
 

1 

 

Thermal non-equilibrium of porous flow in a resting matrix 

applicable to melt migration: a parametric study 

Laure Chevalier, Harro Schmeling 

Institute of Geosciences, Goethe University, 60438 Frankfurt, Germany  

Correspondence to: Harro Schmeling (schmeling@geophysik.uni-frankfurt.de) 5 

Abstract. Fluid flow through rock occurs in many geological settings on different scales, at different temperature conditions 

and with different flow velocities. Depending on these conditions the fluid will be in local thermal equilibrium with the host 

rock or not. To explore the physical parameters controlling thermal non-equilibrium the coupled heat equations for fluid and 

solid phases are formulated for a fluid migrating through a resting porous solid by Darcyporous flow. By non-dimensionalizing 

the equations threetwo non-dimensional numbers can be identified controlling thermal non-equilibrium: the Peclet number 𝑃𝑒 10 

describing the fluid velocity, the heat transfer number 𝐴 describing the local interfacial heat transfer from the fluid to the solid, 

and the porosity 𝜙. The equations are solved numerically for the fluid and solid temperature evolution for a simple 1D model 

setup with constant flow velocity. This setup defines a third non-dimensional number, the model height H=1/G, where G is 

the non-dimensional initial thermal gradient. Three stages are observed: a transient stage followed by a stage with maximum 

non-equilibrium fluid to solid temperature difference, ∆𝑇𝑚𝑎𝑥, and a stage approaching the steady state. A simplified time-15 

independent ordinary differential equation for depth-dependent (𝑇𝑓 − 𝑇𝑠) is derived and solved  analytically solved. From 

these solutions simple scaling laws of the form (𝑇𝑓 − 𝑇𝑠) = 𝑓(𝑃𝑒, 𝐴, 𝜙, 𝐻) , where H is the non-dimensional model 

height,(𝑃𝑒, 𝐺, 𝑧) are derived. Due to scaling they don’t depend explicitly on 𝜙 anymore. The solutions for ∆𝑇𝑚𝑎𝑥  and the 

scaling laws are in good agreement with the numerical solutions. The parameter space 𝑃𝑒, 𝐴, 𝜙, 𝐻𝐺 is systematically explored. 

In the 𝑃𝑒 − 𝐴 - parameter space threeThree regimes can be identified: 1) at high Pe  (>1/G) strong thermal non-equilibrium 20 

develops independently of Pe  and A; 2) at low Pe  (<1) and low A  (<1/G) non-equilibrium decreases proportional to decreasing 

Pe𝑃𝑒 ∙ 𝐺; 3) at low Pe  (<1) and large A  (>1) non-equilbrium scales with Pe/A and thus becomes unimportant.G of order 1 the 

scaling law is ∆𝑇𝑚𝑎𝑥 ≈ 𝑃𝑒. The porosity 𝜙 has only a minor effectscaling laws are also given in dimensional form. The 

dimensional ∆𝑇𝑚𝑎𝑥 depends on thermal non-equilibriumthe initial temperature gradient, the flow velocity, the melt fraction, 

the interfacial boundary layer thickness, and the interfacial area density. The time scales for reaching thermal non-equilibrium 25 

scale with the advective time-scale in the high Pe-regime and with the interfacial diffusion time in the other two low Pe - 

regimes. Applying the results to natural magmatic systems such as mid-ocean ridges can be done by estimating appropriate 

orders of Pe and AG. Plotting such typical ranges in the Pe-A - G regime diagram reveals that a) interstitial melt flow is in 

thermal equilibrium, b) melt channelling such as e.g. revealed by dunite channels may reach moderate thermal non-equilibrium, 

and c) the dyke regime is at full thermal non-equilibrium.  30 
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1 Introduction 

Fluid flow through rock occurs in many geological settings on different scales, at different temperature conditions and with 

different flow velocities. Depending on these conditions the fluid will be in local thermal equilibrium with the host rock or 

not. On small scale, e.g. grain scale, usually thermal equilibrium is valid. Examples include melt migration through a porous 35 

matrix in the asthenosphere or in crustal magmatic systems at super-solidus temperatures (e.g. McKenzie, 1984), groundwater 

or geothermal flows in sediments or cracked rocks (e.g. Verruijt, 1982; Furbish, 1997; Woods, 2015), or hydrothermal 

convection in the oceanic crust (e.g. Davis et al., 1999; Harris and Chapman, 2004; Becker and Davies, 2004). On a somewhat 

larger scale local thermal equilibrium may not always be reached. Examples of such flows include melt migration in the mantle 

or crust at temperatures close to or slightly below the solidus where melt may be focused and migrates through systems of 40 

veins or channels (Kelemen et al., 1995; Spiegelman et al., 2001). Within the upper oceanic crust also water may migrate 

through systems of vents or channels (Wilcock and Fisher, 2004). At even larger scales and at sub-solidus conditions magma 

rapidly flows through propagating dykes or volcanic conduits (e.g. Lister and Kerr, 1991; Rubin, 1995; Rivalta et al., 2015) 

and is locally at non-equilibrium with the host rock. 

Heat transport associated with most of such flow scenarios is usually described by either assuming thermal equilibrium between 45 

the fluid and solid in case ofunder slow flow velocityconditions (e.g. McKenzie 1984) or). Alternatively, for more rapid flows 

such melts moving in dykes through a cold elastic or visco-elasto-plastic ambient rock, by assuming the fluids are assumed as 

isothermal (e.g. Maccaferri et al., 2011; Keller et al., 2013). However, on local scale of channel or dyke width thermal 

interaction between rising hot magma and cold host rock is important and may lead to effects such as melting of the host rock 

and freezing of the magma with important consequences for dyke propagation and the maximum ascent height (e.g. Bruce and 50 

Huppert, 1990; Lister and Kerr, 1991; Rubin, 1995). Clearly, in such rapid fluid flow scenarios melt is not in thermal 

equilibrium with the ambient rock. 

Thus, there exists a transitional regime, which, for example, may be associated with melt focusing into pathways where flow 

is faster and thermal equilibrium might not be valid anymore. In such a scenario it might be possible that channelized flow of 

melt might penetrate deeply into sub-solidus ambient rock, and thermal non-equilibrium delays freezing of the ascending melts 55 

and promotes initiation of further dyke-like pathways. Indeed, for mid-oceanic ridges compositional non-equilibrium has 

proven to be of great importance for understanding melt migration and transport evolution (Aharonov et al., 1995; Spiegelman 

et al., 2001). Thus, it appears plausible that in cases of sufficiently rapid fluid flow e.g. due to channeling or fracturing thermal 

non-equilibrium may also become important. Describing this non-equilibrium macroscopically, i.e. on a scale larger than the 

pores or channels, is the scope of this paper. 60 

While the physics of thermal non-equilibrium in porous flow is well studied in more technical literature (e.g. Spiga and Spiga, 

1981; Kuznetsov, 1994; Amiri and Vafai, 1994; Minkowycz et al., 1999; Nield and Bejan, 2006; de Lemos, 2016), so far it 
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has attracted only little attention in the geoscience literature, but see Schmeling et al., (2018) and Roy (2020). The basic 

approach in all these studies is the decomposition of the heat equation for porous flow into two equations, one for the solid 

and one for the migrating fluid. The key parameter for thermal non-equilibrium is a heat exchange term between fluid and 65 

solid, which appears as a sink in the equation for the fluid and as a source in the equation for the solid. Usually, this heat 

exchange term is assumed proportional to the local temperature difference between fluid and solid (Minkowycz et al. 1999; 

Amiri and Vafai, 1994; de Lemos, 2016; Roy, 2020), although). However, Schmeling et al. (2018) showed that in a more 

general formulation the heat exchange term depends on the complete thermal history of the moving fluid through the possibly 

also moving solid. Here we will follow the common assumption and use the local temperature difference formulation. While 70 

Schmeling et al. (2018) showed that the magnitude of thermal non-equilibrium essentially depends on the flow velocity, or 

more general, on the Peclet number, here we will more generally explore the parameter space.   

While thermal non-equilibrium of an arbitrary porous flow system depends on many parameters, our approach is to reduce the 

complexity of the system and systematically explore the non-dimensional parameter space. It will be shown that only threetwo 

non-dimensional parameters control thermal non-equilibrium in porous flow, namely the Peclet number, an interfacial heat 75 

exchange number,  and the porosity. In our simple 1D model setup with constant flow velocity a third non-dimensional number, 

the model height H=1/G, where G is the non-dimensional initial thermal gradient is identified. The non-dimensionalization 

allows application of the results to arbitrary magmatic or other systems. The aim is to derive scaling laws allowing easily to 

decidethat allow an easy determination of whether thermal equilibrium or non-equilibrium is to be expected and quantitatively 

to estimate the maximum temperature difference between fluid and matrix. The results will be applied to an anastomosing melt 80 

ascent system typical for mid-oceanic ridges in a second paper (Chevalier and Schmeling, in prep). 

2 Governing equations and model setup 

2.1 Heat conservation equations 

We considerstart with considering a homogeneousgeneral two-phase matrix-fluid system with a porosity constant in 

spacevariable properties and time. We assume a constantsolid and fluid velocityvelocities and subsequently apply 85 

simplifications. The two phases are incompressible, and we assume local thermal non-equilibrium conditions, i.e. the two 

phases exchange heat. We solve theThe equations for conservation of energy (de Lemos, 2016) inof this system. 

Conservation are given e.g. by de Lemos (2016). Assuming constant pressure the conservation of energy of the fluid phase is 

given by: 

𝑐𝑝,𝑓 (
𝜕(𝜙𝜌𝑓𝑇𝑓)

𝜕𝑡
+ 𝛻 ⋅ (𝜙𝜌𝑓𝑣𝑓𝑇𝑓)) = 𝛻 ⋅ (𝜙𝜆𝑓𝛻𝑇𝑓) − 𝑄𝑓𝑠       (1) 90 

For the definition of all quantities, see Table 1. Equation (1) can be further developedrearranged into: 

𝑐𝑝,𝑓 (𝑇𝑓
𝜕(𝜙𝜌𝑓)

𝜕𝑡
+ 𝜙𝜌𝑓

𝜕𝑇𝑓

𝜕𝑡
+ 𝑇𝑓𝛻 ⋅ (𝜙𝜌𝑓𝑣𝑓) + 𝜙𝜌𝑓𝑣𝑓 ⋅ 𝛻𝑇𝑓) = 𝛻 ⋅ (𝜙𝜆𝑓𝛻𝑇𝑓) − 𝑄𝑓𝑠    (2) 

Mass conservation for the fluid phase is given by: 
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𝜕(𝜌𝑓𝜙)

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝑓𝜙𝑣𝑓) = 0           (3) 

Inserting (3) into (2), conservation of energy for the fluid phase resumes tobecomes: 95 

𝑐𝑝,𝑓𝜌𝑓𝜙 (
𝜕𝑇𝑓

𝜕𝑡
+ 𝑣𝑓 ⋅ 𝛻𝑇𝑓) = 𝛻 ⋅ (𝜙𝜆𝑓𝛻𝑇𝑓) − 𝑄𝑓𝑠        (4) 

In a similar way, the conservation of energy of the solid phase is given by: 

𝑐𝑝,𝑠𝜌𝑠(1 − 𝜙) (
𝜕𝑇𝑠

𝜕𝑡
+ 𝑣𝑠 ⋅ 𝛻𝑇𝑠) = 𝛻 ⋅ ((1 − 𝜙)𝜆𝑠𝛻𝑇𝑠) + 𝑄𝑓𝑠       (5) 

which, assuming that 𝑣𝑠 = 0, is further simplified: 

𝑐𝑝,𝑠𝜌𝑠(1 − 𝜙)
𝜕𝑇𝑠

𝜕𝑡
= 𝛻 ⋅ ((1 − 𝜙)𝜆𝑠𝛻𝑇𝑠) + 𝑄𝑓𝑠        (6) 100 

The term 𝑄𝑓𝑠 in the fluid and solid heat conservation equations is the interfacial heat exchange term between the two phases 

(fluid and solid). In general, it depends on the local thermal history of the two phases and the history of the heat exchange 

(Schmeling et al., 2018). In a simplification it can be written as a combination of the interfacial area density S, the interfacial 

boundary layer thickness dmδ, the effective thermal conductivity λeff and the temperatures of the two phases: 

𝑄𝑓𝑠 =
𝑆𝜆𝑒𝑓𝑓

𝑑𝑚𝛿
(𝑇𝑓 − 𝑇𝑠)           (7) 105 

In general, the term dmδ is time dependent. Schmeling et al. (2018) however provide evidence that taking an appropriate 

constant value for dmδ (depending on fluid velocity) gives a good approximation of 𝑄𝑓𝑠  and allows for a reasonable modeling 

of temperature evolution with time. In most of the following parametric study, we use this simplification for dmδ by assuming 

it is constant with time. The influence of time-dependence is discussed in section 5.1.4.  

 110 

2.2 Scaling and non-dimensionalization  

Non-dimensionalization is useful for interpreting models involving a large number of parameters. It usually helps reducing the 

number of parameters, and identifies non-dimensional parameters that control the evolution of the system. We write the two 

energy conservation equations in a non-dimensional form, using 

𝑇 = 𝛥𝑇0𝑇′, 𝑡 = 𝑡0𝑡′, 𝑣 = 𝑣0𝑣′𝑣𝑓0𝑣′ , (𝑥, 𝑦, 𝑧) = 𝐿0(𝑥′, 𝑦′, 𝑧′)𝐿 ∙ (𝑥′, 𝑦′, 𝑧′)     115 

  (8) 

where 𝛥𝑇0 is the macroscopic scaling temperature difference of the system, i.e. the initial temperature difference between top 

and bottom, v0x,y,z is a distance, vf0 is the scaling fluid velocity, x,y,z is a distance, L0L is the scaling length chosen as channel 

width of the pores, and  

𝐿 = √
𝜙0(1−𝜙0)𝛿

𝑆
            (9) 120 

with 𝜙0 as a scaling porosity, and 𝑡0 = 𝐿0
2 (𝜅0𝐴)⁄         

    (9a) 

 is the scaling time, where 
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 𝐴 = 𝑆 ′ (𝜙0𝑑𝑚′)⁄ .  based on           

 (10a) 125 

is defined as the heat transfer number.diffusion time over the length 𝐿, 

𝑡0 = 𝐿2 𝜅0⁄             (10) 

(see Table 1 for definitions). Primed quantities are non-dimensional. The scaling time and 𝐴 can also be written as Introducing 

the fluid filled pore width 𝑑𝑓 and the solid (grain) width ds, the interfacial area density S scales with 

𝑡0 = 𝐿0 𝑑𝑚 (𝑐𝜅0)⁄            (9b)  130 

and 

𝐴 = 𝑐𝐿0/𝑑𝑚 = 𝑐/𝑑𝑚′           (10b) 

where 𝑆 =
𝑐𝜙0

𝑑𝑓
            

 (11) 

for melt channels, tubes, pockets for all melt fractions, and for melt films at small melt fractions, while S scales with 135 

𝑆 =
𝑐𝑠(1−𝜙0)

𝑑𝑠
            (12) 

for melt channels, films and suspensions at all melt fractions. Here c is a geometrical constant of the order 2 for melt channels 

or, 4 for tubes.melt tubes, 6 for melt pockets, and 2 for melt films at small melt fractions. The geometrical constant cs is of 

order 2 for melt channels, and 6 for melt films or suspensions. Thus, the scaling time and scaling length can also be written as  

𝑡0 =
(1−𝜙0)𝑑𝑓𝛿

𝑐𝜅0
=

𝜙0𝑑𝑠𝛿

𝑐𝑠𝜅0
           (10a)  140 

and 

𝐿 = √
(1−𝜙0)𝛿𝑑𝑓

𝑐
= √

𝜙0𝛿𝑑𝑠

𝑐𝑠
           (9a) 

Eq. ( represents the local diffusion time on a length scale defined by9a) shows that L scales both with the geometric mean of 

the channel width, 𝐿0, and interfacial boundary layer thickness, dm. The non-dimensional heat transfer number 𝐴 scales with 

the ratio of the pore dimension to the interfacial boundary layer thickness, or directly𝑑𝑓 and 𝛿 at small melt fractions, and with 145 

the inverse non-dimensional boundary layer thicknessgeometric mean of 𝑑𝑠 and 𝛿 at large melt fractions. Thus, L is a natural 

length scale associated with thermal equilibrium of fluid filled pores. The above scaling laws for S justify using the term 

𝜙0(1 − 𝜙0) in the scaling length L. 

Besides, we considerWe assume that the fluid and solid phases have the same densities and thermal properties: (but relax this 

assumption later in section 5.1.3): 150 

𝑐𝑝,𝑓 = 𝑐𝑝,𝑠 = 𝑐𝑝,0,     𝜌𝑓 = 𝜌𝑠 = 𝜌0,     𝜅𝑓 = 𝜅𝑠 =
𝜆𝑒𝑓𝑓

𝑐𝑝,0𝜌0
= 𝜅0       (1113) 

This assumption is discussed in section 5.1.3 . 

From Eq. (4), (6), and (7) we get the non-dimensional energy conservation equations for the fluid and solid phases, 

respectively: 
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𝜕𝑇𝑓′

𝜕𝑡′
+

𝑃𝑒

𝐴
𝑣′ ⋅ 𝛻𝑇𝑓′ =

1

𝜙𝐴
𝜙 (

𝜕𝑇𝑓′

𝜕𝑡′
+ 𝑃𝑒 𝑣𝑓′ ⋅ 𝛻𝑇𝑓′) = 𝛻 ⋅ (𝜙𝛻𝑇𝑓′) −

𝜙0

𝜙
(𝑇𝑓′ − 𝑇𝑠′)𝜙0(1 − 𝜙0)(𝑇𝑓′ − 𝑇𝑠′)  155 

      (12(14) 

𝜕𝑇𝑠′

𝜕𝑡′
(1 − 𝜙)

𝜕𝑇𝑠′

𝜕𝑡′ =
1

(1−𝜙)𝐴
𝛻 ⋅ ((1 − 𝜙)𝛻𝑇𝑠′) +

𝜙0

(1−𝜙)
𝜙0(1 − 𝜙0)(𝑇𝑓′ − 𝑇𝑠′)     

   (13(15) 

From these equations we notice that the thermal evolution of the two-phase system is controlled by threetwo non-dimensional 

parameters : Pe, A, and numbers: the scaling porosity 𝜙0 whereand the Peclet number Pe defined as 160 

𝑃𝑒 =
𝑣0𝐿0

𝜅0
            (14) 

is the Peclet number. 𝑃𝑒 =
𝑣𝑓0𝐿

𝜅0
          

  (16) 

This number has already proven to be of high significance for determining whether thermal non-equilibrium is present or not 

(Schmeling et al. 2018), and the highest Pe corresponds to the largest temperature difference between fluid and matrix. In the 165 

following we drop the primes keeping all equations non-dimensional, only if non-dimensionality is to emphasized, primes will 

be usedif not indicated otherwise. 

From Eq. (12) and (13) two other controlling parameters can be identified: The heat transfer number 𝐴 characterizes heat 

transfer efficiency at the fluid-matrix interface. The larger 𝐴, the easier it is to transfer heat as 𝐴 scales directly with the inverse 

non-dimensional boundary layer thickness. The last controlling parameter is 𝜙0, the scaling porosity. 170 

In the following we will consider only modelsa homogeneous two-phase matrix-fluid system in 1D, with a porosity constant 

porosityin space and time, i.e. 𝜙 = 𝜙0 and with. We assume a constant fluid velocity. The latter which will be expressed in 

terms of Pe, thus we choose 𝑣′ =the non-dimensional velocity 𝑣𝑓 = 1. This simplifies equations (1214) and (1315) to 

𝜕𝑇𝑓

𝜕𝑡
+

𝑃𝑒

𝐴

𝜕𝑇𝑓

𝜕𝑧
=

1

𝐴

𝜕2𝑇𝑓

𝜕𝑧2 − (𝑇𝑓 − 𝑇𝑠)         

 (15𝑃𝑒
𝜕𝑇𝑓

𝜕𝑧
=

𝜕2𝑇𝑓

𝜕𝑧2 − (1 − 𝜙0)(𝑇𝑓 − 𝑇𝑠)         175 

 (17) 

and 

𝜕𝑇𝑠

𝜕𝑡
=

𝜕2𝑇𝑠

𝜕𝑧2 + 𝜙0(𝑇𝑓 − 𝑇𝑠),            (18) 

respectively. As we are interested in the evolution of the non-equilibrium temperature difference between the solid and fluid, 

subtraction of Eq. (18) from Eq. (17) gives: 180 

𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑡
−

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 + 𝑃𝑒
𝜕𝑇𝑓

𝜕𝑧
+ (𝑇𝑓 − 𝑇𝑠) = 0        (19) 

which is equivalent to: 

𝜕𝑇𝑠

𝜕𝑡
=

1

𝐴

𝜕2𝑇𝑠

𝜕𝑧2 +
ϕ0

(1−𝜙0)
(𝑇𝑓 − 𝑇𝑠),           (16) 
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𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑡
−

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 + 𝑃𝑒
𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
+ (𝑇𝑓 − 𝑇𝑠) = −𝑃𝑒

𝜕𝑇𝑠

𝜕𝑧
       (20) 

Note that while the temperatures Tf and Ts explicitly depend on two non-dimensional numbers Pe and 𝜙0, the temporal 185 

evolution of the temperature difference (𝑇𝑓 − 𝑇𝑠) explicitly depends only on Pe. However, implicitly it is still a function of  

𝜙0 because Ts on the right-hand-side of Eq. (20) depends on 𝜙0 via Eq. (18). Only for cases or stages with Ts independent of 

𝜙0 as proposed in section 4, the temperature difference (𝑇𝑓 − 𝑇𝑠) is a function of only one non-dimensional parameter, Pe, 

and no more of 𝜙0. 

respectively. 190 

2.3 Model setup 

The fluid and solid heat conservation equations are solved in 1Da 1D domain of height H. Other geometries could also be 

easily explored but are not considered here, since we focus on studying the relative control of the scaling parameters on thermal 

non-equilibrium evolution. At time t < 0, both solid and liquid are at rest, in equilibrium. For both phases temperatures are set 

to 1 (non-dimensional temperature difference) at z=0, and a constant flux condition 𝜕 𝑇 𝜕⁄ 𝑧 = 1 𝐻⁄  (non-dimensional) is 195 

imposed at z = H.fluid are at rest, in equilibrium. Both initial temperatures decrease linearly from 1 to 0 with z, therefore a 

constant temperature gradient of 1 𝐻⁄  is present in both phases (see Fig. 1).− 𝐺 = −1 𝐻⁄  is present in both phases (see Fig. 

1). As boundary condition both phases temperatures are set to 1 (non-dimensional temperature difference) at z = 0. At z = H a 

constant thermal gradient condition 𝜕 𝑇 𝜕⁄ 𝑧 = − 1 𝐻⁄  (non-dimensional) is imposed for both phases. At  z = 0 the  advective 

flux is fixed by the constant temperature condition, i.e. it is equal to 𝑃𝑒 𝜙0, while at  z = H  it evolves freely with the fluid 200 

temperature, i.e. it is given by 𝑇𝑓𝑃𝑒 𝜙0 (all non-dimensional). This top boundary condition needs some justification: The 

hyperbolic partial differential equations Eq. (17) or (18) require two well defined boundary conditions each, Dirichlet (fixed 

temperature), Neumann (fixed thermal gradient), Robin (fixed sum of advective and conductive heat flux) or Cauchy (fixed 

temperature and thermal gradient). Applying the Dirichlet condition at the bottom, leaves either a Dirichlet, a Neumann or a 

Robin condition to specify for the top. In an open outflow situation like our system neither the evolution of the temperature, 205 

the thermal gradient or the total (advective plus conductive) heat flux is known a priori, but depends on the evolution within 

the system. In the early stage of model evolution both the solid and fluid have a thermal gradient inherited from the initial 

condition which is advected upwards in the fluid. Thus it seems most appropriate to use the Neumann condition as a boundary 

condition. Only at later stages this boundary condition imposes artefacts in the temperatures field close to the top boundary. 

The limitations of this top boundary condition are tested and discussed in chapter 5.1.2.  210 

This model setup adds a third non-dimensional scaling parameter to the system, namely 𝐺 = 1/𝐻. It defines the initial non-

dimensional temperature gradient or conductive heat flux, positive for a flux directed upwards. To summarize, the temperatures 

depend on the non-dimensional parameters Pe , 𝜙0, and G. 
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2.34 Numerical scheme 

EquationsThe equations are solved withby a MATLAB (MATLAB R2018b R2021b) code using a finite difference scheme 215 

central in space for the conduction terms, upwind for the advection term, and explicit in time. The spatial resolution is dz = 

H/10000, and the time resolution was varied depending on the studied case𝑑𝑧 = 0.1  or 𝑀𝑖𝑛(0.1, 𝐻/100)  for 𝐻 < 10.The 

the time step was chosen as 𝑑𝑡 = 1

4
𝑀𝑖𝑛(𝑑𝑧/𝑃𝑒,𝑑𝑧2), i.e. taking the minimum of the Courant or diffusion criterion. Tests with 

smaller spatial and temporal resolution have been carried out and did not change the results visibly. 

3 Numerical model results 220 

First, some exemplary numerical results are shown in Fig. 2 to understand the physics and the typical behavior. 

3.1 Evolution of temperatures and thermal non-equilibrium with time 

Three different models have been run, all with Pe = 1 and the following other parameters: Model 1: H = 10, ϕ = 0.1, model 2: 

H = 100, ϕ = 0.1, and Model 3: H = 100, ϕ = 0.2. Figure 2a and b representshow Tf and Ts as functions of z at different times 

as indicated for two different models. In both models, Pe = 1, A = 1, ϕ = 0.1. However, while in the first model (Fig. 2a) H = 225 

10, in the second one (Fig. 2b) H = 100.initial temperature gradients, G = 0.1 (H = 10) and G = 0.01 (H = 100), respectively. 

Figure 2c shows the evolution of Tf and Ts with time at the top of the domain, for the same model 2 as in Figure 2b. and for 

model 3 with a higher melt fraction ϕ = 0.2. Figure 2d representsshows the evolution of (Tf - Ts) at different distances z inof 

model 2 (Fig. 2b). 

ϕ = 0.1) and of model 3 (ϕ = 0.2). At each depth of the system, the fluid and solid temperatures, as well as the temperature 230 

difference, appear to evolve following three stages: 

Stage 1: During this transient stage the fluid temperature increases faster than the solid temperature (Fig. 2a,b,c,e), and the 

temperature difference (Fig. 2d,f) increases. During this stage, the fluid temperature increases rapidly at first, then the 

temperature increase slows down. As for the solid temperature, it first increases slowly, then faster and faster. At t = 0, the 

fluid velocity is suddenly set to non-zero, thus the fluid temperature starts to deviate from equilibrium and increases in 235 

agreement withdue to these new conditions. If the solid temperature were maintained constant with time, the fluid temperature 

would probably reach a steady-state profile, depending on boundary conditions, fluid velocity and solid temperature. AsWhile 

the fluid temperature increases however,faster than the liquidsolid temperature, the fluid-solid temperature difference, thus the 

heat transfer term, increases too, makingforcing the solid temperature to progressively increase also faster and faster. At the 

end of stage 1 the maximum temperature difference is approached (Fig. 2f). Because the solid temperature hasn’t risen 240 

significantly at that time (at t = 4 in the example) compared to the fluid temperature (Fig. 2e) different melt fractions do not 

affect the temperature differences during this stage (Fig. 2f in which all curves merge in one curve). This observation confirms 

the expectation from Eq. (20) that the temperature difference does not depend on melt fraction as long as the solid temperature 

is independent of ϕ, which is the case as long as Ts stays close to its initial profile. 
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Stage 2: The fluid and the solid temperatures increase at similar rates, constant with time (Fig. 2c), the temperature difference 245 

remains stable (Fig. 2d). Solid-fluid heat transfer is maximum here.constant and at maximum at the top (Fig. 2d). Solid-fluid 

heat transfer is at maximum during this stage. As Ts  is no more constant in time, different melt fractions lead to different rates 

of temperature increase (Fig. 2c) and also to different evolutions of (Tf –Ts) (Fig. 2d solid curves compared to dashed curves). 

A higher melt fraction increases the heat transfer into the solid (c.f. last term in Eq. 18), resulting in a faster increase of the 

solid temperature whose gradient flattens earlier. Thus, the end of stage 2 is reached earlier (Fig. 2b).   250 

Stage 3: As the fluid temperature rises close to the Tf value at the bottom, its increase slows down, and heat transfer, thus 

temperature difference, decreases. In model 1 (Fig. 2a), steady state is reached while the fluid and solid temperatures are still 

far from 1. This is due to the influence of boundary conditions, as the heat transferred from the fluid phase to the solid phase 

is compensated by the solid phase heat loss of heat at the top of the domain. In model 2 (Fig. 2b), boundary conditions at z = 

H  are applied farther away from the bottom, therefore allowing for a higher increase of temperatures when reaching the steady 255 

state. 

At each z we observe that the temperature difference first increases rapidly to reach a maximum after a short time, (stage1), 

here after t = 24 (Fig. 2f). The resulting amplitude of the temperature difference is identical at the different z-positions. and 

for both melt fractions. Then it stays constant at this maximum value, (stage 2), and finally decreases (stage 3) (Fig. 2d), as the 

fluid and solid temperatures experience the different stages.). The higher in the model, the longer the temperature difference 260 

remains at maximum. ThisA higher melt fraction accelerates the decrease of (Tf –Ts). The absolute maximum temperature 

difference in space and time does not depend on boundary conditions (see also section 5.1.2 where the influence of boundary 

conditions is discussed), nor on the z-position nor on the melt fraction and therefore looks to be an interesting observable. It 

could indeed be useful for getting a first order estimate of thermal non-equilibrium conditions and possible temperature 

difference in a magmatic system. In the following sections we study how this maximum temperature difference evolves when 265 

varying the three parameters Pe, A and ϕparameter Pe. 

3.2 Maximum temperature difference 

The maximum temperature difference of a model can be defined as the maximum value reached in space and time (c.f. Fig. 

2d). A series of models has been carried out for the two different non-dimensional parameters Pe,  A, and 𝐺 = 1 − 𝜙 (= solid 

fraction),/𝐻, and ΔTmax has been determined for each model (Fig. 3).  Some first observations can be made : 270 

 For highall Pe and high A,  ΔTmax  is proportionnalproportional to Pe/A (Fig. 3a) as long as  ΔTmax is somewhat smaller 

than the absolutely possible maximum 1. 

 For small Pe, values align on a linear trend, proportional to Pe and independent of A (Fig.  3a). 

 The value of A determines two main regimes, one in which is asymptotically approached for high Pe. 

 ΔTmax is proportional to Pe/AG, i.e. to the non-dimensional temperature gradient for G < 0.1.  275 
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 ΔTmax reaches a maximum for large G of order 1, i.e. when A is high (Fig. 3b), and one in which H reaches 1 or the 

dimensional H reaches the scale L.  

 ΔTmax is proportional to Pe when A is small (Fig. 3a and bessentially independent of ϕ as models with different ϕ 

almost merge in the same points shown in Fig. 3. This has been verified by running all models of Fig. 3 with melt 

fractions between 0.1 and 0.9 (not shown). 280 

 ΔTmax is proportional to (1-ϕ) for Pe = A larger than 0.1 (Fig. 3c). 

 These observations suggest the existence of several domains in which scaling laws for ΔTmax could be derived, based on the 

threetwo scaling parameters. In the next section, we propose an analytical retrievalderivation of ΔTmax values to derive 

theseobtain scaling laws and confirm these observationsthe observed proportionalities.  

4 Scaling laws derived from analytical solution  285 

In this section a simplified analytical solution for the z-dependent temperature difference between fluid and solid will be 

derived. From this solutionssolution the maximum temperature differences ΔTmax can be retrievedobtained and scaling laws 

will be derived. 

4.1 Analytical solution of the governing equations 

The subtraction of Eq. (16) from Eq. (15) gives the following non-dimensional 1D equationWe are interested in an analytical 290 

solution of the equation (20) controlling the non-equilibrium temperature difference (𝑇𝑓 − 𝑇𝑠).: 

𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑡
−

1

𝐴

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 +
𝑃𝑒

𝐴

𝜕𝑇𝑓

𝜕𝑧
+

1

1−𝜙
(𝑇𝑓 − 𝑇𝑠) = 0        (17) 

which is equivalent to: 

𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑡
−

1

𝐴

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 +
𝑃𝑒

𝐴

𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
+

1

1−𝜙
(𝑇𝑓 − 𝑇𝑠) = −

𝑃𝑒

𝐴

𝜕𝑇𝑠

𝜕𝑧
       (18) 

Remember that 𝜙 = 𝜙0 is assumed constant. We simplify the problem by considering the hypothetical case in which (𝑇𝑓 − 𝑇𝑠) 295 

does not change with time, and, moreover, in which the thermal gradient in the solid phase is fixed and linear, with 𝜕 𝑇𝑠 𝜕⁄ 𝑧 =

−𝐺 = − 1 𝐻⁄  (non-dimensional, with dimensions: 𝐺 = 𝛥 𝑇 𝐻⁄ .𝑇0/𝐻). Although different from initial and steady-state stages 

described in the 1D models (section 3.1), this hypothetical case is quite similar to what can be observed at the very beginning 

of the second stage described in section 3.1 (c.f. Fig. 2d,f). In this second stage, the evolution of Tf and Ts was indeed observed 

to bebeing quite similar indeed. Besides, at the end of stage 1 (section 3.1), Ts  remains close to initial conditions, therefore to 300 

a fixed linear gradient of slope ΔT/H−𝐺 =  −1/𝐻 is justified. Since the maximum temperature difference between the two 

phases is observed starting from the end of stage 1 and during stage 2 (section 3.2), it does not seem unreasonable to consider 

this hypothetical case for retrievingderiving the maximum temperature difference. Using these assumptions, Eq. (18) resumes 

to(20) becomes: 

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 − 𝑃𝑒
𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
− (𝑇𝑓 − 𝑇𝑠) = −𝑃𝑒 𝐺        (21) 305 
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While in the general case of Eq. (20) the temperature difference implicitly depends on 𝜙0, i.e. on the three non-dimensional 

parameters Pe, 𝜙0, and G, Eq. (21) does no more depend on 𝜙0 because we replaced 𝜕 𝑇𝑠(𝜙0) 𝜕⁄ 𝑧  by –G which is independent 

of 𝜙
0
. Eq. 

1

𝐴

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 −
𝑃𝑒

𝐴

𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
−

1

1−𝜙
(𝑇𝑓 − 𝑇𝑠) = −

𝑃𝑒

𝐴

Δ𝑇

𝐻
       

 (19) 

Eq. (19(21) is a second order ordinary differential equation for (𝑇𝑓 − 𝑇𝑠) whose solution can be analytically retrieved and is 310 

given in Eq. (20) to (22) (details on the equation analytical solving are given in thederived as (see supplementary material). 

for details) 

𝑇𝑓 − 𝑇𝑠 = 𝛼𝑒𝑟1𝑧 + 𝛽𝑒𝑟2𝑧 + (1 − 𝜙)
𝑃𝑒

𝐴

𝛥𝑇

𝐻
 ,        (20 𝑃𝑒G 

,          (22) 

 where r1 and r2 are the roots of the associated equation of Eq. (1921)  315 

𝑟1 =
𝑃𝑒−√𝑃𝑒2+

4𝐴

1−𝜙

2
,

1

2
(𝑃𝑒 − √𝑃𝑒2 + 4),      𝑟2 =

𝑃𝑒+√𝑃𝑒2+
4𝐴

1−𝜙

2
 ,      

  (21
1

2
(𝑃𝑒 + √𝑃𝑒2 + 4) .       (23) 

The parameters α and β are constrained by the boundary conditions for: (𝑇𝑓 − 𝑇𝑠) ((𝑇𝑓 − 𝑇𝑠) = 0 at z = 0 and 
𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
= 0 at 

z = H) 

𝛼 = (1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻

𝑟2

𝑟1𝑒(𝑟1−𝑟2)𝐻−𝑟2
,      𝛽 = (1 − 𝜙)

𝑃𝑒

𝐴

Δ𝑇

𝐻

𝑟1

𝑟2𝑒(𝑟2−𝑟1)𝐻−𝑟1
 ,     (22) 320 

 and the𝛼 = 𝑃𝑒G
𝑟2

𝑟1𝑒(𝑟1−𝑟2)/𝐺−𝑟2
,      𝛽 = 𝑃𝑒G

𝑟1

𝑟2𝑒(𝑟2−𝑟1)/𝐺−𝑟1
 .       

 (24) 

 The third term in Eq. (2022) is a particular solution for Eq. (1921). 

4.2 Comparison with numerical models 

From Eq. (2022) the maximum value of the depth-dependent temperature difference (𝑇𝑓 − 𝑇𝑠) can be determined. It is found 325 

that the maximum is always at z = H. This value will be denoted as ΔTmax. Using this value the ratio of the analytical (Eq. 20) 

to the numerically determined ΔTmax  and has been calculated for all 123parameter combinations used for the numerical models 

studied and is shown as a function of Pe in. In Fig. S1 in the supplementary material. No correlation with Pe is observed. For 

91% of the models,3 these ratios lie within 0.99 and 1.02, and all but one modelsanalytical solutions are plotted as solid lines 

together with the numerical solutions (asterisks). The agreement is very good, for most cases the differences between 0.98 330 

andthe numerical and analytical solutions are well below 1%, only when ΔTmax reaches values of about 0.6 and higher the 

differences become > 1.05. %, up to 6%. This surprisinglygeneral good agreement is another justification offor using the time-

independent equation (1921) to retrieveobtain an analytical solution of an intrinsically time-dependent process as long as we 

are interested only in the maximum value of (𝑇𝑓 − 𝑇𝑠). Other reasons for the observed differences between the analytical and 
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numerical solutions include numerical errors when determining the particular times when maximum temperature differences 335 

are reached, especially for the models which are in the regime close to ΔTmax = 1 where the   ΔTmax (Pe) – curves become non-

linear (Fig. 3a).transient regime. 

4.3 Scaling laws for temperature differences at certain parameter limits 

The analytical solution for ΔTmax fits very well with our model results and therefore looks to be ideal for getting a better 

understanding on the relative influences of the threetwo controlling parameters 𝑃𝑒 and G, described in section 2.2 and 2.3. 340 

The Peclet number is already known to be of great importance for thermal equilibrium/non-equilibrium conditions. Although 

less commented for non-equilibrium build up, the heat transfer number A controls local heat transfer between the two phases. 

We noticed in section 3.2 that there exist a high A and a low A regime with different non-equilibrium behavior. Inspecting the 

last term in Eq. (2022) we notice that a high Pe and a high initial thermal gradient should favor higher temperature differences, 

while a high A would rather favor thermal equilibrium. The porosity ϕ,. This has been demonstrated in the form of (1-ϕ), also 345 

influences thermal equilibrium conditions, as expected in section 3.2.Fig. 3.  

Eq. (2022) is, however, complexcomplicated, and the visibility on assessment of the relative importance of these controlling 

parameters𝑃𝑒 and of the conditionsG for different possible regimes is limited. In this section, we study the evolution of 

(𝑇𝑓 − 𝑇𝑠), i.e. also ΔTmax , in a few limiting cases. This enables us to better understandunderstanding each parameter influence 

and to derive some scaling laws for different regimes. 350 

4.3.1 Limit A  0 𝑷𝒆 → 𝟎 

Linearizing Eq. (20) with respectWhen Pe tends to A, around A=0, usingwe have the Taylor series in terms of A, we derive 

condition  

𝑃𝑒 ≪ 2             (25) 

With this condition Eq. (22) tends to the following limit for (𝑇𝑓 − 𝑇𝑠) (see supplementary material for more details): 355 

 𝑇𝑓 − 𝑇𝑠 =  𝑃𝑒𝐺(1 − 𝑀)           (26) 

with 

 𝑀 =
cosh (z)+cosh(

2

𝐺
−𝑧)

1+cosh (2/𝐺)
           (27) 

𝑇𝑓 − 𝑇𝑠 =
𝛥𝑇

𝐻
(𝑧 +

1

𝑃𝑒𝑒𝑃𝑒𝐻 (1 − 𝑒𝑃𝑒𝑧))         (23) 

The limit for ΔTmax is simply obtained by setting z = H. The limit (23) can also be retrieved by neglecting the heat transfer 360 

term (left hand third term) in Eq. (19), which becomes negligible when A tends to 0, and solving the resulting equation. From 

Eq. (23) we notice that when A tends to 0 the temperature difference between the two phases does not depend on A anymore. 

It should be noted that this limit is valid only as long as Pe  remains finite in the limit A  0. Further details of the comparison 

of Eq. (23) to the full analytical solution are discussed in the supplementary material.  
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4.3.2 Limit A   ∞     365 

When A tends towards infinity,which simplifies for 𝑧 = 𝐻 = 1/𝐺 to 

𝑀 =
1

cosh (1/𝐺)
            (28) 

This is the limit for Pe  0. This limit  Eq. (20) tends to the following limit: 

𝑇𝑓 − 𝑇𝑠 = (1 − 𝜙)
𝑃𝑒

𝐴

𝛥𝑇

𝐻
        (24) 

Using this limit, we find values in very good agreement with those predicted by Eq. (20) for A>1.See also Fig. S2b in the 370 

supplementary material. 

4.3.3 Limit Pe  0     

When Pe tends to 0, Eq. (20) tends to the following limit (see supplementary material): 

𝑇𝑓 − 𝑇𝑠 = (1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻
(1 −

𝑒
−√

𝐴
(1−𝜙)

 𝑧

1+𝑒
−√

𝐴
(1−𝜙) 2𝐻

−
𝑒

√
𝐴

(1−𝜙)
 𝑧

1+𝑒
√

𝐴
(1−𝜙)  2𝐻

)        (25) 

This limit gives predictions for ΔTmax in very good agreement with Eq. (2022) for Pe < 1 (having A=1 and ϕ=0.1𝐺 = 0.1) (see 375 

Fig. S2aS1 in the supplementary material). 

If in addition A tends to zero, In the limit 𝐺 → 0 and finite Pe < 1/G we get the following limit: for M 

𝑀 → 𝑒−𝑧             

Thus, for both small Pe and small G the temperature difference (Eq. 26) can be written 

𝑇𝑓 − 𝑇𝑠 = 𝑃𝑒𝐺(1 − 𝑒−𝑧)           (29) 380 

Eq. 𝑇𝑓 − 𝑇𝑠 = 𝑃𝑒Δ𝑇𝑧 (1 −
𝑧

2𝐻
)          (26) 

 which is in agreement with the observation of a proportional relationship between Pe and ΔTmax for small A and small Pe  (ΔT 

was non-dimensional and equal to 1 in all models). For more discussion, see supplementary material.  

(29) confirms the proportionalities observed in Fig. 3, namely ∆𝑇𝑚𝑎𝑥 ∝ 𝑃𝑒 (Fig. 3a), and ∆𝑇𝑚𝑎𝑥 ∝ 𝐺 (Fig. 1b), respectively. 

4.3.42 Limit Pe  ∞ 385 

To obtain the limit of Eq. (2022) for 𝑃𝑒 → ∞, Eq. (2022) can be linearized with respect to 4A ((1 − 𝜙)𝑃𝑒2)⁄ ≪ 1.4 𝑃𝑒2⁄ ≪

1. Applying the rule of L'HospitalL'Hôpital Eq. (2022) tends to the following limit (for arbitrary A):: 

𝑇𝑓 − 𝑇𝑠 =
𝛥𝑇

𝐻
𝑧            (27) 

 𝐺𝑧            (30) 

For details, see supplementary material. This limit is also the solution of Eq. (1921) when neglecting the diffusive and heat 390 

transfer terms. As demonstrated in the supplementary material this limit predicts ΔTmax values in very good agreement with 

Eq. (2022) for Pe > 100.  
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4.3.5 Limit Φ  1  

In Eq. (20), the presence of ϕ is always in the form of A/(1-ϕ). Therefore ϕ tending to 1 has the same limit as A tending towards 

infinity (Eq. 24). This limit approaches values predicted by Eq. (20) for high ϕ values (Fig.S2d in the supplementary material). 395 

4.3.6 Exploring the domains for the maximum temperature difference including all limits 

Before exploring the full parameter space we first give a short overview of expected parameter ranges in magmatic systems. 

In natural magmatic systems such as mid-ocean ridges, Pe is expected to evolve from very low values of order 10-5 to 10-3 in 

partially molten regions with distributed porous flow to higher values of order 1 or larger at depths where channels have 

merged, and further to very high values of order 105 in dyke systems (Schmeling et al., 2018). As 𝐴 scales with the ratio of the 400 

channel width to the interfacial boundary layer thickness, A would evolve  proportionally with the width of melt pathways 

which may increase by 3 to 5 orders of magnitude as 3D grain junctions eventually merge to 1D dykes . Additionally, as A is 

inversely proportional to the interfacial boundary layer thickness which increases with time, A should  evolve with time, from 

high values at melt flow onset to much smaller values in highly evolved systems. In Figure 6 of Schmeling et al. (2018) the 

time-dependent interfacial heat flow has been determined which roughly maps into A if multiplied by 
𝜙

(1−𝜙)
. This suggests A-405 

values dropping from about 10 to 10-5 over the time scale until thermal equilibrium is reached. 

While the melt fraction does not influence ∆𝑇𝑚𝑎𝑥 (c.f. Eq. (22, 30)) it influences the long term temporal behavior once Ts is 

𝜙0 – dependent (c.f. Eq. (20). Therefore some words about possible melt fractions. As melt flow may occur at very small melt 

fractions (McKenzie, 2000; Landwehr et al., 2001), large ϕ - values are not expected in natural mantle magmatic systems, nor 

in dyke systems in the crust. Values of channel volume fraction generally remain below a few percent up to tens of percent (in 410 

dunite channels up to 10 - 20%, Kelemen et al., 1997). (1-ϕ) would therefore not vary over more than one order of magnitude, 

making the porosity a less influential parameter on thermal non-equilibrium build up in magmatic systems. Indeed, we explored 

the dependence of ΔTmax on ϕ, for a number of very different combinations of Pe and A values. Within possible ranges of Pe 

between 10-10 to 105 and A between 10-6 and 102 resulting variations of ΔTmax with mantle realistic ϕ values (0 – 20%) are only 

of about 0.01 if normalized by ΔT0. 415 

BecauseTo get an idea about the expected order of this relatively small influencemagnitude of ϕ on ΔTmax,the macroscopic 

dimension 𝐺 = 1/𝐻 of the system we herehave to evaluate the scaling length L used to scale the dimensional H. L scales with 

the geometric mean of the channel width df  and the interfacial boundary layer thickness 𝛿 (Eq. 9 with 11).  L would evolve 

non-linearly with the width of melt pathways which may increase by several orders of magnitude as 3D grain junctions 

eventually merge to 1D dykes. As will be shown in section 5.3 in more detail the resulting non-dimensional G ranges between 420 

order 1 to order 10-5.  

In Figure 4 we explore ΔTmax variations using the analytical solution Eq. (2022), in which ΔTmax depends essentially on Pe and 

A, and the reference value for ϕ is chosen as 0.1. In the resulting Pe – A diagram threeG. Three main regimes can be 

distinguished (Fig. 4):: 
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 Regime 1: For high Pe values, (𝑇𝑓 − 𝑇𝑠) tends to the relationship described in Eq. (2730). The temperature difference 425 

increases linearly with distance from the bottom (z = 0) reaching ΔTmax = 1 at z = 1H. In the whole region the fluid 

temperature remains constant and at maximum 1 while the solid temperature increases linearly with z from 0 to 1. 

 Regime 2: For small A values and Pe < 1𝑃𝑒 ≪ 1, or more precisely, for 𝑃𝑒 ≪
1

𝐺
 represented by the oblique dashed 

line in Fig. 4, (𝑇𝑓 − 𝑇𝑠) is also dependent on the varies with distance from the bottom, according to (1 − 𝑒−𝑧), and 

is proportional to Pe, while A - and  ϕ - influences are negligible. and G. This means that large temperature gradients 430 

favor large temperature differences. In this domain, (𝑇𝑓 − 𝑇𝑠) tends to the relationships presented in Eq. (25) and 

(26).(29).  

 Regime 3: For high A - values and Pe/A < 1large initial temperature gradient G close to 1 (small H) and 𝑃𝑒 ≪ 1, 

(𝑇𝑓 − 𝑇𝑠) tends to the relationship proposed in Eq. (2426). In this domain, (𝑇𝑓 − 𝑇𝑠) = ΔTmax is proportional to Pe but 

no more dependent onto G. The depth, but is proportional to (1-ϕ), Pe/A and to the initial solid temperature gradient,-435 

dependence is given by (1 − 𝑀(𝑧)) which is identical to the solid temperature gradient at the top, However, numerical 

time-dependent solutions show that (𝑇𝑓 − 𝑇𝑠) = ΔTmax is essentially independent of depth only during stage 1 and 2 

(c.f. Section 3.1) and for sufficiently large H (> 5). Later it becomes depth-dependent and smaller than ΔTmax given 

by Eq. (24).G = 1 increases non-linearly from about 0 to 0.4 with increasing z. 

5 Discussion 440 

5.1 Limitations 

5.1.1 Comments onmon the analytic solution  

Although the assumptions used to get the analytic solution (Eq. 2022) are very specific, they are reasonable considering the 

conditions in the models when ΔTmax is reached, and it fits very well the numerical results. This is shown in Fig. 5 where for 

various combinations of Pe, A and HG the time-dependent temperature differences (𝑇𝑓 − 𝑇𝑠) are shown as functions of depth 445 

together with the analytical solutions using Eq. (2022). For all examples the position of the maximum temperature differences 

lies at z = H. A major simplification used in Eq. (1921) was time-independence. Obviously, the resulting analytical solutions 

represent the stage 2, which is quasi steady state in contrast to stage 1 when the temperature difference builds up, and stage 3 

when the long-term behavior is approached. We emphasize that this analytical solution is a very good approximation of the 

depth-dependent temporal maximum temperature difference that can be reached in such porous systems. 450 

5.1.2 Initial conditions and boundaryBoundary conditions at top and initial conditions  

The boundary conditions we chose at the top (z = H) are suitable for cases with little temperature evolution (regime 2), and 3, 

low Pe), and for early stages for regime 1 but might be inappropriate for high temperature increases (high Pe - regimes)– 

regime 1) at later stages (see section 4.3.64). In order to quantify the influence of this choice of boundary conditions on our 
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results, we compared the evolution of (𝑇𝑓 − 𝑇𝑠) - profiles for three models, that belong to the three regimes identified in section 455 

4.3.6Peclet numbers and two heights H, using threefour different boundary conditions at the top: (Fig. 6): 

 Constant heat fluxthermal gradient equal to the initial fluxthermal gradient in the solid and fluid phases (Neumann 

conditionscondition). This was the boundary condition used in the models. 

 Heat fluxThermal gradient is set to 0 at the top (Neumann conditionscondition). 

 Both fluid and solid temperatures are set to 0 at the top (Dirichlet conditionscondition). 460 

 Although top boundary conditions can strongly affect fluidTemperature at the top is numerically calculated from the 

full equations (17) and solid temperature profiles (Fig. S 3, in supplementary material), their influence on (𝑇𝑓 − 𝑇𝑠) 

is negligible(18) using one-sided (upwind) positions for regimes 1the first and 3, except when getting close to the top 

of the domain. The choice of the second derivatives (open boundary).  

Mathematically, the open boundary conditions has, however,condition is not a much stronger influence on the whole profile 465 

for regime 2, whererigorous boundary condition because both the temperature and temperature gradient intrinsically depend 

on the temperature evolution and within the model. Therefore, it cannot be applied to the analytical solution of section 4.1. 

Numerically it works well for our system without producing instabilities or oscillations. Comparing the top and bottom row of 

Fig. 6, the constant temperature gradient condition produces quite similar results as the open boundary condition for all Pe and 

H values tested during the first and second stage of temporal evolution (c.f. section 3.1).  The agreement becomes worse for 470 

stage 3 when approaching steady state are controlledat large Pe. Comparing the other two boundary conditions (2nd and 3rd 

row of Fig. 6) with the constant gradient condition (top row) shows that the effect of the top boundary during stage 1 and 2 is 

still small sufficiently far away from the top. Only for the small Pe - case (left column of Fig. 6) the zero gradient and zero 

temperature conditions strongly affect the upper half of the domain by diffusion (see section 5.2 below), and are therefore very 

sensitive to. Yet the maximum temperature difference of the constant gradient case is nearly reached by the other two boundary 475 

conditions (see Fig. S3further within the domain, not at the top. The special case of high Pe and high H with zero temperature 

boundary condition (3rd row 4th column in Fig. 6) shows a strong build-up of 𝑇𝑓 − 𝑇𝑠 close to the top when approaching the 

steady state. This stems from the large local temperature gradient built up near the top as a result of transforming the difference 

in supplementary material). We summarize thatadvective heat in- and output (𝑃𝑒 𝑇𝑖𝑛𝑓𝑙𝑢𝑥 − 𝑃𝑒 𝑇𝑜𝑢𝑡𝑓𝑙𝑢𝑥 = 𝑃𝑒) into a high 

conductive outflux (𝜕𝑇/𝜕𝑧) at the top. It is unlikely that such situations occur in natural systems.  480 

In summary, the influence of boundary conditions on fluid and solid temperatures evolution depends mostly on the domain 

size (H) and on the value of Pe:. The larger these two parameters, the less important is the influence of boundary conditions 

within almost the whole model region.domain. If one is interested in the maximum value of 𝑇𝑓 − 𝑇𝑠 in space and time, the tests 

show that this value can safely be picked at z = H when using the constant temperature gradient boundary condition.  

As an initial condition we used a linear temperature profile and initial equilibrium between solid and fluid. A non-linear initial 485 

temperature profile between 𝑇𝑓 = 𝑇𝑠 = 1 at the bottom and 𝑇𝑓 = 𝑇𝑠 = 0 at the top would have spatially varying temperature 

gradients with sections with gradients larger than those assumed in our model. As the temperature gradient strongly influences 
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thermal non-equilibrium (see e.g. Eq. 2022 which explicitly contains the temperature gradient  
𝛥𝑇

𝐻
),𝐺), the above results are 

expected to be different, and a stronger thermal non-equilibrium is expected in regions with higher gradients. Schmeling et al. 

(2018) used a step function with 𝑇𝑓 = 𝑇𝑠 = 1 at z = 0 and 𝑇𝑓 = 𝑇𝑠 = 0 at z > 0 as initial condition, i.e. an extremely non-linear 490 

profile near z = 0. Assuming this initial temperature profile Figure 67 shows the temporal behavior of the temperature 

difference for selected parameter combinations, equal to the parameters used in Fig. 5. The analytical solutions for the time-

independent case (Eq. 2022) is also shown. As expected, at early stages the temperature differences are significantly larger 

than given by the analytical solutions by a factor 2 or more shortly after the onset of the evolution. At later stages (stage 2 or 

3) the time-dependent solutions approach or pass through the analytical solutions. Thus, we may state that the analytical 495 

solutions depicted in the regime diagram in Fig. 4 represent lower bounds of thermal non-equilibrium compared to settings 

with non-linear initial temperature profiles. 

5.1.3 DensitiesDifferent densities and thermal properties of the two phases  

While for simplicity we used equal physical properties for the fluid and solid, in many circumstances they might be 

significantly different. Equal properties are good approximations for magmatic systems where differences of density and 500 

thermal parameters are small (order of 10%), whereas porous flows of water or gases through rocks or other technical settings 

may be characterized by larger differences.   Allowing for different material properties adds four new parameters, namely the 

ratio of diffusivities, the ratio of densities, the ratio of heat capacities and a new effective thermal conductivity λeff for the 

interface between the two phases with different properties. To evaluate how many new non-dimensional numbers are 

introduced we non-dimensionalize the equations assuming different material properties for the two phases. We use the fluid 505 

properties as scaling quantities and assume that they are independent of temperature, pressure and depth. Eq. (1214) and (1315) 

turn into: (for clarity, primes indicate non-dimensional quantites):  

𝜕𝑇𝑓′

𝜕𝑡′
+

𝑃𝑒

𝐴

1

𝜆𝑒𝑓𝑓 ′
𝑣′ ⋅ 𝛻𝑇𝑓′ =

1

𝜙𝐴𝜆𝑒𝑓𝑓′
𝜙 (

𝜕𝑇𝑓′

𝜕𝑡′
+ 𝑃𝑒𝑣′ ⋅ 𝛻𝑇𝑓′) = 𝛻 ⋅ (𝜙𝛻𝑇′𝑓) −

𝜙0

𝜙
(𝑇𝑓𝜙0(1 − 𝜙0)𝜆𝑒𝑓𝑓′(𝑇𝑓′ − 𝑇𝑠′) 

      (28(32)  

and 510 

𝜕𝑇𝑠′

𝜕𝑡′
(1 − 𝜙)

𝜕𝑇𝑠′

𝜕𝑡′
=

1

(1−𝜙)𝐴

𝜅𝑠′

𝜆𝑒𝑓𝑓′

𝜅𝑠′

𝜌𝑠′𝑐𝑝,𝑠′
𝛻 ⋅ ((1 − 𝜙)∇𝑇𝑠′) +

𝜙0

(1−𝜙)

1

𝜌𝑠′𝑐𝑝,𝑠′
𝜙0(1 − 𝜙0)

𝜆𝑒𝑓𝑓′

𝜌𝑠′𝑐𝑝,𝑠′
(𝑇𝑓′ − 𝑇𝑠′)  

     (29(33) 

Inspection of these equations shows that twothree more non-dimensional numbers are introduced: the ratio of diffusivities 𝜅𝑠′, 

and the ratio of the products density and heat capacity, 𝜌𝑠′𝑐𝑝,𝑠′. The′, and a new effective conductivity for heat transfer, 𝜆𝑒𝑓𝑓′, 

can be merged with A to define a new heat transfer number 𝐴𝜆𝑒𝑓𝑓′.′. 515 

As equations (2832) and (2933) cannot be merged into one time-independent ordinary differential equation for (𝑇𝑓 − 𝑇𝑠) as in 

section 4.1, we numerically tested some cases with 𝑃𝑒 = 1 and 𝐴𝜆𝑒𝑓𝑓′ = 1 in which the diffusivity ratios and the ratios of 

𝜌𝑠′𝑐𝑝,𝑠′ were varied between 0.1 and 10 (see Fig. S4 in the supplementary material).8). The results show that for the fixed 
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combination of 𝑃𝑒 = 1 and 𝐴𝜆𝑒𝑓𝑓
′ = 1 the magnitude of thermal non-equilibrium remains in the same order of magnitude 

𝑂(0.1) as for equal properties (Fig. 5a). However, the8). The time-dependence is significantly effectedaffected: For a high  520 

ratio  of 𝜅𝑠
′ = 10 (i.e. the solid is strongly conducting) the solid temperature profile remains close to the constant initial 

gradient, and the temperature difference rapidly converges to a steady state similar to the analytical solution depicted in Fig. 5 

a5a. In contrast, for a low 𝜅𝑠
′ = 0.1 the solid temperature departs more strongly from the initial linear gradient, and the solid – 

fluid temperature difference slowly drops with time on the long term. Varying the potential to store heat in the solid, i.e. 

𝜌𝑠′𝑐𝑝,𝑠′, Fig. 8e and f shows that a high value slows down the long term time-dependent variations, while a small value leads 525 

to rapid long term temporal variations of (𝑇𝑓 − 𝑇𝑠) and some differences infaster convergence to the final steady states (Fig. 

S4 e and f instate which is similar to the supplementary material).equal properties case. 

It is interesting to apply the results for different physical properties to a geologically relevant setting, namely water flowing 

through sedimentary rocks. Given that the high heat capacity of water is about three times larger than that of rock, and the 

density is almost three times less, the product  𝜌𝑠′𝑐𝑝,𝑠′ is about 0.78, i.e. of order 1. However, the thermal diffusivity of water 530 

is significantly smaller than that of rock, typically by a factor 16, i.e. 𝜅𝑠′ is about 16.  We tested a few cases (Fig. 9) with Peclet 

numbers and 𝐴initial thermal gradients 𝐺 (i.e. inverse model heights) (assuming for simplicity 𝜆𝑒𝑓𝑓′ = 1) equal to the cases 

depicted in Fig. 5. The time dependent profiles behave similarly to those in Fig. 5, with very similar maxima of the temperature 

differences (red dashed curves in Fig. 5) relevant for stage 2. The only important difference is that the water-sedimentary rock 

case more rapidly approaches the late steady states of stage 3 and these stages are closer to the maximum red-dashed curves. 535 

The full set of results is shown in the supplementary material in Fig. S5. These results suggest that the absolute values of 

maximum thermal non-equilibrium temperature differences shown in the regime diagram Fig. 4 are also applicable to a water-

sedimentary rock system. 

5.1.4 Heat transfer number A 

As is evident from our scaling, the interfacial heat transfer 𝑄𝑏  scales with the heat transfer number 𝐴, i.e. 𝑄𝑏 ∝ 𝐴. In the 540 

previous sections 𝐴 was chosen constant. In reality A is expected to change with time as the microscopic boundary layers 

thicken with time. Schmeling et al. (2018) explicitly solved for the time-dependent variation of the interfacial heat transfer by 

applying a convolution integration over the past history of the thermal evolution. As this is numerically expensive, a first order 

step in this direction is to consider a spatially constant but time-dependent 𝐴 using boundary layer theory. To test this idea we 

replace the parameter 𝐴 used in the non-dimensionalization (Eq. 9) by a constant 𝐴0 and use a microscopic thermal boundary 545 

layer thickening proportional to the square root of time, 𝑑𝑚 = 𝑐𝑡ℎ√𝜅0𝑡, where  𝑐𝑡ℎ is a constant of order 2.32 for a cooling 

half-space (Turcotte and Schubert, 2014). Applying our non-dimensionalization a time-dependent 𝐴 can be defined as 

𝐴 =
𝑐√𝐴0

𝑐𝑡ℎ√𝑡′
            (30) 
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From Eq. (30) it is clear that at the onset of our experiments 𝐴 is very large and then drops as time proceeds. Thus, from the 

regime diagram (Fig. 4) it is expected that in the early stage a large 𝐴 will lead to small temperature differences, while during 550 

later stages 𝐴 decreases, i.e. heat transfer between solid and fluid decreases, and thermal non-equilibrium might be built up. 

To include a varying  𝐴(𝑡′) according to Eq. (30) the non-dimensional heat equations for the fluid and solid, Eq. (12) and (13), 

respectively, are modified by replacing all occurrences of  𝐴 by 𝐴0 and multiplying the heat exchange terms (last terms) in 

both equations with 𝐴 (𝑡′) 𝐴0⁄ . We carried out a few tests for similar parameters as chosen in Fig. 5, namely 𝑃𝑒 =

0.01, 1, 100, 𝐴0 = 0.01, 1, 100. The results are shown in Fig. S6 in the supplementary material. It should be noted that from 555 

Eq. (30) a small 𝐴0 = 0.01 corresponds to a time-tependent 𝐴(𝑡′) dropping from order 1 to 0.01, and a large 𝐴0 = 100 

corresponds to a time-dependent 𝐴(𝑡′) dropping from order 100 to 1 during the time period of interest. Comparing the time-

dependent 𝐴-models with the constant 𝐴-models shows: 1) the temporal behavior of (𝑇𝑓 − 𝑇𝑠) is stronger for the variable 𝐴 

models, and 2) the late stages are characterized by significantly larger (𝑇𝑓 − 𝑇𝑠) - differences than the analytical maximum 

curves (dashed red) in Fig. 5. Only models with small 𝐴0 and large 𝑃𝑒 remain comparable to models with constant 𝐴0. Thus, 560 

we may state here that the thermal non-equilibrium temperature differences given in the regime diagram (Fig. 4) provide lower 

bounds for systems in which the heat transfer parameter is allowed to vary with time. Qualitatively, a time-dependent 𝐴 shifts 

the boundary between large and small temperature differences in the regime diagram to the right and downwards. More work 

needs to be done to fully explore the regime diagram for time-dependent 𝐴 and compare such models with the fully consistent 

solutions of Schmeling et al. (2018). 565 

5.1.5 Spatially constant parameters 

Here we assumed spatially constant parameters 𝜙, 𝑃𝑒, 𝐴 . In reality, percolating melt may focus into channels which 

subsequently merge forming anastomosing systems (Spiegelman et al., 2001; Hart, 1993).  If such systems are still described 

by effective macroscopic properties, these parameters change with depth. For such depth-dependent parameters the regime 

diagram (Fig. 4) still is useful to provide first order estimates of thermal non-equilibrium temperature differences by identifying 570 

the regimes in which the parameters are expected to vary with depth. A more rigorous evaluation of thermal non-equilibrium 

temperatures for well-defined anastomosing systems with prescribed parameters 𝜙(𝑧), 𝑃𝑒(𝑧), 𝐴(𝑧)  will be presented in 

another paper (Chevalier and Schmeling, in prep.). 

5.2 Time scales 

It is interesting to evaluate the time scales for reaching the maximum non-equilibrium temperature differences and the steady 575 

state. For every numerical model, we recorded the time needed to reach 90% of the maximum temperature differences between 

fluid and solid, 𝑡90%, and the time needed to reach steady-state, 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 . The latter has been determined as the time at which 

the maximum difference between (𝑇𝑓(𝑧) − 𝑇𝑠(𝑧)) – curves at two subsequent time steps becomes less than 10−8∆𝑇𝑚𝑎𝑥. These 

times can be compared with different time scales that may characterize the evolution of temperatures in the models. These 



 

20 

 

time scales can be based on advection over a characteristic distance 𝑑𝑐ℎ𝑎𝑟  and readgiving 𝑡𝑎𝑑𝑣𝑑 = 𝑑𝑐ℎ𝑎𝑟 𝑣0⁄ , or on diffusion 580 

over the characteristic distance giving 𝑡𝑑𝑖𝑓𝑓𝑑 = 𝑑𝑐ℎ𝑎𝑟
2 (𝑐𝑡ℎ

2 𝜅0)⁄ ,𝑑𝑐ℎ𝑎𝑟
2 𝜅0⁄ .  We tested these time scales with variousthe two 

natural length scales of the models, namely, the prescribed boundary layer thickness, 𝑑𝑚,. The first is the scaling length L (= 

1 non-dimensional) representing essentially the geometric mean √(𝑑𝑚𝐿0) which corresponds to the scaling time 𝑡0,of the 

channel width 𝐿0of the pores, 𝑑𝑓, and the interfacial boundary layer thickness 𝛿. The second is the model height 𝐻. Grouping 

the models depending on the regime they belong to (see section 4.3.4, and Fig. 4), we plotted the recorded times 𝑡90% and 585 

𝑡𝑠𝑡𝑒𝑎𝑑𝑦  versus the  characteristic time scales mentioned above. Good agreement with the characteristic time scales is indicated 

by observed times fitting to the dashed x = y - lines (Figure 10).  

Grouping the models depending on the regime (see section 4.3.6, and Fig. 4) they belong to, we  plotted the recorded times 

𝑡90% and the time to reach steady state versus the  characteristic time scales mentioned above to evaluate which time scale fits 

best to the observed times. The result is shown in Figure 7.  590 

 In regime 1 (high Pe), 𝑡90% is proportional to 𝑡𝑎𝑑𝑣𝐻  (Figure 7a,10a, blue circles). In this regime the high value of  Pe 

makes the fluid temperature increase fast. It reaches its maximum value during the time under which significant fluid-

solid heat transfer occurs, after builds up and the solid temperature is still low. This corresponds to the time for 

traveling the full distance H. Depending onDuring stage 2 and 3 the value of A, which quantifies the efficiency of 

heat transfer,solid temperature increases and the temperature difference can then decreasedecreases before steady 595 

state is reached. The time for reaching steady state (Fig. 7b10b, circles) varies almostroughly linearly with 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 ∝

𝑡𝑑𝑖𝑓𝑓𝐻  but is up to one orders of magnitude larger. Clearly it is also controlled by diffusion. In this regime fluid 

temperature increases rapidly, then solid temperature increases, possibly leading to further fluid temperature increase, 

until heat transfer and diffusion equilibrate for the solid that reaches a steady state𝑡𝑑𝑖𝑓𝑓𝐻 . For most cases it is 

controlled by diffusion through the solid over distances of order H. The case with large H (circle in Fig. 10b below 600 

dashed line) apparently reaches the steady state earlier, but still later than on a corresponding advective time scale 

based on H (not shown). Inspecting this model shows that during stage 2 and 3 the high Pe number facilitates 

approaching thermal equilibrium rapidly within large parts of the model and reducing the effective length scale (and 

characteristic timescale) over which still non-equilibrium is present.  

 In regime 2 (low Pe and low A𝐺 < 0.1, i.e. 𝐻 > 10) the time for reaching ∆𝑇𝑚𝑎𝑥 is controlled by interfacial heat 605 

transfer (Fig. 7a,10a, red asterisks) on the length scale √(𝑑𝑚𝐿0) as long asL resulting in t90% is proportional to t0, but 

for very small A (higher t0, equivalent to inefficient heat transfer) thermal non-equilibrium is reached earlier than t0 

as it is limited by diffusion through the whole domain which is probably the reason for flattening the t90% curve.. The 

time for reaching steady state is controlled by the diffusion time scale across the height of the system (Fig. 7b), but 

after a somewhat longer time.10b). 610 
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 In regime 3, (low Pe/A < 1, A >1), and high G (small H)), time for reaching ∆𝑇𝑚𝑎𝑥 depends mostly on A (i.e. interfacial 

is similar or shorter than the diffusion on the length scale √(𝑑𝑚𝐿0)). In this regime, heat transfer is no more negligible 

compared with advection, and limits time based on the temperature differencemodel height H (Fig. 10a, black 

crosses). The flattening of the curve indicates that can develop. Steady state non-equilibrium is reached at a time 

thatfaster for some models because Pe reaches order 1 and the advective timescale starts to take over. The time for 615 

reaching steady state (Fig. 10b, crosses) varies linearly with 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 ∝ 𝑡𝑑𝑖𝑓𝑓𝐻 . Clearly, it is also controlled by 

advection time scale (not shown), but limited by diffusion time scale (Fig. 7b, crosses). . 

5.3 Applications to magmatic systems 

We now test the possible occurrence of thermal non-equilibrium in natural magmatic systems based on the suggested 

controlling non-dimensional parameters, namely the Peclet number 𝑃𝑒, the initial thermal gradient G (= 1/H), and the heat 620 

transfer number 𝐴. Due to the smaller importance of melt fraction 𝜙. (c.f. section 4.3.6) we neglect the influence of 𝜙 and 

focus on 𝑃𝑒 and 𝐴 only. Typical stages of melt flow stages for mid-ocean ridges include stage a), partially molten regions with 

interstitial melts sitting at grain corners, grain edges or grain faces with low (0.0001 - 6%) melt fractions (see e.g. the discussion 

in Schmeling, 2006), stage b), merging melt channel or vein systems with high (> 10 - 20%) porosity channels identified as 

dunite channels after complete melt extraction (Kelemen et al., 1997), and stage c), propagating dykes or other volcanic 625 

conduits. Let’s assume typical overall melt fractions of 1% to 20% for stages b) and c). Schmeling et al. (2018) discussed 

possible Peclet numbers for such systems based on a Darcy flow basedrelated Peclet number 

 𝑃𝑒𝐷 =
𝑣𝐷𝑑𝑠

𝜅0
                                               (31                

         (34) 

which relates to As we preferably use the melt pore dimension 𝑑𝑓  in our scalings (Eq. 9a and 10a) we need to relate it to the 630 

solid phase dimension 𝑑𝑠 by using 

𝑑𝑠 = 𝑑𝑓
𝑔

𝜙
,      𝑔 = {

(1 − 𝜙)                     𝑚𝑒𝑙𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

√𝜙(1 − √𝜙)            𝑚𝑒𝑙𝑡 𝑡𝑢𝑏𝑒𝑠        
                (35) 

Using (35), (9a), and (16) we arrive at the Peclet number used here by  

𝑃𝑒 = 𝑃𝑒𝐷 (1 − 𝜙)⁄  for melt in channels or 𝑃𝑒 = 𝑃𝑒𝐷 (√𝜙(1 − √𝜙))⁄  for melt in tubes. 𝑃𝑒𝐷
1

𝑔√𝑐
√

(1−𝜙)𝛿

𝑑𝑓
   

         (36) 635 

Schmeling et al. (2018) reviewed and estimated typical pore or channel spacings ds of 10-3 – 10-2 m for stage a), 0.1 m for early 

stage b) increasing to 1 -100 m for late stage b), and 100m – 300 m for stage c) (dykes). Arguing for typical geometries, 

spreading rates and melt extraction rates Schmeling et al. 2018 estimated the Darcy velocity lying between 10-10 m/s and 10-9 

m/s. With these paramterers 𝑃𝑒𝐷- numbers for the three stages can be estimated as 10-5 to 10-7 to 10-5 for stage a), 10-5 to 10-4 

to 10-5 for stage b) at depths where channel distances are of order 0.1 m, and 10-4 to 0.1 at shallower depths where the channel 640 
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distances have increased to the order of 1m to 1 km100 m, and >104105  for the dyke stage c). Obviously, the Peclet number 

used here is of the same order as 𝑃𝑒𝐷 for melt in tabular channels, but may be about one half order of magnitude larger than 

𝑃𝑒𝐷 for tubular melt conduits. 

To estimate realistic ranges for 𝐴Peclet numbers as defined here (Eq. 36) typical interfacial thermal boundary layer thicknesses 

may be considered for the above mentioned stages. Following𝛿 are needed. As the arguments from section 5.1.4thermal 645 

interfacial heat exchange intrinsically is time-dependent a good estimate for the interfacial boundary layer thickness is 𝑑𝑚𝛿 =

𝑐𝑡ℎ√𝜅0𝑡: (in dimensional form) where 𝑐𝑡ℎ is a constant for a thermal boundary layer, equal to 2.32 for a cooling half space. 

Assuming that the characteristic time can be expressed by the (dimensional) fluid velocity 𝑣0 and system height 𝐻, i.e. by 𝑡 =

𝐻 𝑣0⁄ ,= 𝐻𝜙/𝑣𝐷, we may express 𝑣0𝑣𝐷in terms of the Peclet number PeD. With the resulting 𝑡 and subsequent 𝑑𝑚 we obtain 

a scaling law for 𝐴:𝛿 we arrive at the following Peclet number (H and df  are dimensional or non-dimensional): 650 

𝐴 = √𝑃𝑒√
𝐿0

𝐻
            (32) 

𝑃𝑒 = 𝑃𝑒𝐷
3/4√

𝑐𝑡ℎ

𝑐
𝑔−3/4 (

𝐻

𝑑𝑓
)

1/4

√1 − 𝜙         (37) 

For mid ocean ridge settings we assume 𝐻 of the order 1 to 10 km, and 𝐿0 use Eq. (35) to insert typical 𝑑𝑓-values (increasing 

from 10-54 m (stage a), interstitial melts) to 10-23 m to 10210-1 m for the channeling stage b) (see Schmeling et al., 2018) to >10 

m for the dyke stage c). With these estimates the above scaling lawThe resulting Peclet number (Eq. 32) allows estimating 655 

𝐴37) is of the order 10-83 to 10-60.5 for stage a), order 10-5 in2 during the early phasestage b) and order 10-4.52 to 10-0.5 in1 during 

the later phasestage b) appropriate for dunite systems for stage b),, and order 10104  to 107 for the dyke stage c). To estimate 

typical non-dimensional thermal gradients G’ (or layer thickness H’) the above estimate for 𝛿 and df can be inserted into the 

scaling length L (Eq. 9a) to arrive at a non-dimensional G’=1/H’ 

𝐺′ = (
𝐻

𝑑𝑠
)

−3/4

𝑔−1/2𝜙3/4√
𝑐𝑡ℎ

𝑐
𝑃𝑒𝐷

−1/4√1 − 𝜙        (38) 660 

With the derived estimates for the three stages, G’ is of the order 10-6 to 10-2.7 for stage a), 10-4 – 10-2.5 increasing to 10-4 - 0.6 

for stage 2), and 10-5 – 10-2 for the dyke stage c). These resulting stages for 𝑃𝑒 and 𝐴𝐺′ are indicated in Figure 4.the regime 

diagram (Fig. 4). Starting from interstitial melts at full thermal equilibrium, channeling and veining may result in moderate 

thermal non-equilibrium at sufficiently high thermal gradients, while after transition to dyking full thermal non-equilibrium is 

predicted.   665 

A similar exercise couldcan be madedone for continental magmatic systems. We skip such an explicit evaluation here but note 

that silicic melt viscosities are typically higher than those of basaltic melts at mid-ocean ridges. Thus, Peclet numbers and heat 

transfer numbers are expected to be smaller, but non-dimensional thermal gradients (Eq. 38) might be larger, resulting in a 

downward and leftwardrightward shift of the natural stages indicated in Figure 4.   

To make our scaling laws and time scales for reaching maximum thermal non-equilibrium more accessible it is worth writing 670 

them in dimensional form. First, to estimate the Peclet number of a natural system combining Eq. (9) and (16) gives 
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𝑃𝑒 =
𝑣𝑓0

𝜅0
√

𝜙0(1−𝜙0)𝛿

𝑆
           (39) 

indicating that for very small or very large melt fractions Pe becomes very small. One may use Eq. (11) or (12) to write Pe 

also in terms of pore or grain dimensions df  or ds, respectively. The scaling laws and characteristic time scales for the three 

regimes we found (Fig. 4) are in dimensional form: 675 

 Regime 1: For large Pe the maximum non-equilibrium temperature difference is simply equal to the imposed 

temperature difference, Δ𝑇𝑚𝑎𝑥 =  Δ𝑇0 , and the characteristic time to reach maximum non-equilibrium is simply 

𝑡𝑐ℎ𝑎𝑟 = 𝐻/𝑣𝑓0, i.e. the total time of a fluid particle for passing through the system. 

 Regime 2 and 3: For small Peclet number ( 𝑃𝑒 <
𝐻√𝑆

√𝜙0(1−𝜙0)𝛿
) the maximum temperature difference scales like 

Δ𝑇𝑚𝑎𝑥 =
𝐺𝑣𝑓0𝜙0(1−𝜙0)𝛿

𝜅0𝑆
          (40)  680 

and the characteristic time for reaching this non-equilibrium scales with t0, i.e. 

𝑡𝑐ℎ𝑎𝑟 =
𝜙0(1−𝜙0)𝛿

𝜅0𝑆
          (41)  

These relations can easily be used to assess the potential of thermal non-equilibrium in systems of fluid flow through solids 

with given geometrical properties and fluid fractions.  

6 Conclusions  685 

In conclusion we showed that in magmatic systems characterized by two-phase flows of melts with respect to solid, thermal-

non-equilibrium between melt and solid may arise and becomebecomes important under certain conditions. The main 

conclusions are summarized as follows: 

From non-dimensionalization of the governing equations three non-dimensional numbers can be identified controlling thermal 

non-equilibrium: the Peclet number 𝑃𝑒, the heat transfer number 𝐴, and the melt porosity 𝜙., and the initial non-dimensional 690 

temperature gradient G in the system. The maximum possible non-equilibrium solid – fluid temperature difference Δ𝑇𝑚𝑎𝑥  is 

controlled only by two non-dimensional numbers: Pe and G. Both numerical and analytical solutions show that in a 𝑃𝑒 − 𝐴𝐺 

- parameter space three regimes can be identified:  

• In regime 1 (high Pe  (>1/G)) strong thermal non-equilibrium develops independently of Pe , and A, aa non-

dimensional scaling law 𝑇𝑓 − 𝑇𝑠 =
𝛥𝑇

𝐻
𝑧𝐺𝑧 has been derived.  695 

• In regime 2 (low Pe  (<1/G) and low A  (<1G  (<0.3)) non-equilibrium decreases proportionalproportionally to 

decreasing Pe, and G, and the non-dimensional scaling law reads 𝑇𝑓 − 𝑇𝑠 = 𝑃𝑒Δ𝑇𝑧 (1 −
𝑧

2𝐻
).𝑃𝑒 𝐺(1 − 𝑒−𝑧).  

• In regime 3 (low Pe  (<1)  and large A  (>G of order 1)) non-equilbriumsequilibrium scales with Pe/A and thus 

becomes unimportantG and is depth-dependent, the scaling law is 𝑇𝑓 − 𝑇𝑠 = (1 − 𝜙)
𝑃𝑒

𝐴

𝛥𝑇

𝐻
.𝑃𝑒 𝐺 (1 − 𝑀(𝑧)) where 

M(z) depends on G.  700 
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Further conclusions include: 

• The melt porosity 𝜙 has only a minor effect on thermal non-equilibrium. 

• The time scales for reaching thermal non-equilibrium scale with the advective time-scale in the high Pe-regime and 

with the interfacial diffusion time in the other two low Pe number regimes. 

• Applying the results to natural magmatic systems such as mid-ocean ridges can be done by estimating appropriate 705 

orders of Pe and AG. Plotting such typical ranges in the Pe-AG regime diagram reveals that a) interstitial melt flow 

is in thermal equilibrium, b) melt channeling as e.g. revealed by dunite channels may reach moderate thermal non-

equilibrium, and c) the dyke regime is at full thermal non-equilibrium. 

• In the studied setup G was constant leading to conservative estimates of thermal non-equilibrium. Any other depth-

dependent initial temperature distributions generate higher non-equilibrium than reported here. 710 

• The derived scaling laws for thermal non-equilibrium are valid for equal solid and fluid properties. Assuming different 

properties such as for a water – sandstone system results in similar maximum non-equilibrium temperature 

differences, but in significantly different time evolutions. 

While for simplicity the presented approach has been done essentially for constant model parameters, it can easily be extended 

to vertically varying parameters. Thus, tools are provided for evaluating the transition from thermal equilibrium to non-715 

equilibrium for anastomosing systems (Hart, 1993; Chevalier and Schmeling, in prep.). 
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Symbol Definition Units 

𝐴 Heat transfer number, Eq. (10a,b) - 
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𝑐𝑝,𝑓,𝑠,0 Specific heat at constant pressure for the fluid, solid, or reference, 

respectively 

J kg-1K-1 

𝑐, 𝑐𝑠 Geometrical constant, 2 for fluid pore space or solid phase, respectively. 

For melt channels, 4  or low porosity films c = 2, for tubes c = 4 (Eq. 9b, 

10b11, 12) 

- 

𝑐𝑡ℎ Constant for thermal boundary layer, 2.32 for cooling half space - 

𝑑𝑚 Interfacial boundary layer thickness m 

𝑑𝑠, 𝑑𝑓 Characteristic length scale of solid or fluid phase, respectively m 

𝑓 Subscript used for fluid  - 

g Function describing part of the 𝜙- dependence of 𝑑𝑓 , 𝑑𝑠 (Eq. 35) - 

G Initial temperature gradient, taken positive for temperature decreasing with 

height  

T m-1 

𝐻 Height of the model m 

𝐿0𝐿 Scaling length used for non-dimensionalization (=𝑑𝑓)(Eq. 9) m 

M(z) Function describing the depth-dependence of analytical solution of 

(𝑇𝑓 − 𝑇𝑠) for small Pe (Eq. 27) 

- 

𝑃𝑒, 𝑃𝑒𝐷 Peclet number,  based on fluid velocity (Eq. (14)(16)) or based on Darcy 

velocity (Eq. 34), respectively 

- 

𝑄𝑓𝑠 Interfacial heat exchange rate from fluid to solid J s-1
 m

-3 

𝑟1, 𝑟2 Constants of analytical solution (Eq.. 23) - 
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𝑠 Subscript used for solid - 

𝑆 Interfacial area density, i.e. interfacial area per volume m-1 

𝑡, 𝑡𝑐ℎ𝑎𝑟 TimeTime, characteristic timescales, respectively. “char” indicates the 

characteristic time for diffusion or advection over a characteristic length L 

or H: “diffL”, “diffH”, “advL”, “advH” 

s 

𝑡0 Diffusion time on interfacial scale used for non-dimensionalizationScaling 

time (Eq. 10)  

s 

𝑇𝑓,𝑠 Temperature of the fluid or solid, respectively K 

𝛥𝑇0, 𝛥𝑇𝑚𝑎𝑥  Initial temperature difference between top and bottom used as scaling 

temperature, and maximum difference between fluid and solid temperature 

in space and time, respectively 

K 

𝑣𝑓,𝑠 Velocity of the fluid or solid, respectively m s-1 

𝑣0𝑣𝑓0 Constant fluid velocity in the model, used for scaling m s-1 

𝑣𝐷 VolmetricVolumetric flow rate (Darcy velocity) (= 𝜙𝑣0𝑣𝑓) m s-1 

𝑥, 𝑦, 𝑧 Coordinates, distance m 

𝛼, 𝛽 Functions used for analytical solution (Eq. 24) - 

𝛿 Interfacial boundary layer thickness m 

𝜅𝑓,𝑠,0 Thermal diffusivity of the fluid, solid or reference, respectively m2 s-1 

𝜆𝑓,𝑠 Thermal conductivity of the fluid or solid, respectively W m-1 K-1 

𝜆𝑒𝑓𝑓 Effective thermal conductivity at the solid-fluid interface W m-1 K-1 
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𝜙,𝜙0 Porosity or scaling porosity, respectively - 

𝜌𝑓,𝑠,0 Density of the fluid, solid, or reference. respectively kg m-3 

 

 790 

Table 1: Symbols, their definition, and physical units used in this study. 
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Figure 1. Initial and boundary conditions. 
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Figure 2. Typical model evolution for Pe = 1, A = 1,two different melt fractions ϕ = 0.1., and two different heights H. a) Model 1 is 

with non-dimensional height H = 10. and 𝝓 = 𝟎. 𝟏. Red and blue curves show the fluid and solid temperatures at different timesnon-

dimensional times t as indicated by the legend, respectively. Initial temperatures are in black.almost identical to the t = 0.5 curves. 800 

b) Model 2 with H = 100, else as in a). c) Temporal evolution of fluid and solid temperatures, Tf  (red) and  Ts  (blue), respectively, 

of model 2 at the top.at the top of model 2 with 𝝓 = 𝟎. 𝟏 and model 3 with 𝝓 = 𝟎. 𝟐. H = 100 for both models. d) Evolution of fluid - 

solid temperature difference (Tf - Ts) at different distances z in model 2. The positions z = 25, 50, 75, and 100 are indicated by the 

inset. (𝝓 = 𝟎. 𝟏, solid curves) and in model 3 (𝝓 = 𝟎. 𝟐, dashed curves). e) Zoomed-in early temporal evolution solid and fluid 

temperatures of modelmodels 2 and 3 shown in c).  f) Zoomed-in early temporal evolution of temperature difference of model 2 and 805 

3 shown in d).   Formatiert: Schriftfarbe: Rot
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Figure 3. Maximum fluid – solid temperature differences 𝚫𝑻𝒎𝒂𝒙𝑻𝒇 − 𝑻𝒔 of numerical models (asterisks) with different parameters, 

plotted a) as a function of a) the Peclet number Pe, b) the heat transfer number A, and c) the solid fraction (𝟏 − 𝝓)  for H = 10 and 810 

𝝓 = 𝟎. 𝟏, and b) as a function of the initial thermal gradient G for Pe = 1 and 𝝓 = 𝟎. 𝟏. The solid lines give the analytic solutions. 
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Figure 4. Main regimes of the maximum fluid – solid temperature differences 𝚫𝑻𝒎𝒂𝒙 due to thermal non-equilibrium obtained by 825 

the analytical solution (equ. 20) and associated limitsEq. 22) in the parameter space of the heat transfer number A and the Peclet 

number Pe. The melt fraction 𝝓 has been assumed as 0.1. and temperature gradient G. The asymptotic limits are indicated by the 

formulas, M(z) is given by Eq. (27) with (𝟏 − 𝑴(𝒛)) increasing non-linearly from about 0 to 0.4 with increasing z. Regime boundaries 

are shown as dashed lines. Typical parameter combinations for magmatic settings such as interstitial melts or dykes are indicated 

by the orange ellipsesrectangles which extend further to the left, well below log10 G of -3. 830 
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Figure 5. Comparison of depth– and time- dependent numerical solutions with the time – independent analytical solutions for 

different parameters Pe, A, and HG as indicated in the sub-figure titles. The thin curves inIn each panel the curves show (𝑻𝒇 − 𝑻𝒔)- 840 

profiles for progressive times, the colors are cyclically varied with time from blue to yellow, starting with blue. (bold curve). The 

bold red dashed curve shows the analytical solution equ. (20Eq. (22), which represents a very good estimate of the depth-dependent 

temporal maximum of the temperature difference. In each panel the first 5 curves are plotted at time increments of 0.5 (0.025 for Pe 

= 100), the later curves with 5 (1 for Pe = 100).  The total non-dimensional times of each panel are: a) – c): 100, d) 15, e) 10, and f) 

100. As porosity 𝝓 =100 (500 for G = 0.01). The melt fraction was chosen as 𝝓𝟎 = 𝟎. 𝟏 is assumed. 845 
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Figure 6. 
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Figure 6. Temporal evolution of vertical profiles of (𝑻𝒇 − 𝑻𝒔)  for models with different Peclet numbers and model heights, i.e. 850 

different initial temperature gradients G = 1/H. In each panel the curves show (𝑻𝒇 − 𝑻𝒔)- profiles for progressive times, the colors 

are cyclically varied with time from blue to yellow, starting with blue (bold curve). The first 5 curves of the Pe < 100 (respectively 

Pe = 100) models were taken with time increments of 1 (respectively 0.1), the later curves with 10 (respectively 1). The total time was 

100 in all models with H = 10 and 500 in the models with H = 100. In each row the top boundary conditions is assumed as indicated 

at the left.  855 
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Figure 7. Time-  and depth- dependent numerical solutions (thin curves) as in Figure 5 but for step-function initial conditions: 𝑻𝒇 =

𝑻𝒔 = 𝟏 at z = 0 and 𝑻𝒇 = 𝑻𝒔 = 𝟎 at z > 0 at t = 0. Dashed curves are the time-independent analytical solutions as in Fig. 5The bold 

dashed red curves are the time-independent analytical solutions as in Fig. 5. In each panel the curves show (𝑻𝒇 − 𝑻𝒔)- profiles for 860 

progressive times, the colors are cyclically varied with time from blue to yellow, starting with blue (bold curve). In each panel the 

first 5 curves (and later curves, respectively) are plotted at time increments of a) 0.5 (5), b) 1 (10), c) 0.5 (5), and d) 0.025 (1). The 

total non-dimensional times of each panel are: 100 (500 for G = 0.01). As porosity 𝝓 = 𝟎. 𝟏 is assumed. 
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Figure 78. Time- and depth- dependent profiles of the fluid – solid temperature differences as in Fig. 5. a) Reference models (as in 

Fig. 5a) with Pe = 1, G = 0.1, 𝝓 = 𝟎. 𝟏 and equal fluid to solid properties. b) to f) Profiles as in a) but with solid to fluid properties 

ratios as indicated in the titles of each panel, and 𝝀𝒆𝒇𝒇′ = 1. The properties in b) are typical for water in sedimentary rocks. In each 870 

panel but b) the first 5 curves were taken with time increments of 0.5, the later curves with 5. In panel b) the first 5 curves were 

taken with time increments of 0.4875, the later curves with 4.875 . The total time was 100 in all models. 
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Figure 9. Time- and depth- dependent profiles of the fluid – solid temperature differences as in Fig. 5, but for fluid to solid property 

ratios typical for water flowing through sedimentary rocks, i.e. 𝝆𝒔
′ 𝒄𝒑,𝒔′ = 𝟎. 𝟕𝟖, 𝜿𝒔

′ = 𝟏𝟔 , 𝝀𝒆𝒇𝒇′ = 1. Pe and G have been chosen as 875 

indicated in the sub-figure titles (as in Fig. 5) and 𝝓 = 𝟎. 𝟏 was assumed. In each panel the curves show (𝑻𝒇 − 𝑻𝒔)- profiles for 

progressive times, the colors are cyclically varied with time from blue to yellow, starting with blue (bold curve). The first 5 curves 

were taken with time increments of 0.4875, the later curves with 4.875. The total time was 100 in all models with G = 0.1 and 200 in 

the models with G = 0.01. 
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Figure 10. For evaluating time scales the numerically determined times of models with various parameters Pe, A and H representing 

the three different regimes 1, 2 and 3 (different symbols) are plotted against characteristic scaling times. a) timesTimes for reaching 

90% of the maximum temperature difference ∆𝑻𝒎𝒂𝒙 are plotted against either the advective time scale tadvH  based on model height 

H for regime 1 models, or against the t0scaling  time scalet0 for regime 2 and 3 models., or against the diffusive time scale tdiffH based 895 

on the model height H. b) times for reaching steady states are plotted against the characteristic  diffusive time scales, tdiffH, based on 

model height H for all 3 regimes. Models close to the dashed line (y = x) are in best agreement with the characteristic times. In this 

Figurea) the Regime 2 times wereare taken dimensional by setting L0multiplying the observed times and 𝜿𝟎 tothe non-dimensional 

scaling time t0’ = 1 to allow for various t0’sby some arbitrary dimensional times t0. 
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