratios and SiO2

contents. However, these phenomena were not seen in the Zhoujiapuzi granite (Fig.14 d, e). (3) Studies of lower-crustal

xenoliths show that garnet may not be a common mineral in the lower crust of the NCC (Huang et al., 2004; Ma et al., 2012).

(4) As shown in the discrimination diagrams of granite sources (Fig. 14f, g), all samples fall in the range of metagreywacke-340
derived melts. Therefore, the Zhoujiapuzi granite was considered to have been derived from crustal anatexis of

metagraywacke (or intermediate-acid igneous rock with similar mineral composition), rather than basaltic lower crust.

6.3.6 Model F: Melting of a high Sr/Y (and La/Yb) source

Studies have shown that when a source rock has a high Sr/Y ratio, the high Sr/Y signature of the derived magma can inherit

from their source, regardless of pressure (Kamei et al., 2009; Moyen, 2009; Ma et al., 2015). The Zhoujiapuzi granite has345
similar K2O/Na2O ratios and Al2O3 contents to the Tsutsugatake intrusion (Fig. 14h), which is explained by partial melting of

arc-type tonalite or adakitic granodiorite (Kamei et al., 2009). We suggest that partial melting of high Sr/Y Liaoji granite was

most probably the origin of the high Sr/Y Zhoujiapuzi granite, as discussed below (Model F).

Among the inherited zircons from Zhoujiapuzi granite, the 207Pb / 206Pb ages of all the spots are between 2132 and 2200

Ma, except one, and yield a Concordia upper intercept age of 2167 Ma. Both assimilation of country-rocks and incomplete350
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melting of source rocks can explain the genesis of inherited zircon in granite. Due to the similar TDM2 of syn-magmatic

zircons (ESZ and LSZ) and the ~2.17 Ga inherited zircon, the ~2.17 Ga inherited zircons most likely come from the source

of the Zhoujiapuzi granite. In the study area, meta-sedimentary rocks and meta-volcanic rocks of the South Liaohe Group,

~2.17 Ga mafic rocks, as well as the Liaoji granites, have ~2.17 Ga zircon. In spite of an age peak of ~2.17 Ga in detrital

zircon age spectra of the metasediments from the South Liaohe Group, melting of a sediment-dominated source is unlikely to355
have occurred, as it would have also introduced other age peaks such as ~2.03 Ga and ~2.09 Ga (Li et al., 2015). In addition,

given the I-type characteristics of the Zhoujipuzi granite, derivation from an igneous precursor is more plausible rather than

a metasedimentary origin (Chappell and White, 1992). Therefore, these ~2.17 Ga zircon from Zhoujiapuzi granite is unlikely

to come from the South Liaohe Group. As shown in the host rock discrimination diagrams (Fig. 15, introduced by Belousova

et al., 2002), all the ~2.17 Ga inherited zircons from Zhoujiapuzi granite fall into the granitoid area (Fig. 15), precluding that360
these ~2.17 Ga zircon come from the ~2.17 Ga mafic rocks. In addition, the ~2.17 Ga inherited zircons from Zhoujiapuzi

granite and the zircons from the Liaoji granites lie in a similar area in the εHf(t)-age (Ma) diagram (Fig. 9). Hence, the ~2.17

Ga inherited zircon most likely come from the Liaoji granites.

Some of the Liaoji granites, such as the Muniuhe granite (comprising granodiorite and syenogranite with no distinct

boundary between the two), have adakitic signatures, and similar REE and trace element patterns as the Zhoujiapuzi granite365
(Fig. 4). Based on a model of modal batch melting (Shaw, 1970) using the experiments of Conrad et al. (1988), the high Sr/Y

characteristic of the Zhoujiapuzi granite can be explained by partial melting of Muniuhe granitic pluton leaving amphibole as

the main residue (Fig. 13b). In this model, we choose the XY-005 sample to approximately represent a primitive melt

composition because the fractional crystallization of plagioclase decreased of Sr content and Sr/Y ratio (Fig. 13a). To find

the best matching experimental melts, we have compared the major elements of the XY-005 sample with that of370
experimental melts, coupled with the initial magma temperature of ~800 ℃ and the characteristics of no garnet residue

discussed above. Results are shown in Fig. 13b. The Sr and Y compositions of the starting material used in these experiments

resemble those of the average composition of the Muniuhe granitic pluton (Sr=475 ppm, Y=9.77 ppm), if the residue

contains a large volume of amphibole (>90 %). However, if more plagioclase is retained in the residue (e.g. 18.3 %), a

source region with a higher Sr content is required. Therefore, a similar high Sr/Y Liaoji granite to the Muniuhe granitic375
pluton can produce the high Sr/Y signatures of the Zhoujiapuzi granite.

A large number of Yanshanian adakites (or high Sr/Y rocks) are developed in the NCC, which are generally considered

to be derived from the thickened basaltic LCC (e.g. Gao et al., 2004; Wu et al., 2005; Ma et al., 2013). Zhang et al. (2001,

2003) suggested that these so-called “C-type adakites” indicated a large-scale crustal thickening event, so it was speculated

that a Mesozoic plateau once existed in the eastern China. However, according to the studies on the Triassic and Jurassic380
adakitic rocks near the Pingquan area, the northern part of the NCC, Ma et al. (2012, 2015) suggested that the adakitic

signatures of these rocks are inherited from their source rocks. Similar results have been obtained by studying the late

Jurassic Zhoujiapuzi granite in the Liaodong Peninsula in this study. Therefore, we suggest that melting of a high Sr/Y (and

La/Yb) source is an important process for the generation of Yanshanian high Sr/Y rocks in the NCC. This kind of high Sr/Y
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granite does not need to be formed in the garnet stability field.385

6.4 Tectonic implications

A large number of Early Jurassic arc-like igneous rocks occur in the northeast part of NCC- Korean Peninsula-Hida belt,

which belong to the middle-high K calc-alkaline series and are characterized by the enrichment in LILE and depletions in

HFSE (Wu et al., 2007; Tang et al., 2018 and references therein). In addition, the Early Jurassic accretionary complexes in

the eastern margin of the Eurasian continent and the Japan islands, such as the Heilongjiang complex, the Khabarovsk390
complex and the Mino-Tamba complex, are considered to be related to subduction (Wu et al., 2007; Tang et al., 2018 and

references therein). It is generally accepted that the Paleo-Pacific slab subducted westwards in the Early Jurassic (Tang et al.,

2018; Zhu and Xu, 2018).

In the middle-late Jurassic, I-type granites are dominant in the Liaodong Peninsula, such as the Zhoujiapuzi granite (this

study), Heigou pluton, Gaoliduntai pluton (Wu et al., 2005a), Waling granite (Yang et al., 2015b) and Sanguliu granite395
(Yang et al., 2018). There are not A-type granites, and mantle derived magmatism is extremely rare. These granites were

formed by partial melting of crustal materials without obvious contribution of mantle derived magma (Wu et al., 2005a;

Yang et al., 2015b, 2018; Xue et al., 2020). In addition, WNW-ESE compression during 157-143 Ma was widespread in the

Liaodong Peninsula (Yang et al., 2004; Zhang et al., 2020). It not only mylonitized the granite plutons in middle-lower crust

levels, but also intensely deformed the thick sedimentary cover in the upper crust (Qiu et al., 2018; Ren et al., 2020). Low400
angle subduction will lead to the separation of lithospheric mantle and asthenospheric mantle, which will lead to tectonic

compression, a cold orogeny and a lack of mafic magmatism (Zheng et al., 2018). Hence, the Late Jurassic magmatism in the

Liaodong peninsula is most likely to be related to the thinning of the NCC mantle lithosphere, itself triggered by the

subduction of the Paleo-Pacific plate (Zheng et al., 2018). A likely setting is a mature continental arc, with crust previously

thickened by compressional tectonics, related to both the oceanic subduction and the earlier Mesozoic collisions at the north405
and south margins of the NCC. There is a potential resemblance to the modern arc of the Central Andes (Allmendinger et al.,

1997), where crustal thickening and plateau growth has developed over the Cenozoic (Scott et al., 2018), and melting of

older basement has taken place during subduction of the Nazca plate (Miller and Harris, 1989).

7 Conclusion

(1) LA-ICP-MS zircon U-Pb dating indicates that the Zhoujiapuzi granite in the Liaodong Peninsula formed during the410
Late Jurassic (158–162 Ma).

(2) Zircon growth in Zhoujiapuzi granite can be divided into two distinct stages, the ESZ and LSZ. The ESZ was

formed in a deeper, hotter, magma chamber, which had low oxygen fugacity and high temperature. Whereas, the LSZ

formed from later, more evolved, magma. Oxygen fugacity significantly increased and the temperature decreased at this
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stage. The Zhoujiapuzi granite is a case study of multistage generation and emplacement of magma, revealed by zircons,415
where no signals are discernible in the bulk petrology or geochemistry.

(3) The I-type Zhoujiapuzi granite originated from partial melting of the ~2.17 Ga Liaoji granites. The high Sr/Y

compositions are inherited from their source rocks, rather than being a direct indication of deep crustal melting, or any other

common mechanism for generating adakitic signatures.

(4) The Late Jurassic tectonic setting of the Liaodong Peninsula and the eastern NCC resembled the modern orogenic420
plateau of the Central Andes, where silicic magmatism may occur by partial melting of older continental crust in a

compressional environment related to the subduction of the Paleo-Pacific plate.
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695
Figure 1: (a) Simplified geological map of Northeast China (Modified from Li et al., 2016); (b) distribution of Mesozoic intrusions

in the Liaodong Peninsula (Modified from Wu et al., 2005a); (c) geological map of the Zhoujiapuzi granite.
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Figure 2: Outcrop photograph (a) and corresponding micrographs (b, c, d- perpendicular polarized light). Q quartz; Kfs feldspar;

Pl plagioclase; Pth perthite; Bt biotite700
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Figure 3: (a) TAS diagram (after Frost et al.，2001); (b)A/CNK-A/NK diagram (after Maniar and Piccoli, 1989)

Figure 4: Chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns of the Zhoujiapuzi granite705
(chondrite and primitive mantle values are from Sun and McDonough, 1989).
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Figure 5: CL images of zircons. Circles denote U-Pb analysis spot. Numbers in the circles are the spot numbers. Numbers near the

analytical spots are the U–Pb ages (Ma).710
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Figure 6: Chondrite-normalized REE patterns of zircon (chondrite values are from Sun and McDonough, 1989).
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Figure 7: Concordia diagrams for zircon LA-ICP-MS U-Pb analyses.

715

https://doi.org/10.5194/se-2021-129
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.



29

Figure 8: Zircon relative probability diagram

Figure 9: Zircon εHf(t)-age (Ma) diagram for samples in this study and published data for the region.720
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Fig. 10: Discrimination plots for magmatic and hydrothermal zircon (Hoskin, 2005).
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Figure 11: (a) zircon T (℃)-U (ppm) diagram; (b) zircon Ce(IV)/Ce (III)-U (ppm) diagram; (c) zircon Zr/Hf-U (ppm) diagram

(dividing line from Breiter et al., 2014); (d) age (Ma)-U (ppm) diagram.

Figure 12: Chemical variation diagrams for the Zhoujiapuzi granite.730
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Figure 13: Plots of (a) Sr/Y vs. Y, (b) LaN/YbN vs. YbN (after Defant and Drummond, 1990)
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Figure 14: Plots of (a)Zr/Hf vs. Zr, (b) TiO2 vs. TFe2O3, ( c) DyN/YbN vs. LaN/YbN; (d) Dy/Yb vs. SiO2; (e) Sr/Y vs. SiO2; (f) molar

Al2O3/(MgO+FeOT) vs. molar CaO/(MgO+FeOT); (g) (Na2O+K2O)/(FeOT+MgO+TiO2) vs. Na2O+K2O+FeOT+MgO+TiO2; (h)

K2O/Na2O vs. Al2O3 diagrams(a after Treuil and Joron, 1975; f after Altherr et al., 2000; g after Patiño Douce, 1999; h after Kamei

et al., 2009)
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Figure 15: The fields of zircon compositions used as discriminants for different rock types (after Belousova et al., 2002).

‘Granitoids’ include: 1 aplites and leucogranites; 2 granites; 3 granodiorites and tonalities
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