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Thermal non-equilibrium of porous flow in a resting matrix
applicable to melt migration: a parametric study
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Abstract. Fluid flow through rock occurs in many geological settings on different scales, at different temperature conditions
and with different flow velocities. Depending on these conditions the fluid will be in local thermal equilibrium with the host
rock or not. To explore the physical parameters controlling thermal non-equilibrium the coupled heat equations for fluid and
solid phases are formulated for a fluid migrating through a resting porous solid by Bareyporous flow. By non-dimensionalizing
the equations threetwo non-dimensional numbers can be identified controlling thermal non-equilibrium: the Peclet number Pe

describing the fluid velocity, the-heattransfernumber-A-describing the local-interfacial-heat transfer from-the fluid-to-the sohi

and the porosity ¢. The equations are solved numerically for the fluid and solid temperature evolution for a simple 1D model

setup with constant flow velocity. This setup defines a third non-dimensional number, the model height H=1/G, where G is

the non-dimensional initial thermal gradient. Three stages are observed: a transient stage followed by a stage with maximum

non-equilibrium fluid to solid temperature difference, AT,,,,, and a stage approaching the steady state. A simplified time-
independent ordinary differential equation for depth-dependent (Tf —T,) is derived and solved analytically-selved. From
these solutions simple scaling laws of the form (Tf —Ts) = f(PeA-¢+H, where H is the non-dimensional model

height;(Pe, G, z) are derived. Due to scaling they don’t depend explicitly on ¢_anymore. The solutions for AT,,,, and the

scaling laws are in good agreement with the numerical solutions. The parameter space Pe, A-¢5-HG is systematically explored.
Ir-the-Pe—A—parameter-space-threeThree regimes can be identified: 1) at high Pe (>1/G) strong thermal non-equilibrium
develops independently of Pe-and-A; 2) at low Pe (<1}-aneHew-A—{<1/G) non-equilibrium decreases proportional to decreasing
PePe - G; 3) at low Pe (<1) and large-A non-equilbrium scales with Pe/A and thus becomes unimportant.G of order 1 the
scaling law is AT, = Pe. The peresity-¢-has—only-a—miner-effectscaling laws are also given in dimensional form. The
dimensional AT, ., depends on thermalnon-equiibrivrmthe initial temperature gradient, the flow velocity, the melt fraction,

the interfacial boundary layer thickness, and the interfacial area density. The time scales for reaching thermal non-equilibrium

scale with the advective time-scale in the high Pe-regime and with the interfacial diffusion time in the other two low Pe -
regimes. Applying the results to natural magmatic systems such as mid-ocean ridges can be done by estimating appropriate
orders of Pg and AG, Plotting such typical ranges in the Pe-A - G regime diagram reveals that a) interstitial melt flow is in

thermal equilibrium, b) melt channelling such as e.g. revealed by dunite channels may reach moderate thermal non-equilibrium,

and c) the dyke regime is at full thermal non-equilibrium.
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1 Introduction

Fluid flow through rock occurs in many geological settings on different scales, at different temperature conditions and with
different flow velocities. Depending on these conditions the fluid will be in local thermal equilibrium with the host rock or
not. On small scale, e.g. grain scale, usually thermal equilibrium is valid. Examples include melt migration through a porous
matrix in the asthenosphere or in crustal magmatic systems at super-solidus temperatures (e.g. McKenzie, 1984), groundwater
or geothermal flows in sediments or cracked rocks (e.g. Verruijt, 1982; Furbish, 1997; Woods, 2015), or hydrothermal
convection in the oceanic crust (e.g. Davis et al., 1999; Harris and Chapman, 2004; Becker and Davies, 2004). On a somewhat
larger scale local thermal equilibrium may not always be reached. Examples of such flows include melt migration in the mantle
or crust at temperatures close to or slightly below the solidus where melt may be focused and migrates through systems of
veins or channels (Kelemen et al., 1995; Spiegelman et al., 2001). Within the upper oceanic crust also water may migrate
through systems of vents or channels (Wilcock and Fisher, 2004). At even larger scales and at sub-solidus conditions magma
rapidly flows through propagating dykes or volcanic conduits (e.g. Lister and Kerr, 1991; Rubin, 1995; Rivalta et al., 2015)
and is locally at non-equilibrium with the host rock.

Heat transport associated with most of such flow scenarios is usually described by either-assuming thermal equilibrium between
the fluid and solid r-ease-efunder slow flow veleeityconditions (e.g. McKenzie 1984)-6¢). Alternatively, for more rapid flows
such melts moving in dykes through a cold elastic or visco-elasto-plastic ambient rock, by-assuming-the fluids are assumed as
isothermal (e.g. Maccaferri et al., 2011; Keller et al., 2013). However, on local scale of channel or dyke width thermal
interaction between rising hot magma and cold host rock is important and may lead to effects such as melting of the host rock
and freezing of the magma with important consequences for dyke propagation and the maximum ascent height (e.g. Bruce and
Huppert, 1990; Lister and Kerr, 1991; Rubin, 1995). Clearly, in such rapid fluid flow scenarios melt is not in thermal
equilibrium with the ambient rock.

Thus, there exists a transitional regime, which, for example, may be associated with melt focusing into pathways where flow
is faster and thermal equilibrium might not be valid anymore. In such a scenario it might be possible that channelized flow of
melt might penetrate deeply into sub-solidus ambient rock, and thermal non-equilibrium delays freezing of the ascending melts
and promotes initiation of further dyke-like pathways. Indeed, for mid-oceanic ridges compositional non-equilibrium has
proven to be of great importance for understanding melt migration and transport evolution (Aharonov et al., 1995; Spiegelman
etal., 2001). Thus, it appears plausible that in cases of sufficiently rapid fluid flow e.g. due to channeling or fracturing thermal
non-equilibrium may also become important. Describing this non-equilibrium macroscopically, i.e. on a scale larger than the
pores or channels, is the scope of this paper.

While the physics of thermal non-equilibrium in porous flow is well studied in more technical literature (e.g. Spiga and Spiga,
1981; Kuznetsov, 1994; Amiri and Vafai, 1994; Minkowycz et al., 1999; Nield and Bejan, 2006; de Lemos, 2016), so far it
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has attracted only little attention in the geoscience literature, but see Schmeling et al., (2018) and Roy (2020). The basic
approach in all these studies is the decomposition of the heat equation for porous flow into two equations, one for the solid
and one for the migrating fluid. The key parameter for thermal non-equilibrium is a heat exchange term between fluid and
solid, which appears as a sink in the equation for the fluid and as a source in the equation for the solid. Usually, this heat
exchange term is assumed proportional to the local temperature difference between fluid and solid (Minkowycz et al. 1999;
Amiri and Vafai, 1994; de Lemos, 2016; Roy, 2020}-attheugh). However, Schmeling et al. (2018) showed that in a more
general formulation the heat exchange term depends on the complete thermal history of the moving fluid through the possibly
also moving solid. Here we will follow the common assumption and use the local temperature difference formulation. While
Schmeling et al. (2018) showed that the magnitude of thermal non-equilibrium essentially depends on the flow velocity, or
more general, on the Peclet number, here we will more generally explore the parameter space.

While thermal non-equilibrium of an arbitrary porous flow system depends on many parameters, our approach is to reduce the
complexity of the system and systematically explore the non-dimensional parameter space. It will be shown that only threetwo
non-dimensional parameters control thermal non-equilibrium in porous flow, namely the Peclet number;-an-interfacial-heat

exehange-pumber- and the porosity._In our simple 1D model setup with constant flow velocity a third non-dimensional number,

the model height H=1/G, where G is the non-dimensional initial thermal gradient is identified. The non-dimensionalization

allows application of the results to arbitrary magmatic or other systems. The aim is to derive scaling laws aHewing-easily-te
deeidethat allow an easy determination of whether thermal equilibrium or non-equilibrium is to be expected and_guantitatively
to estimate the maximum temperature difference between fluid and matrix. The results will be applied to an anastomosing melt

ascent system typical for mid-oceanic ridges in a second paper (Chevalier and Schmeling, in prep).

2 Governing equations and model setup
2.1 Heat conservation equations

We eensiderstart with considering a hemegeneousgeneral two-phase matrix-fluid system with a—peresity—eonstant—in
spacevariable properties and time—We—assume—a—censtantsolid and fluid veleeityvelocities and subsequently apply

simplifications. The two phases are incompressible, and we assume local thermal non-equilibrium conditions, i.e. the two
phases exchange heat. We-selve-theThe equations for conservation of energy {de-Lemes;2016}-inof this system-
Conservation are given e.g. by de Lemos (2016). Assuming constant pressure the conservation of energy of the fluid phase is

given by:

Cos (w tv (‘PPf”fo)) =V (¢47T) — Qs @
For the definition of all quantities, see Table 1. Equation (1) can be further-develepedrearranged into:

Cof (Tf a(q;ff) + 4’%% + T,V - (dpsvy) + Ppsvy - VTf) =V (4 VT;) = Qs @

Mass conservation for the fluid phase is given by:
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Inserting (3) into (2), conservation of energy for the fluid phase resumes-tebecomes:

corprd (5L +vp - VI,) =V ($2,7T;) — Qs )
In a similar way, the conservation of energy of the solid phase is given by:

Cpsps(1 = ) (52 + v - VT,) = V- (1 = $IATT,) + Qs ®
which, assuming that v; = 0, is further simplified:

Cpsps (L= )52 =V - (1 = DIAVT) + Qs ©6)

The term Q, in the fluid and solid heat conservation equations is the interfacial heat exchange term between the two phases

T,
at

(fluid and solid). In general, it depends on the local thermal history of the two phases and the history of the heat exchange
(Schmeling et al., 2018). In a simplification it can be written as a combination of the interfacial area density S, the interfacial

boundary layer thickness dmd, the effective thermal conductivity Aerr and the temperatures of the two phases:

Qs = 2L, — ) Y]

In general, the term dmo is time dependent. Schmeling et al. (2018) however provide evidence that taking an appropriate
constant value for emd (depending on fluid velocity) gives a good approximation of @, and allows for a reasonable modeling
of temperature evolution with time. In most of the following parametric study, we use this simplification for dmd by assuming
it is constant with time-—The-influence-of time-dependence-is-discussed-in-section-5:1-4.

2.2 Scaling and non-dimensionalization

Non-dimensionalization is useful for interpreting models involving a large number of parameters. It usually helps reducing the
number of parameters, and identifies non-dimensional parameters that control the evolution of the system. We write the two
energy conservation equations in a non-dimensional form, using
T = AT,T', t = tot', v =w¥ V', (x,,2) =535 - (x',y', 2)

®
where AT, is the macroscopic scaling temperature difference of the system, i.e. the initial temperature difference between top
and bottom, vox.y.z is a distance, vy is the scaling fluid velocity, x;y-z-is-a-eistareetoL is the scaling length-chesen-as-channet
width-of the-peres-and

L= ¢u(1;¢0)5 (9)

with ¢,_as a scaling porosity, and t, =45/ Ged

FZo LAY
%7

is the scaling time;-where
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A-=S8"/pydm ) based on
——108a)
is-defined-as-the heat-transfernumber-diffusion time over the length L,

to = L?/k, (10)
(see Table 1 for definitions). Primed quantities are non-dimensional. Fhe-sealing-time-and-A-can-alse-be-writter-as-Introducing
the fluid filled pore width d, and the solid (grain) width ds, the interfacial area density S scales with

= dm /e ) {(Oh)
ty=tg e/ Leky) (9h)
and

=] Jdpm — L’ (10h)
A= clyfdm=cfdm (10h)
where § = ¢

z 4
(11)

for melt channels, tubes, pockets for all melt fractions, and for melt films at small melt fractions, while S scales with
5 = 5s0-90) 12)

ds

for melt channels, films and suspensions at all melt fractions. Here ¢ is a geometrical constant of the order 2 for melt channels

of, 4 for tubes:melt tubes, 6 for melt pockets, and 2 for melt films at small melt fractions. The geometrical constant cs is of

order 2 for melt channels, and 6 for melt films or suspensions. Thus, the scaling time and scaling length can also be written as

to = (A=¢0)dss _ ¢odsd (102)

CKq Csko

and

nd
L= ,(1—¢Z)5df= ,lﬁujds (9a)
Ea. e

i 9a) shows that L scales both with the geometric mean of

yd, and §_at small melt fractions, and with

b geometric mean of d¢ and & at large melt fractions. Thus, L is a natural

length scale associated with thermal equilibrium of fluid filled pores. The above scaling laws for S justify using the term

¢o(1 — ¢y)_in the scaling length L.
Besideswe-considerWe assume that the fluid and solid phases have the same densities and thermal properties: (but relax this

assumption later in section 5.1.3):

Ae
Cp,f = Cp,s = Cp,Ot pf = Ps = Po» Kf =K = L= Ko (HE)

€p,0Po -
From Eq. (4), (6), and (7) we get the non-dimensional energy conservation equations for the fluid and solid phases,
respectively:

== [Formatiert: Schriftart: Kursiv
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Syt = g (SL 4 Pe vy VT ) = V- ($VT) — 2B ~T00 (1 - 90 (Ty — TY)
——————@2019)
S-S =V (A= W) + 2201 = ) (T — )

—13(1%)
From these equations we notice that the thermal evolution of the two-phase system is controlled by threetwo non-dimensional
parameters—Pe;-A-and-numbers: the scaling porosity ¢, whereand the Peclet number Pe defined as

This number has already proven to be of high significance for determining whether thermal non-equilibrium is present or not

(Schmeling et al. 2018), and the highest Pe corresponds to the largest temperature difference between fluid and matrix. In the [Formatiert: Schriftart: Kursiv

following we drop the primes keeping all equations non-dimensional, erty-H-ner-dimensionatity-is-to-emphasizedprimes-witl
be-usedif not indicated otherwise.

In the following we wit-consider enly-medelsa homogeneous two-phase matrix-fluid system in 1D; with a porosity constant

poresityin space and time, i.e. ¢ = ¢,-and-with. We assume a constant fluid velocity—Fhe-latter which will be expressed in

terms of Pe, thus we choose ¥=the non-dimensional velocity v, = 1. This simplifies equations (214) and (4315) to [Formatiert: Schriftart: Kursiv

E*_Pea&_ié;lf (T _—T)

at A 8z Aezz VT T8

aT 22T
——sPe—L =" — (1 - ¢)(T; — Ts)
(17
and
2 . - :
% — 5227;5 + ¢0‘(Tf _ TS)’ (18) _ [Formatlert: Schriftart: Kursiv

respectively. As we are interested in the evolution of the non-equilibrium temperature difference between the solid and fluid
subtraction of Eq. (18) from Eqg. (17) gives:

o(rp=Ts)  0*(Ty-Ts)
at 8z2
which is equivalent to:

s _ 18 | 4o (p om0
3 Aoz a—gpnV T )

a
+PeZLt (T, —T,) =0 (19)

_~
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(T %(Tf-T. (T f-T.
(f s)_ (f2 s)+Pe(f s)
at 0z 0z

+(T; = T;) = —Pe (20

Note that while the temperatures Tt and Ts explicitly depend on two non-dimensional numbers Pe and ¢,, the temporal

evolution of the temperature difference (Tf - Ts) explicitly depends only on Pe. However, implicitly it is still a function of

¢_because T on the right-hand-side of Eq. (20) depends on ¢, via Eq. (18). Only for cases or stages with T, independent of

¢,.as proposed in section 4, the temperature difference (Tf - TS) is a function of only one non-dimensional parameter, Pe

and no more of ¢,.
respestively
2.3 Model setup

The fluid and solid heat conservation equations are solved in 4Ba 1D domain of height H. Other geometries could also be

easily explored but are not considered here, since we focus on studying the relative control of the scaling parameters on thermal

non-equilibrium evolution. At time t < 0, both solid and Hquid-are-at-rest-in-equilibrivm—For-both-phases-temperatures-are-set
n L b 0O it n L I

impesed-atz=-H-fluid are at rest, in equilibrium. Both initial temperatures decrease linearly from 1 to 0 with z, therefore a
constant temperature gradient of 4/H-is-present-in-both-phases{see-Fig—1)-— G = —1/H_is present in both phases (see Fig.

1). As boundary condition both phases temperatures are set to 1 (non-dimensional temperature difference)atz=0. Atz=Ha

constant thermal gradient condition d T/d z = — 1/H_(non-dimensional) is imposed for both phases. At z = 0 the advective

flux is fixed by the constant temperature condition, i.e. it is equal to Pe ¢, while at z = H it evolves freely with the fluid

temperature, i.e. it is given by T;Pe ¢, _(all non-dimensional). This top boundary condition needs some justification: The

hyperbolic partial differential equations Eq. (17) or (18) require two well defined boundary conditions each, Dirichlet (fixed

temperature), Neumann (fixed thermal gradient), Robin (fixed sum of advective and conductive heat flux) or Cauchy (fixed

temperature and thermal gradient). Applying the Dirichlet condition at the bottom, leaves either a Dirichlet, a Neumann or a

Robin condition to specify for the top. In an open outflow situation like our system neither the evolution of the temperature

the thermal gradient or the total (advective plus conductive) heat flux is known a priori, but depends on the evolution within
the system. In the early stage of model evolution both the solid and fluid have a thermal gradient inherited from the initial

condition which is advected upwards in the fluid. Thus it seems most appropriate to use the Neumann condition as a boundary

condition. Only at later stages this boundary condition imposes artefacts in the temperatures field close to the top boundary.

The limitations of this top boundary condition are tested and discussed in chapter 5.1.2.

This model setup adds a third non-dimensional scaling parameter to the system, namely G = 1/H. It defines the initial non-

dimensional temperature gradient or conductive heat flux, positive for a flux directed upwards. To summarize, the temperatures

depend on the non-dimensional parameters Pe , ¢, and G.




215

220

225

230

235

240

2.34 Numerical scheme

EguatiensThe equations are solved withby a MATLAB (MATLAB R2018b-R2021b) code using a finite difference scheme
central in space for the conduction terms, upwind for the advection term, and explicit in time. The spatial resolution is dz=
i i i i i edz = 0.1_or Min(0.1,H/100)_for H < 10.The

the time step was chosen as dt = %Min(dz/Pe,dzz), i.e. taking the minimum of the Courant or diffusion criterion. Tests with

smaller spatial and temporal resolution have been carried out and did not change the results visibly.

3 Numerical model results

First, some exemplary numerical results are shown in Fig. 2 to understand the physics and the typical behavior.

3.1 Evolution of temperatures and thermal non-equilibrium with time,

Three different models have been run, all with Pe = 1 and the following other parameters: Model 1: H =10, ¢ = 0.1, model 2:
H =100, ¢ = 0.1, and Model 3: H = 100, ¢ = 0.2. Figure 2a and b representshow Trand Ts as functions of z at different times

as indicated for two different-models—in-both-models Pe=1-A =14 =01 However-whileinthe mode g—2a)H

10,-in-the seeond-one{Fig—2b)}-H=1006-initial temperature gradients, G = 0.1 (H = 10) and G = 0.01 (H = 100), respectively.
Figure 2c shows the evolution of T and Ts with time at the top of the domain, for the same model 2 as in Figure 2b- and for
model 3 with a higher melt fraction ¢ = 0.2. Figure 2d representsshows the evolution of (Ts- Ts) at different distances z inof

model 2 (Fig—2b)-
¢ =0.1) and of model 3 (¢ = 0.2). At each depth of the system, the fluid and solid temperatures, as well as the temperature

difference, appearto-evolve following three stages:

Stage 1: During this transient stage the fluid temperature increases faster than the solid temperature (Fig. 2a,b,c,e), and the
temperature difference (Fig. 2d,f) increases. During this stage, the fluid temperature increases rapidly at first, then the
temperature increase slows down. As for the solid temperature, it first increases slowly, then faster and faster. At t = 0, the
fluid velocity is suddenly set to non-zero, thus the fluid temperature starts to deviate from equilibrium and increases in
agreementwithdue to these new conditions. If the solid temperature were maintained constant with time, the fluid temperature
would probably reach a steady-state profile, depending on boundary conditions, fluid velocity and solid temperature. AsWhile
the fluid temperature increases hewever;faster than the guidsolid temperature, the fluid-solid temperature difference, thus the
heat transfer term, increases too, makingforcing the solid temperature to progressively increase-alse-faster-and-faster. At the

end of stage 1 the maximum temperature difference is approached (Fig. 2f). Because the solid temperature hasn’t risen

significantly at that time (at t = 4 in the example) compared to the fluid temperature (Fig. 2¢) different melt fractions do not

affect the temperature differences during this stage (Fig. 2f in which all curves merge in one curve). This observation confirms

the expectation from Eqg. (20) that the temperature difference does not depend on melt fraction as long as the solid temperature

is independent of ¢, which is the case as long as T; stays close to its initial profile.

8
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Stage 2: The fluid and the solid temperatures increase at similar rates, constant with time (Fig. 2c), the temperature difference

remains stable(Fig—2d)—Seolid-fluid-heat-transferis-maximum-here-constant and at maximum at the top (Fig. 2d). Solid-fluid

heat transfer is at maximum during this stage. As Ts is no more constant in time, different melt fractions lead to different rates

of temperature increase (Fig. 2c) and also to different evolutions of (T;—Ts) (Fig. 2d solid curves compared to dashed curves).

A higher melt fraction increases the heat transfer into the solid (c.f. last term in Eq. 18), resulting in a faster increase of the

solid temperature whose gradient flattens earlier. Thus, the end of stage 2 is reached earlier (Fig. 2b).

Stage 3: As the fluid temperature rises close to the T value at the bottom, its increase slows down, and heat transfer, thus
temperature difference, decreases. In model 1 (Fig. 2a), steady state is reached while the fluid and solid temperatures are still
far from 1. This is due to the influence of boundary conditions, as the heat transferred from the fluid phase to the solid phase
is compensated by the solid phase heat loss ef-heat-at the top of the domain. In model 2 (Fig. 2b), boundary conditions at z =
H_ are applied farther away from the bottom, therefore allowing for a higher increase of temperatures when reaching the steady
state.

At each z we observe that the temperature difference first increases rapidly to reach a maximum after a short time;_(stage1)
here after t = 24 (Fig. 2f). The resulting amplitude of the temperature difference is identical at the different z-positions: and
for both melt fractions. Then it stays constant at this maximum value; (stage 2), and finally decreases (stage 3) (Fig. 2d};as-the
fluid-and-sehid-temperatures-experience-the-different-stages:). The higher in the model, the longer the temperature difference

remains at maximum. FhisA higher melt fraction accelerates the decrease of (T; —Ts). The absolute maximum temperature

difference in space and time does not depend on boundary conditions (see also section 5.1.2 where the influence of boundary
conditions is discussed), nor on the z-position nor on the melt fraction and therefore looks to be an interesting observable. It
could indeed be useful for getting a first order estimate of thermal non-equilibrium conditions and possible temperature
difference in a magmatic system. In the following sections we study how this maximum temperature difference evolves when

varying the three-parameters-Pe-A-and-pparameter Pe,

3.2 Maximum temperature difference,

The maximum temperature difference of a model can be defined as the maximum value reached in space and time (c.f. Fig.
2d). A series of models has been carried out for the two different non-dimensional parameters Pe, -A-and G = 1—¢-(=-sokid

fraetion);/H, and ATmax has been determined for each model (Fig. 3). Some first observations can be made-:
o—For highall Pe-and-high-A, ATmay-is propertiopnalproportional to PefA (Fig. 3a) as long as 4 Tmaxis somewhat smaller

than the absolutely possible maximum 1-

. . in-which is asymptotically approached for high Pe.

o  ATmax is proportional to PefAG, i.e. to the non-dimensional temperature gradient for G < 0.1.
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o  ATmax reaches a maximum for large G of order 1, i.e. when A-is-high-(Fig—3b),-and-ene-in-which-H reaches 1 or the

dimensional H reaches the scale L.

o ATnax is propertional-to-Pe-whenA-is-smal(Fig—3a-and-bessentially independent of ¢ as models with different ¢

almost merge in the same points shown in Fig. 3. This has been verified by running all models of Fig. 3 with melt

fractions between 0.1 and 0.9 (not shown).

_These observations suggest the existence of several domains in which scaling laws for 4 Twax could be derived, based on the

threetwo scaling parameters. In the next section, we propose an analytical retrievalderivation of ATmax values to derive
theseobtain scaling laws and confirm these-ebservationsthe observed proportionalities.
4 Scaling laws derived from analytical solution

In this section a simplified analytical solution for the z-dependent temperature difference between fluid and solid will be
derived. From this selutienssolution the maximum temperature differences A7max can be retrievedobtained and scaling laws

will be derived.

4.1 Analytical solution of the governing equations,

We are interested in an analytical

solution of the equation (20) controlling the non-equilibrium temperature difference (7, — T;).:

Uit 18FpF)  PedPr 1

+ + ) =0 @7
at A az2 A 8z | 1-¢p VT % Nl
2
Fr—Fs) ;é—é?‘—;—ry); s 4t (7; T)_ Pe 8Ty as)
at 4 a2 4 oz g, A 8z

Remember-that-¢—=¢y-is-assumed-constant: We simplify the problem by considering the hypothetical case in which (Tf —-Ty)
does not change with time, and, moreover, in which the thermal gradient in the solid phase is fixed and linear, with 8 T /9 z =
—G = — 1/H (non-dimensional, with dimensions: G = A-F/H-T,/H). Although different from initial and steady-state stages

described in the 1D models (section 3.1), this hypothetical case is quite similar to what can be observed at the very beginning
of the second stage described in section 3.1 (c.f. Fig. 2d,f). In this second stage, the evolution of T and Ts was indeed-observed

to-bebeing quite similar indeed. Besides, at the end of stage 1 (section 3.1), T -remains close to initial conditions, therefore te

a fixed linear gradient of slope AF4—G = —1/H is justified. Since the maximum temperature difference between the two
phases is observed starting from the end of stage 1 and during stage 2 (section 3.2), it does not seem unreasonable to consider
this hypothetical case for retrievingderiving the maximum temperature difference. Using these assumptions, Eq. {18)-resumes
t0(20) becomes:

PO pe ™) (1, 1) = —peG @1

az?
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While in the general case of Eq. (20) the temperature difference implicitly depends on ¢, i.e. on the three non-dimensional

parameters Pe, ¢, and G, Eq. (21) does no more depend on ¢,_because we replaced a Ty (¢,)/d z_by —G which is independent

10%(Fe-T5) e dHF-%) 1 _ PeAT
i‘pm@'m 22 A 8z 1—¢ (Tf Ts) A H
—9
Eg—{19(21) is a second order ordinary differential equation for (Tf - Ts) whose solution can be analytically retrieved-and-is
givenin-Eq—(20)-to details-on-the-equation-analytical-solving-are-given-in-thederived as (see supplementary material):
for details)
Tp — T, = ae"” + fes +{—p) o — (20-PeG
. (22)
where r1 and r; are the roots of the associated equation of Eq. (3921)
Pe ;;z 4A Pe. ;;2 44
nE=—— M,%(Pe—vPezﬂ-él-), = > =0 ;
—————— @ (Pe+VPe?+4)__. (23)
The parameters a and 4 are constrained by the boundary conditions-fer: (T; — T;)-((Z——7%) = 0 atz= 0 and @ =0at
z=H)
a=(1— ) Fert 2 8 — (1 Pe st Fr (22}
@ SR AT 7). 7 I TV o pete—rol v \==7
_ T2 _ T
andthea = PeG —omise—, B = P"’Grzewz—vln/c_ﬁ'
(24)
The third term in Eq. (2022) is a particular solution for Eq. (3921).
4.2 Comparison with numerical models, -

From Eq. (2022) the maximum value of the depth-dependent temperature difference (T, — T;) can be determined. It is found

that the maximum is always at z = H. This value will be denoted as A TmaYsing-this-value-theratio-of the-analytical (E¢-20)

to-the-pumericathy-determined-4Tmac and has been calculated for all 423parameter combinations used for the numerical models
. . ) in. In Fig. SLi - : . .

91%-of the-meodels;3 these ratios-He-within-0-99-and-1-02,-and-al-but-one-moedelsanalytical solutions are plotted as solid lines

together with the numerical solutions (asterisks). The agreement is very good, for most cases the differences between 6-98

andthe numerical and analytical solutions are well below 1%, only when ATmax reaches values of about 0.6 and higher the

differences become > 1:05- %, up to 6%. This surprisiaghygeneral good agreement is another justification effor using the time-

independent equation (3921) to retrieveobtain an analytical solution of an intrinsically time-dependent process as long as we
are interested only in the maximum value of (T; — T;). Other reasons for the observed differences between the analytical and
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335

340

345

350

355

numerical solutions include numerical errors when determining the particular times when maximum temperature differences
are reached, especially for the models which are in the regime close t0 ATyax = 1 where the ATnax (Pe) — curves become non-
linear (Fig. 3a).transientregime;

4.3 Scaling laws for temperature differences at certain parameter limits,

The analytical solution for 4Tmax fits very well with our model results and therefore looks to be ideal for getting a better
understanding on the relative influences of the threetwo controlling parameters Pe and G, described in section 2.2 and 2.3.

The Peclet number is already known to be of great importance for thermal equilibrium/non-equilibrium conditions. Attheugh

o o 3 a-high-A-and-a-tew-Areg with-diffe on-eguitibrium-behavier—Inspecting the

last term in Eq. (2622) we notice that a high Pe and a high initial thermal gradient should favor higher temperature differences;
while-a-high-A-weuld-ratherfavor-thermal-equilibrivm—TFhe-poeresity-¢;. This has been demonstrated in theform-of (1-¢)alse
B e =

Eq. (2622) is, however, eemplexcomplicated, and the visibitity-en-assessment of the relative importance of these-controlling
parametersPe and of-the—conditionsG for different possible regimes is limited. In this section, we study the evolution of

(T; — T5), i.e. alSO ATmax, in a few limiting cases. This enables us te-better understandunderstanding each parameter influence

and to derive some scaling laws for different regimes.

43.1Limit A>0-Pe - 0,

Linearizing-Eg—{20)-with-respectWhen Pe tends to A-areund-A=0, usingwe have the Faylorseries-in-terms-of- A-we-derive

condition

Pe < 2 (25)

With this condition Eq. (22) tends to the following limit feFG&——Ts—}(see supplementary material-for-more-detais): -

T; — T, = PeG(1— M) (26)

with

- i) e -
o A % a oPezy) (23)

T
F7F a7 peebelt
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365

432 LimitA->—
When-A-tends-towardsnfirttyswhich simplifies for z = H = 1/G to
1
M= oo =
This is the limit for Pe = 0. This limit -E¢—(20)-tends-to-the-folowingHmit:
T T — (1 A‘\\PGA’T 24\
s G—er— &7

375

380

385

390

Fhis-Himitgives predictions for 4Tmax in very good agreement with Eq. (2622) for Pe < 1 (having A=tand-$=0-1G = 0.1) (see
Fig. S2aS1 in the supplementary material).

Hin-addition-A-tends-to-zero; In the limit G — 0_and finite Pe < 1/G we get the folewing-limit: for M DA [ Formatiert: Tabstopps: Nicht an 1,88 cm

M > e? [Formatiert: Schriftart: Kursiv

Thus, for both small Pe and small G the temperature difference (Eq. 26) can be written
Ty —Ts = PeG(1—e™?) (29)

4.3.42 Limit Pe 2 o [Formatiert: Schriftfarbe: Rot

To obtain the limit of Eq. (2022) for Pe — oo, Eq. (2022) can be linearized with respect to 4A/{t—¢yPet)«<1.4/Pe? «
1. Applying the rule of L'HespitalL'Hopital Eq. (2622) tends to the following limit-(ferarbitrary-A)::

AT
T =T, =

oxal «— '[Formatiert: Tabstopps: 1,88 cm, Links
H

Gz (30)
For details, see supplementary material. This limit is also the solution of Eq. (2921) when neglecting the diffusive and heat

transfer terms. As demonstrated in the supplementary material this limit predicts 47max values in very good agreement with
Eq. (2622) for Pe > 100.
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4.3:6 Exploring the domains for the maximum temperature difference including all limits,

Before exploring the full parameter space we first give a short overview of expected parameter ranges in magmatic systems.

In natural magmatic systems such as mid-ocean ridges, Pe is expected to evolve from very low values of order 10 to 10 in
partially molten regions with distributed porous flow to higher values of order 1 or larger at depths where channels have
merged, and further to very high values of order 10° in dyke systems (Schmeling et al., 2018). As-4-scales-with-the-ratic-ofthe

. (22, 30)) it influences the long term temporal behavior once Ts is

fractions (McKenzie, 2000; Landwehr et al., 2001), large ¢ - values are not expected in natural mantle magmatic systems, nor
in dyke systems in the crust. VValues of channel volume fraction generally remain below a few percent up to tens of percent (in
dunite channels up to 10 - 20%, Kelemen et al., 1997). |

verv-different combinations-of-Pe-and-A ves \Within-pessible ranaes-of Pe

10 5 2 . . . -
of about 0.01 if normalized by 175,

BeeauseTo get an idea about the expected order of this—relatively-smal-influeneemagnitude of ¢-en-4Fmasthe macroscopic
dimension G = 1/H _of the system we herehave to evaluate the scaling length L used to scale the dimensional H. L scales with

the geometric mean of the channel width di and the interfacial boundary layer thickness § (Eq. 9 with 11). L would evolve

non-linearly with the width of melt pathways which may increase by several orders of magnitude as 3D grain junctions

eventually merge to 1D dykes. As will be shown in section 5.3 in more detail the resulting non-dimensional G ranges between
order 1 to order 10°.

In Figure 4 we explore 4Tmax Variations using the analytical solution Eq. (2622), in which 4Tmax depends essertiathy-on P and
A.—and-the reference value for¢-is-chosen-as-0.1.-In-the resulting Pe— A-diagram-threeG. Three main regimes can be
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430

435

440

445

450

e Regime 1: For high Pe values, (Tf - TS) tends to the relationship described in Eq. (2730). The temperature difference
increases linearly with distance from the bottom (z = 0) reaching 4Tmax = 1 at z = 2H. In the whole region the fluid

temperature remains constant and at maximum 1 while the solid temperature increases linearly with z from 0 to 1.

e Regime 2: For smal-A-valuesand-Pe-<1Pe <« 1, or more precisely, for Pe « %represented by the obligue dashed

line in Fig. 4, (T; — T) is-also-dependent-on-the-varies with distance from the bottom; according to (1 — e~#), and
is proportional to Pe-while-A—and—¢—influences-are-peghigible- and G. This means that large temperature gradients
favor large temperature differences. In this domain, (Tf - TS) tends to the relationships presented in Eq. {25)-and
(26)-(29).

e Regime 3: For high-A—values-and-PefA-<-tlarge initial temperature gradient G close to 1 (small H) and Pe « 1,
(T; — Ty) tends to the relationship proposed in Eq. (2426) In this domain, (T — Ts) =ATwaxis proportional to Pe but

no more dependentento G. The depth

dependence is given by (1 — M(2)),which is-identical-to-the solid-temperature-gradient-at the%ewHewever—numeHeal

by-Ee—24).G = 1 increases non-linearly from about 0 to 0.4 with increasing z.

5 Discussion
5.1 Limitations
5.1.1 Comments eramon the analytic solution

Although the assumptions used to get the analytic solution (Eq. 2622) are very specific, they are reasonable considering the
conditions in the models when AT is reached, and it fits very well the numerical results. This is shown in Fig. 5 where for

various combinations of Pe--A and HG the time-dependent temperature differences (Tf - Ts) are shown as functions of depth

[Formatiert: Schriftart: Kursiv

Formatiert: Schriftart: 9 Pt., Kursiv, Englisch (Vereinigtes
Konigreich)

[ Formatiert: Schriftart: Kursiv

together with the analytical solutions using Eq. (20622). For all examples the position of the maximum temperature differences
lies at z = H. A major simplification used in Eq. (3921) was time-independence. Obviously, the resulting analytical solutions
represent the stage 2, which is quasi steady state in contrast to stage 1 when the temperature difference builds up, and stage 3
when the long-term behavior is approached. We emphasize that this analytical solution is a very good approximation of the

depth-dependent temporal maximum temperature difference that can be reached in such porous systems.,

5.1.2 initialconditions-and-boundaryBoundary conditions at top_and initial conditions

The boundary conditions we chose at the top (z = H) are suitable for cases with little temperature evolution (regime 2); and 3
low Pe), and for early stages for regime 1 but might be inappropriate for high temperature increases (high Pe —regimes)—
regime 1) at later stages (see section 4.3.64). In order to quantify the influence of this choice of boundary conditions on our

15

[ Formatiert: Schriftfarbe: Rot




455

460

465

470

475

480

485

results, we compared the evolution of (Tf - TS) - profiles for three models, thatbelongto the three regimes-identified-in section
4-3-6Peclet numbers and two heights H, using threefour different boundary conditions at the top: (Fig. 6):

e Constant heat-fluxthermal gradient equal to the initial fiuxthermal gradient in the solid and fluid phases (Neumann
eenditionscondition). This was the boundary condition used in the models.
e HeatfluxThermal gradient is set to 0 at the top (Neumann eenditiopscondition).
e Both fluid and solid temperatures are set to 0 at the top (Dirichlet eenditienscondition).
AI%heHgMepJaemdaFyeeﬂdﬂmn&eaﬂ%ﬁeﬂglyaﬁeePﬂwdTemgerature at the top is numerically calculated from the
full equations (17) and

is-negligible(18) using one-sided (upwind) positions for regimes-Lthe first and 3-except-when-getting-close-to-the-top
of the-domain—Fhe-choice-of the-second derivatives (open boundary).

Mathematically, the open boundary eenditions-has;-hewever;condition is not a much-stronger-influence-on-the-whoele-profile
forregime-2-whererigorous boundary condition because both the temperature and temperature gradient intrinsically depend

on the temperature evolution ard-within the model. Therefore, it cannot be applied to the analytical solution of section 4.1.

Numerically it works well for our system without producing instabilities or oscillations. Comparing the top and bottom row of

Fig. 6, the constant temperature gradient condition produces quite similar results as the open boundary condition for all Pe and

H values tested during the first and second stage of temporal evolution (c.f. section 3.1). The agreement becomes worse for

stage 3 when approaching steady state are-controlledat large Pe. Comparing the other two boundary conditions (2" and 3"

row of Fig. 6) with the constant gradient condition (top row) shows that the effect of the top boundary during stage 1 and 2 is

still small sufficiently far away from the top. Only for the small Pe - case (left column of Fig. 6) the zero gradient and zero

temperature conditions strongly affect the upper half of the domain by diffusion-{see-section-5:2-below),-and-are-therefore-very
sensitive-to. Yet the maximum temperature difference of the constant gradient case is nearly reached by the other two boundary

conditions {see-Fig—S3further within the domain, not at the top. The special case of high Pe and high H with zero temperature

boundary condition (3" row 4" column in Fig. 6) shows a strong build-up of Ty — T,_close to the top when approaching the

steady state. This stems from the large local temperature gradient built up near the top as a result of transforming the difference

in supplementary-raterialy—\We-summarize-thatadvective heat in- and output (Pe Tinfrux — Pe Toutpiux = Pe) into a high
conductive outflux (9T /dz)_at the top. It is unlikely that such situations occur in natural systems.

In summary, the influence of boundary conditions on fluid and solid temperatures evolution depends mostly on the domain
size (H) and on the value of Pe:, The larger these two parameters, the less important is the influence of boundary conditions

within almost the whole model regien-domain. If one is interested in the maximum value of Ty — T;_in space and time, the tests

show that this value can safely be picked at z = H when using the constant temperature gradient boundary condition.

As_an initial condition we used a linear temperature profile and initial equilibrium between solid and fluid. A non-linear initial
temperature profile between Ty = T, = 1 at the bottom and Ty = T, = 0 at the top would have spatially varying temperature

gradients with sections with gradients larger than those assumed in our model. As the temperature gradient strongly influences
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495

500

505

510

515

thermal non-equilibrium (see e.g. Eq. 2622 which explicitly contains the temperature gradient %GL the above results are

expected to be different, and a stronger thermal non-equilibrium is expected in regions with higher gradients. Schmeling et al.
(2018) used a step function with Tr = T, = 1atz=0and Ty = T, = 0 atz > O as initial condition, i.e. an extremely non-linear
profile near z = 0. Assuming this initial temperature profile Figure 67 shows the temporal behavior of the temperature
difference for selected parameter combinations, equal to the parameters used in Fig. 5. The analytical solutions for the time-
independent case (Eq. 2022) is also shown. As expected, at early stages the temperature differences are significantly larger
than given by the analytical solutions by a factor 2 or more shortly after the onset of the evolution. At later stages (stage 2 or
3) the time-dependent solutions approach or pass through the analytical solutions. Thus, we may state that the analytical
solutions depicted in the regime diagram in Fig. 4 represent lower bounds of thermal non-equilibrium compared to settings

with non-linear initial temperature profiles,

5.1.3 BensitiesDifferent densities and thermal properties of the two phases

While for simplicity we used equal physical properties for the fluid and solid, in many circumstances they might be
significantly different. Equal properties are good approximations for magmatic systems where differences of density and
thermal parameters are small (order of 10%), whereas porous flows of water or gases through rocks or other technical settings
may be characterized by larger differences. Allowing for different material properties adds four new parameters, namely the
ratio of diffusivities, the ratio of densities, the ratio of heat capacities and a new effective thermal conductivity Ze for the
interface between the two phases with different properties. To evaluate how many new non-dimensional numbers are
introduced we non-dimensionalize the equations assuming different material properties for the two phases. We use the fluid
properties as scaling quantities and assume that they are independent of temperature, pressure and depth. Eq. (3214) and (4315)
turn into:_(for clarity, primes indicate non-dimensional quantites):

Pe 1 / + oTy! ' / ’ 1o ’
iy v P = ¢ (5L +Pev'-VT') = V- @VT'p) = 226Hp0(1L = o) ey (T = T5)

EE Padepps | \ ot
—28(32)
and
Ayt 4 Ty _ % st Kg! . _ , b 1 _ Aef! I
e (1= ) S = e U (L= QI + 52— g0 (= ) 2 (T = )
—29(33)

Inspection of these equations shows that twethree more non-dimensional numbers are introduced: the ratio of diffusivities ',

and-the ratio of the products density and heat capacity, p;'c, s~—Fhe’, and a new effective conductivity for heat transfer, A,7f~

As equations (2832) and (2933) cannot be merged into one time-independent ordinary differential equation for (Tf - Ts) asin

section 4.1, we numerically tested some cases with Pe = 1 and 44.¢;" = 1 in which the diffusivity ratios and the ratios of

ps'cp,s were varied between 0.1 and 10 (see Fig. S4-in-the-supplementary-material)-8). The results show that for the fixed
17
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combination of Pe = 1 and A4,¢; = 1 the magnitude of thermal non-equilibrium remains in the same order of magnitude
0(0.1) as for equal properties (Fig. 5a)—Hewever-the8). The time-dependence is significantly effectedaffected: For a high
ratio -of kg = 10 (i.e. the solid is strongly conducting) the solid temperature profile remains close to the constant initial
gradient, and the temperature difference rapidly converges to a steady state similar to the analytical solution depicted in Fig. 5
aba. In contrast, for a low x; = 0.1 the solid temperature departs more strongly from the initial linear gradient, and the solid —
fluid temperature difference slowly drops with time on the long term. Varying the potential to store heat in the solid, i.e.
ps'cp ', Fig. 8e and f shows that a high value slows down the long term time-dependent variations, while a small value leads
to rapid long term temporal variations of (Tf — TS) and seme-differencesinfaster convergence to the final-steady states{Fig-
S4-e-and-f-instate which is similar to the supplementary-material)-equal properties case.

It is interesting to apply the results for different physical properties to a geologically relevant setting, namely water flowing
through sedimentary rocks. Given that the high heat capacity of water is about three times larger than that of rock, and the
density is almost three times less, the product p,'c, ;" is about 0.78, i.e. of order 1. However, the thermal diffusivity of water
is significantly smaller than that of rock, typically by a factor 16, i.e. k" is about 16. We tested a few cases (Fig. 9) with Peclet

numbers and 4initial thermal gradients G (i.e. inverse model heights) (assuming for simplicity A.¢;" = 1) equal to the cases

depicted in Fig. 5. The time dependent profiles behave similarly to those in Fig. 5, with very similar maxima of the temperature
differences (red dashed curves in Fig. 5) relevant for stage 2. The only important difference is that the water-sedimentary rock
case more rapidly approaches the late steady states of stage 3 and these stages are closer to the maximum red-dashed curves.

Fhefull-set-of resultsis-shown-in-the-supplementary-material-inFig—S5-These results suggest that the absolute values of

maximum thermal non-equilibrium temperature differences shown in the regime diagram Fig. 4 are also applicable to a water-

sedimentary rock system,,
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5.2 Time scales

575 Itis interesting to evaluate the time scales for reaching the maximum non-equilibrium temperature differences and the steady
state. For every numerical model, we recorded the time needed to reach 90% of the maximum temperature differences between

fluid and solid, tqqy,, and the time needed to reach steady-state, ty;eqq,. The latter has been determined as the time at which

the maximum difference between (Tf(z) — T,(z)) —curves at two subsequent time steps becomes less than 10~8AT,,,.. These

times can be compared with different time scales that may characterize the evolution of temperatures in the models. These
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585

time scales can be based on advection over a characteristic distance dq, are-readgiving tygpq = denar/ Vo, OF on diffusion
over the characteristic distance giving tirrq = #par/Heiio)donar/1Ko. We tested these time scales with varieusthe two
natural length scales of the models-ramely-the-preseribed-boundary-layer-thickness;-dm;. The first is the scaling length L (=

1 non-dimensional) representing essentially the geometric mean /€dmly)-which-corresponds-to-the-scaling-time£g,0f the
channel width Z5of the pores, d;, and the interfacial boundary layer thickness §. The second is the model height H. Grouping

the models depending on the regime they belong to (see section 4.3.4, and Fig. 4), we plotted the recorded times tg,, and

tseeaay VErsus the characteristic time scales mentioned above. Good agreement with the characteristic time scales is indicated

by observed times fitting to the dashed x =y - lines (Figure 10).

595

600

605

610

e Inregime 1 (high Pe), toqs, is proportional to t,4,; (Figure #a;10a, blue circles). In this regime the high value of -Pe

makes the fluid temperature increase fast. It reaches its maximum value during the time under which significant fluid-
solid heat transfer eeeurs—after-builds up and the solid temperature is still low. This corresponds to the time for

traveling the full distance H. Bepending-enDuring stage 2 and 3 the vatue-of-A-which-quantifies-the-efficiency-of
heat-transfer;solid temperature increases and the temperature difference ean-then-decreasedecreases before steady

state is reached. The time for reaching steady state (Fig. 7510b, circles) varies atmestroughly linearly with tg.qq, <

atety;rpy. FOr_most cases it is

controlled by diffusion through the solid over distances of order H. The case with large H (circle in Fig. 10b below

dashed line) apparently reaches the steady state earlier, but still later than on a corresponding advective time scale

based on H (not shown). Inspecting this model shows that during stage 2 and 3 the high Pe number facilitates

approaching thermal equilibrium rapidly within large parts of the model and reducing the effective length scale (and

characteristic timescale) over which still non-equilibrium is present.

e Inregime 2 (low Pe and tew-AG < 0.1, i.e. H > 10) the time for reaching AT, is controlled by interfacial heat

transfer (Fig. 7a,10a, red asterisks) on the length scale /(dmLy)-as-teng-asL resulting in taoy is-proportional to to-but
feF“eF_}lsmal“ ‘h‘gheF{y. fa na 1ela fa il 1 i o fa ia

time for reaching steady state is controlled by the diffusion time scale across the height of the system (Fig. #b)-but
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e Inregime 3, (low PefA<1-A>1); and high G (small H)), time for reaching AT;,,,, depends-mosthy-on-Afe—interfacial
is similar or shorter than the diffusion en-the-length-seale</(dmiy))—tnthisregime heat transfer-is-ne-mere-neghgible
compared-with-adveetion—and-timits—time based on the temperature—differeneemodel height H (Fig. 10a, black
crosses). The flattening of the curve indicates that ean-develop—Steady-state-non-equilibrium is reached at-a-time
thatfaster for some models because Pe reaches order 1 and the advective timescale starts to take over. The time for

reaching steady state (Fig. 10b, crosses) varies linearly with tseqqy  tairry. Clearly, it is also controlled by
advection time scale (not shown), but limited by diffusion time scale (Fig. 7b, crosses). .

5.3 Applications to magmatic systems

We now test the possible occurrence of thermal non-equilibrium in natural magmatic systems based on the suggested
controlling non-dimensional parameters, namely the Peclet number Pe, the initial thermal gradient G (= 1/H), and the heat

transfer-number-A. Due-to-the smaller-importance-of melt fraction ¢, (c.l. section-4.3.6)-we neglect the-influence-of ¢-and

foeus-on-Pe-and-A-only- Typical stages of melt flow-stages for mid-ocean ridges include stage a), partially molten regions with
interstitial melts sitting at grain corners, grain edges or grain faces with low (0.0001 - 6%) melt fractions (see e.g. the discussion
in Schmeling, 2006), stage b), merging melt channel or vein systems with high (> 10 - 20%) porosity channels identified as
dunite channels after complete melt extraction (Kelemen et al., 1997), and stage c), propagating dykes or other volcanic
conduits. Let’s assume typical overall melt fractions of 1% to 20% for stages b) and c). Schmeling et al. (2018) discussed

possible Peclet numbers for such systems based on a Darcy flow basedrelated Peclet number

vpds
Ko

-~
[¢8)

hi

Pep =
(34)
which-relatesto-As we preferably use the melt pore dimension d;_in our scalings (Eq. 9a and 10a) we need to relate it to the

solid phase dimension d by using

d, = dfg g= { a1-¢) melt channels
i Jo(1 - o) melt tubes

Using (35), (9a), and (16) we arrive at the Peclet number used here-by

(35)

1 [a=¢)e

D gve ds

(36)

Schmeling et al. (2018) reviewed and estimated typical pore or channel spacings ds of 10° — 10" m for stage a), 0.1 m for early

stage b) increasing to 1 -100 m for late stage b), and 100m — 300 m for stage c) (dykes). Arguing for typical geometries,

spreading rates and melt extraction rates Schmeling et al. 2018 estimated the Darcy velocity lying between 10° m/s and 10°°
m/s. With these paramterers Pey,- numbers for the three stages can be estimated as 10°te-107 to 10 for stage a), 10° to 10*

te-10°® for stage b) at depths where channel distances are of order 0.1 m, and 10 to 0.1 at shallower depths where the channel
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distances have increased to the order of 1m to 4-km100 m, and >10%10° for the dyke stage c). Obviouslythe-Peclet-number

To estimate Feahsﬂeranges—fePAPeclet numbers as defined here (Eq. 36) typical interfacial thermal boundary layer thicknesses
irgd _are needed. As the arguments—from-seetion-5-1-4thermal
interfacial heat exchange intrinsically is time-dependent a good estimate for-the-interfacial-boundarylayerthickness-is dmd =
cm\/@e_(Mmensional form) where c,,_is a constant for a thermal boundary layer, equal to 2.32 for a cooling half space.

Assuming that the characteristic time can be expressed by the (dimensional) fluid velocity v, and system height H, i.e. by t =
H/vy:= Hp /vp, We may express ¥, in terms of the Peclet number Pep. With the resulting t and subseguent-em-we-ebtain
a-sealingtaw-for-A:6_we arrive at the following Peclet number (H and d; are dimensional or non-dimensional):

A—.@f”_"
VPe

—_—
(%)
N

=

1/4
Pe = Pe,™/* [h g=3/4 (dﬁf) Ji—¢ @31)

For mid ocean ridge settings we assume H of the order 1 to 10 km, and £g-use Eq. (35) to insert typical d-values (increasing

from 10 m (stage a), interstitial melts) to 102 m to 20?10 m for the channeling stage b) (see Schmeling et al., 2018) to >10
m for the dyke stage c). With-these-estimates-the-abeove-seatingtawThe resulting Peclet number (Eq. 32)-aHews-estimating
A37) is of the order 102 to 40°0.5 for stage a), order 10°%-ia? during the early phasestage b) and order 10%2 to 26-**in1 during
the later phasestage b) appropriate for dunite systems-for-stage-b);, and order 2010* to 107 for the dyke stage c)._To estimate
typical non-dimensional thermal gradients G’ (or layer thickness H") the above estimate for § and ds can be inserted into the

scaling length L (Eq. 9a) to arrive at a non-dimensional G’=1/H

—-3/4
6= (&) grgp [ pe, T (38)

With the derived estimates for the three stages, G is of the order 10°° to 107 for stage a), 10 — 10% increasing to 10 - 0.6

for stage 2), and 10° — 107 for the dyke stage c). These resulting stages for Pe and 4G’ are indicated in Figure-4-the regime

diagram (Fig. 4). Starting from interstitial melts at full thermal equilibrium, channeling and veining may result in moderate
thermal non-equilibrium at sufficiently high thermal gradients, while after transition to dyking full thermal non-equilibrium is

predicted. ,

A similar exercise eeuldcan be madedone for continental magmatic systems. We skip such an explicit evaluation here but note
that silicic melt viscosities are typically higher than those of basaltic melts at mid-ocean ridges. Thus, Peclet numbers and-heat
transfer-Aumbers-are expected to be smaller, but non-dimensional thermal gradients (Eq. 38) might be larger, resulting in a

downward and leftwardrightward shift of the natural stages indicated in Figure 4.

To make our scaling laws and time scales for reaching maximum thermal non-equilibrium more accessible it is worth writing

them in dimensional form. First, to estimate the Peclet number of a natural system combining Eq. (9) and (16) gives
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Pe = o bo(1-¢0)8 (39)
Ko S

indicating that for very small or very large melt fractions Pe becomes very small. One may use Eq. (11) or (12) to write Pe

also in terms of pore or grain dimensions ds or ds, respectively. The scaling laws and characteristic time scales for the three

regimes we found (Fig. 4) are in dimensional form:

e Regime 1: For large Pe the maximum non-equilibrium temperature difference is simply equal to the imposed

temperature difference, AT),,, = AT,, and the characteristic time to reach maximum non-equilibrium is simply

tenar = H/vpo.i.€. the total time of a fluid particle for passing through the system.

. . HVS . N .
e Regime 2 and 3: For small Peclet number ( Pe < 7%(1_%)0) the maximum temperature difference scales like
AT,y = Gurodo(1—¢o)d (40)

KoS

and the characteristic time for reaching this non-equilibrium scales with to, i.e.

_ $o(1-¢0)8 (41)

tehar = KoS

These relations can easily be used to assess the potential of thermal non-equilibrium in systems of fluid flow through solids

with given geometrical properties and fluid fractions.

6 Conclusions

In conclusion we showed that in magmatic systems characterized by two-phase flows of melts with respect to solid, thermal-
non-equilibrium between melt and solid may arise and beeemebecomes important under certain conditions. The main
conclusions are summarized as follows:

From non-dimensionalization of the governing equations three non-dimensional numbers can be identified controlling thermal
non-equilibrium: the Peclet number Pe, the heat-transfernumberA—and-the-melt porosity ¢-, and the initial non-dimensional

temperature gradient G in the system. The maximum possible non-equilibrium solid — fluid temperature difference AT, _is

controlled only by two non-dimensional numbers: Pe and G. Both numerical and analytical solutions show that in a Pe — 4G

- parameter space three regimes can be identified:

« Inregime 1 (high Pe (>1/G)) strong thermal non-equilibrium develops independently of Pe-, and A-&a non- -

dimensional scaling law Ty — T =%Gz has been derived.

e Inregime 2 (low Pe (<1/G) and low A—<1G (<0.3)) non-equilibrium decreases propertionatproportionally to
decreasing Pe; and G, and the non-dimensional scaling law reads Ty — T = PeA—T—z—Ql—;}Pe G(1—e™?).

becomes-unimpertantG and is depth-dependent, the scaling law is Ty — T, ={—1———$9%Pe G (1 - M(z)) where
M(z) depends on G.
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Further conclusions include:

*  The time scales for reaching thermal non-equilibrium scale with the advective time-scale in the high Pe-regime and
with the interfacial diffusion time in the other two low Pe number regimes.

«  Applying the results to natural magmatic systems such as mid-ocean ridges can be done by estimating appropriate
orders of Pe and AG. Plotting such typical ranges in the Pe-AG regime diagram reveals that a) interstitial melt flow
is in thermal equilibrium, b) melt channeling as e.g. revealed by dunite channels may reach moderate thermal non-
equilibrium, and c) the dyke regime is at full thermal non-equilibrium.

¢ In the studied setup G was constant leading to conservative estimates of thermal non-equilibrium. Any other depth-

dependent initial temperature distributions generate higher non-equilibrium than reported here.

¢ Thederived scaling laws for thermal non-equilibrium are valid for equal solid and fluid properties. Assuming different

properties such as for a water — sandstone system results in similar maximum non-equilibrium temperature

differences, but in significantly different time evolutions.

While for simplicity the presented approach has been done essentially for constant model parameters, it can easily be extended
to vertically varying parameters. Thus, tools are provided for evaluating the transition from thermal equilibrium to non-

equilibrium for anastomosing systems (Hart, 1993; Chevalier and Schmeling, in prep.).,
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Symbol Definition Units

A Heat-transfer-AumberEq—10ab) -
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Cp.f,5,0 Specific heat at constant pressure for the fluid, solid, or reference, Jkg'K™
respectively

c,Cs Geometrical constant—2 for fluid pore space or solid phase, respectively. -
For melt channels:4- or low porosity films ¢ = 2, for tubes ¢ = 4 (Eq. 9b;
10b11, 12)

Cen Constant for thermal boundary layer, 2.32 for cooling half space -

m Lprrosieboundon sl el e m

dg, dy Characteristic length scale of solid or fluid phase, respectively m

f Subscript used for fluid -

q Function describing part of the ¢- dependence of d, d; (Eg. 35) -

G Initial temperature gradient, taken positive for temperature decreasing with T m™
height

H Height of the model m

5L, Scaling length used for non-dimensionalization (=d}(Eq. 9) m [ Formatiert: Schriftart: Kursiv

M(z) Function describing the depth-dependence of analytical solution of -
(T; — T,) for small Pe (Eq. 27)

Pe, Pep Peclet numbers-_based on fluid velocity (Eq. £4}(16)) or based on Darcy -
velocity (Eq. 34), respectively

Qrs Interfacial heat exchange rate from fluid to solid Jstm?®

T,y Constants of analytical solution (Eq.. 23) -
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t, tchar

Tf' s

ATy, AT g

Vrs
¥gUro
Up

X,z

ap

Subscript used for solid
Interfacial area density, i.e. interfacial area per volume

FimeTime, characteristic timescales, respectively. “char” indicates the

characteristic time for diffusion or advection over a characteristic length L
or H: “diffL”, “diffi”, “advL”, “advH”

Diffusion time on interfacial scale used for non-dimensionalizationScaling
time (Eq. 10)

Temperature of the fluid or solid, respectively

Initial temperature difference between top and bottom_used as scaling

temperature, and maximum difference between fluid and solid temperature

in space and time, respectively

Velocity of the fluid or solid, respectively

Constant fluid velocity in the model, used for scaling
VelmetrieVolumetric flow rate (Darcy velocity) (= ¢vgvy)
Coordinates, distance

Functions used for analytical solution (Eq. 24)

Interfacial boundary layer thickness

Thermal diffusivity of the fluid, solid or reference, respectively

Thermal conductivity of the fluid or solid, respectively

Effective thermal conductivity at the solid-fluid interface

28
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~

=]

m

wWmtK?

wmtK?



.90 Porosity or scaling porosity, respectively

Prso Density of the fluid, solid, or reference. respectively

kg m’

790

Table 1: Symbols, their definition, and physical units used in this study.
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Constant advection velocity

b4 ‘.

=y

o o T
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Figure 1. Initial and boundary conditions.
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Figure 2. Typical model evolution for Pe = 1, A=2%two different melt fractions ¢-—=6-1-, and two different heights H. a) Model 1 is

with non-dimensional height H=10-and ¢ = 0.1, Red and blue curves show the fluid and solid temperatures at different timesnon-
dimensional times t as indicated by the legend, respectively. Initial temperatures are in black-almost identical to the t = 0.5 curves.

b) Model 2 with H = 100, else as in a). ¢) Temporal evolution of fluid and solid temperatures, Tt (red) and Ts (blue), respectively,
of-model2atthe-top-at the top of model 2 with ¢ = 0.1_and model 3 with ¢ = 0.2, H = 100 for both models. d) Evolution of fluid -
solid temperature difference (Tt - Ts) at different distances z in model 2-—The-pesitionsz=25,50,75and-100-are-indicated-by-the
inset_(¢p = 0.1, solid curves) and in model 3 (¢ = 0.2, dashed curves). e) Zoomed-in early temporal evolution solid and fluid
temperatures of medetmodels 2 and 3 shown in c). -f) Zoomed-in early temporal evolution of temperature difference of model 2 and

3shownind). .
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Figure 3. Maximum fluid — solid temperature differences ATwg=T — T of numerical models (asterisks) with different parameters,

810 plotted a) as a function of a)-the Peclet number Pe,
¢ = 0.1_and b) as a function of the initial thermal gradient G for Pe =1 and ¢ = 0.1. The solid lines give the analytic solutions,
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825 Figure 4. Main regimes of the maximum fluid — solid temperature differences AT,,,, due to thermal non-equilibrium obtained by
the analytical solution (egqu-—20)-and-associated-timitsEq. 22) in the parameter space of the heat-transfernumber-A-and-the-Peclet
number Pe—TFhe-meltfraction-¢-has-been-assumed-as-0-1- and temperature gradient G. The asymptotic limits are indicated by the
formulas, M(2) is given by Eq. (27) with (1 — M(z)) increasing non-linearly from about 0 to 0.4 with increasing z. Regime boundaries

are shown as dashed lines. Typical parameter combinations for magmatic settings such as interstitial melts or dykes are indicated
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Figure 5. Comparison of depth— and time- dependent numerical solutions with the time — independent analytical solutions for

different parameters Pe-A; and HG as indicated in the sub-figure titles. Fhe-thineurvesinln each panel_the curves show (Tf - Ts)-

profiles for progressive times, the colors are cyclically varied with time from blue to yellow, starting with blue:_(bold curve). The
bold red dashed curve shows the analytical solution egu-—20Eq. (22), which represents a very good estimate of the depth-dependent
temporal maximum of the temperature difference. In each panel the first 5 curves are plotted at time increments of 0.5 (0.025 for Pe

=100), the later curves with 5 (1 for Pe = 100). The total non-dimensional times of each panel are: a)}—¢):-106,-¢)-15,€}-16,and-f)

100-As-porosity-¢-=100 (500 for G = 0.01). The melt fraction was chosen as ¢y = 0. 1-is-assumed,
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a) Pe=1,A=1,H=10 b) Pe=1,A=1,H=100
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Fiqure 6. Temporal evolution of vertical profiles of (T, — T)_for models with different Peclet numbers and model heights, i.e.

different initial temperature gradients G = 1/H. In each panel the curves show (T — T;)- profiles for progressive times, the colors

are cyclically varied with time from blue to yellow, starting with blue (bold curve). The first 5 curves of the Pe < 100 (respectively

Pe = 100) models were taken with time increments of 1 (respectively 0.1), the later curves with 10 (respectively 1). The total time was

100 in all models with H = 10 and 500 in the models with H = 100. In each row the top boundary conditions is assumed as indicated
at the left.
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«108  Pe=0.01,G=0.1

Figure 7. Time- and depth- dependent numerical solutions (thin curves) as in Figure 5 but for step-function initial conditions: Ty =
Ts=1atz=0and Ty =T, =0 atz >0 at t = 0. Dashed-curves-are-the-time-independent-analytical-selutions-as-in-Fig—5The bold
dashed red curves are the time-independent analytical solutions as in Fig. 5. In each panel the curves show (T, — T')- profiles for
progressive times, the colors are cyclically varied with time from blue to yellow, starting with blue (bold curve). In each panel the
first 5 curves (and later curves, respectively) are plotted at time increments of a) 0.5 (5), b) 1 (10), ¢) 0.5 (5), and d) 0.025 (1). The
total non-dimensional times of each panel are: 100 (500 for G = 0.01). As porosity ¢ = 0.1_is assumed.

M

,/[ Formatiert: Schriftfarbe: Rot




865

10* 101
10° |
102 i
'L
. 106
10°
g 10
2 I e
10° i !
s
x
%
! o Regmet,vs.i_ 100
10 + Rogime2,vs.t,
«  Rogima3, vs.t; 102
10 " " 5 10
10 10 10° 10° 10? 10t 10° 10 102 10° 10? 10* 10° 10°
bl tn '.d'uu

42



K216, plc, ‘=078

0.08
0.08 -
o 0.06 @«
= = ——
' + 0.06
= 004 =
0.04
0.02 0.02
o o
0 2 4 6 8 10 0 2 4 6 8 10
z z

Figure 78. Time- and depth- dependent profiles of the fluid — solid temperature differences as in Fig. 5. a) Reference models (as in
Fig. 5a) with Pe =1, G = 0.1, ¢ = 0.1_and equal fluid to solid properties. b) to f) Profiles as in a) but with solid to fluid properties
870 ratios as indicated in the titles of each panel, and 4.," = 1. The properties in b) are typical for water in sedimentary rocks. In each
panel but b) the first 5 curves were taken with time increments of 0.5, the later curves with 5. In panel b) the first 5 curves were

taken with time increments of 0.4875, the later curves with 4.875 . The total time was 100 in all models.
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Eigure 9. Time- and depth- dependent profiles of the fluid — solid temperature differences as in Fig. 5, but for fluid to solid property
ratios typical for water flowing through sedimentary rocks, i.e. psc," = 0.78, ks = 16_, A,5;' = 1. Pe and G have been chosen as

indicated in the sub-figure titles (as in Fig. 5) and ¢ = 0.1_was assumed. In each panel the curves show (Tf - Ts)- profiles for
progressive times, the colors are cyclically varied with time from blue to yellow, starting with blue (bold curve). The first 5 curves
were taken with time increments of 0.4875, the later curves with 4.875. The total time was 100 in all models with G = 0.1 and 200 in
the models with G = 0.01.
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the three different regimes 1, 2 and 3 (different symbols) are plotted against characteristic scaling times. a) timesTimes for reaching

90% of the maximum temperature difference AT,,,, are plotted against either the advective time scale tasv based on model height

on the model height H. b) times for reaching steady states are plotted against the characteristic -diffusive time scales, fiH, based on

model height H for all 3 regimes. Models close to the dashed line (y = x) are in best agreement with the characteristic times. In this

Figurea) the Regime 2 times wereare taken dimensional by settirg-=6multiplying the observed times and #g-tethe non-dimensional
scaling time to’ = 1 te-aHew-for-varieus-t02sby some arbitrary dimensional times to,
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