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Abstract. We study the time series of vertical ground displacements from continuous GNSS stations located in the European 7 

Alps. Our goal is to improve the accuracy and precision of vertical ground velocities and spatial gradients across an actively 8 

deforming orogen, investigating the spatial and temporal features of the displacements caused by non-tectonic geophysical 9 

processes. We apply a multivariate statistics-based blind source separation algorithm to both GNSS displacement time series 10 

and to ground displacements modeled from atmospheric and hydrological loading, as obtained from global reanalysis models. 11 

This allows us to show that the retrieved geodetic vertical deformation signals are influenced by environmental-related 12 

processes and to identify their spatial patterns. Atmospheric loading is the most important one, reaching amplitudes larger than 13 

2 cm. Besides atmospheric loading, seasonal displacements with amplitudes of about 1 cm are associated with temperature-14 

related processes and with hydrological loading, which both cause peculiar spatial features of GNSS ground displacements. 15 

For example, temperature-related seasonal displacements show different behavior at sites in the plains and in the mountains. 16 

Furthermore, while the displacements caused by atmospheric and hydrological loading are apparently spatially uniform, our 17 

statistical analysis shows the presence of NS and EW displacement gradients. 18 

We filter out signals associated with non-tectonic deformation from the GNSS time series to study their impact on both the 19 

estimated noise and linear rates in the vertical direction. While the impact on rates appears rather limited, given also the long-20 

time span of the time-series considered in this work, the uncertainties estimated from filtered time-series assuming a power 21 

law + white noise model are significantly reduced, with an important increase in white noise contributions to the total noise 22 

budget. Finally, we present the filtered velocity field and show how vertical ground velocity spatial gradients are positively 23 

correlated with topographic features of the Alps.   24 

 25 

Summary We study time varying vertical deformation signals in the European Alps by analyzing GNSS position time series. 26 

We associate the deformation signals to geophysical forcing processes, finding that atmospheric and hydrological loading are 27 

by far the most important cause of seasonal displacements, together with temperature-related processes. Recognizing and 28 

filtering out non-tectonic signals allows us to improve the accuracy and precision of the vertical velocities. 29 
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1 Introduction 30 

The increasing availability of GNSS observations, both from geophysical and non-geophysical networks, pushed forward the 31 

use of ground displacement measurements to study active geophysical processes on land, ice and on atmosphere, with 32 

applications in a broad range of Earth science disciplines (e.g., Blewitt et al., 2018). Studies on active mountain building, in 33 

particular, can now benefit from the use of GNSS vertical ground motion rates to get new insights into the contribution of the 34 

different processes at work in the formation and evolution of mountain reliefs (e.g., Faccenna et al., 2014a; Sternai et al., 2019, 35 

Dal Zilio et al. 2021, Ching et al. 2011). Proposed mechanisms of rock uplift rate include isostatic adjustment to deglaciation, 36 

tectonic shortening, isostatic response to erosion and sediment redistribution, isostatic response to lithospheric structural 37 

changes and dynamic adjustment due to sub-lithospheric mantle flow (e.g., Faccenna et al., 2014b). All these processes sum-38 

up to contribute to the actual vertical ground motion rates estimated from GNSS displacement time-series, and constraining 39 

their relative contribution to mountain dynamics is challenging, because of the different spatial and temporal scales involved 40 

and the short observational time period with respect to the characteristic timescales of the mentioned processes.  41 

The availability of long-lasting (i.e., >8 yrs) GNSS position time-series minimizes the impact of transient and seasonal signals 42 

in the vertical rate estimates (Masson et al., 2019). However, it is worth considering that GNSS measurements record ground 43 

displacements due to a variety of multiscale processes (from continental-scale geodynamics and loading to local-scale 44 

hydrology and tectonics), resulting in the presence of several deformation signals superimposed on the main linear trend, which 45 

is commonly associated with geodynamic processes at the scale of current, decadal, geodetic observation window.  46 

Excluding tectonic and volcanological processes, and once removed the effect of tides associated with solid earth, pole and 47 

ocean, variations of atmospheric pressure loading and fluid redistribution in the Earth crust are the main cause of vertical 48 

ground displacement recorded by GNSS stations worldwide (Liu et al. 2015). Atmospheric pressure and mass changes cause 49 

time-variable displacement because of the elastic response of the Earth surface to these load variations, with vertical 50 

displacements usually significantly larger than the horizontal ones, which appear as spatially-correlated signals with a 51 

dominant one year period (e.g., Fu and Freymueller, 2012; Fu et al., 2012). Seasonal displacements are also caused by non-52 

tidal sea surface fluctuations. This process is of particular relevance in areas near the oceans, while in the inlands its effect is 53 

significantly reduced (van Dam et al., 2012).  54 

The presence of spatially-correlated signals in GNSS time-series can result from either the aforementioned large scale 55 

processes, generally described as common mode signals (CMS), or processing errors, generally described as common mode 56 

error (CME), like the mismodeling of displacements caused by solid Earth, ocean and atmospheric, and satellite orbits 57 

mismodeling, which induces draconitic signals (Dong et al., 2006). 58 

In the literature, the distinction between CMS and CME is not always clear, and spatially correlated signals are often removed 59 

from the time series as CME without attempts of interpretation (e.g., He et al., 2017; Hou et al., 2019; Serpelloni et al., 2013; 60 

Kreemer and Blewitt, 2021). Depending on the pursued goal, this approach can be fair. For example, if we were interested in 61 

the study of long-term linear deformation, we might consider CMS as CME, but it is worth noting that the “CME” definition 62 
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for signals clearly associated with geophysical processes might be misleading. The removal of the CME/CMS in GNSS 63 

position time-series, which is also known as time-series filtering, can help improve the precisions of the estimated linear 64 

velocities. Moreover, a better understanding of CMS/CME origin can also provide new information on other deformation 65 

mechanisms.  66 

Here we use the European Alps as a natural laboratory to investigate the spatial and temporal contribution of different 67 

geophysical processes, which we identify through a variational Bayesian Independent Component Analysis (vbICA), on the 68 

vertical ground displacements recorded by a dense and spatially uniform network of continuous GNSS stations in the 2010-69 

2020 time-span. The Alps represent the highest and most extensive mountain range of Europe (see Fig. 1). We focus on the 70 

vertical component, which is nominally less accurate and precise than the horizontal ones, because this mountain belt is 71 

characterized by significant ground uplift and spatial vertical velocity gradients that are correlated with topography (Serpelloni 72 

et al., 2013). The present-day convergence between Adria and the Eurasian plate is largely accommodated in the Eastern 73 

Southern Alps (e.g., Serpelloni et al., 2016) where the Adriatic lithosphere underthrusts the Alpine mountain belt, and here 74 

part of the observed vertical uplift is associated with active tectonics (Anderlini et al., 2020). Conversely, in other Alpine 75 

domains, positive vertical velocities most likely derive from a complex interplay of deep-seated geodynamic and isostatic 76 

processes (e.g., Sternai et al., 2019). In the Alpine framework, more accurate and precise measurements of geodetic vertical 77 

ground motion rates can provide new constraints on the dynamics contributing to the ongoing vertical rates and their spatial 78 

variations, with implications for the study of mountain building processes, response to deglaciation and active tectonics. 79 

The structure of this work is as follows: in Section 2 we present methods commonly used for extracting spatially-correlated 80 

signals in GNSS time series; in Section 3 we describe the data and methods used in this work; in Section 4 we characterize the 81 

spatio-temporal behavior of three different independent datasets (GNSS vertical displacements, atmospheric and hydrological 82 

loading models displacement time series) applying on each of them a vbICA decomposition and studying how they are related. 83 

This allows us to spatially and temporally characterize the signals contributing to the measured GNSS displacement time series 84 

and associate them with geophysical processes. We also estimate the vertical velocities and the noise features of the GNSS 85 

stations after removing the non-tectonic signals identified with the vbICA analysis. In Section 5 we compare the results of 86 

different filtering methods and use the results of our time-series analyses in order to evaluate the effects of the signal filtering 87 

on the accuracies and precisions of the vertical velocities of the study region, which is of particular importance to better 88 

characterize the processes generating the Alps uplift. 89 

 90 
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 91 

Figure 1: Map of the study area showing the location of GNSS stations. Coloured circles show GNSS stations considered in the time-92 

series analysis, with colours representing the length of the time-interval for which data are available at each station (0-25 years). 93 

The grey circles show GNSS stations not included in the time-series analysis to reduce contamination of deformation processes not 94 

associated with the Alps. Dark grey lines represent mapped faults from the Geodynamic Map of the Mediterranean. The dashed box 95 

includes GNSS stations affected by anthropogenic deformation signals (Palano et al., 2020). 96 

2 Methods for the spatially-correlated signals extraction in GNSS time series 97 

Two widely used techniques for extracting CMS from a GNSS network are the Stacking Filtering Method (SFM, Wdowinski 98 

et al., 1997) and the Weighted Stacking Filtering Method (WSFM, Nikolaidis, 2002), which differs from the first because of 99 

a weighting factor based on the uncertainty associated with the GNSS data at each epoch.  100 

Examples of time series filtering with the WSFM are provided by Ghasemi Khalkhali et al. (2021) in Northwest Iran, Jiang et 101 

al. (2018) in California and by Zhang et al. (2020) in China. The networks of the aforementioned studies span less than 1000 102 

km. However, when considering networks covering larger areas, the assumption that the CMS has uniform spatial distribution 103 

throughout the network is not valid (Dong et al., 2006; Tian and Shen, 2016; Ming et al., 2017), and the stacking methods 104 

become imprecise. 105 

To take into account spatial heterogeneities, Tian and Shen (2016) propose an alternative stacking approach: the Correlation-106 

Weighted Spatial Filtering (CWSF) method. Unlike the SFM, CWSF includes the spatial variability of CMS through a 107 
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weighting factor, which depends on the correlation coefficient between the residual position time series and on the distance 108 

between the stations. Zhu et al. (2017) use CWSF to estimate the CMS on the Crustal Movement Observation Network of 109 

China and discuss the effects of the thermal expansion and environmental loading, which includes atmospheric pressure 110 

loading, non-tidal ocean loading and continental water storage. They find that while vertical CMS are mainly associated with 111 

environmental loading, thermal expansion plays a minor role.  112 

A filtering method similar to CWSF, called CMC Imaging, is developed and used by Kreemer and Blewitt (2021) in western 113 

Europe to extract common mode components that are as local as possible. The main difference between CWSF and CMC 114 

Imaging is that the former uses as a weighting factor both the distance and the correlation coefficient among the stations, while 115 

the latter only the correlation coefficient, showing that it is representative of the distance among the stations.  While the authors 116 

do not explore the nature of the extracted CMS, they show that the CMC Imaging method is very effective in filtering out 117 

CMS from GNSS time series, increasing the accuracy and precision of the velocity estimation. In particular, they show that 118 

the minimum length of a time series needed to retrieve the long term velocity, within a given confidence limit, is almost halved 119 

after the filtering. 120 

Multivariate statistical techniques like Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are 121 

filtering techniques based on a completely different approach than stacking. Since they allow to take into account for the spatial 122 

variability of CMS (Dong et al. 2006), ICA and PCA are used to characterize and interpret them. Multivariate statistics 123 

techniques are also applied to study spatially-correlated seasonal displacements, which have been the target of several 124 

researches in the last few years. 125 

In California, Tiampo et al. (2004) associate a seasonal signal, extracted through the Karhunen-Loeve expansion technique, 126 

with the combined effect of groundwater and pressure loading. In Taiwan, Kumar et al. (2020) find a close relationship between 127 

atmospheric loading and CMS, extracted using a PCA; while Liu et al. (2017) apply a ICA to show that in the Nepal Himalaya 128 

region annual vertical displacements are associated with atmospheric and hydrological loading.  129 

Yuan et al. (2018) use three Principal Components (PCs) for CMS filtering over China, because of the presence of spatial 130 

gradients related to the large extension of the study region. In that work, the authors show that environmental loading is one 131 

of the sources of the CMS and that vertical GNSS velocities uncertainties are significatively reduced (54%) after CMS filtering. 132 

Pan et al. (2019) find that the precision of the GNSS velocities, especially in the vertical component, increases after removing 133 

spatially-correlated signals related to draconitic errors and to climate oscillation (La Niña - El Niño). The spatially-correlated 134 

signals are identified by applying a PCA to the GNSS time series, where the linear trend and the seasonal signals are removed. 135 

Pan’s work is a good example of how vertical displacements are more affected by climate-related processes and data processing 136 

errors than the horizontal ones, demonstrating that the vertical component is particularly worth analyzing with care.  137 

The application of the ICA also proved effective for time series filtering, as shown by Hou et al. (2019): they identify spatially-138 

correlated signals and even though they do not provide an interpretation, classifying them as CME, they show that the precision 139 

of the time series significantly increases after the filtering by ICA. Liu et al. (2015) use both PCA and FastICA algorithms 140 
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(Hyvärinen and Oja, 1997) to extract and interpret CMS as caused by atmospheric and soil moisture loading in the UK and the 141 

Sichuan-Yunnan region in China. 142 

Other examples of the influence of the non-tectonic processes on vertical velocity estimation are provided by Riddell et al. 143 

(2020), who study the vertical velocities of the GNSS stations in Australia to estimate the contribution of the glacial isostatic 144 

adjustment. One of the results of Riddel’s work is the reduction of the vertical velocity uncertainty, achieved by first subtracting 145 

the displacements associated with atmospheric, hydrological and non-tidal ocean loading from the GNSS time series, and then 146 

filtering the residuals by applying both PCA and ICA.  147 

The vbICA is a multivariate statistics-based blind source separation algorithm (Choudrey, 2002) implemented by Gualandi et 148 

al. (2016) for solving the problem of blind source separation of deformation signals in GNSS position-times series and has 149 

been successfully used to extract tectonic and hydrological transient deformation signals in (e.g., Gualandi et al., 2017a; 150 

Gualandi et al., 2017b; Serpelloni et al., 2018). Larochelle et al. (2018) applied vbICA to study the relationship between GNSS 151 

and Gravity Recovery and Climate Experiment (GRACE)-derived displacements in Nepal Himalaya and Arabian Peninsula, 152 

with the goal of extracting seasonal signals and identifying the processes that generate them. Serpelloni et al. (2018) and Pintori 153 

et al. (2021) use vbICA to characterize hydrological deformation signals associated with the hydrological cycle at a spatial 154 

scale not resolvable by GRACE observations, separating ground water storage signals from other surface mass loading signals; 155 

while Silverii et al. (2021) perform a vbICA decomposition on GNSS time series in the Long Valley Caldera region (California, 156 

USA) to separate volcanic-related signals from other deformation processes, in particular the one associated with hydrology. 157 

This method is also recently applied to InSAR data (Gualandi and Liu, 2021) to estimate the displacement caused by sediments’ 158 

compaction in San Joaquin Valley (California) and to separate a seasonal signal from the tectonic loading in the Central San 159 

Andreas Fault zone. 160 

3 Data and Methods 161 

3.1 GNSS dataset and time-series analysis 162 

Over the European plate, in particular, GNSS networks managed by national and regional agencies, provide a rather uniform 163 

spatial coverage (e.g., https://epnd.sgo-penc.hu/ and https://gnss-epos.eu/). Figure 1 shows the distribution of continuous 164 

GNSS stations operating across the great Alpine area where, excluding Switzerland for which raw observations are not 165 

accessible, GNSS stations cover, rather uniformly, both the mountain range and the European and Adriatic forelands. We 166 

analyze the raw GPS observations using the GAMIT/GLOBK (Ves. 10.71) software (Herring et al, 2018), following the 167 

standard procedures of the repro2 IGS reprocessing scheme (http://acc.igs.org/reprocess2.html). This is part of a large 168 

processing effort, including >4000 stations in the Euro-Mediterranean and African region, where sub-networks, made by <50 169 

stations, dynamically and optimally selected based on daily data availability, are processed independently with GAMIT and 170 

later tied together using common, sub-net, tie sites and IGb14 core-stations, using the GLOBK software. The details of the 171 

processing are given in the Supplementary Information S1. The result of our analysis is a set of ground displacement time-172 
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series, realized in the IGb14 reference frame (ftp://igs-rf.ign.fr/pub/IGb14). The resulting position time-series (hereinafter 173 

IGb14-time series) have been then analyzed in order to estimate, and correct, instrumental offsets due to changes in the station's 174 

equipment setup, as extracted from sitelog or RINEX file headers.  175 

We consider the vertical displacement time-series of the stations between longitude 0°-21° and latitude 42°-50°N (see coloured 176 

circles in Fig. 1) in the 2010-2020 time-span, excluding the sites in the northern Adriatic coast, known to be affected by 177 

anthropogenic deformation signals (dashed box in Fig. 1) due to gas extraction (Palano et al., 2020) and the stations located in 178 

the northern and central Apennines, where other tectonic and geodynamic processes are going on. We focus on the last decade, 179 

in order to have the most uniform set of continuous measurements possible in, at least, a 10 years time-span. We acknowledge 180 

that some of the stations shown in Fig. 1 have much longer time-series, but this time-interval maximizes the number of 181 

simultaneous observations at many stations.  182 

The IGb14 vertical displacement time-series are analyzed with the blind source separation algorithm based on vbICA 183 

(Choudrey and Roberts, 2003; Gualandi et al., 2016). This technique falls under the umbrella of the so-called unsupervised 184 

learning approaches, and it aims at finding statistically independent patterns that can be linearly combined to reconstruct the 185 

original dataset. Differently from other commonly used ICA approaches, like for example FastICA (Hyvarinen and Oja, 1999), 186 

the adopted vbICA is a modeling approach that uses a mix of Gaussians to reproduce the probability density functions (PDFs) 187 

of the underlying sources. The variational Bayesian approach introduces an approximating PDF for the posterior parameters 188 

of the model, and the cost function to be maximized is the Negative Free Energy of the model, which can be explicitly 189 

calculated once a specific form for the approximating posterior PDF is chosen. This framework is particularly advantageous 190 

because it allows for more flexibility in the description of the sources’ PDF, giving the chance to model multimodal 191 

distributions and to take into account missing data in the input time series. 192 

The input time-series contains a secular motion, roughly representing the vertical rate in the IGb14 reference frame, which is 193 

superimposed by a variety of signals, of different temporal and spatial signatures. The first step of our analysis is to estimate 194 

a linear component to represent the secular motion and remove it from the time series. This is required by the fact that the 195 

vbICA is more effective in separating the sources when the temporal correlation in the dataset is low. Here,  rather than using 196 

a classic trajectory model (e.g., Bevis and Brown, 2014) to model and detrend the original time-series, in order to avoid biases 197 

in the estimates of station velocities due to the short length of the time series and to the possible presence of strong nonlinear 198 

signals, we take this step in a multivariate sense as in Pintori et al. 2021. We perform a first ICA decomposition considering 8 199 

components (or ICs). The number of components is determined by applying an F-test to establish if a more complicated model 200 

is supported by the data at a 0.05 significance level (Kositsky and Avouac, 2010). The results of this analysis are reported in 201 

Fig. S1, and show that one component, nominally IC2, contains a linear trend, with some cross-talk with a seasonal (annual) 202 

signal, as shown in Fig. 2.  203 

Before discussing the vbICA results, we briefly explain how to interpret the temporal evolution and the spatial distribution of 204 

the ICs, so that it is possible to retrieve the displacements associated with them. The color of each GNSS site in Fig. 2 represents 205 

the IC2 spatial response (U2), which indicates the maximum displacement associated with the IC2, while the temporal function 206 

https://sciwheel.com/work/citation?ids=846099&pre=&suf=&sa=0
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V2 is normalized between 0 and 1. The displacement associated with IC2 between two epochs (e.g. t1 and t2, with t2>t1) at the 207 

station n is computed as V1(t2)*U1n-V1(t1)*U1n(t1), where V1(t2) is the value associated with the temporal evolution of the IC 208 

at the epoch t2. U1n depends on the site, but not on the epoch; its unit of measurement is mm, while V has no units of 209 

measurement. As a result, V1*U1n is in mm. It follows that if U1n is positive, as we observe for each station, and V1 is 210 

increasing (V1(t2)>V1(t1)), the stations move upward during the t2-t1 time interval. On the other hand, if V1(t2)<V1(t1) the 211 

stations move downward during t2-t1. As regards Fig. 2, assuming t1=2010.0 and t2=2020.0, the displacements associated with 212 

IC2 are ~30 mm upward at the “red” GNSS stations, ~30 mm downward at the “blue” GNSS stations and ~0 mm at the white 213 

ones.  214 
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 215 

Figure 2: Temporal evolution and spatial response of the IC2 of the GNSS decomposition. Time series have been corrected only for 216 

instrumental offsets. 217 
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 218 

We fit a linear trend to the temporal evolution of IC2 (V2) using the function 219 

 220 

𝑉2(𝑡) = 𝑞 + 𝑚 ∙ 𝑡 + 𝐴 ∙ 𝑠𝑖𝑛⁡(2𝜋 ∙ 𝑡 + 𝜑)         (1) 221 

 222 

Once estimated m and q from (1) via a non-linear least square approach, we compute the displacements associated with IC2, 223 

considering as its temporal evolution the function y=𝑞 + 𝑚 ∙ 𝑡; then, we remove the computed displacements from each 224 

original, IGb14, time series, obtaining the detrended dataset used in the subsequent decomposition step. The advantage of this 225 

approach, compared to a trajectory model, is that it is not necessary to assume any temporal evolution of the deformation 226 

signals a priori, except for the limited number of functions that make up Eq. (1). This is particularly advantageous in cases 227 

where either transients of unknown origin or amplitude and/or phase fluctuations of the seasonalities are affecting some stations 228 

and could lead to a mismodeling by a trajectory model. Notice in particular how signals potentially biasing the linear trend, 229 

like the multi-annual ones in case of short time series, are separated from the IC representing the stations’ velocities. 230 

The results of the vbICA applied to the detrended time-series are shown and discussed in Sect. 4.1. 231 

3.2 Meteo-climatic datasets 232 

The results of the decomposition of the geodetic dataset are compared with the results obtained from the analysis of 233 

displacement time-series associated with different meteo-climate forcings. In particular, here we consider hydrological, 234 

atmospheric loading and precipitation from global, gridded, models. These time-series are analyzed with the vbICA method 235 

already used for the geodetic dataset, and the results are compared in Sect. 3.2.  236 

The Land Surface Discharge Model (LSDM), developed by Dill (2008), simulates global water storage variations of surface 237 

water in rivers, lakes, wetlands, and soil moisture, as well as from water stored as snow and ice. The LSDM is forced with 238 

precipitation, evaporation, and temperature from an atmospheric model developed by the European Centre for Medium-Range 239 

Weather Forecasts (ECMWF). Using the Green's function approach, Dill and Dobslaw (2013) compute daily surface 240 

displacements at 0.5° global grids caused by LSDM-based continental hydrology (hereinafter HYDL), and by non-tidal 241 

atmospheric surface pressure variations (hereinafter NTAL). We also considered the École et observatoire des sciences de la 242 

terre (EOST) loading service, which provides a model for the atmospheric and hydrological loading induced displacements. 243 

Ground displacements are computed using the Load Love Numbers estimate from a spherical Earth model (Gegout et al., 244 

2010). The atmospheric loading is modeled using the data of the ECMWF surface pressure, assuming an Inverted Barometer 245 

ocean response; the hydrological loading includes soil moisture and snow height estimated from the Global Land Data 246 

Assimilation System (GLDAS/Noah; Rodell et al., 2004). All the datasets we have considered are provided in the center of 247 

figure reference frame, have daily temporal resolution and spatial resolution of 0.5°. It is worth noting that neither LSDM-248 

based nor EOST models consider deep groundwater variations. GRACE data are often used to study hydrologically-induced 249 

deformation associated with groundwater; in fact, through the analysis of the gravity field variations, it is possible to retrieve 250 

https://sciwheel.com/work/citation?ids=11160174&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11160176&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8185633&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8185633&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8185642&pre=&suf=&sa=0
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changes through time of the water masses. GRACE has the advantage of being influenced by groundwater variations, which 251 

are not taken into account by the HYDL model, but at the cost of a lower temporal (i.e., monthly) and spatial (~300 km) 252 

resolution.  253 

The precipitation data we use are provided by the NASA Goddard Earth Sciences Data and Information Services Center 254 

(Huffman et al., 2019), they are daily with a spatial resolution of 0.1°.  255 

4 Results 256 

4.1 Decomposition of GNSS time-series 257 

Figure 3 shows the result of the vbICA decomposition on the detrended displacement time-series, using 7 components as 258 

suggested by the F-test.  259 

IC1 is a spatially uniform signal characterized by an annual temporal signature, as shown by the power spectral density (PSD) 260 

plot in Fig. 3a. 261 

The mean of the maximum amplitudes is 26 mm, while the histogram showing the distribution of displacement amplitudes is 262 

shown in Fig. S4a. 263 

IC2 shows a spatial response characterized by a clear E-W gradient, but, differently from IC1, its temporal evolution has not 264 

a dominant frequency. The spatial response U2 of the eastern stations (in blue) is mainly negative, while the U2 of the western 265 

stations (in red) is mainly positive. This means that when V2 is increasing the western (red) stations move up, while the eastern 266 

(blue) ones move down. The sites in the central portion of the study area (in white) are very slightly affected by the IC2 267 

component. The features of IC3 are analogous to those of the IC2, with the exception that a N-S gradient is present. The mean 268 

of the amplitude of the absolute value of IC2 spatial distribution is 6.7 mm; and it is 5.6 mm for IC3. The histogram showing 269 

the distribution of the absolute value is shown in Fig. S4b and S4c. 270 

IC4 is an annual signal, as IC1, but with a heterogeneous spatial response: while some stations move upward some others 271 

move downward. The mean of the amplitudes absolute value of the displacements is 2.7 mm; the relative histogram is shown 272 

in Fig. S4d. The distribution of stations displaced with this phase difference seems to be mostly affected by geographical 273 

features: the stations located in mountain regions subside when V3 increases, whereas the stations far from relief move upward. 274 

The remaining three components are likely associated with local processes and discussed in the Supplementary Information 275 

S3. 276 

 277 
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 278 

Figure 3: Temporal evolution, power spectral density and spatial response of: a) IC1; b) IC2; c) IC3; d) IC4. 279 

 280 
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4.2 GNSS vs environmental-related displacements 281 

As discussed in the introduction, atmospheric and hydrological loading are likely the main sources of vertical displacement in 282 

the great Alpine region. Since they are both uniform in terms of spatial response, showing smooth spatial variations, we decided 283 

to check if the first 3 ICs of the GNSS decomposition are associated with the displacements due to atmospheric and 284 

hydrological loading, and with their pattern of variability.  285 

The vbICA analysis separates the data into statistically independent signals, which is useful because independent signals are 286 

often caused by different and independent sources of deformation. Nonetheless, a single source of deformation, such as 287 

atmospheric or hydrological loading, can be spatially heterogeneous and characterized by peculiar spatio-temporal patterns. In 288 

this case, the vbICA separates a single source of deformation in different components associated with different spatio-temporal 289 

patterns. As a consequence, we decided to apply a vbICA decomposition on HYDL and NTAL model displacement time series 290 

in order to check if they show any pattern and if they resemble the spatial distribution of IC1, IC2 and IC3 of the GNSS 291 

decomposition. NTAL and HYDL data have not been detrended. 292 

We analyze with vbICA the hydrological loading (HYDL) and atmospheric pressure (NTAL) induced ground displacement 293 

models (EOST and LSDM-based), in order to characterize the spatial pattern and temporal response associated with these 294 

deformation sources, and study any possible link with the geodetic deformation signals described in Sect. 4.1. We use the 295 

results of the global models to estimate the hydrological loading, even though we are aware that some local effects might not 296 

be captured. In fact, considering the extension of the study area, it is very complicated to take into account the local features 297 

needed to estimate the hydrological loading with a better precision than the one provided by the global models. 298 

In particular, in this section we show the results obtained using the LSDM-based models because they take into account the 299 

water stored in rivers, lakes and wetlands, while the EOST models do not. The results obtained using the EOST models are 300 

presented in the Supplementary Information S2. Figure 4 and 5 show the spatial response, the temporal evolution and the PSD 301 

of the ICs obtained using three components, to the NTAL (4) and HYDL (5) ground displacements. We decided to use three 302 

components to reproduce the displacement patterns of IC1, IC2 and IC3 of the GNSS decomposition. 303 

The first IC of both NTAL and HYDL shows a uniform spatial response, as IC1 of the GNSS dataset (Fig. 3a). The 304 

mean/median amplitude of the maximum displacements associated with NTAL is very similar to GNSS both in terms of 305 

mean/median amplitude (Table S1a) and distribution (Fig. 6, a); while for the HYDL model the amplitude is about two times 306 

smaller than NTAL. 307 

IC2 and IC3 of both NTAL and HYDL show E-W and N-S gradients in the spatial response, respectively, as observed  for IC2 308 

and IC3 of the GNSS dataset (Fig. 3b, d). Since the ICs spatial response of the NTAL and HYDL decomposition are very 309 

similar, we also consider the sum of the displacement associated with NTAL and HYDL models, which can be considered as 310 

“environmental loading”: we use the notation NTAL+HYDL_ICn to indicate the sum of the displacement associated with the 311 

n-th component of the NTAL and HYDL decomposition. The amplitude of NTAL+HYDL_IC1, NTAL+HYDL_IC2 and 312 
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NTAL+HYDL_IC3 are only slightly lower than the ones of  GNSS_IC1, GNSS_IC2 and GNSS_IC3, as shown in Fig. 6 313 

(panels g,h,i) and in Table S1a. 314 

Concerning the temporal evolutions, IC1 of the HYDL model is an annual signal, while the IC2 and IC3 PSD plots indicate 315 

the presence of multi-annual signals. Unlike the HYDL decomposition, all the ICs of the NTAL decomposition contain the 316 

annual frequency, in particular IC2, whereas IC3 also contains semiannual ones. It is also worth noting that the temporal 317 

evolution of the ICs associated with the NTAL model are much more scattered than the ones resulting from HYDL, clearly 318 

indicating that the displacements due to atmospheric pressure variations can show large fluctuations at daily timescale. 319 

We also perform a vbICA decomposition on both datasets using two and four components, presented in the Supplementary 320 

Information (Fig. S6 and S7). When using only two ICs, the results obtained (Fig. S6) are very similar to the first two ICs of 321 

the 3-components decomposition. The first three ICs of the four component decompositions (Fig. S7) have both temporal 322 

evolution and spatial distribution very similar to what is shown in Fig. 4 and Fig. 5. IC4 of the NTAL model has an annual 323 

signature and a E-W gradient with a shorter wavelength compared to IC2, while IC4 of the HYDL decomposition has a NW-324 

SE gradient. This suggests that the N-S and E-W spatial patterns associated with the meteoclimatic datasets are a robust feature, 325 

being insensitive to the number of components chosen in the decomposition. It is also worth noting that the decompositions of 326 

the NTAL and HYDL models explain the 98.89% and the 97.03% of the total variance when using 3 ICs, suggesting that 327 

increasing the number of the ICs is not necessary. As a result, in the following discussion we refer to the results obtained from 328 

the 3-components decomposition using the LSDM-based models, but remember that the results obtained using the EOST 329 

models are fully comparable (Supplementary Information S2). 330 
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 331 

Figure 4: Temporal evolution, power spectral density and spatial response of IC1, IC2, IC3 of the NTAL model. 332 
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 333 

Figure 5: Temporal evolution, power spectral density and spatial response of IC1, IC2, IC3 of the HYDL model. 334 

 335 
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 336 

Figure 6. Histogram of the maximum displacements associated with:  337 

(a) IC1 of the NTAL decomposition (orange), compared with the IC1 of the GNSS decomposition (blue); (b) same as (a) but 338 

considering IC2; (c) same as (a) but considering IC3; 339 

(d) IC1 of the HYDL decomposition (orange), compared with the IC1 of the GNSS decomposition (blue); (e) same as (d) but 340 

considering IC2; (f) same as (d) but considering IC3; 341 

(g) IC1 of the NTAL+HYDL decomposition (orange), compared with the IC1 of the GNSS decomposition (blue); (h) same as (g) but 342 

considering IC2; (i) same as (g) but considering IC3. 343 

 344 

In order to quantify the agreement between the displacements associated with the hydrological and atmospheric pressure 345 

loading and the ICs of the GNSS dataset displaying consistent spatial patterns (IC1, IC2, IC3), we compute, for each GNSS 346 

station, the Lin concordance correlation coefficient (Lin, 1989) between the displacement reconstructed by the ICs associated 347 

https://sciwheel.com/work/citation?ids=222498&pre=&suf=&sa=0
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with the different LSDM-based models. Unlike Pearson's correlation coefficient, Lin’s one takes into account similarities on 348 

both amplitudes and shapes of two time series.  349 

The IC1 of the GNSS decomposition (GNSS_IC1) is compared with the first component of both NTAL (NTAL_IC1) and 350 

HYDL (HYDL_IC1) datasets by associating each GNSS site with the nearest grid-point where NTAL and HYDL 351 

displacements are computed.  352 

When considering the NTAL_IC1, we observe (Fig. S8a) a high temporal correlation with GNSS_IC1, while the correlation 353 

between GNSS_IC1 and HYDL_IC1 is significantly lower (Fig. S9a). In both cases the value of the Lin correlation coefficient 354 

is quite uniform in the dataset (~0.59 for NTAL_IC1 and ~0.35 for HYDL_IC1). The Pearson correlation is similar to Lin's 355 

one (0.60 for NTAL_IC1 and 0.35 for HYDL_IC1), indicating that the amplitude of both NTAL_IC1 and HYDL_IC1 is 356 

similar to the GNSS_IC1 amplitude. It is worth noting that if we consider NTAL+HYDL_IC1, the correlation with GNSS_IC1 357 

increases to ~0.73 (Fig. 7a). As a result, we can interpret GNSS_IC1 as the combined contribution of NTAL and HYDL, where 358 

NTAL plays the dominant role. 359 

When considering IC2, we observe similar correlations between GNSS_IC2 and either NTAL_IC2 or HYDL_IC2 (Fig. S8b, 360 

S8b). Nonetheless, in this case the correlation patterns are less uniform than the IC1 case, and few stations are even negatively 361 

correlated with both NTAL_IC2 and HYDL_IC2 displacements. The sites where GNSS_IC2 displacements are negatively or 362 

weakly correlated with NTAL_IC2 are the ones with the lowest IC2 amplitude. In fact, if we consider the stations whose 363 

maximum displacements associated with GNSS_IC2 are larger than 3 mm, which are 411 out of 545, their mean Lin correlation 364 

with NTAL_IC2 is 0.52; while the stations with amplitudes smaller than 3 mm have a mean correlation of 0.17. This is due to 365 

the fact that, given the low displacements associated at these stations, the correlation is more sensitive to noise. The agreement 366 

between the GNSS_IC2 and NTAL_IC2 is also confirmed by the Pearson correlation coefficient between the temporal 367 

evolution of the two ICs, which is 0.63; while the Pearson correlation between GNSS_IC2 and HYDL_IC2 is 0.28. The same 368 

pattern is observed when comparing GNSS_IC2 with NTAL+HYDL_IC2 (Fig. 7b): using 3 mm as threshold between large 369 

and small GNSS_IC2 maximum displacements, the mean correlation is 0.57 for the stations most affected by this signal and 370 

0.14 for the remaining ones. This suggests that also GNSS_IC2 is likely related to NTAL and HYDL loading processes.  371 

The Lin correlation between GNSS_IC3 and NTAL+HYDL_IC3 resembles what just shown for IC2 (Fig. 7c): at sites where 372 

the GNSS_IC3 maximum amplitude is larger than 3 mm, which are 414 out of 545, the mean correlation with 373 

NTAL+HYDL_IC3 is 0.44; while it is 0.10 for the remaining ones. As for IC1, both GNSS_IC2 and IC3 displacements are 374 

best reproduced when considering the combined effect of NTAL and HYDL (see Fig. S8c, S9c compared to Fig. 7). The 375 

Pearson correlation between GNSS_IC3 and NTAL_IC3 is 0.47; while between GNSS_IC3 and HYDL_IC3 is 0.30. 376 

To summarize, the three common mode signals components of the GNSS decomposition (IC1, IC2, IC3) are likely due to the 377 

combined effect of the atmospheric and hydrological loading. Due to the similarity between the spatial response of 378 

displacements associated with these two processes, it is possible that the vbICA technique is not able to separate them in the 379 

geodetic data; nonetheless, it highlights their spatial variability through IC2 and IC3.  380 
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Examples of comparison between climate-related displacements reconstructed at two different sites and the GNSS 381 

decomposition are shown in Fig. 8.  382 

 383 
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 384 

Figure 7: Lin correlation coefficients between: a) GNSS-IC1 and NTAL+HYDL_IC1; b) GNSS_IC2 and NTAL+HYDL_IC2; c) 385 

GNSS-IC3 and NTAL+HYDL_IC3. Histograms of the correlation coefficients are also reported. 386 

 387 
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 388 

 389 

Figure 8: Comparison, at the LYSH (Lon: 18.45°; Lat: 49.55°) site, between the displacements associated with: a) GNSS_IC1 and 390 

NTAL+HYDL_IC1; b) GNSS_IC2 and NTAL+HYDL_IC2 ; c) GNSS_IC3 and NTAL+HYDL_IC3. d), e), f) are the same as a), b), 391 

c), respectively, for the STV2 (Lon: 6.11°; Lat: 44.57°) site. A 30-days moving average filter is applied to better visualize the data. 392 

 393 

Concerning IC4 of the GNSS decomposition, it describes vertical motions in phase, and very well correlated, with the daily 394 

mean temperature of the investigated area (Fig. 9). Temperature data are provided by the E-OBS dataset from the EU-FP6 395 

project UERRA (https://www.uerra.eu; Cornes et al., 2018). From the point of view of the spatial distribution of this 396 

component, most of the stations located in the mountain chain subside when the temperature increases, while the remaining 397 

stations uplift as the temperature increases. Figure S15 shows some cross sections plotting the maximum vertical displacements 398 

associated with IC4 together with topography, showing this peculiar spatial pattern. 399 

https://sciwheel.com/work/citation?ids=10163313&pre=&suf=&sa=0
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 400 

Figure 9: Comparison between the daily mean temperature of the study area (orange) and the temporal evolution of IC4 (black 401 

dots). The shaded area represents the time interval associated with the maximum displacements shown in Fig. S15. 402 

4.3 Vertical ground motion rates and noise analysis 403 

We show the impact of the filtering on GNSS displacement rates and uncertainties, where the filtered time-series are the result 404 

of subtracting from the IGb14-time series the combined displacement associated  ones with the first 4 ICs discussed in Sect. 405 

4.1, which represent the combined effect of the temperature and of the atmospheric and hydrological loading. We refer to these 406 

corrected time series as ICs filtered time series. 407 

Velocities and uncertainties are estimated using the Hector software (Bos et al., 2013), assuming a priori noise models. Noise 408 

is commonly described as a power-law process 409 

𝑃𝑥(𝑓) = 𝑃0(𝑓/𝑓0)
𝑘                (2) 410 

where 𝑃𝑥 is the power spectrum; 𝑓 the temporal frequency; 𝑃0 and 𝑓0 are constants; 𝑘 is the spectral index and it indicates the 411 

noise type.  412 

If the power spectrum is flat (i.e., all frequencies have the same power), then the errors are statistically uncorrelated from one 413 

another, the spectral index is zero and the noise is called “white”. Otherwise the noise shows a dependency with the frequency 414 

content, and it is referred to as “colored”. In GNSS time series it has been typically observed the presence of noise with a 415 

power spectrum reduced at high frequencies, with the most popular models being a mix of random walk or “red” noise (𝑘 =-416 

2) and flicker or “pink” noise (𝑘 = -1). Red noise  is typically associated with station-dependent effects, while pink noise can 417 

be associated with mismodeling in GNSS satellites orbits, Earth Orientation Parameters (Klos et al., 2018) and spatially-418 

https://sciwheel.com/work/citation?ids=11159635&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11159622&pre=&suf=&sa=0
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correlated large-scale processes of atmospheric or hydrospheric origin (Bogusz and Klos, 2016). Flicker plus white noise 419 

model is commonly used in the analysis of GNSS time-series (e.g., Ghasemi Khalkhali et al., 2021 and references therein).  420 

In order to select the best noise model for the input time series, we test different combinations of noise models, choosing the 421 

one with the lowest value of the Akaike Information Criterion (AIC) and of the Bayesian Information Criterion (BIC). In 422 

particular we consider: 423 

- Flicker + white noise; 424 

- A general power-law (𝑘 not assigned) + white noise (PL+WN); 425 

- Flicker + Random walk + white noise. 426 

 427 

Following the AIC and BIC criteria, the preferred noise model is PL+WN, where the parameters of the noise model (i.e., the 428 

spectral index 𝑘) are estimated by the software using the Maximum Likelihood Estimation (MLE) method. MLE is also used 429 

to estimate the station's rates and the associated uncertainties. 430 

We then compare the vertical velocities, and their uncertainties, obtained before and after ICs filtering (Fig. 10). Although 431 

annual and semi-annual signals are often included in the time series modeling, the displacements associated with the first four 432 

ICs already contain these seasonal terms (Fig. 3). Consequently, the ICs filtered time series are modeled only with the linear 433 

trend plus temporal correlated noise, while in the unfiltered time series modeling annual and semi-annual terms are also 434 

included. 435 

Fig. 11a shows histograms representing the differences in the vertical velocity estimates obtained from filtered and unfiltered 436 

time-series. The differences are spatially quite homogeneous and of the order of tenths of mm yr-1, with a median value of -437 

0.15 mm yr-1. The velocity differences are almost entirely caused by the displacements associated with IC1, which have a 438 

median rate of -0.12 mm yr-1.  439 

Concerning the uncertainties associated with the vertical velocity, the impact from ICs filtering is much more important (Fig. 440 

10, f and Fig. S17): the initial median error is 0.30 mm yr-1, the final 0.17 mm yr-1.  441 

 442 

https://sciwheel.com/work/citation?ids=11159620&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11162033&pre=&suf=&sa=0
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 443 

Figure 10: a) Vertical velocities from the unfiltered GNSS time-series; b) vertical velocities from ICs filtered time series, obtained 444 

after subtracting the displacements associated with the first four ICs; c) difference between the velocities of panel a) minus velocities 445 

of panel b). d), e), f), same as a), b), c), but showing the error associated with the vertical velocities. 446 

 447 

 448 

 449 

 450 
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 451 

 452 

 453 

 454 

 455 

Figure 11: Histogram of the difference between the velocity of the unfiltered time-series and the filtered ones using: a) the 456 

displacements associated with the first 4 ICs; b) the Weighted Stacking Filtering Method; c) the Stacking Filtering Method. 457 

 458 

The ICs filtering also has a strong impact on the noise characteristics. In fact, while in the unfiltered time series the percentage 459 

of white noise of the PL+WN model is negligible in most of the stations, it becomes dominant in the filtered ones (Fig. 12). 460 

This indicates that a large portion of the power-law noise is associated with the displacements described by the first 4 ICs, i.e. 461 

the atmospheric and hydrological loading and temperature-related processes.  462 
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 463 

Figure 12: Histograms of: (a) white noise percentage in the unfiltered time-series and (b) filtered time-series. (c), (d) same as (a) and 464 

(b) for the spectral index. The filtering is done by subtracting the displacements associated with the first 4 ICs. 465 

5 Discussion 466 

5.1 Displacement time series filtering 467 

Our goal is to estimate the vertical  velocity of the GNSS stations associated with long-term geodynamic and tectonic processes, 468 

then we seek to remove signals associated with meteo-climatic processes. Instead of subtracting from the IGb14-time series 469 

the modeled displacements, such as those made available through loading services like GFZ, we prefer to subtract the 470 

displacements associated with the ICs. This approach minimizes biases due to the mismatch between the actual signal caused 471 
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by atmospheric and hydrological loading and the modeled ones. Larochelle et al. (2018) reached similar conclusions by 472 

comparing GRACE measurements and the results from ICA decompositions of GNSS displacements, which resulted to be 473 

more accurate in correcting GNSS from seasonal displacements than removing GRACE displacements, which smooth local 474 

effects in the data acquisition and processing. In order to support the approach followed, we estimated the scatter of the GNSS 475 

displacement time series by computing the mean standard deviation of 1) the time series given as input to vbICA (IGb14-time 476 

series), 2) the IGb14-time series minus the combined displacement associated with the first 3 ICs and 3) the IGb14-time series 477 

minus the displacements due to HYDL+NTAL from GFZ models. The resulting standard deviation is 5.32, 4.10 and 4.73, 478 

respectively. This demonstrates that removing the displacement associated with the first four ICs is more effective in reducing 479 

the scatter than removing the HYDL+NTAL contribution. 480 

Considering that the stacking methods are widely used to estimate and remove CMS and CME from GNSS time-series (see 481 

Sect. 2), we compare the results obtained adopting the SFM and WSFM methods with the output of vbICA, in particular with 482 

the displacements associated with IC1 (Fig. 3a), which is clearly a CMS, given its homogeneity in its spatial response. CMS 483 

with the stacking methods is estimated using the GNSS_TS_NRS code (He et al., 2020) and it is compared with the 484 

displacements associated with IC1 estimating the Lin correlation coefficient. Figure 13 shows that there is an almost-perfect 485 

agreement between the IC1-related displacements and the CMS extracted with both stacking methods, suggesting that even 486 

simple approaches, such as SFM and WSFM, perform well at the scale of the study area. 487 

We also estimate the vertical velocities of the GNSS stations after filtering the CMS using  the two stacking methods. The rate 488 

differences between unfiltered and filtered time series have a median value of -0.15 and -0.10 mm yr-1, using the WSFM and 489 

SFM, respectively (Fig. 11b, c). These values are close to the rates associated with IC1 displacements (median = -0.12 mm yr-490 

1), which are the primary cause of the velocity difference obtained from IGb14 and ICs filtered time-series, suggesting that the 491 

rate difference does not strongly depend on the filtering method adopted.  492 

As already shown in Sect. 4.3, the errors associated with the velocities of the unfiltered and filtered time series, which have 493 

median values of 0.30 and 0.17 mm yr-1, respectively, have about the same value of the velocity difference between filtered 494 

and unfiltered time series. It follows that the velocity differences are, from a statistical point of view, barely significant. 495 

Nonetheless, it is worth considering that, according to the LSDM-based model, the displacements resulting from the combined 496 

effect of hydrological and atmospheric loading have a negative rate (median = -0.11 mm yr-1; Fig. S16c) in agreement with 497 

the rate observed for IC1 (V1 in Fig. 3), suggesting that environmental loading may cause a small subsidence, at least in the 498 

observed time-span, which is captured by IC1. However, the rates of the displacements due to hydrological loading are model-499 

dependent: according to LSDM, they show a negative linear trend (Fig. S16b), as opposed to what is observed using the EOST 500 

model (Fig. S16e). As a result, the rates of the displacements due to atmospheric + hydrological loading computed using the 501 

EOST model are not in agreement with the rates of the IC1 displacements. This is most likely a consequence of the differences 502 

in modeling the hydrological loading-induced displacements; in particular, the EOST model takes into account only water 503 

stored as snow and soil moisture, whereas the LSDM model also includes the contribution of rivers, lakes and wetlands.  504 

https://sciwheel.com/work/citation?ids=11160310&pre=&suf=&sa=0


28 

 

 505 

Figure 13: Comparison between the displacement associated with IC1 at the ZYWI site and the CME estimated with 506 

the Stacking Filtering Method (a) and the Weighted Stacking Filtering Method (c). We also show the histogram 507 

representing the Lin correlation between the displacements associated with the IC1 and the CME estimated with the 508 

Stacking Filtering Method (b) and the Weighted Stacking Filtering Method (d) at each site. We point out that the CME 509 

computed with the aforementioned methods is, by definition, the same at each station; whereas the displacements 510 

associated with IC1 have the same temporal evolution but (slightly) different amplitudes. We plot the station ZYWI as 511 

an example. 512 

 513 

The stacking methods used to estimate the CMS are easier and faster to implement than the vbICA analysis. Depending on the 514 

research target, these common mode signals might be worth removing, in order to obtain a more precise, and eventually 515 
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accurate, estimation of the GNSS linear velocities or retained to study, for example, seasonal deformation. Multivariate 516 

statistics and/or source separation algorithms applied to ground displacement time-series allow one to extract and interpret 517 

them in terms of the physics behind them, through a comparison with other displacement datasets or models. Furthermore, 518 

time series can be filtered not only from CMS, but also from signals associated with spatially uncorrelated processes, as we 519 

did in Sect. 4.3 estimating the vertical velocities filtered from non-tectonic processes related to the first four ICs.  520 

In Sect. 4.3 we also show that the colored noise in the time series is significantly reduced by the ICs filtering. This result is in 521 

agreement with the results of recent studies conducted in other regions, such as Antarctica (Li et al., 2019) and China (Yuan 522 

et al., 2018). Both studies show that ICA or PCA filtering of GNSS time series suppress the colored noise amplitudes but have 523 

little influence on the amplitude of the white noise. Furthermore, Klos et al. (2021) analyzes  the effect of atmospheric loading 524 

on the noise of GNSS stations in the European plate, finding that the noise is whitened when NTAL contribution is removed. 525 

The description of atmospheric processes at the scale of the Alps can be seen as small scale when compared, for example, to 526 

the circulation in the northern hemisphere. Small scale processes are usually interpreted as noise, but they may affect the large-527 

scale dynamics (e.g., Faranda et al., 2017). It follows that these small scale processes should be represented with an appropriate 528 

stochastic formulation. Since the CMS are typically characterized by PL+WN noise, the link that we find between CMS and 529 

atmospheric and hydrological signals could provide a hint on the type of noise that is more suitable to describe such small 530 

scale perturbations when modeling the large-scale dynamics of the atmosphere. 531 

5.2 ICs interpretation 532 

Our analysis supports the interpretation that the displacements associated with IC1, IC2 and IC3 are  likely due to  the combined 533 

effect of the hydrological and atmospheric loading, whose spatial responses are not homogeneous over the study area. In 534 

support of this interpretation we can refer to Brunetti et al. (2006), who applied a PCA to precipitation data in the great Alpine 535 

area. They highlighted the presence of N-S and E-W gradients in the spatial response of meteo-climating forcing processes. 536 

The authors suggest that the main cause of the spatial and temporal variability of the precipitation is the North Atlantic 537 

Oscillation (NAO), which also causes fluctuation of the atmospheric pressure (Vicente-Serrano and López-Moreno, 2008). It 538 

is then likely that weather regimes like the NAO and the Atlantic Ridge, influence both NTAL and HYDL, which is mainly 539 

forced by precipitation, so that the spatial patterns of the ICs associated with atmospheric and hydrological loading are the 540 

same of NAO (N-S) and Atlantic Ridge (E-W). 541 

The vbICA algorithm is not able to separate NTAL and HYDL because they are not independent from a mathematical point 542 

of view. This emerges also from the recent work by Tan et al. (2022), who performed an ICA on GNSS time series of the 543 

Yunnan Province of China and interpreted IC1 as the average effects of the joint patterns from soil  moisture and atmospheric-544 

induced annual surface deformations. Let us consider for example the case of IC2_NTAL and IC2_HYDL. They have two 545 

different temporal evolutions (V2_NTAL and V2_HYDL); but the spatial distributions (U2_NTAL and U2_HYDL) have the 546 

same pattern, i.e. they only differ for a weighting factor k. Then, we can write U2_NTAL=k*U2_HYDL. 547 

The displacement d resulting from the combined effect of IC2_NTAL and IC2_HYDL is then: 548 

https://sciwheel.com/work/citation?ids=11159623&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6913528&pre=&suf=&sa=0
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d= IC2_NTAL + IC2_HYDL= U2_NTAL*V2_NTAL + U2_HYDL*V2_HYDL= U2_HYDL*(k*V2_NTAL+V2_HYDL). 549 

As a result, the displacement due to IC2_NTAL + IC2_HYDL is identified by a single spatial distribution U2_HYDL and a 550 

temporal evolution k*V2_NTAL+V2_HYDL. Then, if we do not make any prior assumptions about V2_NTAL and 551 

V2_HYDL, it is not possible to separate IC2_NTAL and IC2_HYDL from a statistical point of view. 552 

In Sect. 4.2 we show that not only IC2_NTAL and IC2_HYDL have very similar spatial patterns, but also IC1_NTAL and 553 

IC1_HYDL,  IC3_NTAL and IC3_HYDL have similar spatial responses. Then, the GNSS time-series decomposition in the 554 

Alpine area does not allow separating the effect of the hydrological loading from the atmospheric loading with an ICA 555 

approach. 556 

We also performed a vbICA analysis on precipitation data (RAIN) recorded over the study region, using 3 ICs (Fig. 14). The 557 

spatial pattern of the ICs is analogous to the ones associated with NTAL and HYDL (Fig. 4 and Fig. 5).  558 

 559 



31 

 

 560 

Figure 14:  IC1, IC2 and IC3 of the RAIN decomposition. 561 

 562 

This supports the hypothesis that precipitation, atmospheric pressure, hydrological loading and ground displacement are 563 

somehow interconnected and characterized by a common climate-related forcing, whose characteristics of spatial variability 564 

are described by the NAO and Atlantic Ridge weather regimes. 565 

We point out that HYDL, NTAL and GNSS are models or measurements of vertical displacements, which are positive when 566 

upward and negative when downward; while RAIN is the amount of fallen rain per unit area. 567 
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Let us consider for the sake of simplicity the IC1 case, but what we are going to discuss holds true also for IC2 and IC3. 568 

The temporal evolution of NTAL_IC1 (NTAL_V1) is correlated with the temporal evolution of RAIN_IC1 (RAIN_V1, Fig. 569 

15g-i) and anti-correlated with the time derivative of the temporal evolution of HYDL_IC1 (HYDL_V1, Fig. 15a-c). 570 

HYDL_V1 is also highly anti-correlated with RAIN_IC1 (Fig. 15d-f). 571 

 572 
Figure 15: Cross correlation between:  573 

a) the temporal evolution of the IC1 of the NTAL decomposition and the time derivative of the temporal evolution of the IC1 obtained 574 

by decomposing HYDL; b) same as a), but considering IC2; c) same as a), but considering IC3;  575 

d) the temporal evolution of the IC1 of the precipitation data decomposition and the time derivative of the temporal evolution of the 576 

IC1 obtained by decomposing HYDL;  e) same as d), but considering IC2; f) same as d), but considering IC3;  577 

g) the temporal evolution of the IC1 of the NTAL decomposition and the temporal evolution of the IC1 of the precipitation data 578 

decomposition; h) same as g), but considering IC2; i) same as g), but considering IC3. 579 

 580 

Our interpretation of the correlations discussed above, schematically represented in Fig. 16, is the following: when the weather 581 

goes from a low pressure to a high pressure regime, the increasing pressure causes a downward displacement of the ground 582 

(Fig. S8). Anyway, low pressure regimes are often associated with precipitation, and that is why IC1_RAIN and IC1_NTAL 583 

are correlated. It follows that when we go from high pressure to low pressure conditions, the ground motion, if we assume a 584 

pure elastic process, is affected by two forces acting in opposite directions: the decreasing atmospheric pressure induces uplift, 585 
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while the precipitation load causes downward motion. Rain also affects hydrological loading, increasing it and causing a 586 

downward ground motion. As a consequence, the temporal derivative of HYDL_IC1, which is more sensitive to small but fast 587 

variation of hydrological loading than HYDL itself, is negative and anti-correlated with IC1_RAIN. 588 

 589 

 590 
Figure 16: Schematic representation of the ground vertical displacement due to elastic deformation during high pressure (a) and 591 

low pressure (b) conditions. Yellow arrows reflect displacements associated with atmospheric pressure, blue arrows reflect 592 

displacements associated with precipitation and evapotranspiration. 593 

 594 

Atmospheric pressure variations happen at fast temporal scales, then the switch from high to low pressure conditions (and vice 595 

versa) can happen in a few days and cause quite large (centimetric) ground vertical displacements. Hydrological loading acts 596 

at longer timescales and there are several factors to consider besides precipitation, in particular the temperature, which causes 597 

evapotranspiration. Nonetheless, computing the time derivative of the hydrological loading allows to detect “fast” variations 598 

due to the change of the atmospheric pressure and the precipitation events often associated with it. 599 

The interpretation of IC4 is less straightforward and the pattern we see in the Alps (Figure S.15) is not easy to explain. Air 600 

temperature increase can induce both positive and negative vertical displacements. One possible mechanism to explain 601 

negative vertical displacements associated with temperature increase is that in the alpine valleys the water content increases 602 

as the temperature increases because of the snow and ice melting. It follows that in those areas the elastic response to 603 

hydrological load is higher during summertime than winter, as observed by Capodaglio et al. (2017), so that negative vertical 604 

displacements are measured when the temperature increases. Then, it is not surprising that in the alpine valleys the stations 605 

affected by large IC4-related displacements move downward as temperature increases. This may be an example of a small-606 

https://sciwheel.com/work/citation?ids=11586171&pre=&suf=&sa=0
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scale hydrological process that is likely badly reproduced by the HYDL displacement dataset, which does not have a spatial 607 

resolution fine enough to represent hydrological loading displacements at the scale of the alpine valleys. Other site-dependent 608 

processes that can potentially induce uplift during winter are the ice formation, and subsequent melting, in the antenna and 609 

antenna mount (Koulali and Clarke, 2020) and soil freezing (Beck et al., 2015).  610 

Conversely, positive vertical displacements as the temperature increases can be caused by monument/bedrock thermal 611 

expansion and the drying of the soil, because of the reduction of the hydrological load. While HYDL takes into account the 612 

drying of the soil, we cannot exclude that some local, unmodeled, environmental conditions can amplify this effect at some 613 

sites. This might explain why most of the sites affected by uplift during temperature increases are located in plain areas, like 614 

the northern sector of the Paris Basin and in the Po plain, instead of the mountainous ones.  615 

The relation between IC4 and local processes is also suggested by the heterogeneity of this signal in terms of its spatial 616 

distribution, sign, amplitude and relevance in explaining the data variance. In fact, while ~50% of the stations have U4<2mm 617 

(Fig. S3d) and explain <1% of the data variance, meaning that IC4 is almost unuseful to reproduce the original data, there is a 618 

non-negligible number of stations (~10%) explaining >10% of the data variance and with U4>6mm.  619 

In the introduction we mentioned the effects of the non-tidal ocean loading on the vertical displacements and both LSDM-620 

based and EOST models provide estimation of them. In the study region, this process induces displacements that are 621 

significantly smaller than both atmospheric and hydrological loading, due to the distance from the oceans of the study area, so 622 

we do not take it into account. According to the estimation of the LSDM-based model, the maximum amplitude of the spatial 623 

mean over the study region of the displacements associated with it is 4.3 mm; while the maximum amplitude of the 624 

displacements associated with atmospheric and hydrological loading are 23.8 mm and 12.2 mm, respectively. Figure S5 625 

provides a comparison of the spatial mean of the displacements associated with the three deformation mechanisms. 626 

5.3 Vertical velocity gradients across the Alps 627 

The vertical velocity field of the IGb14-time series and of the IGb14-time series with the contribution of the first 4 ICs removed 628 

(ICs filtered) do not differ much in terms of uplift/subsidence patterns (see Fig. 11), both showing the belt of continuous uplift, 629 

of the order of 1-2 mm yr-1, along the Alpine mountain chain. As shown in Fig. 11c, the vertical velocities from filtered time-630 

series show barely faster positive rates, mainly as an effect of filtering out hydrological and atmospheric displacements of IC1, 631 

as discussed above. Figure 17 shows the continuous vertical velocity field obtained from the discrete values adopting the 632 

multiscale, wavelet-based, approach described in Tape et al. (2009), and some vertical velocity and topographic profiles 633 

running across the great Alpine area. The same figure obtained using velocities and uncertainties from unfiltered time-series 634 

is shown in the Supplementary Information (Fig. S19). Despite the similarity in the velocity patterns, the improvements in 635 

both the precision and consistencies of vertical spatial gradients are apparent in cross section view. Profile E-E’ in Fig. 17 636 

shows positive vertical rates increasing from W to E, with the maximum uplift rates in the central Alps, and the positive 637 

correlation with the topography along the chain axis, with decreasing rates toward the east, changing to subsidence east of 638 

Lon. ~14.5° E, while entering the Pannonian basin domain. The correlation with topography is also clear in the chain-normal 639 

https://sciwheel.com/work/citation?ids=11159639&pre=&suf=&sa=0
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profiles (A-A’, B-B’, C-C’ and D-D’). In the Western and Central Alps (A-A’ and B-B’) the maximum uplift rates are located 640 

in correspondence with the maximum elevation, whereas in the Eastern Alps (C-C’ and D-D’) the maximum uplift rates are 641 

shifted southward. The Eastern Southern Alps is the region where the largest part of the Adria-Eurasia converge is 642 

accommodated (1-3 mm yr-1), through active thrust faults and shortening (Serpelloni et al., 2016). Here, maximum uplift rates 643 

are likely due to interseismic deformation, and their position, across the belt, is driven by thrust fault geometries, slip-rates and 644 

locking depths (Anderlini et al., 2020). Concerning the south Alpine foreland in the Po Plain and Venetian plain, Fig. 17 shows 645 

a decrease in the vertical velocities from west to east, with barely positive rates in the western Po Plain and increasing 646 

subsidence rates in the northern Adriatic and in the northern Apennines foreland.  647 

In the Alpine foreland, positive, sub-mm yr-1, velocities are present in the Jura Mts. and the Molasse basin, but uplift extends 648 

further northward in the Black Forest and the Franconian Platform, in southern Germany, and in the southern part of the 649 

Bohemian Massif. Overall, in the portion of central Europe investigated in this work, we see two different patterns: prevalent 650 

stable to slowly-subsiding sites (< 1 mm yr-1) are present west of the Rhine graben, whereas a prevalence of slowly uplifting 651 

sites (< 1 mm yr-1) is present east of it. Profile F-F’ in Fig. 17 better highlights this pattern. Across the Upper Rhine Graben, 652 

the weak uplift signal in the graben’s shoulders, the Vosges Mts and Black Forest, is associated with subsidence of stations 653 

located within the graben, according to Henrion et al. (2020). To the east, uplift in the Franconian Platform and the Bohemian 654 

Massif is only partially correlated with topography. It is still debated whether uplifted regions across NW Europe attest to 655 

lithospheric buckling in front of the Alpine arc or were randomly produced by a swarm of baby plumes. Uplift propagation by 656 

interferences with the Western Carpathians and possible mantle processes, as suggested by the positive dynamic and residual 657 

topography (Faccenna et al., 2014), may contribute to the observed uplift in the Bohemian Massif. 658 

Sternai et al. (2019) investigated the possible relative contribution of different geophysical and geological processes in the 659 

actual vertical velocity budget over the Alps, suggesting that the interaction among tectonic and surface mass redistribution 660 

processes, rather than an individual forcing, better explain vertical deformation in the Alps. Mey et al. (2016) suggested that 661 

~90% of the present-day uplift of the Alpine belt is due to the melting of the LGM ice cap. While it is difficult to independently 662 

constrain the patterns and magnitude of mantle contributions to ongoing Alpine vertical displacements at present, lithospheric 663 

adjustment to deglaciation and erosion are by far the most important ongoing process, but other authors suggest that other 664 

processes are currently shaping the vertical ground motion pattern. In the western and central Alps, active convergence is 665 

inactive or limited, the residual uplift rates, after correction from isostatic contributions, are likely due to deep-seated mantle 666 

processes, including for example detachment of the western European slab and dynamic contributions related to sub-667 

lithospheric mantle flow (Chery et al., 2016; Nocquet et al., 2016; Sternai et al., 2019). A tectonic contribution to the ongoing 668 

uplift is, instead, more likely in the Eastern Alps, and in particular in the Southeastern Alps, where the Adria-Europe 669 

convergence is accommodated. However, Anderlini et al (2020) observed that more accurate glacio isostatic models would be 670 

needed when interpreting tectonic contributions to uplift at the edge of ice caps, as in the Eastern Southern Alps. 671 
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 672 

Figure 17: Vertical velocities from filtered time-series (colored circles), continuous velocity field, topographic and swath profiles 673 

across the great Alpine area. Each profile (green line) encompasses a 50+50 km swath. BG: Bresse Graben; JM: Jura Mts.; VG: 674 

Vosges Mts.; BF: Black Forest; URG: Upper Rhine Graben; FP: Franconian Platform; MB: Molasse Basin. 675 
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6 Conclusions 676 

The application of a blind source separation algorithm to vertical displacement time-series obtained from a network of GNSS 677 

stations in the Great Alpine Area allows us to identify the main sources of vertical ground deformation. Besides the linear 678 

trend, vertical displacements are influenced by: 1) atmospheric pressure loading, 2) hydrological loading and 3) temperature-679 

related processes. The analysis of displacement time series of environmental loading shows that the largest vertical motions 680 

are related to the variation of atmospheric pressure, in particular when considering daily/weekly timescales. Seasonal 681 

displacements are more clearly associated with hydrological loading and temperature-related processes. However, while 682 

deformation associated with temperature is well isolated, we were not able to clearly separate the atmospheric and hydrological 683 

loading signals in the GNSS displacement time-series. 684 

We use the results of the time-series decomposition to filter the IGb14 time-series and study the effect of removing signals 685 

associated with environmental loading and temperature-related processes on the vertical velocities and uncertainties. 686 

Removing these signals causes a quite uniform, but limited (~0.1 mm yr-1), increase of the velocities, which we interpret as 687 

due to the small negative linear trend associated with the atmospheric and hydrological loading-induced displacements. It is 688 

worth noting that the procedure used in this work to estimate the station velocities does not allow to distinguish the tectonic 689 

velocities from the contribution to the velocity induced by climate-related processes, in particular if the linear trend associated 690 

with ATML and/or HYDL time series is large. Furthermore, the filtering almost halves the uncertainties associated with the 691 

velocities and changes the noise spectra, increasing the white noise percentage to the detriment of the colored one. 692 

Although providing a geological/geophysical explanation for the observed vertical velocity pattern is out of the scope of this 693 

work, we can conclude that more precise and accurate vertical velocities, such as the one presented in this work, can be obtained 694 

by careful signal detection and filtering. This can help develop better spatially resolved models, aiming at a more effective 695 

understanding of the relative contribution of the different ongoing geodynamic and tectonic processes shaping the present-day 696 

topography of the Alps. 697 

Code and data availability 698 

The MATLAB code for vbICA decomposition is available from http://dx.doi.org/10.17632/n92vwbg8zt.1. Global datasets 699 

used for the hydrological, atmospheric and ocean load model are taken from http://loading.u-strasbg.fr/ (EOST model) and 700 

http://rz-vm115.gfz-potsdam.de:8080/repository/entry/show?entryid=24aacdfe-f9b0-43b7-b4c4-bdbe51b6671b (LSDM-701 

based model). Temperature data are available on https://www.ecad.eu/download/ensembles/download.php and  IGb14 GPS 702 

time series on https://doi.pangaea.de/10.1594/PANGAEA.938422. 703 
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