
1

Supplementary material

Thermal non-equilibrium of porous flow in a resting matrix

applicable to melt migration: a parametric study

Laure Chevalier1,2, Harro Schmeling1

1Institute of Geosciences, Goethe University, 60438 Frankfurt, Germany 5
2Laboratory example, city, postal code, country

Correspondence to: Harro Schmeling (schmeling@geophysik.uni-frankfurt.de)

1 Analytical solution

Eq. (19) (in main paper) is a second order differential equation for 𝑇𝑓 − 𝑇𝑠 with constant parameters. Its solution is composed

of the sum of a particular solution and of the solution of the corresponding homogeneous differential equation. 10

1.1 Particular solution

The right hand side of Eq. (19) is a constant. In this special case with constant parameters, a simple way to find a particular

solution consists in assuming that for this solution, 𝑇𝑓 − 𝑇𝑠 is a constant. Its derivative is equal to zero, and the constant value

of 𝑇𝑓 − 𝑇𝑠 is:

𝑇𝑓 − 𝑇𝑠 = (1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻
 (S1) 15

1.2 Homogeneous solution

We now need to find the general solution of the homogeneous equation

1

𝐴

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 −
𝑃𝑒

𝐴

𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
−

1

1−𝜙
(𝑇𝑓 − 𝑇𝑠) = 0 (S2)

The second order algebraic equation associated with Eq. (S2) is

𝑟2 − 𝑃𝑒 𝑟 −
𝐴

1−𝜙
= 0 (S3) 20

Its determinant and roots are

Δ = 𝑃𝑒2 +
4𝐴

1−𝜙
 , 𝑟1 =

𝑃𝑒−√𝑃𝑒2+
4𝐴

1−𝜙

2
, 𝑟2 =

𝑃𝑒+√𝑃𝑒2+
4𝐴

1−𝜙

2

and the solution of Eq. (S2) is of the form:

𝑇𝑓 − 𝑇𝑠 = 𝛼𝑒𝑟1𝑧 + 𝛽𝑒𝑟2𝑧 + (1 − 𝜙)
𝑃𝑒

𝐴

𝛥𝑇

𝐻
 (S4)

 We now need to determine 𝛼 and 𝛽 from boundary conditions. 25

2

1.3 Constraints from boundary conditions

At z = 0, both 𝑇𝑓 and 𝑇𝑠 values are set constant, to the same value. Therefore we have the condition 𝑇𝑓 − 𝑇𝑠 = 0 at z = 0. We

then have the following relationship for 𝛼 and 𝛽:

𝛼 + 𝛽 = −(1 − 𝜙)
𝑃𝑒

𝐴

𝛥𝑇

𝐻
 (S5)

Besides, at z = H, both 𝑇𝑓 and 𝑇𝑠 gradients are constant and equal to each other. Thus we have the condition
𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
= 0 at z 30

= H. This gives the following relationship for 𝛼 and 𝛽 :

𝛼𝑟1𝑒𝑟1𝐻 + 𝛽𝑟2𝑒𝑟2𝐻 = 0 (S6)

From Eq. (S5) and (S6) we get

𝛼 = (1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻

𝑟2

𝑟1𝑒(𝑟1−𝑟2)𝐻−𝑟2
, 𝛽 = (1 − 𝜙)

𝑃𝑒

𝐴

Δ𝑇

𝐻

𝑟1

𝑟2𝑒(𝑟2−𝑟1)𝐻−𝑟1
 (S7)

1.4 Comparison with numerical models 35

Here a Figure is shown (Fig. S1) in which the analytical solutions (Eq. 20) of the simplified ordinary differential equation (19)

are compared to the numerical time-dependent models.

Figure S1. Ratio of maximum temperature differences fluid – solid from the simplified analytical solution equ. (20) to the numerically

determined maximum temperature differences for all 123 models. 40

3

2 Limits determination

2.1 Limit A 0

Figure 2a and b represent Tf and Ts as functions of z at different times for two different models. In both models, Pe = 1, A = 1, 45

To derive Eq. (23) we expand the quantities 𝑟1, 𝑟2, 𝛼, 𝛽 given by Eq. (21) and (22) into Taylor series in terms of A around A =

0:

𝑟1 = −
𝐴

𝑃𝑒 (1−𝜙)
+ 𝑂(𝐴2), 𝑟2 = 𝑃𝑒 +

𝐴

𝑃𝑒 (1−𝜙)
+ 𝑂(𝐴2) (S8)

𝛼 = −(1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻
(1 −

𝐴𝑒−𝑃𝑒 𝐻

𝑃𝑒2 (1−𝜙)
) + 𝑂(𝐴2), 𝛽 = −

Δ𝑇

𝐻

1

𝑃𝑒 (1−𝜙)
(1 + 𝑂(𝐴)) (S9)

Inserting these terms into Eq. (20) results in 50

𝑇𝑓 − 𝑇𝑠 =
𝛥𝑇

𝐻
(𝑧 +

1

𝑃𝑒𝑒𝑃𝑒𝐻
(1 − 𝑒𝑃𝑒𝑧)) + 𝑂(𝐴) (S10)

which, in the limit of A 0, is equal to Eq. (23). Figure S2 presents a comparison of results from Eq. (20) with the different

limits we derive. Results from Eq. (23, i.e. S10) at z = H are in good agreement with Eq. (20) (Fig.S2b) for A < 10-2 (having

Pe = 1 and ϕ = 0.1), except for very small Pe (Fig. S2c). This is expected considering that A is no more negligible with respect

to Pe (see below) 55

2.2 Limit 𝑨 → ∞

The limit Eq. (24) is derived by straightforward applying limit rules for the case of 𝐴 → ∞ to equations (20) – (22). Figure

S2b shows that when choosing Pe =1 and ϕ=0.1 this limit is in good agreement with Eq. (20) for A > 1.

2.3 Limit 𝑷𝒆 → 𝟎

When Pe tends to 0, it becomes negligible with respect to √
4𝐴

1−𝜙
. We then get 60

𝑟1 → −√
𝐴

1−𝜙
, 𝑟2 → +√

𝐴

1−𝜙

and the following limit for (𝑇𝑓 − 𝑇𝑠) and definition of a function M

 𝑇𝑓 − 𝑇𝑠 = (1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻
(1 −

𝑒
−√

𝐴
(1−𝜙) 𝑧

1+𝑒
−√

𝐴
(1−𝜙) 2𝐻

−
𝑒

√
𝐴

(1−𝜙) 𝑧

1+𝑒
√

𝐴
(1−𝜙) 2𝐻

) ≡ (1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻
(1 − 𝑀) (S11)

We now consider the case in which Pe tends to 0, and A is also very small (Pe and A tend to 0 but Pe/A <<1). This is why

starting from low A limit doesn’t work for getting this limit. In this case, we can look at the limit of Eq. (S11) when A tends to 65

4

0. For more readability, in eq. (S11) we call M the terms with the exponentials in the parenthesis, and 𝑁 = √
𝐴

1−𝜙
 . We first

rearrange the term M in:

𝑀 = −
𝑒−√𝑁 𝑧+𝑒√𝑁 𝑧+𝑒−√𝑁 (2𝐻−𝑧)+𝑒√𝑁 (2𝐻−𝑧)

2+𝑒−2√𝑁 𝐻+𝑒2√𝑁 𝐻
 (S12)

When x tends to 0, we can use the following limit for exponentials from Taylor series developments taking into account order

2 terms: 70

𝑒−𝑥 + 𝑒𝑥 = 1 − 𝑥 +
𝑥2

2
− ⋯ + 1 + 𝑥 +

𝑥2

2
+ ⋯ = 2 + 𝑥2 + 𝑂(𝑥4) (S13)

Applying this to Eq. (S12) we get

𝑀 → −
4+𝑁𝑧2+𝑁(4𝐻2−4𝐻𝑧+𝑧2)

4+4𝑁𝐻2 = −1 +
𝑁𝐻(𝑧(1−

𝑧

2𝐻
))

1+𝑁𝐻2 (S14)

We now re-insert M in Eq. (S11), and since N tends to 0 we consider that 𝑁𝐻2 is negligible with respect to 1. We then get the

following limit for (𝑇𝑓 − 𝑇𝑠): 75

 𝑇𝑓 − 𝑇𝑠 = 𝑃𝑒Δ𝑇𝑧 (1 −
𝑧

2𝐻
) (S15)

Fig. S2c presents the values predicted by eq. (20), (23), (25) and (26) when A tends to 0, for the case of a very small Pe value

(Pe = 10-9). One can see that in this case eq. (25) and (26) give better fits than Eq. (23), which is reasonable since Pe << A.

2.4 Limit 𝑷𝒆 → ∞

To obtain the limit of Eq. (20) for 𝑃𝑒 → ∞ also allowing for finite ratios 𝑃𝑒/𝐴 we write Eq. (20) in terms of 𝐶 =80

4A ((1 − 𝜙)𝑃𝑒2)⁄ and determine the limit for 𝐶 → 0. The terms 𝛼, 𝛽 in Eq. (20) can be linearized with respect to C. Inserting

them into Eq. (20) gives

 𝑇𝑓 − 𝑇𝑠 =
(1−𝜙)Δ𝑇

𝐻

𝑃𝑒

𝐴
[− (1 −

1

4
𝐶 𝑒−𝑃𝑒(1+

1

2
𝐶)𝐻) 𝑒−𝑃𝑒

1

4
𝐶𝑧 + (−

1

4
𝐶 (1 −

1

4
𝐶) 𝑒−𝑃𝑒(1+

1

2
𝐶)𝐻) 𝑒𝑃𝑒(1+

1

4
𝐶)𝑧 + 1] (S16)

Allowing still for a finite term (C Pe), in the limit of 𝐶 → 0 Eq. (S16) turns into

 𝑇𝑓 − 𝑇𝑠 =
(1−𝜙)Δ𝑇

𝐻

𝑃𝑒

𝐴

1−𝑒
−

𝐴𝑧
(1−𝜙)𝑃𝑒

𝐴/𝑃𝑒
 (S17) 85

Substituting x = 1/Pe and applying the rule of L’Hospital we get

 lim
𝑥→0

(𝑇𝑓 − 𝑇𝑠) = lim
𝑥→0

(1−𝜙)Δ𝑇

𝐻

−𝑒
−

𝐴𝑧
(1−𝜙)𝑥

(−
𝐴𝑧

1−𝜙
)

𝐴
=

∆𝑇

𝐻
𝑧 (S18)

One can see in Fig. (S2a) that this limit predicts ΔTmax values in very good agreement with Eq. (20) for Pe > 100 (having A=1

and ϕ=0.1).

5

 90

Figure S2. Comparison of the analytic solution equ. (20) with the different limits derived in section 4.3. The black curves represent

the analytic solutions, the colored straight lines show the results in the high or low value limits of equ. (23) to (27), respectively. The

used values in the different figures are a) A = 1, ϕ=0.1, b) Pe =1 and ϕ=0.1, c) Pe = 1 and ϕ = 0.1, d) A = 1 and Pe = 1.

 3 Boundary conditions

To demonstrate the effect of different boundary conditions we show three models from different regimes, each calculate with 95

three different boundary conditions (Fig. S3).

6

Figure S3. Vertical profiles of (𝑻𝒇 − 𝑻𝒔) at late times of evolution for models representing different regimes. Regime 1: high Pe,

regime 2: small A, regime 3: large A. For each regime three different top boundary conditions have been assumed as indicated in

the legend. 100

7

4 Different material properties of solid and fluid

Here we show Figure S4 demonstrating the influence of various contrasts of thermal propertied between solid and fluid. In

Figure S6 material properties typical for water in sedimentary rock is chosen and the effect of various Pe, A, H combinations

are shown. 105

Figure S4. Time- and depth- dependent profiles of the fluid – solid temperature differences as in Fig.5. a) reference models (as in

Fig. 5a) with Pe = 1, A = 1, H = 10 and equal fluid to solid properties. b) to f) profiles as in a) but with fluid to solid properties ratios

as indicated in the sub-figure titles, Pe =1 and 𝑨𝝀𝒆𝒇𝒇′ = 1. The properties in b) are typical for water in sedimentary rocks.

8

 110

Figure S5. Time- and depth- dependent profiles of the fluid – solid temperature differences as in Fig. 5, but for fluid to solid property

ratios typical for water flowing through sedimentary rocks, i.e. 𝝆𝒔
′ 𝒄𝒑,𝒔′ = 𝟎. 𝟕𝟖, 𝜿𝒔

′ = 𝟏𝟔 , 𝑨𝝀𝒆𝒇𝒇′ = 1. Pe, A, and H have been chosen

as indicated in the sub-figure titles (as in Fig. 5).

 115

9

5 Time-dependent A

Figure S6 shows the evolution of thermal non-equilibrium assuming a time-dependent heat transfer parameter A.

Figure S6. Time- and depth-dependent profiles of fluid – solid temperature differences for time dependent heat transfer parameter 120

A according to thermal boundary layer theory (equ. 30). Else as Fig. 5.

10

6 Numerical programs

Here we give the Matlab routines used to calculate fluid to solid temperatures differences to generate Figures like Fig.5.

Main program: 125

% Parent mfile for runing parametric models. For every model it creates a

% new directory, in which key temperature results and outputfiles from the

% model solving are written. This code uses the function

% LTNEbasicdt. This function solves non-thermal equilibrium two-phase

% flow (static matrix) and returns the fluid, solid temperatures and the 130

% temperature difference at top at the end of the run, as well as the

% maximum temperature difference at top recorded during the system

% evolution. Input parameters are :

% (Pe,A,phi0,H,delT,modelname,dt,tmax,outputfactor)

% Pe: Péclet number 135

% A: Heat transfer number

% phi0: Porosity (fluid volume fraction)

% H: Height of the domain (normalised with fluid unit scale : width of

% dike for e.g.

% delT: Initial temperature difference between top and bottom 140

% modelname: Name of the model

% dt : Time step

% tmax : Ending time

% outputfactor : Basic outputs come every 2000 timesteps. this can be

% changed using outputfactor (n.b. the first outputs come at the 500th time 145

% step. If you want to reduce the time between two outputs, the choosen

% outputfactor must be a divisor of 500)

% Beside the LTNEbasicdt function parameters that must be defined for every

% model, the user should also check that the number of models to solve 150

% (nmodel) is correct. For every model a name must be given. e.g. here :

% model1. This name must be the same as the one in the LTNEbasicdt

% arguments. Also, the first column of "Results" must be manually entered.

% Here we entered "1" which references to "model1", so that associated

% values can be easily found in the final Results file. another option 155

% would be to have one result file for every model, which can be a good

% idea if you are not sure of the choosen dt, for example, since if matlab

% crashes at the 9th model, you won't get results from the 8 preceding.

% You could retrieve them from the function outputfiles though.

 160

clearvars

close all

nmodel = 1; % number of models to be run

 165

Results = zeros(nmodel,6);

11

mkdir('model1')

[Tftop,Tstop,dTtop,dTtopmax,kmax]=LTNEbasicdtpaper(1,1,0.1,1e1,1,'model1',1e-

3,100,2); 170
Results(1,:) = [1,Tftop,Tstop,dTtop,dTtopmax,kmax];

save(['1' '_' 'values' '.txt'],'Results','-ascii')

 175

Routine which is called by the above program:

% Function LTNEbasicdt to be used with a parent mfile in which the model to

% be run is defined. This function solves non-thermal equilibrium two-phase

% flow (static matrix) and returns the fluid, solid temperatures and the

% temperature difference at top at the end of the run, as well as the 180

% maximum temperature difference at top recorded during the system

% evolution. Input parameters are :

% Pe: Péclet number

% A: Heat transfer number

% phi0: Porosity (fluid volume fraction) 185
% H: Height of the domain (normalised with fluid unit scale : width of

% dike for e.g.

% delT: Initial temperature difference between top and bottom

% modelname: Name of the model

% dt : Time step 190
% tmax : Ending time

% outputfactor : Basic outputs come every 2000 timesteps. this can be

% changed using outputfactor (n.b. the first outputs come at the 500th time

% step. If you want to reduce the time between two outputs, the choosen

% outputfactor must be a divisor of 500) 195

function

[Tftop,Tstop,dTtop,dTtopmax,kmax]=LTNEbasicdttest(Pe,A,phi0,H,delT,modelname,dt,tma

x,outputfactor) 200

ncolor=8;

cmap = parula(ncolor);

kcol =1;

dx = 1e-1; % Grid size 205
output = 1; %1=outputs, other : no output files

% Prepare other parameters

prefixe = strcat('./',modelname,'/',modelname);

x = 0:dx:H; 210
nx = length(x);

t = dt:dt:tmax;

Tf = zeros(nx,1);

difTtop = []; 215

%Initial condition

12

for i = 1:nx

 Tf(i) = delT -x(i)/H; % constant gradient

% Tf(i) = 0; 220
end

Tm=Tf;

Tmnew =Tm;

Tfnew=Tf;

 225
%Boundary conditions at start

Tm0 = delT;

Tf0 = delT;

Tm1 = 0;

Tf1 = 0; 230

Tmnew(1) = Tm0;

Tm(1) = Tm0;

Tmnew(nx) = Tm1; 235
Tm(nx) = Tm1;

Tfnew(1) = Tf0;

Tf(1) = Tf0;

 240
Tfnew(nx) = Tf1;

Tf(nx) = Tf1;

%figure initial conditions

% figure; 245
%plot(x,Tfnew,'k',x,Tmnew,'k')

hold on

if output == 1

 Qsave = [x' Tfnew Tmnew]; 250
 save([prefixe '_' num2str(0) '.txt'],'Qsave','-ascii')

end

dTtopmax=0;

for k =2:length(t) 255
 for i = 2:nx

 % FTCS with upwind

 if i <nx

 Tmnew(i)=Tm(i)+dt*((1/A)*(Tm(i+1)-2*Tm(i)+Tm(i-1))/dx^2+...

 (phi0/(1-phi0))*(Tf(i)-Tm(i))); 260
 Tfnew(i)= Tf(i) + dt*(-(Pe/A)*(Tf(i)-Tf(i-1))/dx +...

 (1/A)*(Tf(i+1)-2*Tf(i)+Tf(i-1))/dx^2 - (Tf(i)-Tm(i)));

 end

 if i == nx

 Tmnew(i) = Tmnew(i-1)-dx/H; %constant flux condition at top (Neumann) 265

 Tfnew(i) = Tfnew(i-1)-dx/H;

 end

 dTtopmaxlast = dTtopmax;

13

 dTtopmax = max(dTtopmax,Tfnew(nx)-Tmnew(nx));

 if dTtopmax > dTtopmaxlast ; kmax = k; end 270
 end

 if k < (1000*outputfactor+1)

 kmod = mod(k,500*outputfactor);

 if kmod == 0 275
% plot(x,Tfnew,'r',x,Tmnew,'b')

 plot(x,Tfnew-Tmnew,'Color',cmap(kcol,:))

 kcol=kcol+1;

 if kcol>ncolor;kcol=1;end

 difTtop=[difTtop,Tfnew(nx)-Tmnew(nx)]; 280
 if output ==1

 Qsave = [x' Tfnew Tmnew];

 save([prefixe '_' num2str(k*dt) '.txt'],'Qsave','-ascii')

 end

 t(k) 285
 end

 else

 kmod = mod(k,2000*outputfactor);

 if kmod == 0 290
% plot(x,Tfnew,'r',x,Tmnew,'b')

% plot(x,Tfnew-Tmnew,'b')

 plot(x,Tfnew-Tmnew,'Color',cmap(kcol,:))

 kcol=kcol+1;

 if kcol>ncolor;kcol=1;end 295

 difTtop=[difTtop,Tfnew(nx)-Tmnew(nx)];

 if output == 1

 Qsave = [x' Tfnew Tmnew];

 save([prefixe '_' num2str(k*dt) '.txt'],'Qsave','-ascii') 300
 end

 t(k)

 end

 end 305

 drawnow

 Tf = Tfnew; 310
 Tm = Tmnew;

end

xlabel('z ')

ylabel('T_f-T_s') 315

if output == 1

 save([prefixe '_' 'outputdata.txt'],'x','Tfnew','Tmnew','-ascii')

 print('-f1','-dpng',prefixe)

14

end 320

% close (1)

%Key values returned from function

Tftop = Tfnew(nx);

Tstop = Tmnew(nx); 325

dTtop = Tfnew(nx)-Tmnew(nx);

%dTtopmax = max(difTtop);

box on

 330

Main program for analytical solution:

%program for drawing dTmax as a function of Pe and A. Parameters : dT, H, z

%and phi. This program uses the analytical solution for dTmax, and some

%limits, where the analytical solution is not solvable by matlab (large

%exponential exponents for example). The domains where limits have to be 335

%used instead of the analytical solution must be precised by the user

%(lines marked with %%%%%%%%%). In this version, only the limits for high A

%and high Pe were used. Others can be added if needed (see functions in the

%same directory).

 340

clearvars

% close all

hold on

dT = 1; 345

H = 10;

z = [0:0.01*H:H];

phi = 0.1;

Pe = 1; 350

A = 1;

 355

for k = 1:length(z)

 dTmax(k) = dTmaxcalc(Pe,A,phi,dT,H,z(k));

 360

% [dTmax0(k),dTmax(k)] = dTmaxcalchighPe(Pe,A,phi,dT,H,z(k));

end

 365

plot(z,dTmax,'r--','linewidth',2)

xlabel('z')

15

ylabel('dTmax')

 370
box on

ylabel('T_f - T_s')

title('Pe = 1, A = 1, H = 10')

 375

Routine which is called by the above program:

% function for calculating the analytical value of dTmax. Parameters are

% the Péclet number Pe, the heat transfer number A, the porosity phi,

% the inital temperature difference between bottom and top dT, the domain

% size H (distance at which top boundary conditions are applied) and the 380

% distance from bottom z.

function [dTmax]=dTmaxcalc(Pe,A,phi,dT,H,z)

r1 = (Pe-sqrt(Pe^2+4*A/(1-phi)))/2; 385

r2 = (Pe+sqrt(Pe^2+4*A/(1-phi)))/2;

dTmaxhighA = (1-phi)*Pe/A*dT/H;

alpha = dTmaxhighA/(r1/r2*exp((r1-r2)*H) - 1);

beta = dTmaxhighA/(r2/r1*exp((r2-r1)*H) - 1);

dTmax = alpha*exp(r1*z) + beta*exp(r2*z) + dTmaxhighA; 390

