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Abstract. We study time series of vertical ground displacements from continuous GNSS stations to investigate the spatial 

and temporal contribution of different geophysical processes to the time-varying displacements that are superimposed on 

vertical linear trends across the European Alps. We apply a multivariate statistics-based blind source separation algorithm to 

both GNSS displacement time series and to ground displacements associated with atmospheric and hydrological loading 10 

processes, as obtained from global reanalysis models. This allows us to associate each retrieved geodetic vertical 

deformation signal with a corresponding forcing process. Atmospheric loading is the most important one, reaching 

amplitudes larger than 2 cm. Besides atmospheric loading, seasonal displacements with amplitudes of about 1 cm are 

associated with temperature-related processes and with hydrological loading. We find that both temperature and hydrological 

loading cause peculiar spatial features of GNSS ground displacements. For example, temperature-related seasonal 15 

displacements show different behaviour at sites in the plains and in the mountains. Atmospheric and hydrological loading, 

besides the first-order spatially uniform feature, are associated also with NS and EW displacement gradients.  

We filter out signals associated with non-tectonic deformation from the raw time series to study their impact on both the 

estimated noise and linear rates in the vertical direction. While the impact on rates appears rather limited, given also the 

long-time span of the time-series considered in this work, the uncertainties estimated from filtered time-series assuming a 20 

power law + white noise model are significantly reduced, with an important increase in white noise contributions to the total 

noise budget. Finally, we present the filtered velocity field and show how vertical ground velocities are positively correlated 

with topographic features of the Alps.   

 

Summary We study time varying vertical deformation signals in the European Alps by analyzing GNSS position time 25 

series. We associate each deformation signal to geophysical forcing processes, finding that atmospheric and hydrological 

loading are by far the most important cause of seasonal displacements, together with temperature-related processes. 

Recognizing and filtering out non-tectonic signals allows us to improve the accuracy and precision of the vertical velocities. 
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1 Introduction 30 

The increasing availability of GNSS observations, both from geophysical and non-geophysical networks, pushed forward the 

use of ground displacement measurements to study active geophysical processes on land, ice and in atmosphere, with 

applications in a broad range of Earth science disciplines (e.g., Blewitt et al., 2018). Studies on active mountain building, in 

particular, can now benefit from the use of GNSS vertical ground motion rates to get new insights into the contribution of the 

different processes at work in the formation and evolution of mountain reliefs (e.g., Faccenna et al., 2014a; Sternai et al., 35 

2019). Proposed mechanisms of rock uplift rate include isostatic adjustment to deglaciation, tectonic shortening, isostatic 

response to erosion and sediment redistribution, isostatic response to lithospheric structural changes and dynamic adjustment 

due to sub-lithospheric mantle flow (e.g., Faccenna et al., 2014b). All these processes sum-up to contribute to the actual 

vertical ground motion rates estimated from GNSS displacement time-series, and constraining their relative contribution to 

mountain dynamics is challenging, because of the different spatial and temporal scales involved and the short observational 40 

time period with respect to the characteristic timescales of the mentioned processes.  

The availability of long-lasting (i.e., >8 yrs) GNSS position time-series minimizes the impact of transient and seasonal 

signals in the vertical rate estimates (Masson et al., 2019). However, it is worth considering that GNSS measurements record 

ground displacements due to a variety of multiscale processes (from continental-scale geodynamics and loading to local-

scale hydrology and tectonics), resulting in the presence of several deformation signals superimposed on the main linear 45 

trend, which is commonly associated with geodynamic processes at the scale of current, decadal, geodetic observation 

window.  

Excluding tectonic and volcanological processes, and once removed the effect of tides associated with solid earth, pole and 

ocean, variations of atmospheric pressure loading and fluid redistribution in the Earth crust are the main cause of vertical 

ground displacement recorded by GNSS stations worldwide (Liu et al. 2015). Atmospheric pressure and mass changes cause 50 

time-variable displacement because of the elastic response of the Earth surface to these load variations, with vertical 

displacements usually significantly larger than the horizontal ones, which appear as spatially-correlated signals with a 

dominant one year period (e.g., Fu and Freymueller, 2012; Fu et al., 2012). Seasonal displacements are also caused by non-

tidal sea surface fluctuations. This process is of particular relevance in areas near the oceans, while in the inlands its effect is 

significantly reduced (van Dam et al., 2012).  55 

The presence of spatially-correlated signals in GNSS time-series can result from either the aforementioned large scale 

processes, generally described as common mode signals (CMS), or processing errors, generally described as common mode 

error (CME), like the mismodeling of displacements caused by solid Earth, ocean and atmospheric, and satellite orbits 

mismodeling, which induces draconitic signals (Dong et al., 2006). 

In the literature, the distinction between CMS and CME is not always clear, and spatially correlated signals are often 60 

removed from the time series as CME without attempts of interpretation (e.g., He et al., 2017; Hou et al., 2019; Serpelloni et 

al., 2013; Kreemer and Blewitt, 2021). Depending on the pursued goal, this approach can be fair. For example, if we were 
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interested in the study of long-term linear deformation, we might consider CMS as CME, but it is worth noting that the 

“CME” definition for signals clearly associated with geophysical processes might be misleading. The removal of the 

CME/CMS in GNSS position time-series, which is also known as time-series filtering, can help improve the precisions of the 65 

estimated linear velocities. Moreover, a better understanding of CMS/CME origin can also provide new information on other 

deformation mechanisms.  

Here we use the European Alps as a natural laboratory to investigate the spatial and temporal contribution of different 

geophysical processes, which we identify through a variational Bayesian Independent Component Analysis (vbICA), on the 

vertical ground displacements recorded by a dense and spatially uniform network of continuous GNSS stations in the 2010-70 

2020 time-span. The Alps represent the highest and most extensive mountain range of Europe (see Fig. 1). We focus on the 

vertical component, which is nominally less accurate and precise than the horizontal ones, because this mountain belt is 

characterized by significant ground uplift and spatial vertical velocity gradients that are correlated with topography 

(Serpelloni et al., 2013). The present-day convergence between Adria and the Eurasian plate is largely accommodated in the 

Eastern Southern Alps (e.g., Serpelloni et al., 2016) where the Adriatic lithosphere underthrusts the Alpine mountain belt, 75 

and here part of the observed vertical uplift is associated with active tectonics (Anderlini et al., 2020). Conversely, in other 

Alpine domains, positive vertical velocities most likely derive from a complex interplay of deep-seated geodynamic and 

isostatic processes (e.g., Sternai et al., 2019). In the Alpine framework, more accurate and precise measurements of geodetic 

vertical ground motion rates can provide new constraints on the dynamics contributing to the ongoing vertical rates and their 

spatial variations, with implications for the study of mountain building processes, response to deglaciation and active 80 

tectonics. 

The structure of this work is as follows: in Section 2 we present methods commonly used for extracting spatially-correlated 

signals in GNSS time series; in Section 3 we describe the data and methods used in this work; in Section 4 we characterize 

the spatio-temporal behavior of three different independent datasets (GNSS vertical displacements, atmospheric and 

hydrological loading models displacement time series) applying on each of them a vbICA decomposition and studying how 85 

they are related. This allows us to spatially and temporally characterize the signals contributing to the measured GNSS 

displacement time series and associate them with geophysical processes. We also estimate the vertical trend and the noise 

features of the GNSS stations after removing the non-tectonic signals identified with the vbICA analysis. In Section 5 we 

compare the results of different filtering methods and use the results of our time-series analyses in order to evaluate the 

effects of the signal filtering on the accuracies and precisions of the vertical velocities of the study region, which is of 90 

particular importance to better characterize the processes generating the Alps uplift. 
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Figure 1: Map of the study area showing the location of GNSS stations. Coloured circles show GNSS stations considered in the 95 

time-series analysis, with colours representing the length of the time-interval for which data are available at each station (0-25 

years). The grey circles show GNSS stations not included in the time-series analysis to reduce contamination of deformation 

processes not associated with the Alps. Dark grey lines represent mapped faults from the Geodynamic Map of the Mediterranean. 

The dashed box includes GNSS stations affected by anthropogenic deformation signals (Palano et al., 2020). 

2 Methods for the spatially-correlated signals extraction in GNSS time series 100 

Two widely used techniques for extracting CMS from a GNSS network are the Stacking Filtering Method (SFM, Wdowinski 

et al., 1997) and the Weighted Stacking Filtering Method (WSFM, Nikolaidis, 2002), which differs from the first because of 

a weighting factor based on the uncertainty associated with the GNSS data at each epoch.  

Examples of time series filtering with the WSFM are provided by Ghasemi Khalkhali et al. (2021) in Northwest Iran, Jiang 

et al. (2018) in California and by Zhang et al. (2020) in China. The networks of the aforementioned studies span less than 105 

1000 km. However, when considering networks covering larger areas, the assumption that the CMS has uniform spatial 

distribution throughout the network is not valid (Dong et al., 2006; Tian and Shen, 2016; Ming et al., 2017), and the stacking 

methods become imprecise. 

To take into account spatial heterogeneities, Tian and Shen (2011) propose an alternative stacking approach: the Correlation-

Weighted Spatial Filtering (CWSF) method. Unlike the SFM, CWSF includes the spatial variability of CMS through a 110 

weighting factor, which depends on the correlation coefficient between the residual position time series. In a later work, Tian 

and Shen (2016) include in the weighting factor the information relative to the distance between the stations. Zhu et al. 

(2017) use CWSF to estimate the CMS on the Crustal Movement Observation Network of China and discuss the effects of 
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the thermal expansion and environmental loading, which includes atmospheric pressure loading, non-tidal ocean loading and 

continental water storage. They find that while vertical CMS are mainly associated with environmental loading, thermal 115 

expansion plays a minor role.  

A filtering method similar to CWSF, called CMC Imaging, is developed and used by Kreemer and Blewitt (2021) in western 

Europe. While the authors do not explore the nature of the extracted CMS, they show that the CMC Imaging method is very 

effective in filtering out CMS from GNSS time series, increasing the accuracy and precision of the trend estimation. In 

particular, they show that the minimum length of a time series needed to retrieve the long term velocity, within a given 120 

confidence limit, is almost halved after the filtering. 

Multivariate statistical techniques like Principal Component Analysis (PCA) and Independent Component Analysis (ICA) 

are filtering techniques based on a completely different approach than stacking. Since they allow to account for the spatial 

variability of CMS (Dong et al. 2006), ICA and PCA are used to characterize and interpret them. Multivariate statistics 

techniques are also applied to study spatially-correlated seasonal displacements, which have been the target of several 125 

researches in the last few years. 

In California, Tiampo et al. (2004) associate a seasonal signal, extracted through the Karhunen-Loeve expansion technique, 

with the combined effect of groundwater and pressure loading. In Taiwan, Kumar et al. (2020) find a close relationship 

between atmospheric loading and CMS, extracted using a PCA; while Liu et al. (2017) apply a ICA to show that in the Nepal 

Himalaya region annual vertical displacements are associated with atmospheric and hydrological loading.  130 

Yuan et al. (2018) use three Principal Components (PCs) for CMS filtering over China, because of the presence of spatial 

gradients related to the large extension of the study region. In that work, the authors show that environmental loading is one 

of the sources of the CMS and that vertical GNSS velocities uncertainties are significatively reduced (54%) after CMS 

filtering. Pan et al. (2019) find that the precision of the GNSS velocities, especially in the vertical component, increases after 

removing spatially-correlated signals related to draconitic errors and to climate oscillation (La Niña - El Niño). The spatially-135 

correlated signals are identified by applying a PCA to GNSS time series, where the trend and the seasonal signals are 

removed. Pan’s work is a good example of how vertical displacements are more affected by climate-related processes and 

data processing errors than the horizontal ones, demonstrating that the vertical component is particularly worth analyzing 

with care.  

The application of the ICA also proved effective for time series filtering, as shown by Hou et al. (2019): they identify 140 

spatially-correlated signals and even though they do not provide an interpretation, classifying them as CME, they show that 

the precision of the time series significantly increases after the filtering by ICA. Liu et al. (2015) use both PCA and FastICA 

algorithms (Hyvärinen and Oja, 1997) to extract and interpret CMS as caused by atmospheric and soil moisture loading in 

the UK and the Sichuan-Yunnan region in China. 

Other examples of the influence of the non-tectonic processes on vertical trend estimation are provided by Riddell et al. 145 

(2020), who study the vertical velocities of the GNSS stations in Australia to estimate the contribution of the glacial isostatic 

adjustment. One of the results of Riddel’s work is the reduction of the vertical trend uncertainty, achieved by first subtracting 
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the displacements associated with atmospheric, hydrological and non-tidal ocean loading from the GNSS time series, and 

then filtering the residuals by applying both PCA and ICA.  

The vbICA is a multivariate statistics-based blind source separation algorithm (Choudrey, 2002) implemented by Gualandi et 150 

al. (2016) for solving the problem of blind source separation of deformation signals in GNSS position-times series and has 

been successfully used to extract tectonic and hydrological transient deformation signals in (e.g., Gualandi et al., 2017a; 

Gualandi et al., 2017b; Serpelloni et al., 2018). Larochelle et al. (2018) applied vbICA to study the relationship between 

GNSS and Gravity Recovery and Climate Experiment (GRACE)-derived displacements in Nepal Himalaya and Arabian 

Peninsula, with the goal of extracting seasonal signals and identifying the processes that generate them. Serpelloni et al. 155 

(2018) and Pintori et al. (2021) use vbICA to characterize hydrological deformation signals associated with the hydrological 

cycle at a spatial scale not resolvable by GRACE observations, separating ground water storage signals from other surface 

mass loading signals; while Silverii et al. (2021) perform a vbICA decomposition on GNSS time series in the Long Valley 

Caldera region (California, USA) to separate volcanic-related signals from other deformation processes, in particular the one 

associated with hydrology. This method is also recently applied to inSAR data (Gualandi and Liu, 2021) to estimate the 160 

displacement caused by sediments’ compaction in San Joaquin Valley (California) and to separate a seasonal signal from the 

tectonic loading in the Central San Andreas Fault zone. 

3 Data and Methods 

3.1 GNSS dataset and time-series analysis 

Over the European plate, in particular, GNSS networks managed by national and regional agencies, provide a rather uniform 165 

spatial coverage (e.g., https://epnd.sgo-penc.hu/ and https://gnss-epos.eu/). Figure 1 shows the distribution of continuous 

GNSS stations operating across the great Alpine area where, excluding Switzerland for which raw observations are not 

accessible, GNSS stations cover, rather uniformly, both the mountain range and the European and Adriatic forelands. We 

analyze the raw GPS observations using the GAMIT/GLOBK (Ves. 10.71) software (Herring et al, 2018), following the 

standard procedures of the repro2 IGS reprocessing scheme (http://acc.igs.org/reprocess2.html). This is part of a large 170 

processing effort, including >4000 stations in the Euro-Mediterranean and African region, where sub-networks, made by <50 

stations, dynamically and optimally selected based on daily data availability, are processed independently with GAMIT and 

later tied together using common, sub-net, tie sites and IGb14 core-stations, using the GLOBK software. The details of the 

processing are given in the Supplementary Information S1. The result of our analysis is a set of ground displacement time-

series, realized in the IGb14 reference frame (ftp://igs-rf.ign.fr/pub/IGb14). The position time-series have been then analyzed 175 

in order to estimate, and correct, instrumental offsets due to changes in the station's equipment setup, as extracted from 

sitelog or RINEX file headers.  

We consider the vertical displacement time-series of the stations between longitude 0°-21° and latitude 42°-50°N (see 

coloured circles in Fig. 1) in the 2010-2020 time-span, excluding the sites in the northern Adriatic coast, known to be 
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affected by anthropogenic deformation signals (dashed box in Fig. 1) due to gas extraction (Palano et al., 2020) and the 180 

stations located in the northern and central Apennines, where other tectonic and geodynamic processes are going on. We 

focus on the last decade, in order to have the most uniform set of continuous measurements possible in, at least, a 10 years 

time-span. We acknowledge that some of the stations shown in Fig. 1 have much longer time-series, but this time-interval 

maximizes the number of simultaneous observations at many stations.  

The IGb14 vertical displacement time-series are analyzed with the blind source separation algorithm based on vbICA 185 

(Choudrey and Roberts, 2003; Gualandi et al., 2016). This technique falls under the umbrella of the so-called unsupervised 

learning approaches, and it aims at finding statistically independent patterns that can be linearly combined to reconstruct the 

original dataset. Differently from other commonly used ICA approaches, like for example FastICA (Hyvarinen and Oja, 

1999), the adopted vbICA is a modeling approach that uses a mix of Gaussians to reproduce the probability density functions 

(pdfs) of the underlying sources. The variational Bayesian approach introduces an approximating pdf for the posterior 190 

parameters of the model, and the cost function to be maximized is the Negative Free Energy of the model, which can be 

explicitly calculated once that a specific form for the approximating posterior pdf is chosen. This framework is particularly 

advantageous because it allows for more flexibility in the description of the sources’ pdf, giving the chance to model 

multimodal distributions and to take into account missing data in the input time series. 

The input time-series contains a secular motion, roughly representing the vertical rate in the IGb14 reference frame, which is 195 

superimposed by a variety of signals, of different temporal and spatial signatures. The first step of our analysis is to estimate 

a linear component to represent the secular motion and remove it from the time series. This is required by the fact that the 

vbICA is more effective in separating the sources when the temporal correlation in the dataset is low. Here, rather than using 

a classic trajectory model (e.g., Bevis and Brown, 2014) to model and detrend the original time-series, we take this step in a 

multivariate sense. We perform a first ICA decomposition considering 8 components (or ICs). The number of components is 200 

determined by applying an F-test to establish if a more complicated model is supported by the data at a 0.05 significance 

level (Kositsky and Avouac, 2010). The results of this analysis are reported in Fig. S1, and show that one component, 

nominally IC2, contains a linear trend, with some cross-talk with a seasonal (annual) signal, as shown in Fig. 2.  
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 205 

Figure 2: Temporal evolution and spatial response of the IC2 of the GNSS decomposition. Time series have been corrected only 

for instrumental offsets. 

 

We fit a linear trend to the temporal evolution of IC2 (V2) using the function 

 210 

𝑉2(𝑡) = 𝑞 + 𝑚 ∙ 𝑡 + 𝐴 ∙ sin⁡(2𝜋 ∙ 𝑡 + 𝜑)          (1) 
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Once estimated m and q from (1) via a non-linear least square approach, we compute the displacements associated with IC2, 

considering as its temporal evolution the function y=𝑞 + 𝑚 ∙ 𝑡; then, we remove the computed displacements from each 

original, IGb14, time series, obtaining the detrended dataset used in the subsequent decomposition step. The advantage of 215 

this approach, with respect to a trajectory model, is that there is no need to assume a priori any temporal evolution of 

deformation signals except for the limited number of functions composing Eq. (1). This is particularly advantageous in cases 

where either transients of unknown origin or amplitude and/or phase fluctuations of the seasonalities are affecting some 

stations and could lead to a mismodeling by a trajectory model. Notice in particular how signals potentially biasing the linear 

trend, like the multi-annual ones in case of short time series, are separated from the IC representing the stations’ velocities. 220 

The results of the vbICA applied to the detrended time-series are shown and discussed in Sect. 4.1. 

3.2 Meteo-climatic datasets 

The results of the decomposition of the geodetic dataset are compared with the results obtained from the analysis of 

displacement time-series associated with different meteo-climate forcings. In particular, here we consider hydrological and 

atmospheric loading from global, gridded, models. These time-series are analyzed with the vbICA method already used for 225 

the geodetic dataset, and the results are compared in Sect. 3.2.  

The Land Surface Discharge Model (LSDM), developed by Dill (2008), simulates global water storage variations of surface 

water in rivers, lakes, wetlands, and soil moisture, as well as from water stored as snow and ice. The LSDM is forced with 

precipitation, evaporation, and temperature from an atmospheric model developed by the European Centre for Medium-

Range Weather Forecasts (ECMWF). Using the Green's function approach, Dill and Dobslaw (2013) compute daily surface 230 

displacements at 0.5° global grids caused by LSDM-based continental hydrology (hereinafter HYDL), and by non-tidal 

atmospheric surface pressure variations (hereinafter NTAL). We also considered the École et observatoire des sciences de la 

terre (EOST) loading service, which provides a model for the atmospheric and hydrological loading induced displacements. 

Ground displacements are computed using the Load Love Numbers estimate from a spherical Earth model (Gegout et al., 

2010). The atmospheric loading is modeled using the data of the ECMWF surface pressure, assuming an Inverted Barometer 235 

ocean response; the hydrological loading includes soil moisture and snow height estimated from the Global Land Data 

Assimilation System (GLDAS/Noah; Rodell et al., 2004). These datasets have daily temporal resolution and spatial 

resolution of 0.5°. It is worth noting that neither LSDM-based nor EOST models consider deep groundwater variations. 

GRACE data are often used to study hydrologically-induced deformation associated with groundwater; in fact, through the 

analysis of the gravity field variations, it is possible to retrieve changes through time of the water masses. GRACE has the 240 

advantage of being influenced by groundwater variations, which are not taken into account by the HYDL model, but at the 

cost of a lower temporal (i.e., monthly) and spatial (~300 km) resolution. 
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4 Results 

4.1 Decomposition of GNSS time-series 

Figure 3 shows the result of the vbICA decomposition on the detrended displacement time-series, using 7 components as 245 

suggested by the F-test.  

IC1 is a spatially uniform signal characterized by an annual signature, as shown by the power spectral density (PSD) plot in 

Fig. 3a. The color of each GNSS site in Fig. 3a represents the maximum amplitude of the displacement associated with the 

IC1. Since the colors are uniform and indicate positive displacements, it means that when V1 is increasing all stations are 

moving up, and move down when V1 decreases. For visual purposes we have normalized the temporal functions between 0 250 

and 1. The input time series are zero-mean, so to show the ICs between 0 and 1 we have introduced an offset in the response. 

This offset is correctly not taken into account when reconstructing the original time series. The mean of the maximum 

amplitudes is 26 mm, while the histogram showing the distribution of displacement amplitudes is shown in Fig. S3a. 

IC2 shows a spatial response characterized by a clear E-W gradient, but, differently from IC1, its temporal evolution has not 

a dominating frequency. The displacements associated with IC2 in the eastern stations (in blue) have opposite signs 255 

compared to the displacements associated with IC2 in the western stations (in red). This means that when V2 is increasing 

the western (red) stations move up, while the eastern (blue) ones move down. The sites in the central portion of the study 

area (in white) are very slightly affected by the IC2 component. The features of IC3 are analogous to those of the IC2, with 

the exception that a N-S gradient is present. The mean of the amplitude of the absolute value of IC2 spatial distribution is 6.7 

mm; and it is 5.6 mm for IC3. The histogram showing the distribution of the absolute value is shown in Fig. S3b and S3c. 260 

IC4 is an annual signal, as IC1, but with a heterogeneous spatial response: while some stations move upward some others 

move downward. The mean of the amplitudes absolute value of the displacements is 2.7 mm; the relative histogram is shown 

in Fig. S3d. The distribution of stations displaced with this phase difference seems to be mostly affected by geographical 

features: the stations located in mountain regions subside when V3 increases, whereas the stations far from relief move 

upward. The remaining three components are likely associated with local processes and discussed in the Supplementary 265 

Information S3. 
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Figure 3: Temporal evolution, power spectral density and spatial response of: a) IC1; b) IC2; c) IC3; d) IC4. 270 
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4.2 GNSS vs environmental-related displacements 

We analyze with vbICA the hydrological loading (HYDL) and atmospheric pressure (NTAL) induced ground displacement 

models (EOST and LSDM-based), in order to characterize the spatial pattern and temporal response associated with these 

deformation sources in the great Alpine region, and study any possible link with the geodetic deformation signals described 275 

in Sect. 4.1. 

In particular, in this section we show the results obtained using the LSDM-based models because they take into account the 

water stored in rivers, lakes and wetlands, while the EOST models do not. The results obtained using the EOST models are 

presented in the Supplementary Information S2. Figure 4 and 5 show the spatial response, the temporal evolution and the 

PSD of the ICs obtained using three components, to the NTAL (4) and HYDL (5) ground displacements. We decided to use 280 

three components to reproduce the displacement patterns of IC1, IC2 and IC3 of the GNSS decomposition. 

The first IC of both NTAL and HYDL shows a uniform spatial response, as IC1 of the GNSS dataset (Fig. 3a). The 

mean/median amplitude of the maximum displacements associated with NTAL is very similar to GNSS both in terms of 

mean/median amplitude (Table 1) and distribution (Fig. S4, a); while for the HYDL model the amplitude is about two times 

smaller than NTAL. 285 

IC2 and IC3 show E-W and N-S gradients in the spatial response, respectively, as observed  for IC2 and IC3 of the GNSS 

dataset (Fig. 3b, d). We also consider the sum of the displacement associated with NTAL and HYDL models: we use the 

notation NTAL+HYDL_ICn to indicate the sum of the displacement associated with the n-th component of the NTAL and 

HYDL decomposition. The mean of the maximum amplitude of NTAL+HYDL_IC1, NTAL+HYDL_IC2 and 

NTAL+HYDL_IC3 are 25 mm, 5.1 mm and 3.8 mm respectively; which are only slightly lower than GNSS_IC1 (26.3 mm), 290 

GNSS_IC2 (6.7 mm) and GNSS_IC3 (5.6 mm). The good agreement between the two distributions emerges also from all the 

histogram comparison, which are shown in Fig. S8, Fig. S9 and summarized in Table 1 and Table 2. 

 

Dataset IC1 mean IC2 

mean 

IC3 

mean 

IC4 

mean 

IC1 

median 

IC2 

median 

IC3 

median 

IC4 

median 

GNSS 26 mm 6.7 mm 5.6 mm 2.7 mm 27 mm 6.2 mm 5.7 mm 2.0 mm 

NTAL 25 mm 4.3 mm 2.5 mm / 25 mm 3.6 mm 2.6 mm / 

HYDL 12.2 mm 1.7 mm 2.1 mm / 12.5 mm 1.3 mm 2.1 mm / 

NTAL+

HYDL 

25 mm 5.1 mm 3.8 mm / 26 mm 4.0 mm 3.8 mm / 

Table 1. Mean and median amplitude of the maximum displacements associated with the ICs of the investigated datasets. 

 295 
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Dataset IC1 std IC2 std IC3 std IC4 std IC1 iqr IC2 iqr IC3 iqr IC4 iqr 

GNSS 4.2 mm 4.2 mm 3.2 mm 2.4 mm 5.4 mm 6.9 mm 4.4 mm 2.8 mm 

NTAL 3 mm 2.9 mm 1.3 mm / 3 mm 4.3 mm 1.7 mm / 

HYDL 1.4 mm 1.3 mm 1.1 mm / 1.2 mm 2.1 mm 1.5 mm / 

NTAL+

HYDL 

3 mm 3.5 mm 1.8 mm / 4 mm 5.2 mm 2.7 mm / 

Table 2. Standard deviation and interquartile range of the amplitude of the maximum displacements associated with the ICs of the 

investigated datasets. 

 

Concerning the temporal evolutions, IC1 of the HYDL model is an annual signal, while the IC2 and IC3 PSD plots indicate 

the presence of multi-annual signals. Unlike the HYDL decomposition, all the ICs of the NTAL decomposition contain the 300 

annual frequency, in particular IC2, whereas IC3 also contains semiannual ones. It is also worth noting that the temporal 

evolution of the ICs associated with the NTAL model are much more scattered than the ones resulting from HYDL, clearly 

indicating that the displacements due to atmospheric pressure variations can show large fluctuations at daily timescale. 

We also perform a vbICA decomposition on both datasets using two and four components, presented in the Supplementary 

Information (Fig. S6 and S7). When using only two ICs, the results obtained (Fig. S6) are very similar to the first two ICs of 305 

the 3-components decomposition. The first three ICs of the four component decompositions (Fig. S7) have both temporal 

evolution and spatial distribution very similar to what is shown in Fig. 4 and Fig. 5. IC4 of the NTAL model has an annual 

signature and a E-W gradient with a shorter wavelength compared to IC2, while IC4 of the HYDL decomposition has a NW-

SE gradient. This suggests that the N-S and E-W spatial patterns associated with the meteoclimatic datasets are a robust 

feature, being insensitive to the number of components chosen in the decomposition. It is also worth noting that the 310 

decompositions of the NTAL and HYDL models explain the 98.89% and the 97.03% of the total variance when using 3 ICs, 

suggesting that increasing the number of the ICs is not necessary. As a result, in the following discussion we refer to the 

results obtained from the 3-components decomposition using the LSDM-based models, but remember that the results 

obtained using the EOST models are fully comparable (Supplementary Information S2). 

 315 
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Figure 4: Temporal evolution, power spectral density and spatial response of IC1, IC2, IC3 of the NTAL model. 
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Figure 5: Temporal evolution, power spectral density and spatial response of IC1, IC2, IC3 of the HYDL model. 320 

In order to quantify the agreement between the displacements associated with the hydrological and atmospheric pressure 

loading and the ICs of the GNSS dataset displaying consistent spatial patterns (IC1, IC2, IC3), we compute, for each GNSS 

station, the Lin concordance correlation coefficient (Lin, 1989) between the displacement reconstructed by the ICs 

associated with the different LSDM-based models. Unlike Pearson's correlation coefficient, Lin’s one takes into account 

similarities on both amplitudes and shapes of two time series.  325 
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The IC1 of the GNSS decomposition (GNSS_IC1) is compared with the first component of both NTAL (NTAL_IC1) and 

HYDL (HYDL_IC1) datasets by associating each GNSS site with the nearest grid-point where NTAL and HYDL 

displacements are computed.  

When considering the NTAL_IC1, we observe (Fig. S8a) a high temporal correlation with GNSS_IC1, while the correlation 

between GNSS_IC1 and HYDL_IC1 is significantly lower (Fig. S9a). In both cases the value of the Lin correlation 330 

coefficient is quite uniform in the dataset (~0.68 for NTAL_IC1 and ~0.25 for HYDL_IC1). It is worth noting that if we 

consider NTAL+HYDL_IC1, the correlation with GNSS_IC1 increases to ~0.73 (Fig. 6). As a result, we can interpret 

GNSS_IC1 as the combined contribution of NTAL and HYDL, where NTAL plays the dominant role. 

When considering IC2, we observe similar correlations between GNSS_IC2 and either NTAL_IC2 or HYDL_IC2 (Fig. S8b, 

S8b). Nonetheless, in this case the correlation patterns are less uniform than the IC1 case, and few stations are even 335 

negatively correlated with both NTAL_IC2 and HYDL_IC2 displacements. The sites where GNSS_IC2 displacements are 

negatively or weakly correlated with NTAL_IC2 are the ones with the lowest IC2 amplitude. In fact, if we consider the 

stations whose maximum displacements associated with GNSS_IC2 are larger than 3 mm, their mean Lin correlation with 

NTAL_IC2 is 0.52; while the stations with amplitudes smaller than 3 mm have a mean correlation of 0.17. This is due to the 

fact that, given the low displacements associated at these stations, the correlation is more sensitive to noise. The agreement 340 

between the GNSS_IC2 and NTAL_IC2 is also confirmed by the Pearson correlation coefficient between the temporal 

evolution of the two ICs, which is 0.63. The same pattern is observed when comparing GNSS_IC2 with NTAL+HYDL_IC2 

(Fig. 6): using 3 mm as threshold between large and small GNSS_IC2 maximum displacements, the mean correlation is 0.57 

for the stations most affected by this signal and 0.14 for the remaining ones. This suggests that also GNSS_IC2 is likely 

related to NTAL and HYDL loading processes.  345 

The correlation between GNSS_IC3 and NTAL+HYDL_IC3 resembles what just shown for IC2 (Fig. 6): at sites where the 

GNSS_IC3 maximum amplitude is larger than 3 mm the mean correlation with NTAL+HYDL_IC3 is 0.44; while it is 0.10 

for the remaining ones. As for IC1, both GNSS_IC2 and IC3 displacements are best reproduced when considering the 

combined effect of NTAL and HYDL (see Fig. S8c, S9c compared to Fig. 6).  

To summarize, the three common mode signals components of the GNSS decomposition (IC1, IC2, IC3) are representative 350 

of the combined effect of the atmospheric and hydrological loading. Due to the similarity between the spatial response of 

displacements associated with these two processes, it is possible that the vbICA technique is not able to separate them in the 

geodetic data; nonetheless, it highlights their spatial variability through IC2 and IC3.  

Examples of comparison between climate-related displacements reconstructed at two different sites and the GNSS 

decomposition are shown in Fig. 7.  355 
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Figure 6: Lin correlation coefficients between: a) GNSS-IC1 and NTAL+HYDL_IC1; b) GNSS_IC2 and NTAL+HYDL_IC2; c) 

GNSS-IC3 and NTAL+HYDL_IC3. Histograms of the correlation coefficients are also reported. 
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 360 

 

Figure 7: Comparison, at the 0405 site, between the displacements associated with: a) GNSS_IC1 and NTAL+HYDL_IC1; b) 

GNSS_IC2 and NTAL+HYDL_IC2 ; c) GNSS_IC3 and NTAL+HYDL_IC3. d), e), f) are the same as a), b), c), respectively, for the 

CJIH site. A 30-days moving average filter is applied to better visualize the data. 

 365 

Concerning IC4 of the GNSS decomposition, it describes vertical motions in phase, and very well correlated, with the daily 

mean temperature of the investigated area (Fig. 8). Temperature data are provided by the E-OBS dataset from the EU-FP6 

project UERRA (https://www.uerra.eu; Cornes et al., 2018). From the point of view of the spatial distribution of this 

component, most of the stations located in the mountain chain subside when the temperature increases, while the remaining 

stations uplift as the temperature increases. Figure S15 shows some cross sections plotting the maximum vertical 370 

displacements associated with IC4 together with topography, showing this peculiar spatial pattern. 

https://doi.org/10.5194/se-2021-136
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.



19 

 

 

Figure 8: Comparison between the daily mean temperature of the study area (orange) and the temporal evolution of IC4 (black 

dots). The shaded area represents the time interval associated with the maximum displacements shown in Fig. S15. 

4.3 Vertical ground motion rates and noise analysis 375 

We show the impact of the filtering on GNSS displacement rates and uncertainties, where the filtered time-series are the 

ones with the first 4 ICs discussed in Sect. 4.1, which represent the combined effect of the temperature and of the 

atmospheric and hydrological loading, removed from the raw ones. We refer to these corrected time series as ICs filtered 

time series. 

Velocities and uncertainties are estimated using the Hector software (Bos et al., 2013), assuming a priori noise models. Noise 380 

is commonly described as a power-law process 

𝑃𝑥(𝑓) = 𝑃0(𝑓/𝑓0)
𝑘                (2) 

where 𝑃𝑥 is the power spectrum; 𝑓 the temporal frequency; 𝑃0 and 𝑓0 are constants; 𝑘 is the spectral index and it indicates the 

noise type.  

If the power spectrum is flat (i.e., all frequencies have the same power), then the errors are statistically uncorrelated from one 385 

another, the spectral index is zero and the noise is called “white”. Otherwise the noise shows a dependency with the 

frequency content, and it is referred to as “colored”. In GNSS time series it has been typically observed the presence of noise 

with a power spectrum reduced at high frequencies, with the most popular models being a mix of random walk or “red” 

noise (𝑘 = −2) and flicker or “pink” noise (𝑘 = −2). Red noise  is typically associated with station-dependent effects, while 

pink noise can be associated with mismodeling in GNSS satellites orbits, Earth Orientation Parameters (Klos et al., 2018) 390 

and spatially-correlated large-scale processes of atmospheric or hydrospheric origin (Bogusz and Klos, 2016). Flicker + 
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white noise model is commonly used in the analysis of GNSS time-series (e.g., Ghasemi Khalkhali et al., 2021 and 

references therein).  

In order to select the best noise model for the input time series, we test different combinations of noise models, choosing the 

one with the lowest value of the Akaike Information Criterion (AIC) and of the Bayesian Information Criterion (BIC). In 395 

particular we consider: 

- Flicker + white noise; 

- A general power-law (𝑘not assigned) + white noise (PL+WN); 

- Flicker + Random walk + white noise. 

 400 

Following the AIC and BIC criteria, the preferred noise model is PL+WN, where the parameters of the noise model (i.e., the 

spectral index 𝑘) are estimated by the software using the Maximum Likelihood Estimation (MLE) method. MLE is also used 

to estimate the station's rates and the associated uncertainties. 

We then compare the vertical velocities, and their uncertainties, obtained before and after ICs filtering (Fig. 9). Although 

annual and semi-annual signals are often included in the time series modeling, the displacements associated with the first 405 

four ICs already contain these seasonal terms (Fig. 3). Consequently, the unfiltered time series are modeled only with the 

linear trend plus temporal correlated noise, while in the unfiltered time series modeling annual and semi-annual terms are 

also included. 

Fig. 10a shows histograms representing the differences in the vertical velocity estimates obtained from filtered and unfiltered 

time-series. The differences are spatially quite homogeneous and of the order of tenths of mm yr-1, with a median value of -410 

0.15 mm yr-1. The velocity differences are almost entirely caused by the displacements associated with IC1, which have a 

median rate of -0.12 mm yr-1.  

Concerning the uncertainties associated with the vertical velocity, the impact from ICs filtering is much more important (Fig. 

9, f and Fig. S17): the initial median error is 0.30 mm yr-1, the final 0.17 mm yr-1.  

 415 
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Figure 9: a) Vertical velocities from  the unfiltered GNSS time-series; b) vertical velocities from ICs filtered time series, obtained 

after subtracting the displacements associated with the first four ICs; c) difference between the velocities of panel a) minus 

velocities of panel b). d), e), f), same as a), b), c), but showing the error associated with the vertical velocities. 

 420 
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Figure 10: Histogram of the difference between the trend of the unfiltered time-series and the filtered ones using: a) the 

displacements associated with the first 4 ICs; b) the Weighted Stacking Filtering Method; c) the Stacking Filtering Method. 430 

 

The ICs filtering also has a strong impact on the noise characteristics. In fact, while in the unfiltered time series the 

percentage of white noise of the PL+WN model is negligible in most of the stations, it becomes dominant in the filtered ones 

(Fig. 11). This indicates that a large portion of the power-law noise is associated with the displacements described by the 

first 4 ICs, i.e. the atmospheric and hydrological loading and temperature-related processes.  435 

https://doi.org/10.5194/se-2021-136
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.



23 

 

 

Figure 11: Histograms of: (a) white noise percentage in the unfiltered time-series and (b) filtered time-series. (c), (d) same as (a) 

and (b) for the spectral index. The filtering is done by subtracting the displacements associated with the first 4 ICs. 

5 Discussion 

5.1 Displacement time series filtering 440 

Considering that the stacking methods are widely used to estimate and remove CMS and CME from GNSS time-series (see 

Sect. 2), we compare the results obtained adopting the SFM and WSFM methods with the output of vbICA, in particular 

with the displacements associated with IC1 (Fig. 3a), which is clearly a CMS, given its homogeneity in its spatial response. 

CMS with the stacking methods is estimated using the GNSS_TS_NRS code (He et al., 2020) and it is compared with the 

displacements associated with IC1 estimating the Lin’s correlation coefficient. Figure 12 shows that there is an almost-445 

perfect agreement between the IC1-related displacements and the CMS extracted with both stacking methods, suggesting 

that even simple approaches, such as SFM and WSFM, perform well at the scale of the study area. 
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We also estimate the vertical velocities of the GNSS stations after filtering the CMS using  the two stacking methods. The 

rate differences between unfiltered and filtered time series have a median value of -0.15 and -0.10 mm yr-1, using the WSFM 

and SFM, respectively (Fig. 10b, c). These values are close to the rates associated with IC1 displacements (median = -0.12 450 

mm yr-1), which are the primary cause of the velocity difference obtained from raw and ICs filtered time-series, suggesting 

that the rate difference does not strongly depend on the filtering method adopted.  

As already shown in Sect. 4.3, the errors associated with the trends of the unfiltered and filtered time series, which have 

median values of 0.30 and 0.17 mm yr-1, respectively, have about the same value of the trend difference between filtered and 

unfiltered time series. It follows that the trend differences are, from a statistical point of view, barely significant. 455 

Nonetheless, it is worth considering that, according to the LSDM-based model, the displacements resulting from the 

combined effect of hydrological and atmospheric loading have a negative rate (median = -0.11 mm yr-1; Fig. S16c) in 

agreement with the rate observed for IC1 (V1 in Fig. 3), suggesting that environmental loading may cause a small 

subsidence, at least in the observed time-span, which is captured by IC1. However, the rates of the displacements due to 

hydrological loading are model-dependent: according to LSDM, they show a negative linear trend (Fig. S16b), as opposed to 460 

what is observed using the EOST model (Fig. S16e). As a result, the rates of the displacements due to atmospheric + 

hydrological loading computed using the EOST model are not in agreement with the rates of the IC1 displacements. This is 

most likely a consequence of the differences in modeling the hydrological loading-induced displacements; in particular, the 

EOST model takes into account only water stored as snow and soil moisture, whereas the LSDM model also includes the 

contribution of rivers, lakes and wetlands.  465 
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Figure 12: Comparison between the displacement associated with IC1 at the ZYWI site and the CME estimated with 

the Stacking Filtering Method (a) and the Weighted Stacking Filtering Method (c). We also show the histogram 470 

representing the Lin correlation between the displacements associated with the IC1 and the CME estimated with the 

Stacking Filtering Method (b) and the Weighted Stacking Filtering Method (d) at each site. We point out that the 

CME computed with the aforementioned methods is, by definition, the same at each station; whereas the 

displacements associated with IC1 have the same temporal evolution but (slightly) different amplitudes. We plot the 

station ZYWI as an example. 475 

 

The stacking methods used to estimate the CMS are easier and faster to implement than the vbICA analysis. Depending on 

the research target, these common mode signals might be worth removing, in order to obtain a more precise, and eventually 

accurate, estimation of the GNSS linear velocities or retained to study, for example, seasonal deformation. Multivariate 

statistics and/or source separation algorithms applied to ground displacement time-series allow one to extract and interpret 480 

them in terms of the physics behind them, through a comparison with other displacement datasets or models. Furthermore, 

time series can be filtered not only from CMS, but also from signals associated with spatially uncorrelated processes, as we 

did in Sect. 4.3 estimating the vertical velocities filtered from non-tectonic processes related to the first four ICs.  
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In Sect. 4.3 we also show that the colored noise in the time series is significantly reduced by the ICs filtering. This result is 

in agreement with the results of recent studies conducted in other regions, such as Antarctica (Li et al., 2019) and China 485 

(Yuan et al., 2018). Both studies show that ICA or PCA filtering of GNSS time series suppress the colored noise amplitudes 

but have little influence on the amplitude of the white noise. Furthermore, Klos et al. (2021) analyzes  the effect of 

atmospheric loading on the noise of GNSS stations in the European plate, finding that the noise is whitened when NTAL 

contribution is removed. 

The description of atmospheric processes at the scale of the Alps can be seen as small scale when compared, for example, to 490 

the circulation in the northern hemisphere. Small scale processes are usually interpreted as noise, but they may affect the 

large-scale dynamics (e.g., Faranda et al., 2017). It follows that these small scale processes should be represented with an 

appropriate stochastic formulation. Since the CMS are typically characterized by PL+WN noise, the link that we find 

between CMS and atmospheric and hydrological signals could provide a hint on the type of noise that is more suitable to 

describe such small scale perturbations when modeling the large-scale dynamics of the atmosphere. 495 

5.2 ICs interpretation 

Our analysis supports the interpretation that the displacements associated with IC1, IC2 and IC3 are caused by the combined 

effect of the hydrological and atmospheric loading, whose spatial responses are not homogeneous over the study area. In 

support of this interpretation we can refer to Brunetti et al. (2006), who applied a PCA to precipitation data in the great 

Alpine area. They highlighted the presence of N-S and E-W gradients in the spatial response of meteo-climating forcing 500 

processes. The authors suggest that the main cause of the spatial and temporal variability of the precipitation is the North 

Atlantic Oscillation (NAO), which also causes fluctuation of the atmospheric pressure (Vicente-Serrano and López-Moreno, 

2008). It is then likely that NAO influences both NTAL and HYDL, which is mainly forced by precipitation. 

The interpretation of IC4 is less straightforward. Changes in the temperature can induce vertical displacements in different 

ways: 1) temperature increase can cause monument/bedrock thermal expansion and 2) drying of the soil induces uplift 505 

because of the reduction of the elastic hydrological load. In addition, in the alpine region the water content in the valleys 

increases as the temperature increases because of the snow and ice melting, so that the hydrological load is higher during 

summertime than winter (Capodaglio et al., 2017). This may be an example of a small-scale hydrological process that is 

likely badly reproduced by the global HYDL model. It follows that temperature-related vertical displacement at GNSS 

stations might be a proxy for local hydrological processes, whose effects are reproduced by IC4. Other processes that can 510 

potentially induce uplift during winter are the ice formation, and subsequent melting, in the antenna and antenna mount 

(Koulali and Clarke, 2020) and soil freezing (Beck et al., 2015). While the majority of the maximum displacements 

associated with IC4 are smaller than 2 mm, they can reach values up to 1 cm (Fig. S3d). The sites with the largest IC4-

related displacements are located, when uplift occurs during temperature increases, in the northern sector of the Paris Basin 

and in the Po plain; while in the case of uplift associated with temperature decrease, the largest IC4-related displacements are 515 

recorded in the alpine valleys.  
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In the introduction we mentioned the effects of the non-tidal ocean loading on the vertical displacements and both LSDM-

based and EOST models provide estimation of them. In the study region, this process induces displacements that are 

significantly smaller than both atmospheric and hydrological loading, due to the distance from the oceans of the study area, 

so we do not take it into account. According to the estimation of the LSDM-based model, the maximum amplitude of the 520 

spatial mean over the study region of the displacements associated with it is 4.3 mm; while the maximum amplitude of the 

displacements associated with atmospheric and hydrological loading are 23.8 mm and 12.2 mm, respectively. Figure S5 

provides a comparison of the spatial mean of the displacements associated with the three deformation mechanisms. 

5.3 Vertical velocity gradients across the Alps 

The final (ICs filtered) and raw vertical velocity fields do not differ much in terms of uplift/subsidence patterns (see Fig. 10), 525 

both showing the belt of continuous uplift, of the order of 1-2 mm yr-1, along the Alpine mountain chain. As shown in Fig. 

10c, the vertical velocities from filtered time-series show barely faster positive rates, mainly as an effect of filtering out 

hydrological and atmospheric displacements of IC1, as discussed above. Figure 13 shows the continuous vertical velocity 

field obtained from the discrete values adopting the multiscale, wavelet-based, approach described in Tape et al. (2009), and 

some vertical velocity and topographic profiles running across the great Alpine area. The same figure obtained using 530 

velocities and uncertainties from unfiltered time-series is shown in the Supplementary Information (Fig. S19). Despite the 

similarity in the velocity patterns, the improvements in both the precision and consistencies of vertical spatial gradients are 

apparent in cross section view. Profile E-E’ in Fig. 13 shows positive vertical rates increasing from W to E, with the 

maximum uplift rates in the central Alps, and the positive correlation with the topography along the chain axis, with 

decreasing rates toward the east, changing to subsidence east of Lon. ~14.5° E, while entering the Pannonian basin domain. 535 

The correlation with topography is also clear in the chain-normal profiles (A-A’, B-B’, C-C’ and D-D’). In the Western and 

Central Alps (A-A’ and B-B’) the maximum uplift rates are located in correspondence with the maximum elevation, whereas 

in the Eastern Alps (C-C’ and D-D’) the maximum uplift rates are shifted southward. The Eastern Southern Alps is the 

region where the largest part of the Adria-Eurasia converge is accommodated (1-3 mm yr-1), through active thrust faults and 

shortening (Serpelloni et al., 2016). Here, maximum uplift rates are likely due to interseismic deformation, and their 540 

position, across the belt, is driven by thrust fault geometries, slip-rates and locking depths (Anderlini et al., 2020). 

Concerning the south Alpine foreland in the Po Plain and Venetian plain, Fig. 13 shows a decrease in the vertical velocities 

from west to east, with barely positive rates in the western Po Plain and increasing subsidence rates in the northern Adriatic 

and in the northern Apennines foreland.  

In the Alpine foreland, positive, sub-mm yr-1, velocities are present in the Jura Mts. and the Molasse basin, but uplift extends 545 

further northward in the Black Forest and the Franconian Platform, in southern Germany, and in the southern part of the 

Bohemian Massif. Overall, in the portion of central Europe investigated in this work, we see two different patterns: prevalent 

stable to slowly-subsiding sites (< 1 mm yr-1) are present west of the Rhine graben, whereas a prevalence of slowly uplifting 

sites (< 1 mm yr-1) is present east of it. Profile F-F’ in Fig. 13 better highlights this pattern. Across the Upper Rhine Graben, 
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the weak uplift signal in the graben’s shoulders, the Vosges Mts and Black Forest, is associated with subsidence of stations 550 

located within the graben, according to Henrion et al. (2020). To the east, uplift in the Franconian Platform and the 

Bohemian Massif is only partially correlated with topography. It is still debated whether uplifted regions across NW Europe 

attest to lithospheric buckling in front of the Alpine arc or were randomly produced by a swarm of baby plumes. Uplift 

propagation by interferences with the Western Carpathians and possible mantle processes, as suggested by the positive 

dynamic and residual topography (Faccenna et al., 2014), may contribute to the observed uplift in the Bohemian Massif. 555 

Sternai et al. (2019) investigated the possible relative contribution of different geophysical and geological processes in the 

actual vertical velocity budget over the Alps, suggesting that the interaction among tectonic and surface mass redistribution 

processes, rather than an individual forcing, better explain vertical deformation in the Alps. Mey et al. (2016) suggested that 

~90% of the present-day uplift of the Alpine belt is due to the melting of the LGM ice cap. While it is difficult to 

independently constrain the patterns and magnitude of mantle contributions to ongoing Alpine vertical displacements at 560 

present, lithospheric adjustment to deglaciation and erosion are by far the most important ongoing process, but other authors 

suggest that other processes are currently shaping the vertical ground motion pattern. In the western and central Alps, active 

convergence is inactive or limited, the residual uplift rates, after correction from isostatic contributions, are likely due to 

deep-seated mantle processes, including for example detachment of the western European slab and dynamic contributions 

related to sub-lithospheric mantle flow (Chery et al., 2016; Nocquet et al., 2016; Sternai et al., 2019). A tectonic contribution 565 

to the ongoing uplift is, instead, more likely in the Eastern Alps, and in particular in the Southeastern Alps, where the Adria-

Europe convergence is accommodated. However, Anderlini et al (2020) observed that more accurate glacio isostatic models 

would be needed when interpreting tectonic contributions to uplift at the edge of ice caps, as in the Eastern Southern Alps. 
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Figure 13: Vertical velocities from filtered time-series (colored circles), continuous velocity field, topographic and swath profiles 580 

across the great Alpine area. Each profile (green line) encompasses a 50+50 km swath. BG: Bresse Graben; JM: Jura Mts.; VG: 

Vosges Mts.; BF: Black Forest; URG: Upper Rhine Graben; FP: Franconian Platform; MB: Molasse Basin. 
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6 Conclusions 

The application of a blind source separation algorithm to vertical displacement time-series obtained from a network of GNSS 

stations in the Great Alpine Area allows us to identify the main sources of vertical ground deformation. Besides the linear 585 

trend, vertical displacements are caused by: 1) atmospheric pressure loading, 2) hydrological loading and 3) temperature-

related processes. The analysis of displacement time series of environmental loading shows that the largest vertical motions 

are caused by the variation of the atmospheric pressure, in particular when considering daily/weekly timescales. Annual 

displacements are more clearly associated with hydrological loading and temperature-related processes. However, while 

deformation associated with temperature is well isolated, we were not able to clearly separate the atmospheric and 590 

hydrological loading signals in the time-series. 

We use the results of the time-series decomposition to filter the raw time-series and study the effect of removing signals 

associated with environmental loading and temperature-related processes on the vertical velocities and uncertainties. 

Removing these signals causes a quite uniform, but limited (~0.1 mm yr-1), increase of the velocities due to the small 

negative trend associated with the atmospheric and hydrological loading-induced displacements. Furthermore, the filtering 595 

almost halves the uncertainties associated with the velocities and changes the noise spectra, increasing the white noise 

percentage to the detriment of the colored one. 

Although providing a geological/geophysical explanation for the observed vertical velocity pattern is out of the scope of this 

work, we can conclude that more precise and accurate vertical velocities, such as the one presented in this work, can be 

obtained by careful signal detection and filtering. This can help develop better spatially resolved models, aiming at a more 600 

effective understanding of the relative contribution of the different ongoing geodynamic and tectonic processes shaping the 

present-day topography of the Alps. 
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