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Abstract. For the first time, we apply a full-scale 3D seismic virtual-source survey (VSS) for the purpose of near-mine mineral 

exploration. The data was acquired directly above the Kylylahti underground mine in Finland. Recorded ambient noise (AN) 15 

data is characterized using power-spectral density (PSD) and beamforming. Data has most energy at frequencies 25-90 Hz and 

arrivals with velocities higher than 4 km/s have wide range of azimuths. Based on the PSD and beamforming results, we 

created 10-day subset of AN recordings that were dominated by multi-azimuth high-velocity arrivals. We use an illumination-

diagnosis technique and location procedure to show that the AN recordings associated with high apparent velocities are related 

to body-wave events. Next, we produce 994 virtual-source gathers by applying seismic-interferometry processing by cross-20 

correlating AN at all receivers resulting in full 3D VSS. We apply standard 3D time-domain reflection seismic data processing 

and imaging using both a selectively stacked subset and full passive data, and validate the results against a pre-existing detailed 

geological information and 3D active-source survey data processed in the same way as the passive data. The resulting post-

stack migrated sections show agreement of reflections between the passive and active data and indicate that VSS provide 

images where the active-source data are not available due to terrain restrictions. We conclude that while the all-noise approach 25 

provides some higher quality reflections related to the inner geological contacts within the target formation and the general 

dipping trend of the formation, the selected subset is most efficient in resolving the base of formation. 

1 Introduction 

Ambient noise (AN) seismic interferometry (SI) principles can be used to extract the reflection response of the subsurface at 

different scales (Daneshvar et al., 1995; Draganov et al., 2009, 2013; Ruigrok et al., 2010; Ryberg, 2011; Quiros et al., 2016). 30 

However, the original derivations of SI, as well as the majority of surface-seismic applications have considered relatively 

simple geological structures (sedimentary layers). It was only recently that ANSI was for the first time used for reflection 
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imaging in much more complex crystalline rock - also known as hardrock - environments. Cheraghi et al. (2015) demonstrated 

that the passive seismic recordings and SI are capable of providing 3D image of the moderately dipping folded volcanic rocks 

at the Lalor Lake mining camp in Canada. The passive results were benchmarked against an active-source 3D survey. The 35 

final conjecture of the Lalor Lake study was that the future passive surveys should be acquired with longer offsets, shorter 

receiver spacing, and wider azimuth distribution to address the potential of the method to produce convincing images of steeply 

dipping reflections in the crystalline rock environments.  

The most recent ANSI study near Marathon, Ontario in Canada (Dales et al., 2020) employed the above-mentioned principles 

by combining dense large receiver number (large-N) array with an additional receiver line that had even denser receiver spacing 40 

than the rest of the grid. In line with the already postulated selective stacking to enhance body-wave reflections (Draganov et 

al., 2013), the authors selectively stacked recordings (31 hours out of the 30 days) along the more densely spaced receiver line. 

It was shown that higher frequency (> 10 Hz) body-wave sources generated by trains and cars (thus predominantly at the 

surface) could be used to image a major dipping layer interpreted as the gabbroic intrusion that hosts Cu-PGE mineralizations 

in the area, and the extent of which provides crucial information for guiding mineral exploration. At the same time, the authors 45 

concluded that even better imaging could have been obtained if the active mine were closer and blasting more frequently, 

providing body-wave energy also from beneath the array.  

The study presented in this paper was also inspired by the pioneering work at Lalor Lake. We designed a new seismic 

experiment in order to test the feasibility of ANSI to produce a reflection seismic 3D image of a much more complex medium 

when compared to the Lalor Lake mining camp setting. In 2016, we deployed a regular 3D passive seismic survey consisting 50 

of ca. 1000 receivers (details to follow in Sect. 3) recording 30 days over the polymetallic Kylylahti underground mine located 

in eastern Finland. The already existing detailed geological data and models and extensive earlier, as well as new, active source 

reflection seismic data acquired in parallel to the passive-seismic survey made the area attractive for testing and validating the 

3D virtual-seismic survey (VSS) methodology.  

The ore-bearing ophiolite-derived altered mafic/ultramafic rocks are severely folded at Kylylahti and the main contacts are 55 

subvertical, constituting a challenge for surface seismic methods. Additionally, the rock properties are causing contacts 

between various rock types to be less reflective compared with e.g. the Lalor Lake scenario. However, based on earlier active-

source reflection seismic data, the main target contacts were expected to be reflective and the active mine operations were 

providing body-wave energy sources at depth, which is beneficial for reflection imaging in such complex medium. Initial 

attempts to work on the full 3D data (Chamarczuk et al., 2017, 2018) failed to provide a convincing image of the structures 60 

and therefore our attention turned first to 2D ANSI applied along the receiver lines (Väkevä, 2019; Chamarczuk et al., 2021). 

Synthetic modeling results in 2D and 3D (Riedel et al., 2018; Chamarczuk et al., 2021), as well as consistent 2D images of the 

main structures derived along the neighboring receiver lines, allow us to extend our work to the full 3D data with more 

confidence. Such an approach allowed also to test various AN pre-processing and SI techniques in much more efficient way. 

Simultaneously, Chamarczuk et al. (2019, 2020) developed a methodology to automatically identify noise panels containing 65 

body-wave energy in the 3D recordings. In this paper, we further build on these earlier results and present a full-scale 3D 
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seismic VSS approach to extract the 3D reflection response from the Kylylahti passive seismic data. To our knowledge, this 

is the first application of the full 3D ANSI approach to extract reflection response in a hardrock environment. However, it 

should be noted that despite the pioneering nature of our VSS study in the context of passive reflection imaging in hardrock 

environments, the first state-of-the-art applications of VSS using data from large-N arrays are related to arrays deployed in 70 

California, USA: the Long Beach array (Nakata et al., 2015) and the San Jacinto fault-zone array (Ben-Zion et al., 2015).  

Our paper is organized as follows. We first describe the Kylylahti 3D dataset and the associated geological background. 

Subsequently, we present evaluation of the noise characteristics, including power-spectral density (PSD), beamforming and 

spatio-temporal techniques dedicated for quantitative body-wave content assessment. Then, by applying SI using cross-

correlation, we obtain two sets of virtual-source gathers (VSGs) at each receiver location of the array, retrieved using: (i) the 75 

10 days when body-wave energy related to underground sources is stronger than the constantly present surface-wave noise, 

and (ii) using all 30 days of data. Finally, we apply conventional reflection processing to the sets of VSGs and compare them 

with the active-source processing results as well as with the available detailed geological data and models in order to verify 

that the presented 3D VSS methodology works. 

2 Geological background 80 

The Kylylahti polymetallic (Cu-Co-Zn-Ni-Ag-Au) semi-massive to massive sulfide ore deposit is situated in the famous 

Outokumpu mining district in eastern Finland (Fig. 1). Because of the long exploration and mining history of the area, a host 

of geological and geophysical data and models - including extensive active-source reflection seismic data that was further 

expanded in parallel to the passive seismic survey (Fig. 1) - is already available for assessing the results of the passive seismic 

survey. This is critical for validating the full-scale 3D seismic VSS approach. The Kylylahti mine was open from 2012 to 2020, 85 

and operated by Boliden since 2014. The Outokumpu ore belt comprises Paleoproterozoic turbiditic deep-water sediments and 

ophiolitic slices of upper mantle rocks from oceanic lithosphere forming the Outokumpu nappe thrusted onto the Archaean 

basement and subsequently strongly deformed. Metamorphic alteration changed the originally depleted upper mantle rocks 

into Outokumpu assemblage serpentinite-skarn-carbonate-quartz rocks hosting the mineralizations (Peltonen et al., 2008). In 

the Kylylahti area, the following four main units can be distinguished (Peltonen et al., 2008) (Fig. 1): (1) The Kylylahti semi-90 

massive to massive sulfide (S/MS) mineralization hosted in (2) Outokumpu ultramafics (OUM) that mainly consist of 

serpentinite and talc-carbonate rocks with (3) fringed alteration zones composed of carbonate-skarn-quartz rocks, the altered 

Outokumpu ultramafics (OME). In combination, the nearly N-S trending and near-vertical OUM and OME units are called the 

Outokumpu assemblage rocks (referred to as Kylylahti formation).  

 95 
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Figure 1: Location of the Kylylahti mine and Kylylahti array in the Outukumpu belt (top left panel). Location of the 3D passive seismic 

survey (top right panel). B-B’ is a cross-section through the Kylylahti deposit (bottom left panel; modified after Peltonen et al. (2008) and 

Riedel et al. (2018)). Orange lines mark a representative crossline and inline location of the 3D passive seismic volume. A1-A5 denote five 

representative areas of ambient noise in the Kylylahti area that are used to compute power spectral density (PSD) in Figure 3a: the mine 100 
(A1), a city (A2), a roundabout (A3), a road (A4), and a quiet area (A5). 
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In the Kylylahti area, the Outokumpu assemblage rocks are in near-vertical contact with the (4) regional Kaleva Sedimentary 

Belt (KAL), consisting of mica schist and black schist. Black schists often interweave with the Outokumpu assemblage 

package, where various rock contacts are repeated several times. Because of the complex geometry (see cross-section in Fig. 

1), the Kylylahti formation remains a difficult target for surface seismic methods. Besides the obvious strong impedance 105 

contrast between the S/MS mineralizations and the host rocks, rock-property measurements (Luhta, 2019) indicate sufficiently 

strong contrasts in acoustic impedances, in the Kylylahti area mainly arising from contrasts in densities, to produce a detectable 

reflection at the contact of the OUM/OME rocks and the inter-layered and surrounding schists. Some reflectivity is also 

expected to arise from the lithological changes within the Outokumpu assemblage, especially due to the alterations (e.g. the 

talc-carbonate rocks exhibit a significantly lower P-wave velocity than the serpentinites).  110 

Based on the rich borehole data (>1300 boreholes) a detailed geological model was created for the 3D volume covered by the 

boreholes by the mine operator (Boliden) and used for creating a seismogeological model by Riedel et al. (2018). The 

geological model was averaged into the above-described four main units and populated with the average P-wave velocities 

and densities from laboratory measurements on core samples. This model was used, e.g., by Chamarczuk et al. (2021) to assess 

the results of the 2D ANSI based on synthetic and field data, and is used in this paper to validate the results and to support the 115 

interpretation. However, it should be noted that the geological model provides a reliable account on the geology only within 

the extent of the borehole data, as further discussed when describing the interpretation of the passive images presented in this 

paper. 

3 Data 

The passive seismic experiment was performed in the Kylylahti mine area between early August to late September 2016 as a 120 

part of the COGITO-MIN (COst-effective Geophysical Imaging Techniques for supporting Ongoing MINeral exploration in 

Europe; Koivisto et al., 2018) project. This project aimed for development of an efficient integrated exploration workflow 

ranging from regional-scale exploration to detailed resource delineation and mine planning including active-source and passive 

seismic component. We used 994 vertical-component receiver stations distributed regularly over the 3.5 x 3 km area with 200 

m line spacing and 50 m receiver interval (Fig. 1). Surface conditions varied between exposed bedrock to swamps. 125 

Each receiver station consists of a Geospace GSR recorder and six 10-Hz geophones, bunched together and buried whenever 

possible, recording at a 2 ms sample rate for 20 hrs/day for 30 days. As a result, we recorded over 600 hours of ambient-noise 

data per receiver. In addition, the 3D grid recorded irregularly distributed active shots (both explosives and Vibroseis) 

specifically designed for the 3D active survey (Singh et al., 2019) as well as active shots used for the 2D seismic profiles 

crossing the 3D grid (Heinonen et al., 2019). Therefore, a low-fold 3D active-source seismic survey was also acquired to 130 

benchmark the results of the passive survey. The active-source data (30-second long windows including the active shots) were 

removed from the passive data before the analyses presented in this paper. The survey area is located in the direct vicinity of 

the town of Polvijärvi (Fig. 1). Two fairly busy state roads cut through the survey area. A roundabout connecting both roads 
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is located in the centre of the array. The Kylylahti mine is located to the northwest from the roundabout. The access to the 

mine is along gravel roads, used extensively by hauling trucks. The Kylylahti mine was active during the whole recording 135 

period. Routine mining activities included: drilling (surface and underground), transporting ore and waste rock (surface and 

underground), scaling (underground), and mine ventilation (surface) among others. A source of strong energy are the mine 

blasts which occurred daily at depths ranging from 100 m down to approximately 800 m below surface. 

4 Data processing and results 

As advocated e.g. by Draganov et al. (2013), for reflection retrieval from ANSI, a form of selective stacking is typically 140 

required. Towards this end, Chamarczuk et al. (2019) developed a two-step wavefield evaluation and event detection method 

(TWEED) to be able to identify noise panels containing body-wave energy. This method was later augmented by a machine-

learning approach to automatically classify (cluster) different noise sources present in the continuous recordings (Chamarczuk 

et al., 2020). The TWEED was used to identify noise sources that were subsequently used for 2D ANSI imaging comparing 

the all-noise approach (i.e. stacking all the data) vs selective-stacking approach using subsets of the evaluated noise panels 145 

(Chamarczuk et al., 2021). At the same time, various AN preprocessing and SI techniques (e.g. cross-correlation vs multi-

dimensional deconvolution) were tested at the selected receiver lines from the full array. Overall, the methodology adopted in 

this study builds on these earlier results and can be summarized as follows: (1) General description of the recorded wavefield 

to identify dominant frequencies, directions of illumination and apparent velocities of the AN sources; (2) Quantification of 

body-wave energy present in the recorded data using the TWEED approach and obtaining spatial distribution of the noise 150 

sources; (3) Actual SI data retrieval, i.e. obtaining VSGs through cross-correlation for the two sets of data: (i) for 10 days when 

the body-wave events are dominating and (ii) for the full 30 days of data; (4) Standard hardrock reflection seismic processing 

of the obtained VSGs. The above 4 processing steps together with validation and interpretation of passive results using a direct 

comparison to an active survey as a benchmark, and to the available detailed geological data and models as a reference, add 

up to the 5 main processing blocks forming the full-scale 3D seismic VSS methodology for the purpose of near-mine mineral 155 

exploration developed in this study (see flowchart in Fig. 2, where the gray-gradient-colored blocks in the right column indicate 

our modifications of the state-of-the-art AN imaging workflow proposed by Draganov et al., 2013). 

4.1 General ambient noise characteristics 

The main prerequisite for the reflection imaging based on ANSI is the body-wave content in the recorded wavefield (Draganov 

et al., 2013). We assess the body-wave content in AN recordings from Kylylahti in three steps: first we determine the temporal 160 

and spatial variations of AN frequency-amplitude characteristics using power spectral density (PSD). Then we characterize 

the dominant frequencies and velocities of the recorded AN with the beamforming, and finally we directly assess the body-

wave events with dedicated detection and location procedure that provides an objective, quantitative measure of the recorded 

body-wave energy. 
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Figure 2: Summary of the 3D virtual-source survey methodology for the purpose of near-mine mineral exploration. The left column presents 

the core of the flowchart: it contains five main processing blocks representing subsections 4.1-4.5. The detailed processing steps performed 

within each main processing block are shown in the right column. The sequence of processing is indicated by roman numerals. Gray-gradient-

colored blocks in the right column indicate our modifications of the state-of-the-art ambient-noise imaging workflow proposed by Draganov 170 
et al. (2013). Single star symbol denotes the user-dependent ‘Ambient-noise segment selection’ processing step, in which the initial selection 

is based on the beamforming results, and later verified by TWEED. Double star symbol denotes the location procedure, which supports the 

TWEED verification, but is not mandatory. 

4.1.1 Power spectral density 

We use PSD plots to assess the temporal and spatial distribution of frequency-amplitude features of the seismic noise in the 175 

Kylylahti area. To simplify the description of AN in the Kylylahti area, we analyze five representative areas (denoted with 

letter ’A’ in Fig. 1) that allow to clearly emphasize the differences in frequency-amplitude content of the data recorded in 

different parts of the array. These are the mine (A1), a city (A2), a roundabout (A3), a road (A4), and a quiet area (A5). For 

each area, we take data from five adjacent stations from the Kylylahti array, split their continuous noise records into 0.5-hours-

long windows with 50% overlap, compute the PSD and average the PSD values over these 5 stations (Fig. 3).  180 

The frequency spectra related to the mine (A1 in Fig. 3a) exhibit the broadest frequency range out of all areas, with the most 

energetic part between 25 and 90 Hz. With increasing distance from the mine, we observe diminishing of energies related to 

the higher frequencies, as well as strengthening of the contribution from energies in the lower frequency range (10-30 Hz) 
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associated with the road traffic and other surface sources. This is clearly visible for the city area (A2) and roundabout (A3) 

PSD spectra, which still contain the energies up to 90 Hz due to their proximity to the mine. The exact contribution from road 185 

traffic to the AN recordings from Kylylahti is observed in the PSD plot for stations in areas that are located in the direct vicinity 

of the road (A4 and A5). The frequency spectra related to the road traffic exhibit most energetic parts up to 30-35 Hz, with a 

peak at around 20-30 Hz, which is also characteristic for the surface waves observed e.g. in 2D active-source data (Heinonen 

et al., 2019). 

 190 

Figure 3: Temporal (a), and spatial (b) variation of noise spectrograms. a) Each panel represents power spectral densities (PSDs) computed 

for each day of recording using receiver stations located in the representative areas highlighted in Figure 1. Days highlighted with green 

arrows correspond to beamforming panels highlighted with green circles in Figure 4a. b) PSD for a single day of recording using every 

receiver station of the Kylylahti array. White dashed lines highlight receiver stations corresponding to the representative areas shown in (a). 

Amplitudes are independently normalized at each panel. Two regimes of high power density are observed at frequency ranges 10-30 Hz, 195 
and 40-90 Hz. 

It can be concluded that the main source of higher frequencies (25-90 Hz) in the recording area is the mine and that the higher-

frequency part of AN generated in this area is still recorded even in the far end of the Kylylahti array (note that the energies 

associated with the frequency range 40-90 Hz are still visible in PSDs for receiver lines 15-19 in Fig. 3b). However due to the 

remoteness of areas A4 and A5 (see Fig. 1), the PSD computed for receiver lines located in these regions exhibit lower 200 

amplitudes in frequency range 40-90 Hz as compared to road-traffic induced energies (10-30 Hz). This is further confirmed 
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by PSD computed for the whole array (Fig. 3b), where the transition from higher to lower frequencies is observed for 

subsequent receiver lines. Due to the difference between PSD spectra associated with the road traffic and mine area, we identify 

the higher frequencies generated in the mine area as potentially associated with body-wave sources required for SI reflection 

imaging.  205 

4.1.2 Beamforming 

After the PSD analysis, we use beamforming to assess how much and which parts of the data are dominated by body-wave 

events such that, when stacked, they would allow to obtain the omnidirectional coverage of the stationary-phase regions 

(Snieder, 2004). In Fig. 4a we show the results of standard beamforming (Rost and Thomas, 2002) analyses calculated and 

summed over 20 hours recorded during each single day in the frequency range between 3 to 5 Hz. Note that to avoid aliasing 210 

the theoretical limit on beamforming is imposed by the Nyquist wavenumber (Rost and Thomas, 2002), which in case of 

receiver line spacing of 200 m and velocity of 2 km/s gives 𝑓𝑚𝑎𝑥 = 𝑣𝑚𝑖𝑛/(2∆ 𝑥) = 5 𝐻𝑧. These daily beamforming plots 

represent partial contributions to the stacked beamformer output in Fig. 4b, which is the summed output of all 30 daily results. 

The maximum values shown in Fig. 4b represent the dominant AN contributions that were persistent during most of the 

recording time and which can be identified in the daily beamforming plots (compare individual panels in Fig. 4a). The recorded 215 

wavefield is coming from the NNW, narrow area in the E and broad range of azimuths in the SE. These directions are consistent 

with the general orientation of areas indicated in the PSD plots and associated with noise sources located at the mine site (A1), 

town of Polvijärvi (A2) and the roads (A3, A4, and A5). We can distinguish three groups of arrivals based on the apparent 

velocities (Fig. 4b): (1) V=1-3 km/s likely representing surface waves (associated with S, and SE areas), (2) V=3-4 km/s likely 

associated with S-wave arrivals (mostly SE direction) and (3) V>4.8 km/s interpreted as P-waves coming from NNW, and S 220 

directions. The red-green circle in the summed beamforming output (Fig. 4b) denotes the data-driven separation between the 

P-waves and surface waves in the Kylyhati area (note here a wide range of azimuths associated with beamforming values 

above 4 km/s in Fig. 4b). The same line is projected on the results computed for each day. We use this line to distinguish 

between the daily beamforming results that are dominated by P-wave arrivals (see green circles in Fig. 4a), and those with 

more notable surface-wave content (see red circles in Fig. 4a). It is important to note here that while the number of highlighted 225 

days dominated by body-wave arrivals (10) is smaller than those dominated by surface-wave sources, the body-wave arrivals 

were present during most of the recording days. As shown by Draganov et al. (2013), Roots et al. (2017), and Dales et al. 

(2020), selecting only data periods when noise is dominated by sources in the stationary phase region for reflection retrieval 

may provide result with higher quality than stacking all noise. On the other hand, stacking all noise represents an attempt of 

utilizing the full capacity of ANSI by incorporating all body-waves events which occurred during recording time, but were not 230 

dominant during the days designated as dominated by surface-wave noise. To address these two fundamental views on SI 

processing, we create two subsets of AN recordings: for 10 and 30 days, where the former represents selectively stacked 

periods of AN dominated by arrivals with high apparent velocity (these days are highlighted with green circles in Fig. 4a) 

interpreted to represent body-wave events, and the latter allows to test the full capacity of recorded data (see Sect. 5.5 for a 
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more detailed discussion of both subsets). The subset of 10 days used for evaluation of selective-stacking approach in this 235 

study consists of the following days denoted in Fig. 4a: D2, D3, D7, D10, D16, D17, D20, D24, D25, and D30. 

 

Figure 4: Directional beamforming analysis of recorded ambient noise (AN) using all available Kylylahti recordings. (a) Beamforming 

outputs calculated for 20 hourly panels from 30 days of recording time. Each panel in (a) represents analysis for one day of recording. Panels 

are displayed in chronological order. (b) Summed output of the results shown in a). Maximum values from each hourly (a) and daily (b) 240 
result are displayed as a function of apparent velocity and azimuth for the frequency range 3-5 Hz. The north direction (N) has an azimuth 

of 0°. The azimuth increases to the west (i.e., counterclockwise), and apparent velocities increase toward the center of the circles. Warmer 

colors indicate directions of strong incoming energy. Green dashed circles in (a) highlight ten daily AN recordings dominated by arrivals 

with apparent velocities >4.8 km/s and used for initial selection of the 10-day subset as the representation of the selective-stacking approach 

in this study. In subsection 4.2, this initial subset of data denoted with green circles in (a) is evaluated by TWEED to confirm that the AN 245 
recordings associated with apparent velocities >4.8 km/s, are related to body-wave events, and eventually used to obtain the selectively-

stacked virtual-source gathers shown in Figures 6 and 7 described in subsection 4.3. The same days are highlighted with green arrows in 

Figure 3a. 
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4.2 Quantification of the body-wave content 

After the qualitative assessment of the AN sources in the Kylyahti area, the next step is to confirm that the AN recordings 250 

associated with high apparent velocities (V>4.8 km/s), identified using beamforming, are related to actual body-wave events. 

As opposed to PSD and beamforming analyses, the quantification of the body-wave content is performed over short time 

windows (10-second long) and utilizes the aforementioned TWEED method for detection of body-waves content and InterLoc 

(Dales et al., 2017) for computing the locations of the detected sources.  

The essence of the TWEED (Chamarczuk et al., 2019) is that it allows to detect body wave arrivals by scanning the neighboring 255 

receiver lines from the regular 3D array. It assures that the surface waves arriving off-the-line and having apparent velocities 

similar to body waves are discarded. InterLoc is similar to beamforming, but instead of scanning azimuth and velocities, it 

scans the different location points and the input comprises cross-correlated waveforms instead of the noise panels. It is based 

on computation of the model-based time lags at each scanned point of a model grid. The Kylylahti formation (see description 

of the Outokumpu assemblage rocks in Sect. 2), can be considered as the ‘inclusion’ in the simple, single-layer background 260 

(see description of the KAL unit in Sect. 2), and does not affect the global average velocity. Therefore, in this study we use 

constant-velocity model of 5 km/s as an approximation of the crystalline rock environment in the Kylylahti area. We estimate 

the maximum possible error from the constant-velocity model selection as 10 %. The computed time lags are used to time-

shift the cross-correlation between every receiver pair and sum the cross-correlation functions per each node of the grid. The 

source is found at the grid node in which the sum of the time-shifted cross-correlation functions yields the highest value. 265 

In Fig. 5a we show an example of a noise panel containing a clear body-wave event detected using TWEED and recorded by 

every receiver line of the Kylylahti array. In Figs. 5b and 5c we show the InterLoc result in the horizontal and vertical plane 

for the body wave event shown in Fig. 5a. With respect to the limited capacity of the surface array for source depth estimation, 

to evaluate the approximate depth of sources, we computed InterLoc results assuming grid points spaced at 10 m between 

depths of 100 m and 800 m. In Fig. 5c, we show the exemplary results (using the event from Fig. 5a) obtained for every 5th 270 

scanned depth. The slice with the clearest focus and highest amplitude is chosen as the most probable source depth (indicated 

with black arrows in Fig. 5c). In Figs. 5d and 5e, we show the final result of the joint TWEED and Interloc approach applied 

to the total volume of Kylylahti data showing the 3D locations of all 1093 detected body-wave events (the green dot denotes 

the location of the exemplary event shown in Fig. 5a), which are clustered along a conical area directly beneath the array (see 

Chamarczuk et al., 2019, for more detailed interpretation of the detected events). The depth range (-800-~100 m) agrees with 275 

the known extent of the Kylylahti mining activities. The color of the dots in Figs. 5d and 5e represents the separation between 

body-wave events that were detected inside the subset of 10 days dominated by the body-wave events (310 events marked 

with black dots), as indicated by the beamforming (see green circles in Fig. 4a) and PSD (see green arrows in Fig. 3a), and the 

body-wave events detected during the remaining 20 days (783 events marked with red dots).  
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 280 

Figure 5: Performance of the combined TWEED and Interloc processing scheme. (a) Scheduled mine event (underground blast) detected 

with TWEED, and representing the typical body-wave event recorded by the Kylylahti array. Horizontal, black lines mark the spatial extent 

of 19 receiver lines forming the complete Kylylahti array. (b) Interloc output computed for the body-wave event shown in (a) using a 10-

second-long recording detected with TWEED. Color scale represents the normalized amplitude of the Interloc output. Black triangles indicate 

geophone locations and the red polygon corresponds to the mine location. c) Interloc output for set of discrete depth intervals. Each result in 285 
c) was normalized using the global maximum from all evaluated depth intervals. The XY-section at -450 m depth exhibiting the clearest 

focus and highest amplitudes, is highlighted with black arrows, and represents the most probable depth of the event shown in (a). (d) X-Y 

and (e) 3D spatial distribution of the collection of sources at depth estimated during the thirty recording days projected on a map with the 

Kylylahti array (black triangles) and geographical coordinates. Dots represent the locations of the maximum Interloc values of each detected 

body-wave event. Location of the event shown in a) is denoted with green circle. Black dots indicate location of events, which were detected 290 
inside the subset of 10 days, highlighted in Figures 3 and 4 and used to evaluate the SI selective stacking performance. Red dots show the 

locations of events from the remaining 20 days. 
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Essentially, the quantification of the body-wave content shows that the passive data includes significant number of body-wave 

events originating from subsurface sources. This verifies that the high-velocity arrivals observed in the beamforming analysis 

are actually related to body-wave events and not to some inline surface-wave sources. In proportion, the number of body-wave 295 

events is not any higher during the 10 days dominated by the body waves than during the rest of the 30 days of overall recording 

time. However, since these 10 days are characterized by noticeably lower low-velocity surface-wave activity they are 

dominated by the high-velocity body waves. 

4.3 Extraction of virtual-source gathers 

In this subsection, we retrieve two sets of VSGs for reflection imaging: using AN recordings from the 10 days dominated by 300 

the body-wave events during which events highlighted with black dots in Figs. 5d and 5e occured, and using all data (30 days). 

The processing described in this subsection is the same for both sets of data with the only difference being the number of daily 

recordings used as an input. As evidenced by the daily PSD temporal variations (Fig. 3a) and the daily beamforming results 

(Fig. 4a), high-frequency and high-apparent-velocity arrivals occured during most of the recording time (primarily associated 

with the mine activity). Therefore, the actual number of the body-wave events recorded by the Kylylahti array is likely higher 305 

than the number of events that were detected with TWEED. To incorporate the possibly omitted body-wave arrivals, we 

decided to use whole daily recordings rather than only selected 10-second long time windows with the detected events.  

To retrieve VSGs, we divide the daily AN recordings in 30-minute-long noise panels. Prior to cross-correlation, all traces of 

each panel are normalized by applying a trace-to trace amplitude balancing (trace-energy normalization; Draganov et al., 2013) 

to ensure that energy from all subsurface sources are equally weighted. Next, each noise panel is subjected to spectral whitening 310 

such that the energy of all traces in a noise panel is brought to the same level of amplitudes in the frequency domain. The 

spectral whitening removes any contributions related to noise-source wavelets and removes the necessity for wavelet 

deconvolution. The spectral whitening guarantees that the amplitudes of the different frequencies in the band of interest are 

equalized, while energy normalization guarantees equalization of the amplitudes among traces and among noise panels. 

Finally, we apply bandpass filtering (25-35-90-120 Hz) to reject parts of the spectrum associated with surface waves. This 315 

simple preprocessing sequence is known to be an effective solution in ANSI-based reflection imaging studies (see e.g. Quiros 

et al., 2016).  

For each 30-minute long noise panel, the cross-correlation is calculated between specific receiver position acting as a master 

trace (i.e. reference receiver) and every other receiver position from the Kylylahti array (i.e., with the remaining 993 receivers, 

which gives 987,042 calculations per noise panel and a total number of 1184,45 million calculations for all 1200 noise panels). 320 

Cross-correlating a master trace with every other receiver from the array using a single noise panel yields VSG, as if the shot 

was acquired at this master-trace location. This procedure is performed for each noise panel and after processing all 1200 

panels the procedure is repeated for the next master trace until all 994 receivers were used as a master trace. Consequently, we 

obtain 1200 VSGs for each receiver position. The final step is stacking VSGs from all panels per each receiver location. Hence, 
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we end up with the collection of 994 VSGs representing the full-scale 3D VSS, as if the shots were acquired one-by-one at 325 

every receiver position of the Kylylahti array.  

We assess the quality of the retrieved VSGs by checking the feasibility of the virtual source data to retrieve the same reflection 

arrivals that are present in the active-source data. Note though, that the complexity of the medium, as well as the relatively 

large receiver intervals (50 m) make it very difficult to follow reflections in the shot gathers even in case of active data (Singh 

et al., 2019). Despite that, reflections were identified in the co-located datasets. Figs. 6 and 7 show a comparison of the selected 330 

active-source shot gathers with the co-located VSGs. For each shot, we show six receiver lines to assure that the retrieved 

reflections exhibit truly 3D nature (we expect to observe the same event on adjacent receiver lines). The VSGs were obtained 

by cross-correlating master-trace receivers 715 (Fig. 6a), 1109 (Fig. 6b) and 1556 (Fig. 7), which are located along receiver 

lines 7, 11 and 15, respectively (see receivers marked with stars in Fig. 1) with every other receiver of the Kylylahti array. The 

arrows indicate parts of the data associated with the same reflection arrivals, as identified in the active-source gathers. Both 335 

signal-to-noise ratio (SNR) as well as the moveouts of the reflection arrivals are slightly varying between passive and active 

data. Furthermore, at larger offsets (off-end receiver lines), the presence of artifacts in the passive data does not allow for the 

recovery of reflection arrivals (see black arrows in Figs. 6 and 7 indicating the artifacts).  

Inspecting the reflection recordings from the co-located passive and active-source data confirms that passive data allows 

retrieving the reflection response of the medium, albeit in some places obscured by artifacts. Similarly, to active-source data, 340 

we expect this reflection response to be further enhanced by stacking and migration (Singh et al., 2019). Note that receivers 

715, 1109 and 1556 (Fig. 1) were selected such that each of them is located in the proximity to a different dominant noise 

contributor: the mine (A1), a roundabout (A3) and a road (A4), respectively (see Sect. 5.2 where we explain the link between 

AN characteristics and the VSGs quality). 

4.4 Reflection processing 345 

The reflection processing workflow for the virtual-source data was modified from the one derived for processing the active-

source survey data (Singh et al., 2019). Despite the fact that the active survey and VSS differ in the crossline source spacing 

(20-100 m vs 200 m), we used the same size of the CDP bins (25 x 25 m) and the same binning grid. In case of the passive 

data, this leads to some empty crosslines. Considering different shot geometries and number of shots (736 active vs 994 virtual 

shots), the stacking fold is higher for the passive data (max. 700) compared with the active data (max. 160). Below is the list 350 

of the most important processing steps: 
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Figure 6: Comparison of exemplary co-located 3D common-source gathers using active and passive data. The active-shot gathers are filtered 

using bandpass filter (25-35-90-120 Hz) to have the frequency content of the passive data. For each gather, we show 6 receiver lines (RL). 355 
a) Common-source gathers co-located with receiver station 715: (top row) active-shot gather, (middle row) VSGs obtained using 30 days of 

noise, (bottom row) VSGs obtained using 10 days of noise. b) Common source gathers co-located with receiver station 1109: (top row) 

active-shot gather, (middle row) VSGs obtained using 30 days of noise, (bottom row) VSGs obtained using 10 days of noise. (a) The orange 

and (b) blue arrows on both active and passive data highlight position of reflection arrivals observed in active source data and projected on 

collocated VSGs. Black arrows indicate artifacts characteristic for passive data. TWT stands for two-way traveltime. 360 

 

• Read VSGs 

• Geometry setup (25 x 25 m bins) 

• Refraction statics (from active data) 

• AGC (500 ms) 365 

• Predictive deconvolution (200/12 ms) 

• Bandpass filter (20-25-100-120 Hz) 

• Mild F-X deconvolution 

• Top mute 

• Sort to CDP 370 

• NMO correction (velocities from active data) 

• Post-nmo mute 

• Stack with SQRT-fold normalisation 

• Constant velocity 2.5D Stolt migration (inlines first, then crosslines) 

• Mild F-X deconvolution in the crossline direction (as interpolator of missing bins) 375 

• Whole-trace equalization 

4.5 Validation and interpretation 

Here, we compare the 3D active-source and virtual-source processing results. In both cases, we show post-stack migrated data. 

The comparison is facilitated by the use of the same binning grid. Empty crosslines in the passive data were interpolated using 

mild FX deconvolution. On top of the migrated stacks, we also display the geological model based on extensive borehole data 380 

described in Sect. 2. It helps us to determine the location of the expected most prominent reflectivity contacts (mineralisation 

vs OUM/OME and the contacts between OUM/OME and KAL). We first analyze inline 1040 (see Fig. 1 for location) and then 

several corresponding crosslines, where the reflectivity between the passive and active data is most consistent. 
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 385 

Figure 7: Comparison of exemplary co-located 3D common-source gathers using active and passive data. The active-shot gathers are filtered 

using bandpass filter (25-35-90-120 Hz) to have the frequency content of the passive data. For each gather, we show 6 receiver lines (RL). 

Common-source gathers collocated with receiver station 1556: (top row) active-shot gather, (middle row) VSGs obtained using 30 days of 

noise, (bottom row) VSGs obtained using 10 days of noise. The green arrows on both active and passive data highlight position of reflection 

arrivals observed in active source data and projected on collocated VSGs. Black arrows indicate artifacts characteristic for passive data. 390 
TWT stands for two-way traveltime. 

A comparison of the 3D-processed images along inline 1040 of both surveys is shown in Figs. 8a-c,g. Red arrows indicate 

positions of reflections associated with some main lithological contacts within the ore-bearing Kylylahti formation, as 

identified in the active data and verified by the geological model (see events marked with arrows 1-3 in Fig. 8c). The area 

marked by blue rectangle in Figs. 8a-c,g denotes a gap in fold due to the active-shot distribution. In this case, the passive data 395 

supplements the image obtained from the active data by providing reflectivity in places where inline 1040 from the active 

survey has no data (see e.g. the orange dashed line in Figs. 8b,c indicating how the continuity of a single reflection event can 

be obtained by joint analysis of active and passive data).  

In the middle row of Fig. 8, we show crossline 1068 of the active survey (Fig. 8d) and passive surveys obtained using 10 days 

(Fig. 8f) and 30 days (Fig. 8e). In this case, the result from 10 days of AN contains mildly dipping, continuous reflection that 400 

is associated with an internal contact between an OUM/OME unit and black schists of KAL (see event marked with arrow 6 

in Fig. 8f). Note that the extent of the KAL unit surrounding the OUM/OME unit in the Figs. 8 and 9 is not anymore constrained 

with the borehole data, and a series of repetitions of the OUM/OME units and black schist inter-layers are expected before 
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hitting the actual base of the Kylylahti formation and the surrounding mica schists. Interestingly, the same feature is also 

imaged in the result from 30 days of AN (Fig. 8e); however, it is characterized by lower SNR, as well as different spatial extent 405 

when compared to the results from 10 days (compare the event marked with arrows 7-8 in Fig. 8e with the event marked with 

arrow 6 in Fig. 8f). Comparing the passive results from crossline 1068 obtained from 10 (Fig. 8f) and 30 (Fig. 8e) days, we 

conclude that the all-noise approach provides higher quality reflections related to the mineralization (see event marked with 

arrow 5 in Fig. 8e), and the general dipping trend of the Kylylahti formation (note the deep reflector marked with arrows 7-8 

and the overall dip of the reflections in Fig. 8e), while the 10-day stack is most efficient in resolving the continuous reflector 410 

segment confirmed by the geological model to represent a contact between the OUM/OME unit and black schists (KAL) (see 

arrow 6 in Fig. 8f). This shows that the missed events in the subset of 10 days are useful and both approaches are valuable in 

a complementary fashion (as was shown in Draganov et al., 2013).  

For the above reasons, to showcase the consistency of imaging with passive survey, we focus on the clear reflection events 

associated with the contact between the OUM/OME unit and black schists (KAL) at the edge of the extent of the borehole data 415 

used to constrain the geological model shown on the Figs. 8 and 9, and analyze results from 10 days of AN using 3 consecutive 

crosslines (1082, 1084, 1086 shown in Figs. 9a-c, respectively) that pass through the area of inline 1040, where the passive 

reflections from the right part of the bottom (arrows 1-3 in Fig. 8c) and the top (arrow 4 in Fig. 8c) of the OUM/OME unit 

shown on Figs. 8 and 9 were highlighted. On these crosslines, we consistently observe a weak dipping event (denoted with red 

arrows in Figs. 9a-c), which seems to correspond with the extent of the shown OUM/OME unit (constrained by the extent of 420 

the borehole data; see Figs. 9d-f where the geological model is overlayed on the same crosslines as in Figs. 9a-c). Specifically, 

we highlight here crossline 1084 (Fig. 9e), where arrows 9-10 mark the continuous, dipping reflection event corresponding to 

the extent of the shown OUM/OME unit, and arrow 11 is pointing to the prolongation of the same event that extends beyond 

the known extent of the shown geological model based on the borehole data (i.e. the bottom of the geological model). 

The Kylylahti active-source 2D and 3D data (Heinonen et al., 2019; Singh et al., 2019) were used together with the available 425 

borehole data to interpret the base of the Kylylahti formation (purple surface in Fig. 10). In the active-source data, the Kylylahti 

formation is characterized by piece-wise reflectivity, the extent of which outlines the overall formation. Because of the 

dominating near-vertical orientation of the lithological contacts within the Kylylahti formation, the reflective segments are 

typically fairly short. In the active-source 3D data, also the base of the overall Kylylahti formation, embedded in the 

surrounding mica schists, is only occasionally associated with more continuous reflective segments (Singh et al., 2019). On 430 

Fig. 10, we compare the interpreted base of the Kylylahti formation to the reflection signals observed in the passive 3D cube 

produced from the 10-day subset of ambient-noise data dominated by the body waves. Interestingly, the base of the Kylylahti 

formation is on some of the crosslines and inlines (crossline 1068 and inline 1040 shown in Fig. 10) associated with fairly 

clear, more continuous reflections that match the base of the Kylylahti formation as interpreted from the active-source data 

(Fig. 10c). 435 
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Figure 8: Comparison of post-stack migrated sections obtained from the active and passive surveys. Inline 1040 (a)-(c) and (g), and crossline: 

1068 (d)-(f) and (h). (a)-(b) and (d) The active-source survey. (c) and (e)-(h) The 3D virtual-source survey. Red arrows mark the reflection 

events that are associated with the contacts in the geological model and confirmed with the active-source data. The arrows with numbers 440 
show reflections that are interpreted in the text. The geological model (described in section 2) displayed in the background is color-coded as 

follows: S/MS mineralisation (red); OUM/OME units (green); KAL unit (blue). Panels (g)-(h) show the same migrated stacks as in panels 

(c) and (f), respectively, but without the geological model and with broader spatial extent. 
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Figure 9: Comparison of post-stack migrated sections obtained from the 3D virtual-source survey along crosslines: 1082 (a) and (d), 1084 445 
(b) and (e), 1086 (c) and (f). Red arrows mark the reflection events that are associated with a key contact within the Kylylahti formation 

(OUM/OME in contact with black schists (KAL)). Note that extent of the geological model shown is constrained by the borehole data, and 

the marked reflections are at the very edge of this extent. The Kylylahti formation continues beyond the shown extent with further repetitions 

of the OUM/OME units with black schist inter-layers. The arrows with numbers show reflections that are interpreted in the text. The 

geological model (described in section 2) displayed in the background is color-coded as follows: S/MS mineralisation (red); OUM/OME 450 
units (green); KAL unit (blue). 

5 Discussion 

5.1 Ambient-noise characteristics 

AN characterization in this study was necessary to assess the temporal and spatial stationarity of the noise sources and confirm 

periods of data containing body-wave illumination. The spatial variability of AN in the Kylylahti area is mainly affected by 455 

the distance from the mine, and the temporal variability is mainly affected by the mine activity schedule. The secondary 

contributions are related to the presence of roads, and the city of Polvijärvi. In this study, we focus on the body-wave retrieval, 

thus we put special emphasis on parts of the AN data that are characterized by AN in the higher frequency range (see parts of 

PSDs associated with the frequency range 40-90 Hz in Fig. 3), and are mostly associated with seismic events with high apparent 

velocities (see the arrivals with velocities >4 km/s in the beamforming computed for the whole recording time in Fig. 4b). 460 

These features are mostly observed in the data recorded by receivers in the direct vicinity of the mine represented by area A1 
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in Fig. 1. However, as indicated in the PSD computed for the whole array (Fig. 3b), and the TWEED-detected body-wave 

events induced in the vicinity of the mine (Fig. 5a), the aforementioned spatial and temporal variations of AN should not  

 

Figure 10: (a) The Kylylahti active-source 3D data processed with a similar 3D reflection seismic processing workflow as the passive 3D 465 
10-day subset data shown on (b), and overlapping the crossline 1068 and inline 1040 of the passive 3D cube of figure (b). The purple surface 
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is the base of the Kylylahti formation interpreted from the COGITO-MIN 2D and 3D active-source data and the available borehole data (c). 

The red surface is the Kylylahti semi-massive to massive sulphide mineralization. (d) Reflection signals associated with the base of the 

Kylylahti formation on the crossline 1068 and inline 1040 of the passive 3D cube highlighted with purple arrows. 

preclude the retrieval of reflections from ANSI, because most of the energy associated with body waves is recorded by the 470 

whole Kylylahti array. This is evidenced by the fact that higher-frequency content (>30 Hz) and body-wave events are observed 

even in the south-most receiver lines of the Kylylahti array (receiver lines 15-19). These receiver lines are located furthest 

away from the mine (see areas A4 and A5 in Fig. 1) and are mostly influenced by the road traffic. In the following, we discuss 

how these characteristics of the recorded noise affect the quality of the reflection content in VSGs. 

5.2 Impact of AN characteristics on VSGs quality 475 

The receivers that were used as master traces in Figs. 6-7 were selected to showcase the VSGs quality obtained in different 

representative areas, and based on the availability of co-located active-shot gathers. With this in mind, receiver stations 715, 

1109, and 1556, due to their proximity to the areas A1, A3, and A4 (see Fig. 1 for the location of the receivers and the 

corresponding areas), respectively, are strongly affected by certain AN sources: the mine (A1), a roundabout (A3) and a road 

(A4). This and the possible differences in the geophone coupling are the main reasons for differences observed in VSGs 480 

obtained for the same amount of data. As mentioned before, the computation of a single VSG involves cross-correlation of a 

master trace with each of the remaining 993 receivers, thus the selection of a reference receiver has a huge impact on the 

quality of the VSGs. Consequently, any bias present in the data recorded by the master traces may influence every other trace 

in the VSG. To some extent, this explains why the relatively worst performance was obtained for the VSG for receiver location 

1556 (Fig. 7), which according to the PSD computed for areas A4 and A5 (see Fig. 3a) is mostly affected by the road traffic 485 

AN. Nevertheless, due to presence of higher frequencies, as well as the confirmed recording of events induced by the mine 

even at the furthest away receiver lines (as evidenced in Fig. 5a), it was still possible to retrieve reflections, albeit with lower 

SNR. In addition to this, the differences between the VGSs (as well as the difference of correlated traces within a single VSG) 

obtained at different locations of the Kylylahti array, were further remedied by spectral whitening and trace-energy 

normalization (Draganov et al., 2013). 490 

We conclude that the VSGs exhibit generally lower SNR as compared to the co-located active-source data. On the other hand 

the migrated sections of the passive data compared well to the sections from the active data (e.g. compare the active and passive 

image obtained for crossline 1068 shown in Figs. 8d,e, respectively). This was possible mainly due to feasibility of SI to 

provide passive reflections even at the receiver lines affected by the road traffic (see e.g. receiver line 15 in Fig. 7) and the 

higher number off all available virtual shots (994 VSGs versus only 736 active-source gathers) used for stacking. 495 

5.3 ANSI processing with respect to the stationary-phase regions 

From a data processing view, two things are crucial for SI reflection imaging: (i) the presence of body-wave sources, and (ii) 

these sources must be located in the stationary phase regions for reflection retrieval (Snieder, 2004; Draganov et al., 2006; 
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Forghani and Snieder, 2010). The locations of the stationary-phase regions for reflection retrieval depend on the propagation 

velocity, position of the receivers, depth of the reflector and the angle of incidence and reflection (Snieder, 2004; Mehta et al., 500 

2008). Consequently, calculation of the region of the stationary-phase sources for a retrieval of a specific reflected wave 

between a virtual source and a receiver would require sufficiently accurate knowledge of the subsurface velocity model and 

individual approach for every master-slave receiver pair. Therefore, beamforming, which incorporates summation over all 

receiver positions may only serve as a general indicator of body-wave presence in the area, as well as a robust metric indicating 

whether these sources illuminate the target and Kylylahti area from multiple directions.  505 

As shown in Fig. 5e, body-wave sources generated by the Kylylahti mine are mostly occurring in the subsurface. Consequently, 

the passive recordings from the mining operations in the Kylylahti area can be used advantageously for retrieval of body-wave 

reflections with SI. When the majority of the sources are located in stationary-phase regions, the summation of the cross-

correlated traces over all sources should result in retrieval of (kinematically) correctly located events without explicit 

subsurface velocity information (Schuster, 2001; Snieder, 2004; Brand et al., 2013). In this sense, the information provided by 510 

the beamforming indicates daily AN recordings dominated by presumed stationary-phase sources that, when stacked, assure 

unaliased reflection arrivals in the VSGs.  

As mentioned before, the decision of using daily AN recordings (rather than only noise panels with TWEED-detected events) 

was motivated by incorporating body-wave arrivals that were possibly not detected with TWEED (due to dominance of surface 

waves in the discarded panels but not necessarily lack of body waves). Using all AN further increases the probability of 515 

capturing coda waves associated with body-wave arrivals and, thus, helps address the one-sided illumination (we further 

discuss one-sided illumination in the Sect. 5.5). As explained by Olivier et al. (2015), the coda waves in the active mine 

environment may be related to the mine tunnels that act as scatters. This creates the approximation of inhomogeneous medium 

where seismic energy is scattered back to the receivers and effectively increases the number of stationary-phase regions. Note, 

that coda waves due to weaker amplitudes can be at or below the noise level, therefore the usability of coda waves for ANSI 520 

reflection imaging requires amplitude normalization. 

5.4 Passive reflection images and interpretation 

In order to validate the methodology presented in this work, the 3D passive seismic survey was purposefully accompanied 

with a 3D active-source survey and planned to an area where already detailed geological data was available. The retrieval of 

reflection events in the VSGs and retrieval of an almost full reflection response of the complex Kylylahti formation in the 525 

migrated sections was possible mainly thanks to the favorable condition for SI highlighted in the Sect. 4.1: primarily the 

abundance of subsurface sources (see Sect. 4.1.3), their approximate omni-directional distribution (see Sect. 4.1.2), and 

relatively high frequencies (see Sect. 4.1.1). The discrepancies of the passive and active data observed in Figs. 6-9, arise mainly 

from compromising these factors during stacking process for retrieval of VSGs: stacking VSGs obtained from all daily 

recordings possibly incorporates noise panels that were dominated by surface waves or were characterized by lower frequency 530 

content (<35 Hz). Nevertheless, as shown by Dales et al. (2020), even AN sources located at the surface may contribute to 
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retrieval of body-wave arrivals, and due to the constant presence of mine activity and the high-pass filtering (25-35-90-120 

Hz), we assumed that body-wave arrivals will eventually outweigh the surface-wave content. This compromise, together with 

the local AN conditions affecting the master traces, as mentioned in previous subsection, is evidenced in Figs. 6-7. The 

retrieved VSGs exhibit relatively lower SNR than the active data, as well as varying quality between passive reflections visible 535 

in the stacks for the same amount of data, but different master traces. Still the migrated images from the active and passive 

surveys are consistent in terms of general dip of the refection events, as well as the reflections related to internal contacts 

within the Kylylahti formation. Due to the high quality of the migrated sections, we suspect that artefacts identified in the off-

end lines (see e.g. black arrows in Fig. 7) were suppressed during stacking of all 994 shots, and thus possible weak reflectivity 

was uncovered.  540 

To highlight the main benefits that passive seismic can provide in the active mine environments we chose representative inlines 

and crosslines from 3D passive cube that: (i) show consistent retrieval of the internal contacts within the Kylylahti formation 

(general structural delineation). Specifically, we highlight here that the reflections predicted by the geological model and 

associated with a contact between the OUM/OME unit and black schists (KAL) within the Kylylahti formation were imaged 

in both inline and crossline directions of the passive survey and exhibit coherent, and continuous nature comparable with the 545 

quality of active data; (ii) provide reflection response in the areas where active data are not available (passive data can 

supplement or complete images from the active data); and (iii) have the potential to indicate the new prospective areas, with 

reflections extending beyond the known extent of these contacts (based on the geological model derived from the borehole 

data). The continuous dipping reflection was retrieved in the 3 consecutive crosslines (crosslines 1082, 1084, 1086 in Fig. 9). 

The same dipping reflection in the crossline 1084 (Fig. 9e) appears to extend further in the inline direction of the passive cube.  550 

However, we emphasize that the above features of passive method are only achievable when either active-source data or 

approximate velocity model of target is available. Nevertheless, this requirement does not harm the benefits of ANSI 

highlighted in this study. In particular, in similar complex environments also characterized by significant thickness variations 

of the low-velocity overburden layer on the top of the high-velocity bedrock, static corrections are crucial for extracting 

coherent reflection response. In our case, the refraction static corrections applied to the passive data were obtained from the 555 

active-source data. It should be noted that in case of a passive survey only, the shallow low-velocity layer model required for 

calculation of the statics should then be obtained by some other means, e.g., via separate refraction seismic survey or surface-

wave analysis. 

5.5 The essence of creating two subsets of VSGs 

The usual approach of improving reflections retrieved using ANSI relies on increasing the passive acquisition time, so that a 560 

higher number of noise panels may be used to retrieve VSGs. This is explained by the fact that longer monitoring could increase 

the chance of accumulating noise sources with a greater diversity of ray parameters, implying more comprehensive 

illumination of the array (Draganov et al., 2013). On the other hand, as explained by Draganov et al. (2006) and Forghani and 

Snieder (2010) only sources that are located in the stationary-phase regions contribute constructively to the reflection retrieval. 
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As evidenced in daily beamforming plots (Fig. 4a), the AN from Kylylahti is characterized by changes in the temporal (daily 565 

variations) and spatial (directivity changes) stationarity of noise sources. This means that including more data may actually 

obscure the retrieved reflection events by interference with retrieved artefacts, while stacking smaller amounts of data might 

result in retrieval of reflections with higher SNR. This observation becomes more evident when the source distribution is 

imperfect, for instance when sources are clustered in specific places of the recording area. Therefore, contrary to the 

conventional approach used in ANSI, i.e., recording as much noise as possible and then stacking all the noise panels (e.g. 570 

Cheraghi et al., 2015; Chamarczuk et al., 2018), one needs to be more selective in the stacking process.  

For the Kylylahti case study, the beamforming analysis indicated the possibility to obtain a broad azimuthal coverage of body-

wave arrivals using only days dominated by body-wave arrivals. However, the beamforming analysis also indicated the 

presence of body-wave arrivals during days dominated by surface waves. This showed us that the feasibility of using SI with 

the Kylylahti array should be investigated using two approaches: using all data, and using a subset of recordings containing 575 

only days dominated by body-wave arrivals. While the latter allowed to examine the potential of reflection retrieval less biased 

by surface wave content in a computationally efficient manner, stacking over all days (including those dominated by surface-

wave arrivals), should yield more omnidirectional coverage resulting from including body-wave sources that illuminate from 

azimuths not covered in the subset of 10 days.  

In this study, we used the subset of 10 days of AN recordings as the representation of the selective-stacking approach. This 580 

subset was selected based on TWEED using information from the PSD and the beamforming and represents the practical 

tradeoff between the minimum amount of AN recordings required to obtain daily records with body-wave arrivals that 

altogether form the omnidirectional contour created by arrivals from different azimuths (note the changing angle of high-

velocity maxima inside the beamforming results highlighted with green circle in Fig. 4a). As explained in Sect. 4.1.3, the data 

from the selected 10 days contain sources that are clustered mostly inside the mine area (Fig. 5d), and are distributed along 585 

approximately a vertical column slightly shifted to the right with respect to the mine location (Fig. 5e). For this reason, the 

imaging results obtained for the 10 days of AN contain several differences as compared to the all-data results imposed by the 

one-directional source distribution. However, as explained by Wapenaar (2006), even when the sources exhibit one-sided 

distribution it is still possible to retrieve reflectivity using SI, and consequently the discrepancies between the 10 and 30 days 

stacks are theoretically justified. We note here that the one-directional illumination would be a typical issue for the VSSs 590 

conducted above underground mines, where the most of the seismic activity is in the direct vicinity of the mine operations 

(Chamarczuk et al., 2021). 

5.6 Differences in the 10 and 30-day passive imaging approaches and the active-source imaging 

As a part of the reconnaissance ANSI study in the Kylylahti area (Chamarczuk et al., 2021), we investigated the implications 

of one-sided source distribution for the specific configuration of the Kylylahti case study by performing synthetic studies. 595 

These tests were undertaken to (i) investigate the influence of AN sources distributed along one of the three sides of the 
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Kylylahti formation and (ii) to aid the interpretation of the migrated passive field data by explaining artifacts related to 

directional source distributions.  

According to the findings, when clusters of sources are predominantly focused in some area (i.e. scenario violating the 

omnidirectional distribution) it is still possible to image a part of the Kylylahti deposit. As explained above, the sources 600 

included in the selected 10 days are clustered in the center of the total distribution of all sources (compare the distribution of 

black and red dots in Figs. 5d-e) with slight deviation to the right flank of the mine area as well as of the Kylylahti formation. 

The synthetic tests (Chamarczuk et al., 2021) showed that migrated sections obtained from directionally biased source 

distributions are generally dominated by artifacts, but it is still possible to track the reflectivity in the expected areas. The 

comparison of migrated images using sources distributed on left, underneath, and right flank of the target revealed that the 605 

relatively lowest-quality image is provided using sources distributed along the right side of the target, with a prominent 

horizontal artifact that masks the reflection packages related to part of the target with high impedance inclusions. On the other 

hand, sources distributed on the right flank exhibited the highest level of SNR in the area between the reflection packages and 

clear reflection from the prominent contact between OUM/OME unit and black schists (KAL) within the Kylylahti formation, 

which is the case for the passive results shown in Figs. 8 and 9.  610 

As highlighted before, the selective stacking can be used to extract only recordings that are dominated by stationary-phase 

sources. When all data are stacked, the risk of incorporating sources that are not located in stationary-phase regions, and/or are 

dominated by surface-wave arrivals, may lead to obscuring the retrieved reflection arrivals due to destructive interference. As 

shown in stacked beamforming output (Fig. 4b), using all data provides body-wave arrivals with omnidirectional distribution; 

however, the inspection of the beamforming plots from individual days (Fig. 4a) suggests that the same approach inherently 615 

incorporates undesired surface-wave arrivals. Our approach to remedy this issue relied on the application of spectral whitening 

to first enhance the weak body-wave arrivals associated with time periods when mine-induced noise was dominated by road 

traffic, followed by bandpass filtering, aimed to reject the surface waves. The results from 30 days, as opposed to 10-day stack, 

exhibits generally more reflectivity due to stacking over body wave arrivals with more uniform angle distribution. However, 

due to presence of surface waves, not fully suppressed by the preprocessing, and incorporation of body-wave sources outside 620 

stationary-phase regions, the results from all data exhibit reflection arrivals that have lower SNR as compared to the results 

from stacking only days when the body waves were dominant. 

6 Conclusions 

We investigated the imaging potential of the large-N passive seismic array for near mine exploration in conjunction with the 

developed methodology for body-wave reflections retrieval using seismic interferometry. The core of our workflow is a 625 

combination of the standard tools used to describe AN (PSD, beamforming) with a novel form of illumination- diagnosis and 

noise-source location to verify and extract actual body-wave events. Selective stacking is typically required to ensure 

successful retrieval of body-wave arrivals with preferential illumination. In this case, we selectively stacked 10 days of data 
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dominated by omni-directional body-wave energy. This approach was compared to an all-noise approach, stacking of all 30 

days of data. While the 10-day approach is better at resolving the continuity of some key reflections, the 30-day approach 630 

produced generally similar results. We conclude that understanding the AN characteristic is a key for choosing a data-driven 

stacking approach that best suits the specifics of the data and the target. By comparing the results of the passive seismic survey 

to active-source seismic data and pre-existing detailed geological models from the target area, this first hardrock full-scale 3D 

passive experiment confirmed the feasibility of virtual-source surveys to provide interpretable reflection image of structures 

beyond the known extent of the prospective zones. As such, the methodology has potential to guide the exploration drilling 635 

efforts at lower total acquisition costs, as confirmed by some earlier passive seismic studies. The specific, added value of this 

study is the demonstration of the value of ANSI in the full-scale 3D configuration. The Kylylahti passive experiment highlights 

the potential of active mine environments to generate ambient noise useful for imaging. Our methodology can be also used 

beyond the mineral exploration context, e.g., for geothermal exploration in crystalline rocks, where the noise sources are 

expected to be located below the array. 640 

Code/Data availability 

All passive results presented in this study (two sets of virtual-source gathers and migrated sections) are freely available through 

the Finnish Fairdata services: https://doi.org/10.23729/8469939b-4abe-405e-9eeb-53016acdfb7d. The original raw, and 

unprocessed ambient-noise recordings, that consist of whole recorded data volume (600 hours for 994 receiver stations) are 

freely available through the Finnish Fairdata services: https://etsin.fairdata.fi/dataset/a5a04b82-6270-4e44-b357-645 

a1344180bc1f. The approximate size of this repository is 3.74 TB, and there are additional files that explain all details about 

storage, and understanding of the data towards simplification of processing. GOCAD® Mining Suite was used for creating the 

3D visualization shown on Figure 10. 
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