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1 Analytical solution 

Eq. (19) (in main paper) is a second order differential equation for 𝑇𝑓 − 𝑇𝑠 with constant parameters. Its solution is composed 

of the sum of a particular solution and of the solution of the corresponding homogeneous differential equation. 10 

1.1 Particular solution 

The right hand side of Eq. (19) is a constant. In this special case with constant parameters, a simple way to find a particular 

solution consists in assuming that for this solution, 𝑇𝑓 − 𝑇𝑠 is a constant. Its derivative is equal to zero, and the constant value 

of 𝑇𝑓 − 𝑇𝑠 is: 

𝑇𝑓 − 𝑇𝑠 = (1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻
           (S1) 15 

1.2 Homogeneous solution  

We now need to find the general solution of the homogeneous equation 

1

𝐴

𝜕2(𝑇𝑓−𝑇𝑠)

𝜕𝑧2 −
𝑃𝑒

𝐴

𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
−

1

1−𝜙
(𝑇𝑓 − 𝑇𝑠) = 0         (S2) 

The second order algebraic equation associated with Eq. (S2) is 

𝑟2 − 𝑃𝑒 𝑟 −
𝐴

1−𝜙
= 0           (S3) 20 

Its determinant and roots are 

Δ = 𝑃𝑒2 +
4𝐴

1−𝜙
 ,  𝑟1 =

𝑃𝑒−√𝑃𝑒2+
4𝐴

1−𝜙

2
,  𝑟2 =

𝑃𝑒+√𝑃𝑒2+
4𝐴

1−𝜙

2
 

and the solution of Eq. (S2) is of the form: 

𝑇𝑓 − 𝑇𝑠 = 𝛼𝑒𝑟1𝑧 + 𝛽𝑒𝑟2𝑧 + (1 − 𝜙)
𝑃𝑒

𝐴

𝛥𝑇

𝐻
         (S4) 

 We now need to determine 𝛼 and 𝛽 from boundary conditions. 25 
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1.3 Constraints from boundary conditions 

At z = 0, both 𝑇𝑓 and 𝑇𝑠 values are set constant, to the same value. Therefore we have the condition 𝑇𝑓 − 𝑇𝑠 = 0 at z = 0. We 

then have the following relationship for 𝛼 and 𝛽: 

𝛼 + 𝛽 = −(1 − 𝜙)
𝑃𝑒

𝐴

𝛥𝑇

𝐻
           (S5) 

Besides, at z = H, both 𝑇𝑓 and 𝑇𝑠 gradients are constant and equal to each other. Thus we have the condition  
𝜕(𝑇𝑓−𝑇𝑠)

𝜕𝑧
= 0 at z 30 

= H. This gives the following relationship for 𝛼 and 𝛽 : 

𝛼𝑟1𝑒𝑟1𝐻 + 𝛽𝑟2𝑒𝑟2𝐻 = 0           (S6) 

From Eq. (S5) and (S6) we get 

𝛼 = (1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻

𝑟2

𝑟1𝑒(𝑟1−𝑟2)𝐻−𝑟2
,      𝛽 = (1 − 𝜙)

𝑃𝑒

𝐴

Δ𝑇

𝐻

𝑟1

𝑟2𝑒(𝑟2−𝑟1)𝐻−𝑟1
      (S7) 

1.4 Comparison with numerical models 35 

Here a Figure is shown (Fig. S1) in which the analytical solutions (Eq. 20) of the simplified ordinary differential equation (19) 

are compared to the numerical time-dependent models.  

 

Figure S1. Ratio of maximum temperature differences fluid – solid from the simplified analytical solution equ. (20) to the numerically 

determined maximum temperature differences for all 123 models. 40 
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2 Limits determination 

2.1 Limit A  0 

Figure 2a and b represent Tf and Ts as functions of z at different times for two different models. In both models, Pe = 1, A = 1,  45 

To derive Eq. (23) we expand the quantities 𝑟1, 𝑟2, 𝛼, 𝛽 given by Eq. (21) and (22) into Taylor series in terms of A around A = 

0: 

𝑟1 = −
𝐴

𝑃𝑒 (1−𝜙)
+ 𝑂(𝐴2),   𝑟2 = 𝑃𝑒 +

𝐴

𝑃𝑒 (1−𝜙)
+ 𝑂(𝐴2)       (S8) 

𝛼 = −(1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻
(1 −

𝐴𝑒−𝑃𝑒 𝐻

𝑃𝑒2 (1−𝜙)
) + 𝑂(𝐴2),   𝛽 = −

Δ𝑇

𝐻

1

𝑃𝑒 (1−𝜙)
(1 + 𝑂(𝐴))   (S9) 

Inserting these terms into Eq. (20) results in 50 

𝑇𝑓 − 𝑇𝑠 =
𝛥𝑇

𝐻
(𝑧 +

1

𝑃𝑒𝑒𝑃𝑒𝐻
(1 − 𝑒𝑃𝑒𝑧)) + 𝑂(𝐴)        (S10) 

which, in the limit of A  0, is equal to Eq. (23). Figure S2 presents a comparison of results from Eq. (20) with the different 

limits we derive. Results from Eq. (23, i.e. S10) at z = H are in good agreement with Eq. (20) (Fig.S2b) for A < 10-2 (having 

Pe = 1 and ϕ = 0.1), except for very small Pe (Fig. S2c). This is expected considering that A is no more negligible with respect 

to Pe (see below) 55 

2.2    Limit 𝑨 → ∞ 

The limit Eq. (24) is derived by straightforward applying limit rules for the case of 𝐴 → ∞ to equations (20) – (22). Figure 

S2b shows that when choosing Pe =1 and ϕ=0.1 this limit is in good agreement with Eq. (20) for A > 1. 

2.3 Limit 𝑷𝒆 → 𝟎 

When Pe tends to 0, it becomes negligible with respect to √
4𝐴

1−𝜙
. We then get 60 

𝑟1 → −√
𝐴

1−𝜙
, 𝑟2 → +√

𝐴

1−𝜙
       

and the following limit for (𝑇𝑓 − 𝑇𝑠) and definition of a function M 

 𝑇𝑓 − 𝑇𝑠 = (1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻
(1 −

𝑒
−√

𝐴
(1−𝜙) 𝑧

1+𝑒
−√

𝐴
(1−𝜙) 2𝐻

−
𝑒

√
𝐴

(1−𝜙) 𝑧

1+𝑒
√

𝐴
(1−𝜙)  2𝐻

) ≡  (1 − 𝜙)
𝑃𝑒

𝐴

Δ𝑇

𝐻
(1 − 𝑀)    (S11) 

We now consider the case in which Pe tends to 0, and A is also very small (Pe and A tend to 0 but Pe/A <<1). This is why 

starting from low A limit doesn’t work for getting this limit. In this case, we can look at the limit of Eq. (S11) when A tends to 65 
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0. For more readability, in eq. (S11) we call M the terms with the exponentials in the parenthesis, and 𝑁 = √
𝐴

1−𝜙
 . We first 

rearrange the term M in: 

𝑀 = −
𝑒−√𝑁 𝑧+𝑒√𝑁 𝑧+𝑒−√𝑁 (2𝐻−𝑧)+𝑒√𝑁 (2𝐻−𝑧)

2+𝑒−2√𝑁 𝐻+𝑒2√𝑁 𝐻
         (S12) 

When x tends to 0, we can use the following limit for exponentials from Taylor series developments taking into account order 

2 terms: 70 

𝑒−𝑥 + 𝑒𝑥 = 1 − 𝑥 +
𝑥2

2
− ⋯ + 1 + 𝑥 +

𝑥2

2
+ ⋯ = 2 + 𝑥2 + 𝑂(𝑥4)      (S13)  

Applying this to Eq. (S12) we get 

𝑀 → −
4+𝑁𝑧2+𝑁(4𝐻2−4𝐻𝑧+𝑧2)

4+4𝑁𝐻2 = −1 +
𝑁𝐻(𝑧(1−

𝑧

2𝐻
))

1+𝑁𝐻2         (S14) 

We now re-insert M in Eq. (S11), and since N tends to 0 we consider that 𝑁𝐻2 is negligible with respect to 1. We then get the 

following limit for (𝑇𝑓 − 𝑇𝑠): 75 

 𝑇𝑓 − 𝑇𝑠 = 𝑃𝑒Δ𝑇𝑧 (1 −
𝑧

2𝐻
)          (S15) 

Fig. S2c  presents the values predicted by eq. (20), (23), (25) and (26) when A tends to 0, for the case of a very small Pe value 

(Pe = 10-9). One can see that in this case eq. (25) and (26) give better fits than Eq. (23), which is reasonable since Pe << A. 

2.4 Limit 𝑷𝒆 → ∞ 

To obtain the limit of Eq. (20) for 𝑃𝑒 → ∞  also allowing for finite ratios 𝑃𝑒/𝐴  we write Eq. (20) in terms of 𝐶 =80 

4A ((1 − 𝜙)𝑃𝑒2)⁄  and determine the limit for 𝐶 → 0. The terms 𝛼, 𝛽 in Eq. (20) can be linearized with respect to C. Inserting 

them into Eq. (20) gives  

 𝑇𝑓 − 𝑇𝑠 =
(1−𝜙)Δ𝑇

𝐻

𝑃𝑒

𝐴
[− (1 −

1

4
𝐶 𝑒−𝑃𝑒(1+

1

2
𝐶)𝐻) 𝑒−𝑃𝑒

1

4
𝐶𝑧 + (−

1

4
𝐶 (1 −

1

4
𝐶) 𝑒−𝑃𝑒(1+

1

2
𝐶)𝐻) 𝑒𝑃𝑒(1+

1

4
𝐶)𝑧 + 1]  (S16) 

Allowing still for a finite term (C Pe), in the limit of 𝐶 → 0 Eq. (S16) turns into 

 𝑇𝑓 − 𝑇𝑠 =
(1−𝜙)Δ𝑇

𝐻

𝑃𝑒

𝐴

1−𝑒
−

𝐴𝑧
(1−𝜙)𝑃𝑒

𝐴/𝑃𝑒
          (S17) 85 

Substituting x = 1/Pe and applying the rule of L’Hospital we get 

 lim
𝑥→0

(𝑇𝑓 − 𝑇𝑠) = lim
𝑥→0

(1−𝜙)Δ𝑇

𝐻

−𝑒
−

𝐴𝑧
(1−𝜙)𝑥

(−
𝐴𝑧

1−𝜙
)

𝐴
=

∆𝑇

𝐻
𝑧          (S18) 

One can see in Fig. (S2a) that this limit predicts ΔTmax values in very good agreement with Eq. (20) for Pe > 100 (having A=1 

and ϕ=0.1). 
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 90 

Figure S2. Comparison of the analytic solution equ. (20) with the different limits derived in section 4.3. The black curves represent 

the analytic solutions, the colored straight lines show the results in the high or low value limits of equ. (23) to (27), respectively. The 

used values in the different figures are a) A = 1, ϕ=0.1, b) Pe =1 and ϕ=0.1, c) Pe = 1 and ϕ = 0.1, d)  A = 1 and Pe = 1. 

 3 Boundary conditions 

To demonstrate the effect of different boundary conditions we show three models from different regimes, each calculate with 95 

three different boundary conditions (Fig. S3). 
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Figure S3. Vertical profiles of (𝑻𝒇 − 𝑻𝒔) at late times of evolution for models representing different regimes. Regime 1: high Pe, 

regime 2: small A, regime 3: large A. For each regime three different top boundary conditions have been assumed as indicated in 

the legend. 100 
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4 Different material properties of solid and fluid 

Here we show Figure S4 demonstrating the influence of various contrasts of thermal propertied between solid and fluid. In 

Figure S6 material properties typical for water in sedimentary rock is chosen and the effect of various Pe, A, H combinations 

are shown. 105 

 

Figure S4. Time- and depth- dependent profiles of the fluid – solid temperature differences as in Fig.5. a) reference models (as in 

Fig. 5a) with Pe = 1, A = 1, H = 10 and equal fluid to solid properties. b) to f) profiles as in a) but with fluid to solid properties ratios 

as indicated in the sub-figure titles, Pe =1 and 𝑨𝝀𝒆𝒇𝒇′ = 1. The properties in b) are typical for water in sedimentary rocks. 
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 110 

Figure S5. Time- and depth- dependent profiles of the fluid – solid temperature differences as in Fig. 5, but for fluid to solid property 

ratios typical for water flowing through sedimentary rocks, i.e. 𝝆𝒔
′ 𝒄𝒑,𝒔′ = 𝟎. 𝟕𝟖, 𝜿𝒔

′ = 𝟏𝟔 , 𝑨𝝀𝒆𝒇𝒇′ = 1. Pe, A, and H have been chosen 

as indicated in the sub-figure titles (as in Fig. 5). 

 

 115 
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5 Time-dependent A 

Figure S6 shows the evolution of thermal non-equilibrium assuming a time-dependent heat transfer parameter A.  

 

Figure S6. Time- and depth-dependent profiles of fluid – solid temperature differences for time dependent heat transfer parameter 120 

A according to thermal boundary layer theory (equ. 30). Else as Fig. 5.  
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6 Numerical programs 

Here we give the Matlab routines used to calculate fluid to solid temperatures differences to generate Figures like Fig.5. 

Main program: 125 

% Parent mfile for runing parametric models. For every model it creates a 

% new directory, in which key temperature results and outputfiles from the 

% model solving are written. This code uses the function 

% LTNEbasicdt. This function solves non-thermal equilibrium two-phase 

% flow (static matrix) and returns the fluid, solid temperatures and the 130 

% temperature difference at top at the end of the run, as well as the 

% maximum temperature difference at top recorded during the system 

% evolution. Input parameters are : 

% (Pe,A,phi0,H,delT,modelname,dt,tmax,outputfactor) 

% Pe: Péclet number 135 

% A: Heat transfer number 

% phi0: Porosity (fluid volume fraction) 

% H: Height of the domain (normalised with fluid unit scale : width of 

% dike for e.g. 

% delT: Initial temperature difference between top and bottom 140 

% modelname: Name of the model 

% dt : Time step 

% tmax : Ending time 

% outputfactor : Basic outputs come every 2000 timesteps. this can be 

% changed using outputfactor (n.b. the first outputs come at the 500th time 145 

% step. If you want to reduce the time between two outputs, the choosen 

% outputfactor must be a divisor of 500) 

  

% Beside the LTNEbasicdt function parameters that must be defined for every 

% model, the user should also check that the number of models to solve 150 

% (nmodel) is correct. For every model a name must be given. e.g. here : 

% model1. This name must be the same as the one in the LTNEbasicdt 

% arguments. Also, the first column of "Results" must be manually entered. 

% Here we entered "1" which references to "model1", so that associated 

% values can be easily found in the final Results file. another option 155 

% would be to have one result file for every model, which can be a good 

% idea if you are not sure of the choosen dt, for example, since if matlab 

% crashes at the 9th model, you won't get results from the 8 preceding. 

% You could retrieve them from the function outputfiles though. 

  160 

clearvars 

close all 

  

nmodel = 1; % number of models to be run 

  165 

Results = zeros(nmodel,6); 
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mkdir('model1') 

[Tftop,Tstop,dTtop,dTtopmax,kmax]=LTNEbasicdtpaper(1,1,0.1,1e1,1,'model1',1e-

3,100,2); 170 
Results(1,:) = [1,Tftop,Tstop,dTtop,dTtopmax,kmax]; 

save(['1' '_' 'values' '.txt'],'Results','-ascii') 

  

 

 175 

Routine which is called by the above program: 

% Function LTNEbasicdt to be used with a parent mfile in which the model to 

% be run is defined. This function solves non-thermal equilibrium two-phase 

% flow (static matrix) and returns the fluid, solid temperatures and the 

% temperature difference at top at the end of the run, as well as the 180 

% maximum temperature difference at top recorded during the system 

% evolution. Input parameters are : 

% Pe: Péclet number 

% A: Heat transfer number 

% phi0: Porosity (fluid volume fraction) 185 
% H: Height of the domain (normalised with fluid unit scale : width of 

% dike for e.g. 

% delT: Initial temperature difference between top and bottom 

% modelname: Name of the model 

% dt : Time step 190 
% tmax : Ending time 

% outputfactor : Basic outputs come every 2000 timesteps. this can be 

% changed using outputfactor (n.b. the first outputs come at the 500th time 

% step. If you want to reduce the time between two outputs, the choosen 

% outputfactor must be a divisor of 500)  195 
  

  

function 

[Tftop,Tstop,dTtop,dTtopmax,kmax]=LTNEbasicdttest(Pe,A,phi0,H,delT,modelname,dt,tma

x,outputfactor) 200 
  

ncolor=8; 

cmap = parula(ncolor); 

kcol =1; 

dx = 1e-1; % Grid size 205 
output = 1; %1=outputs, other : no output files 

  

% Prepare other parameters 

prefixe = strcat('./',modelname,'/',modelname); 

x = 0:dx:H; 210 
nx = length(x); 

t    = dt:dt:tmax; 

  

Tf = zeros(nx,1); 

difTtop = []; 215 
  

%Initial condition 
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for i = 1:nx 

    Tf(i) = delT           -x(i)/H; % constant gradient 

%     Tf(i) = 0;  220 
end 

Tm=Tf; 

Tmnew =Tm; 

Tfnew=Tf; 

  225 
%Boundary conditions at start 

Tm0 = delT; 

Tf0 = delT; 

Tm1 = 0; 

Tf1 = 0; 230 
  

Tmnew(1) = Tm0; 

Tm(1)    = Tm0; 

  

Tmnew(nx) = Tm1; 235 
Tm(nx)    = Tm1; 

  

Tfnew(1) = Tf0; 

Tf(1) = Tf0; 

  240 
Tfnew(nx) = Tf1; 

Tf(nx) = Tf1; 

  

%figure initial conditions 

% figure; 245 
%plot(x,Tfnew,'k',x,Tmnew,'k') 

hold on 

  

if output == 1 

    Qsave = [x' Tfnew Tmnew]; 250 
    save([prefixe '_' num2str(0) '.txt'],'Qsave','-ascii') 

end 

  

dTtopmax=0; 

for k =2:length(t) 255 
    for i = 2:nx 

        % FTCS with upwind 

        if i <nx 

            Tmnew(i)=Tm(i)+dt*((1/A)*(Tm(i+1)-2*Tm(i)+Tm(i-1))/dx^2+... 

                (phi0/(1-phi0))*(Tf(i)-Tm(i))); 260 
            Tfnew(i)= Tf(i) + dt*(-(Pe/A)*(Tf(i)-Tf(i-1))/dx +... 

                (1/A)*(Tf(i+1)-2*Tf(i)+Tf(i-1))/dx^2  - (Tf(i)-Tm(i))); 

        end 

        if i == nx 

            Tmnew(i) = Tmnew(i-1)-dx/H; %constant flux condition at top (Neumann) 265 

            Tfnew(i) = Tfnew(i-1)-dx/H; 

        end 

        dTtopmaxlast = dTtopmax; 
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        dTtopmax = max(dTtopmax,Tfnew(nx)-Tmnew(nx)); 

        if dTtopmax > dTtopmaxlast ; kmax = k; end 270 
    end 

     

    if k < (1000*outputfactor+1) 

        kmod = mod(k,500*outputfactor); 

        if kmod == 0 275 
%            plot(x,Tfnew,'r',x,Tmnew,'b') 

            plot(x,Tfnew-Tmnew,'Color',cmap(kcol,:)) 

            kcol=kcol+1; 

            if kcol>ncolor;kcol=1;end 

            difTtop=[difTtop,Tfnew(nx)-Tmnew(nx)]; 280 
            if output ==1 

                Qsave = [x' Tfnew Tmnew]; 

                save([prefixe '_' num2str(k*dt) '.txt'],'Qsave','-ascii') 

            end 

            t(k) 285 
        end 

         

    else 

        kmod = mod(k,2000*outputfactor); 

        if kmod == 0 290 
%            plot(x,Tfnew,'r',x,Tmnew,'b') 

%             plot(x,Tfnew-Tmnew,'b') 

            plot(x,Tfnew-Tmnew,'Color',cmap(kcol,:)) 

                        kcol=kcol+1; 

            if kcol>ncolor;kcol=1;end 295 
  

           difTtop=[difTtop,Tfnew(nx)-Tmnew(nx)]; 

            if output == 1 

                Qsave = [x' Tfnew Tmnew]; 

                save([prefixe '_' num2str(k*dt) '.txt'],'Qsave','-ascii') 300 
            end 

            t(k) 

  

        end 

     end 305 
     

     

    drawnow 

     

    Tf = Tfnew; 310 
    Tm = Tmnew; 

end 

  

xlabel('z ') 

ylabel('T_f-T_s') 315 
  

if output == 1 

    save([prefixe '_' 'outputdata.txt'],'x','Tfnew','Tmnew','-ascii') 

    print('-f1','-dpng',prefixe) 
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end 320 

% close (1) 

  

%Key values returned from function 

Tftop = Tfnew(nx); 

Tstop = Tmnew(nx); 325 

dTtop = Tfnew(nx)-Tmnew(nx); 

%dTtopmax = max(difTtop); 

box on 

  

 330 

Main program for analytical solution: 

%program for drawing dTmax as a function of Pe and A. Parameters : dT, H, z 

%and phi. This program uses the analytical solution for dTmax, and some 

%limits, where the analytical solution is not solvable by matlab (large 

%exponential exponents for example). The domains where limits have to be 335 

%used instead of the analytical solution must be precised by the user 

%(lines marked with %%%%%%%%%). In this version, only the limits for high A 

%and high Pe were used. Others can be added if needed (see functions in the 

%same directory). 

  340 

clearvars 

% close all 

hold on 

  

dT = 1; 345 

H = 10; 

z = [0:0.01*H:H]; 

phi = 0.1; 

  

Pe = 1; 350 

A = 1; 

  

  

  

  355 

  

for k = 1:length(z) 

     

        dTmax(k) = dTmaxcalc(Pe,A,phi,dT,H,z(k)); 

  360 

%          [dTmax0(k),dTmax(k)] = dTmaxcalchighPe(Pe,A,phi,dT,H,z(k)); 

  

end 

  

  365 

  

plot(z,dTmax,'r--','linewidth',2) 

xlabel('z') 
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ylabel('dTmax') 

  370 
box on 

ylabel('T_f - T_s') 

title('Pe = 1, A = 1, H = 10') 

 

 375 

Routine which is called by the above program: 

% function for calculating the analytical value of dTmax. Parameters are 

% the Péclet number Pe, the heat transfer number A, the porosity phi, 

% the inital temperature difference between bottom and top dT, the domain 

% size H (distance at which top boundary conditions are applied) and the  380 

% distance from bottom z. 

  

function [dTmax]=dTmaxcalc(Pe,A,phi,dT,H,z) 

  

r1 = (Pe-sqrt(Pe^2+4*A/(1-phi)))/2; 385 

r2 = (Pe+sqrt(Pe^2+4*A/(1-phi)))/2; 

dTmaxhighA = (1-phi)*Pe/A*dT/H; 

alpha = dTmaxhighA/(r1/r2*exp((r1-r2)*H) - 1); 

beta = dTmaxhighA/(r2/r1*exp((r2-r1)*H) - 1); 

dTmax = alpha*exp(r1*z) + beta*exp(r2*z) + dTmaxhighA; 390 


