
A review of “Thermal non-equilibrium of a porous flow in a resting matrix applicable to melt migration: a 

parameteric study”, by Chevalier and Schmeling 

In this paper, the authors present a simple 1D model of heat transport in a system consisting of a fluid 

moving with a constant velocity that is in contact with a solid. There is initially a constant temperature 

gradient decreasing from the bottom of the column to the top. Fluid is introduced at the bottom at a 

temperature equal to the bottom temperature. As heat is advected upward with the fluid, a 

temperature difference between the fluid and solid can result. The authors show that there are three 

distinct times, one in which the degree of disequilibrium is increasing, one in which it is steady, and one 

where it is falling to a steady state. The authors derive a simplified analytical model to predict the 

temperature difference between the liquid and solid in their model and show that it agrees well with 

their more complex, time dependent model. 

The paper has been reviewed twice already by John Rudge and Cian Wilson who both suggested 

alternative non-dimensionalization of the equations. The authors have revised their paper based on the 

comments of the previous reviews and have changed the non-dimensionalization. I believe that the 

paper is new and interesting and that the authors have responded adequately to the two previous 

reviews. I have read the paper and made detailed comments on an annotated copy of the manuscript 

that I a returning.  

I have two substantive comments regarding the content of the paper. The first is that I am surprised that 

the authors do not show any analyses of the heat flow in their model. If nothing else, the authors could 

show the overall energy balance in their model by showing the incoming and outgoing advected and 

conducted heat flows at the top and bottom as well as the change in internal energy in the solid and 

fluid. This would serve as a check on energy conservation in their model but analyses could also be done 

on smaller scales looking at heat fluxes between the solid and fluid as well as heat fluxes due to 

advection and conduction. This would serve to help explain the cause of nonequilibrium in their models 

and I think would add significantly to a reader’s understanding. 

My second substantive point regards the length scale in the model. As the authors show in equation 9a, 

the length scale is (phi delta ds/cs)^0.5 where phi is porosity, delta is the thermal boundary layer 

thickness, ds is the grain size and  cs is a constant of order 1. Since the thermal boundary layer thickness 

will be small compared with the size of the system for large Peclet numbers and the grain size is very 

small compare with the size of the system, L will also be very small compared with the size of the 

system. In estimating G for a mid-ocean ridge the authors get values of 10^-6-0.6 for various settings. 

Yet, when investigating their models (figures 2-9)  the authors only show values of G as low as 0.01. 

Values of z can only be as large as 1/G.  I think that this issue with the length scale should be discussed. 

Also, as shown in figure 4, the degree of disequilibrium is proportional to G in all cases. In Regime 1, 

DeltaTmax is G*z where G is small, the maximum value of z will be large. However, in Regimes 2 and 3, 

when G is small, unless Pe is very large, the degree of disequilibrium is likely to be very small based on 

the scaling laws in these two regimes since (1-exp(-z)) and M(z) are both of order 1, 

The authors have already performed substantial revisions to their paper. I am not requiring that the 

above issues be addressed but if they could, I believe that the paper would be significantly improved. 
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Abstract. Fluid flow through rock occurs in many geological settings on different scales, at different temperature conditions 

and with different flow velocities. Depending on these conditions the fluid will be in local thermal equilibrium with the host 

rock or not. To explore the physical parameters controlling thermal non-equilibrium the coupled heat equations for fluid and 

solid phases are formulated for a fluid migrating through a resting porous solid by porous flow. By non-dimensionalizing the 

equations two non-dimensional numbers can be identified controlling thermal non-equilibrium: the Peclet number 𝑃𝑒 10 

describing the fluid velocity, and the porosity 𝜙. The equations are solved numerically for the fluid and solid temperature 

evolution for a simple 1D model setup with constant flow velocity. This setup defines a third non-dimensional number, the 

model height H=1/G, where G is the non-dimensional initial thermal gradient. Three stages are observed: a transient stage 

followed by a stage with maximum non-equilibrium fluid to solid temperature difference, ∆𝑇𝑚𝑎𝑥, and a stage approaching the 

steady state. A simplified time-independent ordinary differential equation for depth-dependent (𝑇𝑓 − 𝑇𝑠) is derived and solved  15 

analytically. From these solutions simple scaling laws of the form (𝑇𝑓 − 𝑇𝑠) = 𝑓(𝑃𝑒, 𝐺, 𝑧) are derived. Due to scaling they 

don’t depend explicitly on 𝜙 anymore. The solutions for ∆𝑇𝑚𝑎𝑥 and the scaling laws are in good agreement with the numerical 

solutions. The parameter space 𝑃𝑒, 𝐺 is systematically explored. Three regimes can be identified: 1) at high Pe  (>1/G) strong 

thermal non-equilibrium develops independently of Pe; 2) at low Pe  (<1/G) non-equilibrium decreases proportional to 

decreasing 𝑃𝑒 ∙ 𝐺; 3) at low Pe  (<1) and G of order 1 the scaling law is ∆𝑇𝑚𝑎𝑥 ≈ 𝑃𝑒. The scaling laws are also given in 20 

dimensional form. The dimensional ∆𝑇𝑚𝑎𝑥 depends on the initial temperature gradient, the flow velocity, the melt fraction, the 

interfacial boundary layer thickness, and the interfacial area density. The time scales for reaching thermal non-equilibrium 

scale with the advective time-scale in the high Pe-regime and with the interfacial diffusion time in the other two low Pe - 

regimes. Applying the results to natural magmatic systems such as mid-ocean ridges can be done by estimating appropriate 

orders of Pe and G. Plotting such typical ranges in the Pe - G regime diagram reveals that a) interstitial melt flow is in thermal 25 

equilibrium, b) melt channelling such as e.g. revealed by dunite channels may reach moderate thermal non-equilibrium, and 

c) the dyke regime is at full thermal non-equilibrium.  
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1 Introduction 

Fluid flow through rock occurs in many geological settings on different scales, at different temperature conditions and with 

different flow velocities. Depending on these conditions the fluid will be in local thermal equilibrium with the host rock or 30 

not. On small scale, e.g. grain scale, usually thermal equilibrium is valid. Examples include melt migration through a porous 

matrix in the asthenosphere or in crustal magmatic systems at super-solidus temperatures (e.g. McKenzie, 1984), groundwater 

or geothermal flows in sediments or cracked rocks (e.g. Verruijt, 1982; Furbish, 1997; Woods, 2015), or hydrothermal 

convection in the oceanic crust (e.g. Davis et al., 1999; Harris and Chapman, 2004; Becker and Davies, 2004). On a somewhat 

larger scale local thermal equilibrium may not always be reached. Examples of such flows include melt migration in the mantle 35 

or crust at temperatures close to or slightly below the solidus where melt may be focused and migrates through systems of 

veins or channels (Kelemen et al., 1995; Spiegelman et al., 2001). Within the upper oceanic crust also water may migrate 

through systems of vents or channels (Wilcock and Fisher, 2004). At even larger scales and at sub-solidus conditions magma 

rapidly flows through propagating dykes or volcanic conduits (e.g. Lister and Kerr, 1991; Rubin, 1995; Rivalta et al., 2015) 

and is locally at non-equilibrium with the host rock. 40 

Heat transport associated with most of such flow scenarios is usually described by assuming thermal equilibrium between the 

fluid and solid under slow flow conditions (e.g. McKenzie 1984). Alternatively, for more rapid flows such melts moving in 

dykes through a cold elastic or visco-elasto-plastic ambient rock, the fluids are assumed as isothermal (e.g. Maccaferri et al., 

2011; Keller et al., 2013). However, on local scale of channel or dyke width thermal interaction between rising hot magma 

and cold host rock is important and may lead to effects such as melting of the host rock and freezing of the magma with 45 

important consequences for dyke propagation and the maximum ascent height (e.g. Bruce and Huppert, 1990; Lister and Kerr, 

1991; Rubin, 1995). Clearly, in such rapid fluid flow scenarios melt is not in thermal equilibrium with the ambient rock. 

Thus, there exists a transitional regime, which, for example, may be associated with melt focusing into pathways where flow 

is faster and thermal equilibrium might not be valid anymore. In such a scenario it might be possible that channelized flow of 

melt might penetrate deeply into sub-solidus ambient rock, and thermal non-equilibrium delays freezing of the ascending melts 50 

and promotes initiation of further dyke-like pathways. Indeed, for mid-oceanic ridges compositional non-equilibrium has 

proven to be of great importance for understanding melt migration and transport evolution (Aharonov et al., 1995; Spiegelman 

et al., 2001). Thus, it appears plausible that in cases of sufficiently rapid fluid flow e.g. due to channeling or fracturing thermal 

non-equilibrium may also become important. Describing this non-equilibrium macroscopically, i.e. on a scale larger than the 

pores or channels, is the scope of this paper. 55 

While the physics of thermal non-equilibrium in porous flow is well studied in more technical literature (e.g. Spiga and Spiga, 

1981; Kuznetsov, 1994; Amiri and Vafai, 1994; Minkowycz et al., 1999; Nield and Bejan, 2006; de Lemos, 2016), so far it 

has attracted only little attention in the geoscience literature, but see Schmeling et al., (2018) and Roy (2020). The basic 

approach in all these studies is the decomposition of the heat equation for porous flow into two equations, one for the solid 

and one for the migrating fluid. The key parameter for thermal non-equilibrium is a heat exchange term between fluid and 60 
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solid, which appears as a sink in the equation for the fluid and as a source in the equation for the solid. Usually, this heat 

exchange term is assumed proportional to the local temperature difference between fluid and solid (Minkowycz et al. 1999; 

Amiri and Vafai, 1994; de Lemos, 2016; Roy, 2020). However, Schmeling et al. (2018) showed that in a more general 

formulation the heat exchange term depends on the complete thermal history of the moving fluid through the possibly also 

moving solid. Here we will follow the common assumption and use the local temperature difference formulation. While 65 

Schmeling et al. (2018) showed that the magnitude of thermal non-equilibrium essentially depends on the flow velocity, or 

more general, on the Peclet number, here we will more generally explore the parameter space.   

While thermal non-equilibrium of an arbitrary porous flow system depends on many parameters, our approach is to reduce the 

complexity of the system and systematically explore the non-dimensional parameter space. It will be shown that only two non-

dimensional parameters control thermal non-equilibrium in porous flow, namely the Peclet number and the porosity. In our 70 

simple 1D model setup with constant flow velocity a third non-dimensional number, the model height H=1/G, where G is the 

non-dimensional initial thermal gradient is identified. The non-dimensionalization allows application of the results to arbitrary 

magmatic or other systems. The aim is to derive scaling laws that allow an easy determination of whether thermal equilibrium 

or non-equilibrium is to be expected and quantitatively to estimate the maximum temperature difference between fluid and 

matrix. The results will be applied to an anastomosing melt ascent system typical for mid-oceanic ridges in a second paper 75 

(Chevalier and Schmeling, in prep). 

2 Governing equations and model setup 

2.1 Heat conservation equations 

We start with considering a general two-phase matrix-fluid system with variable properties and solid and fluid velocities and 

subsequently apply simplifications. The two phases are incompressible, and we assume local thermal non-equilibrium 80 

conditions, i.e. the two phases exchange heat. The equations for conservation of energy of this system are given e.g. by de 

Lemos (2016). Assuming constant pressure the conservation of energy of the fluid phase is given by: 

𝑐𝑝,𝑓 (
𝜕(𝜙𝜌𝑓𝑇𝑓)

𝜕𝑡
+ 𝛻 ⋅ (𝜙𝜌𝑓𝑣𝑓𝑇𝑓)) = 𝛻 ⋅ (𝜙𝜆𝑓𝛻𝑇𝑓) − 𝑄𝑓𝑠       (1) 

For the definition of all quantities, see Table 1. Equation (1) can be rearranged into: 

𝑐𝑝,𝑓 (𝑇𝑓
𝜕(𝜙𝜌𝑓)

𝜕𝑡
+ 𝜙𝜌𝑓

𝜕𝑇𝑓

𝜕𝑡
+ 𝑇𝑓𝛻 ⋅ (𝜙𝜌𝑓𝑣𝑓) + 𝜙𝜌𝑓𝑣𝑓 ⋅ 𝛻𝑇𝑓) = 𝛻 ⋅ (𝜙𝜆𝑓𝛻𝑇𝑓) − 𝑄𝑓𝑠    (2) 85 

Mass conservation for the fluid phase is given by: 

𝜕(𝜌𝑓𝜙)

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝑓𝜙𝑣𝑓) = 0           (3) 

Inserting (3) into (2), conservation of energy for the fluid phase becomes: 

𝑐𝑝,𝑓𝜌𝑓𝜙 (
𝜕𝑇𝑓

𝜕𝑡
+ 𝑣𝑓 ⋅ 𝛻𝑇𝑓) = 𝛻 ⋅ (𝜙𝜆𝑓𝛻𝑇𝑓) − 𝑄𝑓𝑠        (4) 

In a similar way, the conservation of energy of the solid phase is given by: 90 

reviewer
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𝑐𝑝,𝑠𝜌𝑠(1 − 𝜙) (
𝜕𝑇𝑠

𝜕𝑡
+ 𝑣𝑠 ⋅ 𝛻𝑇𝑠) = 𝛻 ⋅ ((1 − 𝜙)𝜆𝑠𝛻𝑇𝑠) + 𝑄𝑓𝑠       (5) 

which, assuming that 𝑣𝑠 = 0, is further simplified: 

𝑐𝑝,𝑠𝜌𝑠(1 − 𝜙)
𝜕𝑇𝑠

𝜕𝑡
= 𝛻 ⋅ ((1 − 𝜙)𝜆𝑠𝛻𝑇𝑠) + 𝑄𝑓𝑠        (6) 

The term 𝑄𝑓𝑠 in the fluid and solid heat conservation equations is the interfacial heat exchange term between the two phases 

(fluid and solid). In general, it depends on the local thermal history of the two phases and the history of the heat exchange 95 

(Schmeling et al., 2018). In a simplification it can be written as a combination of the interfacial area density S, the interfacial 

boundary layer thickness δ, the effective thermal conductivity λeff and the temperatures of the two phases: 

𝑄𝑓𝑠 =
𝑆𝜆𝑒𝑓𝑓

𝛿
(𝑇𝑓 − 𝑇𝑠)           (7) 

In general, the term δ is time dependent. Schmeling et al. (2018) however provide evidence that taking an appropriate constant 

value for δ (depending on fluid velocity) gives a good approximation of 𝑄𝑓𝑠  and allows for a reasonable modeling of 100 

temperature evolution with time. In most of the following parametric study, we use this simplification for δ by assuming it is 

constant with time.  

2.2 Scaling and non-dimensionalization  

Non-dimensionalization is useful for interpreting models involving a large number of parameters. It usually helps reducing the 

number of parameters, and identifies non-dimensional parameters that control the evolution of the system. We write the two 105 

energy conservation equations in a non-dimensional form, using 

𝑇 = 𝛥𝑇0𝑇′, 𝑡 = 𝑡0𝑡′, 𝑣 = 𝑣𝑓0𝑣′, (𝑥, 𝑦, 𝑧) = 𝐿 ∙ (𝑥′, 𝑦′, 𝑧′)       (8) 

where 𝛥𝑇0 is the macroscopic scaling temperature difference of the system, i.e. the initial temperature difference between top 

and bottom, x,y,z is a distance, vf0 is the scaling fluid velocity, L is the scaling length  

𝐿 = √
𝜙0(1−𝜙0)𝛿

𝑆
            (9) 110 

with 𝜙0 as a scaling porosity, and 𝑡0 is the scaling time based on the diffusion time over the length 𝐿, 

𝑡0 = 𝐿2 𝜅0⁄             (10) 

(see Table 1 for definitions). Primed quantities are non-dimensional. Introducing the fluid filled pore width 𝑑𝑓 and the solid 

(grain) width ds, the interfacial area density S scales with 

 𝑆 =
𝑐𝜙0

𝑑𝑓
             (11) 115 

for melt channels, tubes, pockets for all melt fractions, and for melt films at small melt fractions, while S scales with 

𝑆 =
𝑐𝑠(1−𝜙0)

𝑑𝑠
            (12) 
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for melt channels, films and suspensions at all melt fractions. Here c is a geometrical constant of the order 2 for melt channels, 

4 for melt tubes, 6 for melt pockets, and 2 for melt films at small melt fractions. The geometrical constant cs is of order 2 for 

melt channels, and 6 for melt films or suspensions. Thus, the scaling time and scaling length can also be written as  120 

𝑡0 =
(1−𝜙0)𝑑𝑓𝛿

𝑐𝜅0
=

𝜙0𝑑𝑠𝛿

𝑐𝑠𝜅0
           (10a)  

and 

𝐿 = √
(1−𝜙0)𝛿𝑑𝑓

𝑐
= √

𝜙0𝛿𝑑𝑠

𝑐𝑠
           (9a) 

Eq. (9a) shows that L scales both with the geometric mean of 𝑑𝑓 and 𝛿 at small melt fractions, and with the geometric mean 

of 𝑑𝑠 and 𝛿 at large melt fractions. Thus, L is a natural length scale associated with thermal equilibrium of fluid filled pores. 125 

The above scaling laws for S justify using the term 𝜙0(1 − 𝜙0) in the scaling length L. 

We assume that the fluid and solid phases have the same densities and thermal properties (but relax this assumption later in 

section 5.1.3): 

𝑐𝑝,𝑓 = 𝑐𝑝,𝑠 = 𝑐𝑝,0,     𝜌𝑓 = 𝜌𝑠 = 𝜌0,     𝜅𝑓 = 𝜅𝑠 =
𝜆𝑒𝑓𝑓

𝑐𝑝,0𝜌0
= 𝜅0       (13) 

From Eq. (4), (6), and (7) we get the non-dimensional energy conservation equations for the fluid and solid phases, 130 

respectively: 

𝜙 (
𝜕𝑇𝑓′

𝜕𝑡′
+ 𝑃𝑒 𝑣𝑓′ ⋅ 𝛻𝑇𝑓′) = 𝛻 ⋅ (𝜙𝛻𝑇𝑓′) − 𝜙0(1 − 𝜙0)(𝑇𝑓′ − 𝑇𝑠′)      (14) 

(1 − 𝜙)
𝜕𝑇𝑠′

𝜕𝑡′ = 𝛻 ⋅ ((1 − 𝜙)𝛻𝑇𝑠′) + 𝜙0(1 − 𝜙0)(𝑇𝑓′ − 𝑇𝑠′)       (15) 

From these equations we notice that the thermal evolution of the two-phase system is controlled by two non-dimensional 

numbers: the scaling porosity 𝜙0 and the Peclet number Pe defined as 135 

𝑃𝑒 =
𝑣𝑓0𝐿

𝜅0
            (16) 

This number has already proven to be of high significance for determining whether thermal non-equilibrium is present or not 

(Schmeling et al. 2018), and the highest Pe corresponds to the largest temperature difference between fluid and matrix. In the 

following we drop the primes keeping all equations non-dimensional, if not indicated otherwise. 

In the following we consider a homogeneous two-phase matrix-fluid system in 1D with a porosity constant in space and time, 140 

i.e. 𝜙 = 𝜙0. We assume a constant fluid velocity which will be expressed in terms of Pe, thus we choose the non-dimensional 

velocity 𝑣𝑓 = 1. This simplifies equations (14) and (15) to 

𝜕𝑇𝑓

𝜕𝑡
+ 𝑃𝑒

𝜕𝑇𝑓

𝜕𝑧
=

𝜕2𝑇𝑓

𝜕𝑧2 − (1 − 𝜙0)(𝑇𝑓 − 𝑇𝑠)          (17) 

and 

𝜕𝑇𝑠

𝜕𝑡
=

𝜕2𝑇𝑠

𝜕𝑧2 + 𝜙0(𝑇𝑓 − 𝑇𝑠),            (18) 145 

respectively. As we are interested in the evolution of the non-equilibrium temperature difference between the solid and fluid, 

subtraction of Eq. (18) from Eq. (17) gives: 
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𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑡
−

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 + 𝑃𝑒
𝜕𝑇𝑓

𝜕𝑧
+ (𝑇𝑓 − 𝑇𝑠) = 0        (19) 

which is equivalent to: 

𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑡
−

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 + 𝑃𝑒
𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
+ (𝑇𝑓 − 𝑇𝑠) = −𝑃𝑒

𝜕𝑇𝑠

𝜕𝑧
       (20) 150 

Note that while the temperatures Tf and Ts explicitly depend on two non-dimensional numbers Pe and 𝜙0 , the temporal 

evolution of the temperature difference (𝑇𝑓 − 𝑇𝑠) explicitly depends only on Pe. However, implicitly it is still a function of  

𝜙0 because Ts on the right-hand-side of Eq. (20) depends on 𝜙0 via Eq. (18). Only for cases or stages with Ts independent of 

𝜙0 as proposed in section 4, the temperature difference (𝑇𝑓 − 𝑇𝑠) is a function of only one non-dimensional parameter, Pe, 

and no more of 𝜙0. 155 

2.3 Model setup 

The fluid and solid heat conservation equations are solved in a 1D domain of height H. Other geometries could also be easily 

explored but are not considered here, since we focus on studying the relative control of the scaling parameters on thermal non-

equilibrium evolution. At time t < 0, both solid and fluid are at rest, in equilibrium. Both initial temperatures decrease linearly 

from 1 to 0 with z, therefore a constant temperature gradient of − 𝐺 = −1 𝐻⁄  is present in both phases (see Fig. 1). As boundary 160 

condition both phases temperatures are set to 1 (non-dimensional temperature difference) at z = 0. At z = H a constant thermal 

gradient condition 𝜕 𝑇 𝜕⁄ 𝑧 = − 1 𝐻⁄  (non-dimensional) is imposed for both phases. At  z = 0 the  advective flux is fixed by 

the constant temperature condition, i.e. it is equal to 𝑃𝑒 𝜙0, while at  z = H  it evolves freely with the fluid temperature, i.e. it 

is given by 𝑇𝑓𝑃𝑒 𝜙0  (all non-dimensional). This top boundary condition needs some justification: The hyperbolic partial 

differential equations Eq. (17) or (18) require two well defined boundary conditions each, Dirichlet (fixed temperature), 165 

Neumann (fixed thermal gradient), Robin (fixed sum of advective and conductive heat flux) or Cauchy (fixed temperature and 

thermal gradient). Applying the Dirichlet condition at the bottom, leaves either a Dirichlet, a Neumann or a Robin condition 

to specify for the top. In an open outflow situation like our system neither the evolution of the temperature, the thermal gradient 

or the total (advective plus conductive) heat flux is known a priori, but depends on the evolution within the system. In the early 

stage of model evolution both the solid and fluid have a thermal gradient inherited from the initial condition which is advected 170 

upwards in the fluid. Thus it seems most appropriate to use the Neumann condition as a boundary condition. Only at later 

stages this boundary condition imposes artefacts in the temperatures field close to the top boundary. The limitations of this top 

boundary condition are tested and discussed in chapter 5.1.2.  

This model setup adds a third non-dimensional scaling parameter to the system, namely 𝐺 = 1/𝐻. It defines the initial non-

dimensional temperature gradient or conductive heat flux, positive for a flux directed upwards. To summarize, the temperatures 175 

depend on the non-dimensional parameters Pe , 𝜙0, and G. 
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2.4 Numerical scheme 

The equations are solved by a MATLAB (MATLAB R2021b) code using a finite difference scheme central in space for the 

conduction terms, upwind for the advection term, and explicit in time. The spatial resolution is 𝑑𝑧 = 0.1  or 𝑀𝑖𝑛(0.1, 𝐻/100)  

for 𝐻 < 10.The the time step was chosen as 𝑑𝑡 = 1

4
𝑀𝑖𝑛(𝑑𝑧/𝑃𝑒,𝑑𝑧2), i.e. taking the minimum of the Courant or diffusion criterion. 180 

Tests with smaller spatial and temporal resolution have been carried out and did not change the results visibly. 

3 Numerical model results 

First, some exemplary numerical results are shown in Fig. 2 to understand the physics and the typical behavior. 

3.1 Evolution of temperatures and thermal non-equilibrium with time 

Three different models have been run, all with Pe = 1 and the following other parameters: Model 1: H = 10, ϕ = 0.1, model 2: 185 

H = 100, ϕ = 0.1, and Model 3: H = 100, ϕ = 0.2. Figure 2a and b show Tf and Ts as functions of z at different times as indicated 

for two initial temperature gradients, G = 0.1 (H = 10) and G = 0.01 (H = 100), respectively. Figure 2c shows the evolution 

of Tf and Ts with time at the top of the domain, for the same model 2 as in Figure 2b and for model 3 with a higher melt fraction 

ϕ = 0.2. Figure 2d shows the evolution of (Tf - Ts) at different distances z of model 2 (ϕ = 0.1) and of model 3 (ϕ = 0.2). At 

each depth of the system, the fluid and solid temperatures, as well as the temperature difference, evolve following three stages: 190 

Stage 1: During this transient stage the fluid temperature increases faster than the solid temperature (Fig. 2a,b,c,e), and the 

temperature difference (Fig. 2d,f) increases. During this stage, the fluid temperature increases rapidly at first, then the 

temperature increase slows down. As for the solid temperature, it first increases slowly, then faster and faster. At t = 0, the 

fluid velocity is suddenly set to non-zero, thus the fluid temperature starts to deviate from equilibrium and increases due to 

these new conditions. If the solid temperature were maintained constant with time, the fluid temperature would probably reach 195 

a steady-state profile, depending on boundary conditions, fluid velocity and solid temperature. While the fluid temperature 

increases faster than the solid temperature, the fluid-solid temperature difference, thus the heat transfer term, increases too, 

forcing the solid temperature to progressively increase. At the end of stage 1 the maximum temperature difference is 

approached (Fig. 2f). Because the solid temperature hasn’t risen significantly at that time (at t = 4 in the example) compared 

to the fluid temperature (Fig. 2e) different melt fractions do not affect the temperature differences during this stage (Fig. 2f in 200 

which all curves merge in one curve). This observation confirms the expectation from Eq. (20) that the temperature difference 

does not depend on melt fraction as long as the solid temperature is independent of ϕ, which is the case as long as Ts stays 

close to its initial profile. 

Stage 2: The fluid and the solid temperatures increase at similar rates, constant with time (Fig. 2c), the temperature difference 

remains constant and at maximum at the top (Fig. 2d). Solid-fluid heat transfer is at maximum during this stage. As Ts  is no 205 

more constant in time, different melt fractions lead to different rates of temperature increase (Fig. 2c) and also to different 

evolutions of (Tf –Ts) (Fig. 2d solid curves compared to dashed curves). A higher melt fraction increases the heat transfer into 
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the solid (c.f. last term in Eq. 18), resulting in a faster increase of the solid temperature whose gradient flattens earlier. Thus, 

the end of stage 2 is reached earlier (Fig. 2b).   

Stage 3: As the fluid temperature rises close to the Tf value at the bottom, its increase slows down, and heat transfer, thus 210 

temperature difference, decreases. In model 1 (Fig. 2a), steady state is reached while the fluid and solid temperatures are still 

far from 1. This is due to the influence of boundary conditions, as the heat transferred from the fluid phase to the solid phase 

is compensated by the solid phase heat loss at the top of the domain. In model 2 (Fig. 2b), boundary conditions at z = H  are 

applied farther away from the bottom, therefore allowing for a higher increase of temperatures when reaching the steady state. 

At each z we observe that the temperature difference first increases rapidly to reach a maximum after a short time (stage1), 215 

here after t = 4 (Fig. 2f). The resulting amplitude of the temperature difference is identical at the different z-positions and for 

both melt fractions. Then it stays constant at this maximum value (stage 2), and finally decreases (stage 3) (Fig. 2d). The higher 

in the model, the longer the temperature difference remains at maximum. A higher melt fraction accelerates the decrease of (Tf 

–Ts). The absolute maximum temperature difference in space and time does not depend on boundary conditions (see also 

section 5.1.2 where the influence of boundary conditions is discussed), nor on the z-position nor on the melt fraction and 220 

therefore looks to be an interesting observable. It could indeed be useful for getting a first order estimate of thermal non-

equilibrium conditions and possible temperature difference in a magmatic system. In the following sections we study how this 

maximum temperature difference evolves when varying the parameter Pe. 

3.2 Maximum temperature difference 

The maximum temperature difference of a model can be defined as the maximum value reached in space and time (c.f. Fig. 225 

2d). A series of models has been carried out for the two different non-dimensional parameters Pe, and 𝐺 = 1/𝐻, and ΔTmax 

has been determined for each model (Fig. 3).  Some first observations can be made: 

 For all Pe,  ΔTmax is proportional to Pe (Fig. 3a) as long as  ΔTmax is somewhat smaller than the absolutely possible 

maximum 1 which is asymptotically approached for high Pe. 

 ΔTmax is proportional to G, i.e. to the non-dimensional temperature gradient for G < 0.1.  230 

 ΔTmax reaches a maximum for large G of order 1, i.e. when H reaches 1 or the dimensional H reaches the scale L.  

 ΔTmax is essentially independent of ϕ as models with different ϕ almost merge in the same points shown in Fig. 3. This 

has been verified by running all models of Fig. 3 with melt fractions between 0.1 and 0.9 (not shown). 

 These observations suggest the existence of several domains in which scaling laws for ΔTmax could be derived, based on the 

two scaling parameters. In the next section, we propose an analytical derivation of ΔTmax values to obtain scaling laws and 235 

confirm the observed proportionalities.  
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4 Scaling laws derived from analytical solution  

In this section a simplified analytical solution for the z-dependent temperature difference between fluid and solid will be 

derived. From this solution the maximum temperature differences ΔTmax can be obtained and scaling laws will be derived. 

4.1 Analytical solution of the governing equations 240 

We are interested in an analytical solution of the equation (20) controlling the non-equilibrium temperature difference 

(𝑇𝑓 − 𝑇𝑠). We simplify the problem by considering the hypothetical case in which (𝑇𝑓 − 𝑇𝑠) does not change with time, and, 

moreover, in which the thermal gradient in the solid phase is fixed and linear, with 𝜕 𝑇𝑠 𝜕⁄ 𝑧 = −𝐺 = − 1 𝐻⁄  (non-

dimensional, with dimensions: 𝐺 = 𝛥𝑇0/𝐻). Although different from initial and steady-state stages described in the 1D models 

(section 3.1), this hypothetical case is quite similar to what can be observed at the very beginning of the second stage described 245 

in section 3.1 (c.f. Fig. 2d,f). In this second stage, the evolution of Tf and Ts was observed being quite similar indeed. Besides, 

at the end of stage 1 (section 3.1), Ts remains close to initial conditions, therefore a fixed linear gradient of slope −𝐺 =  −1/𝐻 

is justified. Since the maximum temperature difference between the two phases is observed starting from the end of stage 1 

and during stage 2 (section 3.2), it does not seem unreasonable to consider this hypothetical case for deriving the maximum 

temperature difference. Using these assumptions, Eq. (20) becomes: 250 

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 − 𝑃𝑒
𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
− (𝑇𝑓 − 𝑇𝑠) = −𝑃𝑒 𝐺        (21) 

While in the general case of Eq. (20) the temperature difference implicitly depends on 𝜙0, i.e. on the three non-dimensional 

parameters Pe, 𝜙0, and G, Eq. (21) does no more depend on 𝜙0 because we replaced 𝜕 𝑇𝑠(𝜙0) 𝜕⁄ 𝑧  by –G which is independent 

of 𝜙
0
. Eq. (21) is a second order ordinary differential equation for (𝑇𝑓 − 𝑇𝑠) whose solution can be analytically derived as (see 

supplementary material for details) 255 

𝑇𝑓 − 𝑇𝑠 = 𝛼𝑒𝑟1𝑧 + 𝛽𝑒𝑟2𝑧 + 𝑃𝑒G ,          (22) 

 where r1 and r2 are the roots of the associated equation of Eq. (21)  

𝑟1 =
1

2
(𝑃𝑒 − √𝑃𝑒2 + 4),      𝑟2 =

1

2
(𝑃𝑒 + √𝑃𝑒2 + 4) .       (23) 

The parameters α and β are constrained by the boundary conditions: (𝑇𝑓 − 𝑇𝑠) = 0 at z = 0 and 
𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
= 0 at z = H 

𝛼 = 𝑃𝑒G
𝑟2

𝑟1𝑒(𝑟1−𝑟2)/𝐺−𝑟2
,      𝛽 = 𝑃𝑒G

𝑟1

𝑟2𝑒(𝑟2−𝑟1)/𝐺−𝑟1
 .        (24) 260 

 The third term in Eq. (22) is a particular solution for Eq. (21). 

4.2 Comparison with numerical models 

From Eq. (22) the maximum value of the depth-dependent temperature difference (𝑇𝑓 − 𝑇𝑠) can be determined. It is found that 

the maximum is always at z = H. This value will be denoted as ΔTmax and has been calculated for all parameter combinations 

used for the numerical models. In Fig. 3 these analytical solutions are plotted as solid lines together with the numerical solutions 265 
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(asterisks). The agreement is very good, for most cases the differences between the numerical and analytical solutions are well 

below 1%, only when ΔTmax reaches values of about 0.6 and higher the differences become > 1 %, up to 6%. This general good 

agreement is another justification for using the time-independent equation (21) to obtain an analytical solution of an 

intrinsically time-dependent process as long as we are interested only in the maximum value of (𝑇𝑓 − 𝑇𝑠). Other reasons for 

the observed differences between the analytical and numerical solutions include numerical errors when determining the 270 

particular times when maximum temperature differences are reached, especially for the models which are in the regime close 

to ΔTmax = 1 where the   ΔTmax (Pe) – curves become non-linear (Fig. 3a). 

4.3 Scaling laws for temperature differences at certain parameter limits 

The analytical solution for ΔTmax fits very well with our model results and therefore looks to be ideal for getting a better 

understanding on the relative influences of the two controlling parameters 𝑃𝑒 and G, described in section 2.2 and 2.3. The 275 

Peclet number is already known to be of great importance for thermal equilibrium/non-equilibrium conditions. Inspecting the 

last term in Eq. (22) we notice that a high Pe and a high initial thermal gradient should favor higher temperature differences. 

This has been demonstrated in Fig. 3.  

Eq. (22) is, however, complicated, and the assessment of the relative importance of 𝑃𝑒 and G for different possible regimes is 

limited. In this section, we study the evolution of (𝑇𝑓 − 𝑇𝑠), i.e. also ΔTmax, in a few limiting cases. This enables us better 280 

understanding each parameter influence and to derive some scaling laws for different regimes. 

4.3.1 Limit 𝑷𝒆 → 𝟎 

When Pe tends to 0, we have the condition  

𝑃𝑒 ≪ 2             (25) 

With this condition Eq. (22) tends to the following limit (see supplementary material): 285 

 𝑇𝑓 − 𝑇𝑠 =  𝑃𝑒𝐺(1 − 𝑀)           (26) 

with 

 𝑀 =
cosh (z)+cosh(

2

𝐺
−𝑧)

1+cosh (2/𝐺)
           (27) 

which simplifies for 𝑧 = 𝐻 = 1/𝐺 to 

𝑀 =
1

cosh (1/𝐺)
            (28) 290 

This is the limit for Pe  0. This limit gives predictions for ΔTmax in very good agreement with Eq. (22) for Pe < 1 (having 

𝐺 = 0.1) (see Fig. S1 in the supplementary material). In the limit 𝐺 → 0 and finite Pe < 1/G we get the limit for M 

𝑀 → 𝑒−𝑧             

Thus, for both small Pe and small G the temperature difference (Eq. 26) can be written 

𝑇𝑓 − 𝑇𝑠 = 𝑃𝑒𝐺(1 − 𝑒−𝑧)           (29) 295 
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Eq. (29) confirms the proportionalities observed in Fig. 3, namely ∆𝑇𝑚𝑎𝑥 ∝ 𝑃𝑒  (Fig. 3a), and ∆𝑇𝑚𝑎𝑥 ∝ 𝐺  (Fig. 1b), 

respectively. 

4.3.2 Limit Pe  ∞ 

To obtain the limit of Eq. (22) for 𝑃𝑒 → ∞, Eq. (22) can be linearized with respect to 4 𝑃𝑒2⁄ ≪ 1. Applying the rule of 

L'Hôpital Eq. (22) tends to the following limit: 300 

𝑇𝑓 − 𝑇𝑠 = 𝐺𝑧            (30) 

For details, see supplementary material. This limit is also the solution of Eq. (21) when neglecting the diffusive and heat 

transfer terms. As demonstrated in the supplementary material this limit predicts ΔTmax values in very good agreement with 

Eq. (22) for Pe > 100.  

4.3.4 Exploring the domains for the maximum temperature difference including all limits 305 

Before exploring the full parameter space we first give a short overview of expected parameter ranges in magmatic systems. 

In natural magmatic systems such as mid-ocean ridges, Pe is expected to evolve from very low values of order 10-5 to 10-3 in 

partially molten regions with distributed porous flow to higher values of order 1 or larger at depths where channels have 

merged, and further to very high values of order 105 in dyke systems (Schmeling et al., 2018).  

While the melt fraction does not influence ∆𝑇𝑚𝑎𝑥 (c.f. Eq. (22, 30)) it influences the long term temporal behavior once Ts is 310 

𝜙0 – dependent (c.f. Eq. (20). Therefore some words about possible melt fractions. As melt flow may occur at very small melt 

fractions (McKenzie, 2000; Landwehr et al., 2001), large ϕ - values are not expected in natural mantle magmatic systems, nor 

in dyke systems in the crust. Values of channel volume fraction generally remain below a few percent up to tens of percent (in 

dunite channels up to 10 - 20%, Kelemen et al., 1997).  

To get an idea about the expected order of magnitude of the macroscopic dimension 𝐺 = 1/𝐻 of the system we have to 315 

evaluate the scaling length L used to scale the dimensional H. L scales with the geometric mean of the channel width df  and 

the interfacial boundary layer thickness 𝛿 (Eq. 9 with 11).  L would evolve non-linearly with the width of melt pathways which 

may increase by several orders of magnitude as 3D grain junctions eventually merge to 1D dykes. As will be shown in section 

5.3 in more detail the resulting non-dimensional G ranges between order 1 to order 10-5.  

In Figure 4 we explore ΔTmax variations using the analytical solution Eq. (22), in which ΔTmax depends on Pe and G. Three 320 

main regimes can be distinguished: 

 Regime 1: For high Pe values, (𝑇𝑓 − 𝑇𝑠) tends to the relationship described in Eq. (30). The temperature difference 

increases linearly with distance from the bottom (z = 0) reaching ΔTmax = 1 at z = H. In the whole region the fluid 

temperature remains constant and at maximum 1 while the solid temperature increases linearly with z from 0 to 1. 

 Regime 2: For 𝑃𝑒 ≪ 1, or more precisely, for 𝑃𝑒 ≪
1

𝐺
 represented by the oblique dashed line in Fig. 4, (𝑇𝑓 − 𝑇𝑠) 325 

varies with distance from the bottom according to (1 − 𝑒−𝑧), and is proportional to Pe and G. This means that large 
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temperature gradients favor large temperature differences. In this domain, (𝑇𝑓 − 𝑇𝑠)  tends to the relationships 

presented in Eq. (29).  

 Regime 3: For large initial temperature gradient G close to 1 (small H) and 𝑃𝑒 ≪ 1, (𝑇𝑓 − 𝑇𝑠) tends to the relationship 

proposed in Eq. (26). In this domain, (𝑇𝑓 − 𝑇𝑠) is proportional to Pe but no more to G. The depth-dependence is given 330 

by (1 − 𝑀(𝑧)) which at G = 1 increases non-linearly from about 0 to 0.4 with increasing z. 

5 Discussion 

5.1 Limitations 

5.1.1 Comments on the analytic solution  

Although the assumptions used to get the analytic solution (Eq. 22) are very specific, they are reasonable considering the 335 

conditions in the models when ΔTmax is reached, and it fits very well the numerical results. This is shown in Fig. 5 where for 

various combinations of Pe and G the time-dependent temperature differences (𝑇𝑓 − 𝑇𝑠) are shown as functions of depth 

together with the analytical solutions using Eq. (22). For all examples the position of the maximum temperature differences 

lies at z = H. A major simplification used in Eq. (21) was time-independence. Obviously, the resulting analytical solutions 

represent the stage 2, which is quasi steady state in contrast to stage 1 when the temperature difference builds up, and stage 3 340 

when the long-term behavior is approached. We emphasize that this analytical solution is a very good approximation of the 

depth-dependent temporal maximum temperature difference that can be reached in such porous systems. 

5.1.2 Boundary conditions at top and initial conditions  

The boundary conditions we chose at the top (z = H) are suitable for cases with little temperature evolution (regime 2 and 3, 

low Pe), and for early stages for regime 1 but might be inappropriate for high temperature increases (high Pe – regime 1) at 345 

later stages (see section 4.3.4). In order to quantify the influence of this choice of boundary conditions on our results, we 

compared the evolution of (𝑇𝑓 − 𝑇𝑠) - profiles for three Peclet numbers and two heights H, using four different boundary 

conditions at the top (Fig. 6): 

 Constant thermal gradient equal to the initial thermal gradient in the solid and fluid phases (Neumann condition). This 

was the boundary condition used in the models. 350 

 Thermal gradient is set to 0 at the top (Neumann condition). 

 Both fluid and solid temperatures are set to 0 at the top (Dirichlet condition). 

 Temperature at the top is numerically calculated from the full equations (17) and (18) using one-sided (upwind) 

positions for the first and second derivatives (open boundary).  

Mathematically, the open boundary condition is not a rigorous boundary condition because both the temperature and 355 

temperature gradient intrinsically depend on the temperature evolution within the model. Therefore, it cannot be applied to the 
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analytical solution of section 4.1. Numerically it works well for our system without producing instabilities or oscillations. 

Comparing the top and bottom row of Fig. 6, the constant temperature gradient condition produces quite similar results as the 

open boundary condition for all Pe and H values tested during the first and second stage of temporal evolution (c.f. section 

3.1).  The agreement becomes worse for stage 3 when approaching steady state at large Pe. Comparing the other two boundary 360 

conditions (2nd and 3rd row of Fig. 6) with the constant gradient condition (top row) shows that the effect of the top boundary 

during stage 1 and 2 is still small sufficiently far away from the top. Only for the small Pe - case (left column of Fig. 6) the 

zero gradient and zero temperature conditions strongly affect the upper half of the domain by diffusion. Yet the maximum 

temperature difference of the constant gradient case is nearly reached by the other two boundary conditions further within the 

domain, not at the top. The special case of high Pe and high H with zero temperature boundary condition (3rd row 4th column 365 

in Fig. 6) shows a strong build-up of 𝑇𝑓 − 𝑇𝑠 close to the top when approaching the steady state. This stems from the large 

local temperature gradient built up near the top as a result of transforming the difference in advective heat in- and output 

(𝑃𝑒 𝑇𝑖𝑛𝑓𝑙𝑢𝑥 − 𝑃𝑒 𝑇𝑜𝑢𝑡𝑓𝑙𝑢𝑥 = 𝑃𝑒) into a high conductive outflux (𝜕𝑇/𝜕𝑧) at the top. It is unlikely that such situations occur in 

natural systems.  

In summary, the influence of boundary conditions on fluid and solid temperatures evolution depends mostly on the domain 370 

size (H) and on the value of Pe. The larger these two parameters, the less important is the influence of boundary conditions 

within almost the whole model domain. If one is interested in the maximum value of 𝑇𝑓 − 𝑇𝑠 in space and time, the tests show 

that this value can safely be picked at z = H when using the constant temperature gradient boundary condition.  

As an initial condition we used a linear temperature profile and initial equilibrium between solid and fluid. A non-linear initial 

temperature profile between 𝑇𝑓 = 𝑇𝑠 = 1 at the bottom and 𝑇𝑓 = 𝑇𝑠 = 0 at the top would have spatially varying temperature 375 

gradients with sections with gradients larger than those assumed in our model. As the temperature gradient strongly influences 

thermal non-equilibrium (see e.g. Eq. 22 which explicitly contains the temperature gradient  𝐺), the above results are expected 

to be different, and a stronger thermal non-equilibrium is expected in regions with higher gradients. Schmeling et al. (2018) 

used a step function with 𝑇𝑓 = 𝑇𝑠 = 1 at z = 0 and 𝑇𝑓 = 𝑇𝑠 = 0 at z > 0 as initial condition, i.e. an extremely non-linear profile 

near z = 0. Assuming this initial temperature profile Figure 7 shows the temporal behavior of the temperature difference for 380 

selected parameter combinations, equal to the parameters used in Fig. 5. The analytical solutions for the time-independent case 

(Eq. 22) is also shown. As expected, at early stages the temperature differences are significantly larger than given by the 

analytical solutions by a factor 2 or more shortly after the onset of the evolution. At later stages (stage 2 or 3) the time-

dependent solutions approach or pass through the analytical solutions. Thus, we may state that the analytical solutions depicted 

in the regime diagram in Fig. 4 represent lower bounds of thermal non-equilibrium compared to settings with non-linear initial 385 

temperature profiles. 
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5.1.3 Different densities and thermal properties of the two phases  

While for simplicity we used equal physical properties for the fluid and solid, in many circumstances they might be 

significantly different. Equal properties are good approximations for magmatic systems where differences of density and 

thermal parameters are small (order of 10%), whereas porous flows of water or gases through rocks or other technical settings 390 

may be characterized by larger differences.   Allowing for different material properties adds four new parameters, namely the 

ratio of diffusivities, the ratio of densities, the ratio of heat capacities and a new effective thermal conductivity λeff for the 

interface between the two phases with different properties. To evaluate how many new non-dimensional numbers are 

introduced we non-dimensionalize the equations assuming different material properties for the two phases. We use the fluid 

properties as scaling quantities and assume that they are independent of temperature, pressure and depth. Eq. (14) and (15) 395 

turn into (for clarity, primes indicate non-dimensional quantites):  

𝜙 (
𝜕𝑇𝑓′

𝜕𝑡′
+ 𝑃𝑒𝑣′ ⋅ 𝛻𝑇𝑓′) = 𝛻 ⋅ (𝜙𝛻𝑇′𝑓) − 𝜙0(1 − 𝜙0)𝜆𝑒𝑓𝑓′(𝑇𝑓′ − 𝑇𝑠′)      (32)  

and 

(1 − 𝜙)
𝜕𝑇𝑠′

𝜕𝑡′
=

𝜅𝑠′

𝜌𝑠′𝑐𝑝,𝑠′
𝛻 ⋅ ((1 − 𝜙)∇𝑇𝑠′) + 𝜙0(1 − 𝜙0)

𝜆𝑒𝑓𝑓′

𝜌𝑠′𝑐𝑝,𝑠′
(𝑇𝑓′ − 𝑇𝑠′)     (33) 

Inspection of these equations shows that three more non-dimensional numbers are introduced: the ratio of diffusivities 𝜅𝑠′, the 400 

ratio of the products density and heat capacity, 𝜌𝑠′𝑐𝑝,𝑠′, and a new effective conductivity for heat transfer, 𝜆𝑒𝑓𝑓′. 

As equations (32) and (33) cannot be merged into one time-independent ordinary differential equation for (𝑇𝑓 − 𝑇𝑠) as in 

section 4.1, we numerically tested some cases with 𝑃𝑒 = 1 and 𝜆𝑒𝑓𝑓′ = 1 in which the diffusivity ratios and the ratios of 

𝜌𝑠′𝑐𝑝,𝑠′ were varied between 0.1 and 10 (see Fig. 8). The results show that for the fixed combination of 𝑃𝑒 = 1 and 𝜆𝑒𝑓𝑓
′ = 1 

the magnitude of thermal non-equilibrium remains in the same order of magnitude 𝑂(0.1) as for equal properties (Fig. 8). The 405 

time-dependence is significantly affected: For a high  ratio of 𝜅𝑠
′ = 10  (i.e. the solid is strongly conducting) the solid 

temperature profile remains close to the constant initial gradient, and the temperature difference rapidly converges to a steady 

state similar to the analytical solution depicted in Fig. 5a. In contrast, for a low 𝜅𝑠
′ = 0.1 the solid temperature departs more 

strongly from the initial linear gradient, and the solid – fluid temperature difference slowly drops with time on the long term. 

Varying the potential to store heat in the solid, i.e. 𝜌𝑠′𝑐𝑝,𝑠′, Fig. 8e and f shows that a high value slows down the long term 410 

time-dependent variations, while a small value leads to rapid long term temporal variations of (𝑇𝑓 − 𝑇𝑠) and faster convergence 

to the steady state which is similar to the equal properties case. 

It is interesting to apply the results for different physical properties to a geologically relevant setting, namely water flowing 

through sedimentary rocks. Given that the high heat capacity of water is about three times larger than that of rock, and the 

density is almost three times less, the product  𝜌𝑠′𝑐𝑝,𝑠′ is about 0.78, i.e. of order 1. However, the thermal diffusivity of water 415 

is significantly smaller than that of rock, typically by a factor 16, i.e. 𝜅𝑠′ is about 16.  We tested a few cases (Fig. 9) with Peclet 

numbers and initial thermal gradients 𝐺 (i.e. inverse model heights) (assuming for simplicity 𝜆𝑒𝑓𝑓 ′ = 1) equal to the cases 

depicted in Fig. 5. The time dependent profiles behave similarly to those in Fig. 5, with very similar maxima of the temperature 
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differences (red dashed curves in Fig. 5) relevant for stage 2. The only important difference is that the water-sedimentary rock 

case more rapidly approaches the late steady states of stage 3 and these stages are closer to the maximum red-dashed curves. 420 

These results suggest that the absolute values of maximum thermal non-equilibrium temperature differences shown in the 

regime diagram Fig. 4 are also applicable to a water-sedimentary rock system. 

5.2 Time scales 

It is interesting to evaluate the time scales for reaching the maximum non-equilibrium temperature differences and the steady 

state. For every numerical model, we recorded the time needed to reach 90% of the maximum temperature differences between 425 

fluid and solid, 𝑡90%, and the time needed to reach steady-state, 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 . The latter has been determined as the time at which 

the maximum difference between (𝑇𝑓(𝑧) − 𝑇𝑠(𝑧)) – curves at two subsequent time steps becomes less than 10−8∆𝑇𝑚𝑎𝑥. These 

times can be compared with different time scales that may characterize the evolution of temperatures in the models. These 

time scales can be based on advection over a characteristic distance 𝑑𝑐ℎ𝑎𝑟  giving 𝑡𝑎𝑑𝑣𝑑 = 𝑑𝑐ℎ𝑎𝑟 𝑣0⁄ , or on diffusion over the 

characteristic distance giving 𝑡𝑑𝑖𝑓𝑓𝑑 = 𝑑𝑐ℎ𝑎𝑟
2 𝜅0⁄ .  We tested these time scales with the two natural length scales of the models. 430 

The first is the scaling length L (= 1 non-dimensional) representing essentially the geometric mean of the channel width of the 

pores, 𝑑𝑓, and the interfacial boundary layer thickness 𝛿. The second is the model height 𝐻. Grouping the models depending 

on the regime they belong to (see section 4.3.4, and Fig. 4), we plotted the recorded times 𝑡90%  and 𝑡𝑠𝑡𝑒𝑎𝑑𝑦  versus the  

characteristic time scales mentioned above. Good agreement with the characteristic time scales is indicated by observed times 

fitting to the dashed x = y - lines (Figure 10).  435 

 In regime 1 (high Pe), 𝑡90% is proportional to 𝑡𝑎𝑑𝑣𝐻 (Figure 10a, blue circles). In this regime the high value of Pe 

makes the fluid temperature increase fast. It reaches its maximum value during the time under which significant fluid-

solid heat transfer builds up and the solid temperature is still low. This corresponds to the time for traveling the full 

distance H. During stage 2 and 3 the solid temperature increases and the temperature difference decreases before 

steady state is reached. The time for reaching steady state (Fig. 10b, circles) varies roughly linearly with 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 ∝440 

𝑡𝑑𝑖𝑓𝑓𝐻. For most cases it is controlled by diffusion through the solid over distances of order H. The case with large H 

(circle in Fig. 10b below dashed line) apparently reaches the steady state earlier, but still later than on a corresponding 

advective time scale based on H (not shown). Inspecting this model shows that during stage 2 and 3 the high Pe 

number facilitates approaching thermal equilibrium rapidly within large parts of the model and reducing the effective 

length scale (and characteristic timescale) over which still non-equilibrium is present.  445 

 In regime 2 (low Pe and 𝐺 < 0.1, i.e. 𝐻 > 10) the time for reaching ∆𝑇𝑚𝑎𝑥 is controlled by interfacial heat transfer 

(Fig. 10a, red asterisks) on the length scale L resulting in t90% proportional to t0. The time for reaching steady state is 

controlled by the diffusion time scale across the height of the system (Fig. 10b). 

 In regime 3, (low Pe and high G (small H)), time for reaching ∆𝑇𝑚𝑎𝑥 is similar or shorter than the diffusion time 

based on the model height H (Fig. 10a, black crosses). The flattening of the curve indicates that non-equilibrium is 450 

reviewer
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reached faster for some models because Pe reaches order 1 and the advective timescale starts to take over. The time 

for reaching steady state (Fig. 10b, crosses) varies linearly with 𝑡𝑠𝑡𝑒𝑎𝑑𝑦 ∝ 𝑡𝑑𝑖𝑓𝑓𝐻 . Clearly, it is also controlled by 

diffusion. 

5.3 Applications to magmatic systems 

We now test the possible occurrence of thermal non-equilibrium in natural magmatic systems based on the suggested 455 

controlling non-dimensional parameters, namely the Peclet number 𝑃𝑒, the initial thermal gradient G (= 1/H), and the melt 

fraction 𝜙. Typical stages of melt flow for mid-ocean ridges include stage a), partially molten regions with interstitial melts 

sitting at grain corners, grain edges or grain faces with low (0.0001 - 6%) melt fractions (see e.g. the discussion in Schmeling, 

2006), stage b), merging melt channel or vein systems with high (> 10 - 20%) porosity channels identified as dunite channels 

after complete melt extraction (Kelemen et al., 1997), and stage c), propagating dykes or other volcanic conduits. Let’s assume 460 

typical overall melt fractions of 1% to 20% for stages b) and c). Schmeling et al. (2018) discussed possible Peclet numbers for 

such systems based on a Darcy flow related Peclet number 

 𝑃𝑒𝐷 =
𝑣𝐷𝑑𝑠

𝜅0
                                                (34) 

As we preferably use the melt pore dimension 𝑑𝑓 in our scalings (Eq. 9a and 10a) we need to relate it to the solid phase 

dimension 𝑑𝑠 by using 465 

𝑑𝑠 = 𝑑𝑓
𝑔

𝜙
,      𝑔 = {

(1 − 𝜙)                     𝑚𝑒𝑙𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

√𝜙(1 − √𝜙)            𝑚𝑒𝑙𝑡 𝑡𝑢𝑏𝑒𝑠        
                (35) 

Using (35), (9a), and (16) we arrive at the Peclet number used here 

𝑃𝑒 = 𝑃𝑒𝐷
1

𝑔√𝑐
√

(1−𝜙)𝛿

𝑑𝑓
            (36) 

Schmeling et al. (2018) reviewed and estimated typical pore or channel spacings ds of 10-3 – 10-2 m for stage a), 0.1 m for early 

stage b) increasing to 1 -100 m for late stage b), and 100m – 300 m for stage c) (dykes). Arguing for typical geometries, 470 

spreading rates and melt extraction rates Schmeling et al. 2018 estimated the Darcy velocity lying between 10-10 m/s and 10-9 

m/s. With these paramterers 𝑃𝑒𝐷- numbers for the three stages can be estimated as 10-7 to 10-5 for stage a), 10-5 to 10-4 for 

stage b) at depths where channel distances are of order 0.1 m, and 10-4 to 0.1 at shallower depths where the channel distances 

have increased to the order of 1m to 100 m, and >105  for the dyke stage c). To estimate Peclet numbers as defined here (Eq. 

36) typical interfacial thermal boundary layer thicknesses 𝛿 are needed. As the thermal interfacial heat exchange intrinsically 475 

is time-dependent a good estimate is 𝛿 = 𝑐𝑡ℎ√𝜅0𝑡 (in dimensional form) where 𝑐𝑡ℎ is a constant for a thermal boundary layer, 

equal to 2.32 for a cooling half space. Assuming that the characteristic time can be expressed by the (dimensional) fluid 

velocity 𝑣0 and system height 𝐻, i.e. by 𝑡 = 𝐻 𝑣0⁄ = 𝐻𝜙/𝑣𝐷, we may express 𝑣𝐷in terms of the Peclet number PeD. With the 

resulting 𝑡 and 𝛿 we arrive at the following Peclet number (H and df  are dimensional or non-dimensional): 
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𝑃𝑒 = 𝑃𝑒𝐷
3/4√

𝑐𝑡ℎ

𝑐
𝑔−3/4 (

𝐻

𝑑𝑓
)

1/4

√1 − 𝜙         (37) 480 

For mid ocean ridge settings we assume 𝐻 of the order 1 to 10 km, and use Eq. (35) to insert typical 𝑑𝑓-values (increasing 

from 10-4 m (stage a), interstitial melts) to 10-3 m to 10-1 m for the channeling stage b) (see Schmeling et al., 2018) to >10 m 

for the dyke stage c). The resulting Peclet number (Eq. 37) is of the order 10-3 to 0.5 for stage a), order 10-2 during the early 

stage b) and order 10-2 to 1 during the later stage b) appropriate for dunite systems, and order 104  to 107 for the dyke stage c). 

To estimate typical non-dimensional thermal gradients G’ (or layer thickness H’) the above estimate for 𝛿 and df can be inserted 485 

into the scaling length L (Eq. 9a) to arrive at a non-dimensional G’=1/H’ 

𝐺′ = (
𝐻

𝑑𝑠
)

−3/4

𝑔−1/2𝜙3/4√
𝑐𝑡ℎ

𝑐
𝑃𝑒𝐷

−1/4√1 − 𝜙        (38) 

With the derived estimates for the three stages, G’ is of the order 10-6 to 10-2.7 for stage a), 10-4 – 10-2.5 increasing to 10-4 - 0.6 

for stage 2), and 10-5 – 10-2 for the dyke stage c). These resulting stages for 𝑃𝑒 and 𝐺′ are indicated in the regime diagram (Fig. 

4). Starting from interstitial melts at full thermal equilibrium, channeling and veining may result in moderate thermal non-490 

equilibrium at sufficiently high thermal gradients, while after transition to dyking full thermal non-equilibrium is predicted.  

A similar exercise can be done for continental magmatic systems. We skip such an explicit evaluation here but note that silicic 

melt viscosities are typically higher than those of basaltic melts at mid-ocean ridges. Thus, Peclet numbers are expected to be 

smaller, but non-dimensional thermal gradients (Eq. 38) might be larger, resulting in a downward and rightward shift of the 

natural stages indicated in Figure 4. 495 

To make our scaling laws and time scales for reaching maximum thermal non-equilibrium more accessible it is worth writing 

them in dimensional form. First, to estimate the Peclet number of a natural system combining Eq. (9) and (16) gives 

𝑃𝑒 =
𝑣𝑓0

𝜅0
√

𝜙0(1−𝜙0)𝛿

𝑆
           (39) 

indicating that for very small or very large melt fractions Pe becomes very small. One may use Eq. (11) or (12) to write Pe 

also in terms of pore or grain dimensions df  or ds, respectively. The scaling laws and characteristic time scales for the three 500 

regimes we found (Fig. 4) are in dimensional form: 

 Regime 1: For large Pe the maximum non-equilibrium temperature difference is simply equal to the imposed 

temperature difference, Δ𝑇𝑚𝑎𝑥 =  Δ𝑇0 , and the characteristic time to reach maximum non-equilibrium is simply 

𝑡𝑐ℎ𝑎𝑟 = 𝐻/𝑣𝑓0, i.e. the total time of a fluid particle for passing through the system. 

 Regime 2 and 3: For small Peclet number ( 𝑃𝑒 <
𝐻√𝑆

√𝜙0(1−𝜙0)𝛿
) the maximum temperature difference scales like 505 

Δ𝑇𝑚𝑎𝑥 =
𝐺𝑣𝑓0𝜙0(1−𝜙0)𝛿

𝜅0𝑆
          (40)  

and the characteristic time for reaching this non-equilibrium scales with t0, i.e. 

𝑡𝑐ℎ𝑎𝑟 =
𝜙0(1−𝜙0)𝛿

𝜅0𝑆
          (41)  



18 

 

These relations can easily be used to assess the potential of thermal non-equilibrium in systems of fluid flow through solids 

with given geometrical properties and fluid fractions.  510 

6 Conclusions  

In conclusion we showed that in magmatic systems characterized by two-phase flows of melts with respect to solid, thermal-

non-equilibrium between melt and solid may arise and becomes important under certain conditions. The main conclusions are 

summarized as follows: 

From non-dimensionalization of the governing equations three non-dimensional numbers can be identified controlling thermal 515 

non-equilibrium: the Peclet number 𝑃𝑒, the melt porosity 𝜙, and the initial non-dimensional temperature gradient G in the 

system. The maximum possible non-equilibrium solid – fluid temperature difference Δ𝑇𝑚𝑎𝑥  is controlled only by two non-

dimensional numbers: Pe and G. Both numerical and analytical solutions show that in a 𝑃𝑒 − 𝐺 - parameter space three 

regimes can be identified:  

• In regime 1 (high Pe  (>1/G)) strong thermal non-equilibrium develops independently of Pe, and a non-dimensional 520 

scaling law 𝑇𝑓 − 𝑇𝑠 = 𝐺𝑧 has been derived.  

• In regime 2 (low Pe  (<1/G) and low G  (<0.3)) non-equilibrium decreases proportionally to decreasing Pe and G, 

and the non-dimensional scaling law reads 𝑇𝑓 − 𝑇𝑠 = 𝑃𝑒 𝐺(1 − 𝑒−𝑧).  

• In regime 3 (low Pe  (<1)  and G of order 1)) non-equilibrium scales with Pe and G and is depth-dependent, the 

scaling law is 𝑇𝑓 − 𝑇𝑠 = 𝑃𝑒 𝐺 (1 − 𝑀(𝑧)) where M(z) depends on G.  525 

Further conclusions include: 

• The time scales for reaching thermal non-equilibrium scale with the advective time-scale in the high Pe-regime and 

with the interfacial diffusion time in the other two low Pe number regimes. 

• Applying the results to natural magmatic systems such as mid-ocean ridges can be done by estimating appropriate 

orders of Pe and G. Plotting such typical ranges in the Pe-G regime diagram reveals that a) interstitial melt flow is in 530 

thermal equilibrium, b) melt channeling as e.g. revealed by dunite channels may reach moderate thermal non-

equilibrium, and c) the dyke regime is at full thermal non-equilibrium. 

• In the studied setup G was constant leading to conservative estimates of thermal non-equilibrium. Any other depth-

dependent initial temperature distributions generate higher non-equilibrium than reported here. 

• The derived scaling laws for thermal non-equilibrium are valid for equal solid and fluid properties. Assuming different 535 

properties such as for a water – sandstone system results in similar maximum non-equilibrium temperature 

differences, but in significantly different time evolutions. 

While for simplicity the presented approach has been done essentially for constant model parameters, it can easily be extended 

to vertically varying parameters. Thus, tools are provided for evaluating the transition from thermal equilibrium to non-

equilibrium for anastomosing systems (Hart, 1993; Chevalier and Schmeling, in prep.). 540 
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Symbol Definition Units 

𝑐𝑝,𝑓,𝑠,0 Specific heat at constant pressure for the fluid, solid, or reference, 

respectively 

J kg-1K-1 

𝑐, 𝑐𝑠 Geometrical constant for fluid pore space or solid phase, respectively. For 

melt channels or low porosity films c = 2, for tubes c = 4 (Eq. 11, 12) 

- 

𝑐𝑡ℎ Constant for thermal boundary layer, 2.32 for cooling half space - 

𝑑𝑠 , 𝑑𝑓 Characteristic length scale of solid or fluid phase, respectively m 

𝑓 Subscript used for fluid  - 

g Function describing part of the 𝜙- dependence of 𝑑𝑓 , 𝑑𝑠 (Eq. 35) - 

G Initial temperature gradient, taken positive for temperature decreasing with 

height  

T m-1 

𝐻 Height of the model m 

𝐿 Scaling length used for non-dimensionalization (Eq. 9) m 
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M(z) Function describing the depth-dependence of analytical solution of 

(𝑇𝑓 − 𝑇𝑠) for small Pe (Eq. 27) 

- 

𝑃𝑒, 𝑃𝑒𝐷 Peclet number based on fluid velocity (Eq. (16)) or based on Darcy velocity 

(Eq. 34), respectively 

- 

𝑄𝑓𝑠 Interfacial heat exchange rate from fluid to solid J s-1
 m-3 

𝑟1, 𝑟2 Constants of analytical solution (Eq.. 23) - 

𝑠 Subscript used for solid - 

𝑆 Interfacial area density, i.e. interfacial area per volume m-1 

𝑡, 𝑡𝑐ℎ𝑎𝑟 Time, characteristic timescales, respectively. “char” indicates the 

characteristic time for diffusion or advection over a characteristic length L 

or H: “diffL”, “diffH”, “advL”, “advH” 

s 

𝑡0 Scaling time (Eq. 10)  s 

𝑇𝑓,𝑠 Temperature of the fluid or solid, respectively K 

𝛥𝑇0, 𝛥𝑇𝑚𝑎𝑥  Initial temperature difference between top and bottom used as scaling 

temperature, and maximum difference between fluid and solid temperature 

in space and time, respectively 

K 

𝑣𝑓,𝑠 Velocity of the fluid or solid, respectively m s-1 

𝑣𝑓0 Constant fluid velocity in the model, used for scaling m s-1 

𝑣𝐷 Volumetric flow rate (Darcy velocity) (= 𝜙𝑣𝑓) m s-1 

𝑥, 𝑦, 𝑧 Coordinates, distance m 
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𝛼, 𝛽 Functions used for analytical solution (Eq. 24) - 

𝛿 Interfacial boundary layer thickness m 

𝜅𝑓,𝑠,0 Thermal diffusivity of the fluid, solid or reference, respectively m2 s-1 

𝜆𝑓,𝑠 Thermal conductivity of the fluid or solid, respectively W m-1 K-1 

𝜆𝑒𝑓𝑓 Effective thermal conductivity at the solid-fluid interface W m-1 K-1 

𝜙,𝜙0 Porosity or scaling porosity, respectively - 

𝜌𝑓,𝑠,0 Density of the fluid, solid, or reference. respectively kg m-3 

 

 

Table 1: Symbols, their definition, and physical units used in this study. 615 
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Figure 1. Initial and boundary conditions. 
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Figure 2. Typical model evolution for Pe = 1, two different melt fractions ϕ, and two different heights H. a) Model 1 is with non-620 

dimensional height H = 10 and 𝝓 = 𝟎. 𝟏. Red and blue curves show the fluid and solid temperatures at different non-dimensional 

times t as indicated by the legend, respectively. Initial temperatures are in almost identical to the t = 0.5 curves. b) Model 2 with H 

= 100, else as in a). c) Temporal evolution of fluid and solid temperatures, Tf  (red) and  Ts  (blue), respectively, at the top of model 

2 with 𝝓 = 𝟎. 𝟏 and model 3 with 𝝓 = 𝟎. 𝟐. H = 100 for both models. d) Evolution of fluid - solid temperature difference (Tf - Ts) at 

different distances z in model 2 (𝝓 = 𝟎. 𝟏, solid curves) and in model 3 (𝝓 = 𝟎. 𝟐, dashed curves). e) Zoomed-in early temporal 625 

evolution solid and fluid temperatures of models 2 and 3 shown in c). f) Zoomed-in early temporal evolution of temperature 

difference of model 2 and 3 shown in d). 
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Figure 3. Maximum fluid – solid temperature differences 𝑻𝒇 − 𝑻𝒔 of numerical models (asterisks) with different parameters, plotted 

a) as a function of the Peclet number Pe for H = 10 and 𝝓 = 𝟎. 𝟏, and b) as a function of the initial thermal gradient G for Pe = 1 630 

and 𝝓 = 𝟎. 𝟏. The solid lines give the analytic solutions. 
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Figure 4. Main regimes of the maximum fluid – solid temperature differences 𝚫𝑻𝒎𝒂𝒙 due to thermal non-equilibrium obtained by 

the analytical solution (Eq. 22) in the parameter space of the Peclet number Pe and temperature gradient G. The asymptotic limits 645 

are indicated by the formulas, M(z) is given by Eq. (27) with (𝟏 − 𝑴(𝒛)) increasing non-linearly from about 0 to 0.4 with increasing 

z. Regime boundaries are shown as dashed lines. Typical parameter combinations for magmatic settings such as interstitial melts or 

dykes are indicated by the orange rectangles which extend further to the left, well below log10 G of -3. 
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 655 

Figure 5. Comparison of depth– and time- dependent numerical solutions with the time – independent analytical solutions for 

different parameters Pe and G as indicated in the sub-figure titles. In each panel the curves show (𝑻𝒇 − 𝑻𝒔)- profiles for progressive 

times, the colors are cyclically varied with time from blue to yellow, starting with blue (bold curve). The bold red dashed curve shows 

the analytical solution Eq. (22), which represents a very good estimate of the depth-dependent temporal maximum of the 

temperature difference. In each panel the first 5 curves are plotted at time increments of 0.5 (0.025 for Pe = 100), the later curves 660 

with 5 (1 for Pe = 100).  The total non-dimensional times of each panel are: 100 (500 for G = 0.01). The melt fraction was chosen as 

𝝓𝟎 = 𝟎. 𝟏. 

 

reviewer
Sticky Note
Since the length scale used is controled by the grain size and the boundary layer thickness, it is very small. For that reason, a value of z up to 10 is a very small system (only about 10 boundary layer thicknesses). As the authors point out, G in most real cases is very small. Cases with very small G should be shown.
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 665 

Figure 6. Temporal evolution of vertical profiles of (𝑻𝒇 − 𝑻𝒔)  for models with different Peclet numbers and model heights, i.e. 

different initial temperature gradients G = 1/H. In each panel the curves show (𝑻𝒇 − 𝑻𝒔)- profiles for progressive times, the colors 

are cyclically varied with time from blue to yellow, starting with blue (bold curve). The first 5 curves of the Pe < 100 (respectively 

Pe = 100) models were taken with time increments of 1 (respectively 0.1), the later curves with 10 (respectively 1). The total time was 

100 in all models with H = 10 and 500 in the models with H = 100. In each row the top boundary conditions is assumed as indicated 670 

at the left.  
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Figure 7. Time-  and depth- dependent numerical solutions (thin curves) as in Figure 5 but for step-function initial conditions: 𝑻𝒇 =

𝑻𝒔 = 𝟏 at z = 0 and 𝑻𝒇 = 𝑻𝒔 = 𝟎 at z > 0 at t = 0. The bold dashed red curves are the time-independent analytical solutions as in Fig. 675 

5. In each panel the curves show (𝑻𝒇 − 𝑻𝒔)- profiles for progressive times, the colors are cyclically varied with time from blue to 

yellow, starting with blue (bold curve). In each panel the first 5 curves (and later curves, respectively) are plotted at time increments 

of a) 0.5 (5), b) 1 (10), c) 0.5 (5), and d) 0.025 (1). The total non-dimensional times of each panel are: 100 (500 for G = 0.01). As 

porosity 𝝓 = 𝟎. 𝟏 is assumed. 
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Figure 8. Time- and depth- dependent profiles of the fluid – solid temperature differences as in Fig. 5. a) Reference models (as in 

Fig. 5a) with Pe = 1, G = 0.1, 𝝓 = 𝟎. 𝟏 and equal fluid to solid properties. b) to f) Profiles as in a) but with solid to fluid properties 

ratios as indicated in the titles of each panel, and 𝝀𝒆𝒇𝒇′ = 1. The properties in b) are typical for water in sedimentary rocks. In each 685 

panel but b) the first 5 curves were taken with time increments of 0.5, the later curves with 5. In panel b) the first 5 curves were 

taken with time increments of 0.4875, the later curves with 4.875 . The total time was 100 in all models. 
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Figure 9. Time- and depth- dependent profiles of the fluid – solid temperature differences as in Fig. 5, but for fluid to solid property 

ratios typical for water flowing through sedimentary rocks, i.e. 𝝆𝒔
′ 𝒄𝒑,𝒔′ = 𝟎. 𝟕𝟖, 𝜿𝒔

′ = 𝟏𝟔 , 𝝀𝒆𝒇𝒇′ = 1. Pe and G have been chosen as 690 

indicated in the sub-figure titles (as in Fig. 5) and 𝝓 = 𝟎. 𝟏 was assumed. In each panel the curves show (𝑻𝒇 − 𝑻𝒔)- profiles for 

progressive times, the colors are cyclically varied with time from blue to yellow, starting with blue (bold curve). The first 5 curves 

were taken with time increments of 0.4875, the later curves with 4.875. The total time was 100 in all models with G = 0.1 and 200 in 

the models with G = 0.01. 
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Figure 10. For evaluating time scales the numerically determined times of models with various parameters Pe and H representing 

the three different regimes 1, 2 and 3 (different symbols) are plotted against characteristic scaling times. a) Times for reaching 90% 

of the maximum temperature difference ∆𝑻𝒎𝒂𝒙 are plotted against either the advective time scale tadvH  based on model height H for 

regime 1 models, or against the scaling  time t0 for regime 2 models, or against the diffusive time scale tdiffH based on the model height 710 

H. b) times for reaching steady states are plotted against the characteristic diffusive time scales, tdiffH, based on model height H for 

all 3 regimes. Models close to the dashed line (y = x) are in best agreement with the characteristic times. In a) the Regime 2 times are 

taken dimensional by multiplying the observed times and the non-dimensional scaling time t0’ = 1 by some arbitrary dimensional 

times t0. 
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