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Abstract. X-ray computed tomography (XCT) is an advanced imaging technique that has been increasingly used in the past 10 

years because it can provide valuable information on internal structures of a rock sample in a non-invasive manner. The 

maximum resolution of lab-based XCT facilities is ~0.5𝜇𝜇𝜇𝜇, which might be sufficient to capture macropores in some rocks 

(i.e., sandstone), but will result in underestimation of porosity in clay-rich sediments containing micro-and nano-scale pores. 

Furthermore, such high-resolution XCT facilities are quite expensive and not ubiquitous. In this study, we introduce a new 

methodology based on the K-means clustering algorithm to process of low-resolution XCT images, illustrating its capability 15 

through porosity analysis of drillcores obtained during Integrated Ocean Drilling Program (IODP) expedition 343. The cation 

exchange capacity (CEC) of the squeezed samples of the same cores was also measured and used to correct shipboard 

measurements of Moisture and Density (MAD) porosity for the effect of the water bound in the interlayer clay particles, 

thereby calculating interstitial porosity. The results indicate that the porosities estimated by our method are in agreement with 

these MAD_derived interstitial porosities in several cores acquired from the overthrusted sediments above the Japan trench 20 

plate boundary.  Also, considering interstitial porosity as a realistic measurement of porosity, the results show that our semi-

automatic method improves estimations compared with a manual thresholding segmentation, as the latter suffers from user 

subjectivity.  

1 Introduction 

In March 2011, the Mw ~9 Tohoku-oki earthquake, one of the largest seismic events ever recorded, occurred across a 25 

megathrust fault in the west of the Japan trench (Fig. 1). During the earthquake, the seismogenic region of the plate boundary 

between the Eurasian plate and subducting Pacific Plate was broken such that an unprecedented coseismic slip of about 50 to 

60 m occurred over the shallow part of the megathrust (Fujiwara et al., 2011; Lay et al., 2011; Tanikawa et al., 2013; Chester 

et al., 2013; Sun; 2017). This devastating earthquake stressed the need for more detailed studies on the fault zone behavior and 

the main causes of this event. Consequently, expedition 343, also known as Japan Trench Fast Drilling (JFAST) project, started 30 

at IODP site C0019 with the aim of acquiring and estimating the main physical properties of the fault zone. 
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Several holes were drilled during this expedition (Fig. 1). Logging while drilling (LWD) data were successfully recovered 

while drilling hole C0019B to the depth of 850 meters below seafloor (mbsf). The primary purpose for drilling hole C0019D 

up to 854.8 mbsf was to install observatory instruments to monitor wellbore temperature. Furthermore, drilling cores were 

acquired from hole C0019E, which was drilled until 844.5 mbsf, close to C0019B (about 10m south of this hole).  35 

It is now well established that fluids can greatly affect fault strength and consequently trigger an earthquake. Porosity is a 

fundamental property of rocks that can help to understand tectonic processes and fault zone behavior as it can serve as an 

indicator of Coseismic volumetric strain and fluid pressure anomaly around the fault zone (Wang & Barbour, 2017). It is also 

a critical parameter for studying pore pressure, sediment compaction, and effective stresses, including their evolution due to 

thermal (fluid) pressurization ( Sibson, 1973; Lachenbruch, 1980), which play an important role in rupture initiation and fault 40 

slip (Moore & Saffer, 2001; Saffer & Bekins, 2006). Therefore, it comes as no surprise that several methods have been 

developed to estimate porosity in the past decades, including laboratory measurements (e.g., MAD and mercury intrusion 

porosimetry) and well-logging to imaging techniques. 

X-ray computed tomography (XCT) is a non-destructive and now a mature tool frequently used in porous media to characterize 

the hydraulic properties of samples such as porosity ( Van Geet et al., 2003; Taud et al., 2005; Nehler et al., 2019), pore 45 

geometry and structure (Mukunoki et al., 2016; Wildenschild & Sheppard, 2013), fracture network characterization, and 

permeability estimation (Okabe & Blunt, 2004; Ketcham et al., 2010; Mostaghimi et al., 2013; Peng et al., 2014). However, 

most of these studies were performed on sandstones or rocks with large grains rather than clays or clayey rocks having sub-

micron feature size (i.e., grain or pore size) which is usually behind the resolution of most XCT instruments, and high-

resolution imaging is both expensive and time-consuming (Kaufhold et al., 2016).  50 

This paper proposes a new method to estimate the porosity of clayey rocks using low-resolution XCT images of the core 

samples acquired from hole C0019E during IODP expedition 343.  Pixel size (or resolution) of images acquired in this 

expedition is 0.188 mm, which is far larger than the typical pore size range of clayey rocks of less than 2 nm (micropores) or 

in the range of 2-50 nm (mesopores) (Kuila & Prasad, 2013). Despite these limitations, it is shown that the proposed data-

driven segmentation approach based on Otsu’s method (Otsu, 1979), also known as the k-mean algorithm, can be used to 55 

quantify rock porosity. Our results are validated by an independent quantification of porosity using Cation Exchange Capacity 

(CEC) laboratory measurements on the squeezed samples. Furthermore, to examine the problem of user bias, the results of the 

proposed approach are compared to those obtained from manual thresholding segmentation by the commercial software 

Avizo® (FEI company). 

2 Materials and methods 60 

The overall structure of the region and location of hole C00019E can be seen in the seismic profile shown in Fig. 2. While 

drilling this hole, a rotary core barrel (RCB) system was used to obtain 21 cores, representing a total length of 55m, from the 

prism, décollement, and underlying Pacific plate. We focus on the décollement and the fault zone, so we only analyzed the last 
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ten cores (Cores 12R-21R). A medical CT scanner (GE Medical System LightSpeed Ultra16) was used in IODP expedition 

343 to scan the cores. Dimensions of the images parallel to the planes perpendicular to the core axis were 512 × 512 pixels, 65 

and each pixel had a size of 0.188mm × 0.188mm.  

 

 
Figure 1: Location of JFAST site (IODP expedition 343); values between slip contours are in meters (modified after Chester et al., 
2013; Kirkpatrick, 2015). 70 

 

 
Figure 2: Seismic section showing the main structures in the Japan Trench plate boundary. Normal faults are illustrated with black 
arrows (modified after Nakamura et al., 2013). 
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Based on the previous studies during IODP Expedition 343, the frontal prism mainly consists of fairly uniform silty clays 75 

grading into claystone (Chester et al., 2013; Chester & Moore, 2018). Cores 2R-16R were acquired from the frontal prism 

down to 820 mbsf (Fig. 3). From the variations of gamma-ray and resistivity logs combined with bedding analysis from 

resistivity image logs, the plate boundary (décollement) was determined to lie at a depth of ~821 mbsf, consistent with the 

results of the seismic surveys ( Nakamura et al., 2013; Boston et al., 2014). Core 17R, recovered from the décollement interval, 

is composed of highly deformed clay with scaly fabric (Chester et al., 2013; Kirkpatrick et al., 2015), and high content of 80 

smectite (60-80 wt%) according to X-ray diffraction analysis (Kameda et al., 2015). Analysis of cores 18R-21R, recovered 

from the Pacific plate at the bottom of the hole (from 824 mbsf to 837 mbsf), showed that the Pacific plate is mostly composed 

of brown mudstone with silicoclastic grains (with more than 60% clay) and pelagic clay at the lower portion. Also, low gamma-

ray and high resistivity may correspond to chert, which has also been observed at site DSPD 436 (Party, 1980). Fig. 3 displays 

lithologies, locations of cores, and the physical logs acquired at the fault zone. 85 

 
Figure 3 (a) stratigraphy and structural summary of IODP Expedition 343 Hole C00019E, (b) location of cores, (c) Gamma-ray, and 
(d) resistivity logs of this interval. Deep, medium, and shallow refer to the depths of investigation. 
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2.1 XCT image analysis 

When an X-ray passes through an object, the ray might be scattered or absorbed, resulting in signal attenuation. This attenuation 90 

or intensity decrease is classically described by Beer’s Law. For a monochromatic beam in a homogeneous material, this law 

is as follows: 

𝐼𝐼 = 𝐼𝐼0exp (−𝜇𝜇𝜇𝜇) ,           (1) 

 

Where 𝐼𝐼 is X-ray intensity, 𝐼𝐼0 is initial intensity, 𝜇𝜇 is the Linear Attenuation Coefficient (LAC) of sample material, and 𝜇𝜇 is the 95 

length of the X-ray path. LAC is dependent on the density and mineral composition of the material. CT number is a parameter 

used to evaluate the attenuation, defined as: 

 𝐶𝐶𝐶𝐶𝑛𝑛 = 𝜇𝜇𝑡𝑡−𝜇𝜇𝑤𝑤
𝜇𝜇𝑤𝑤

× 1000 ,            (2) 

Where 𝜇𝜇𝑡𝑡 and 𝜇𝜇𝑤𝑤 are linear attenuation coefficients of target material and water, respectively.  

These attenuations are then mapped onto consecutive 2D slices which are combined to give attenuation values in voxels (i.e., 100 

volumetric picture elements). Generally, the higher the CT number of a voxel, the brighter its greyshade the color in CT images. 

According to Eq. (2), a higher CT number implies higher attenuation in the material which can be due to either higher density 

or presence of elements with higher atomic numbers. On the other hand, darker colors are interpreted as pores and fractures 

where almost no attenuation is recorded compared with the solid phases (Ketcham and Carlson, 2001). 

Although XCT imaging technique is a quick and non-invasive method, it has some limitations related to the presence of 105 

different artifacts, the partial volume effect, and the scanner resolution. Since a voxel volume might consist of several materials, 

the X-ray attenuation assigned to each voxel is, in fact, the average attenuation of several materials. In addition, a value 

assigned to a given voxel will be affected by the surrounding voxels so that sharp passages between phases with different 

attenuation coefficients will be smoothed to some extent. This phenomenon is known as the partial volume effect (Iassonov et 

al., 2009; Ketcham & Carlson, 2001). 110 

Porosity estimation or any other quantitative image analysis comprises three main steps: 1) image preprocessing (e.g., artifact 

removal and image filtering), 2) image segmentation, 3) object quantification. However, the analyzed core samples were 

partially damaged during the coring process and their transfer to the surface. Therefore, for this analysis, we first selected the 

portions of each core with no artificial damages.  

2.1.1 Image filtering 115 

The first step in XCT image analysis is to apply an appropriate filter to reduce the noise level in the grey-scale images. This 

noise can significantly affect the quality of the image and the results of the subsequent steps. 

To avoid over-smoothing the raw images and preserve the edges (i.e., the interface between two materials), a non-local mean 

filter (NL-mean) was employed to eliminate the noise in the images. This filter calculates the similarity between a block of 
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interest (BOI) centered at a target pixel and all the neighborhood blocks (reference blocks) in a search area. A square Euclidean 120 

distance between pixel values in the BOI and the reference blocks is used as a measure of dissimilarity. Then, the target pixel 

is replaced by a weighted mean value of center pixels in the reference blocks with higher similarity (i.e., lower distance). The 

weight is calculated by applying a Gauss kernel on the similarity values. As a result, more details are preserved using this filter 

compared to the conventional median filter (Buades et al., 2005; Sarker et al., 2012; Matsuoka et al., 2017). 

2.1.2 Image segmentation 125 

The term segmentation can be defined as a process of classifying each voxel (or a set of voxels) as a material type called a 

phase (e.g., pores and minerals in geomaterials). If there is only one phase to be separated from the matrix, the process is called 

binary segmentation.  In this process all voxels’ values of interest are replaced with a binary value of 1 (e.g., pores in porosity 

evaluation), with the rest of voxels (e.g., solid phase) being assigned a value of 0. Segmentation is of vital importance as it 

greatly affects all the subsequent interpretations, analyses, and modeling performed on segmented images (Kaestner et al., 130 

2008; Iassonov et al., 2009). 

Several methods currently exist for image segmentation. Global thresholding is one of the simplest and most frequently used 

methods in this regard. This method, which is based on the analysis of an intensity histogram, having defined a value as a 

threshold, pixels with values less and higher than the threshold are considered different phases. 

Two approaches for image segmentation are employed in this work. First, the AVIZO® software is used, which provides an 135 

interactive thresholding panel with several tools for segmentation that can be combined to separate pores from solid. However, 

since the threshold is visually determined in this method, results can be highly biased by the user, leading to over/under- 

estimation of porosity (Chauhan et al., 2016; Iassonov et al., 2009; Kaestner et al., 2008). Fig. 4 shows the threshold value and 

segmented (binary) image obtained for one of the cores. To reduce the bias in the manual thresholding method, a second 

approach based on the K-means clustering algorithm was adopted. The section below describes the different steps of this 140 

method.  

 
Figure 4 Segmentation using interactive thresholding method (Left: the grayscale image of a slice of core 14R2 after applying the 
non-local mean filter; Middle: histogram of pixel values in all slices of the same core; and Right: binary image in which white pixels 
indicate pores and black ones are solid. 145 
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• Image segmentation with the k-means algorithm 

The amount of porosity obtained from CT images is largely dependent on the threshold applied, so that a slight change in the 

threshold might result in a significant error in the final porosity estimation. Hence, a clustering algorithm was used to identify 

the threshold in a semi-automatic manner. The main aim of clustering in segmentation is to group the pixel values into different 

groups so that the pixels in the same group are as similar as possible and different from the pixel values in other groups ( 150 

Ojeda-Magana et al., 2009; Cortina-Januchset al., 2011). 

The K-means clustering algorithm, which was primarily introduced by MacQueen (1967), is one of the simplest and the most 

conventional clustering method utilized by several researchers to solve segmentation problems ( Taud et al., 2005; Cortina-

Januchs et al., 2011; Chauhan et al., 2016; Al-Marzouqi, 2018; Guntoro et al., 2019). In this algorithm, first, k number of 

cluster centroids are randomly selected in feature space (i.e., pixel intensity values) (e.g., k=3 in Fig. 5). Then, each data point 155 

(pixel intensity) is assigned to the nearest centroid to create a cluster. In the next step, each centroid center Cj iteratively moves 

to the mean value of the pixels within that cluster (𝜇𝜇𝑗𝑗), and the data are reassigned to the nearest centroids which can be 

different now. In each iteration, inertia or sum of square error within all clusters are calculated, and the algorithm continues 

updating centroid center until the inertia is minimized: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = ∑ ∑ �𝑥𝑥𝑖𝑖 −  𝐶𝐶𝑗𝑗�
2𝑘𝑘

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1  ,                       (3) 160 

 

Where, n and k are the number of pixels and clusters, respectively. 𝑥𝑥𝑖𝑖 is ith pixel value and 𝐶𝐶𝑗𝑗 indicate jth cluster center.  

 

 
Figure 5 Illustration of K-means algorithm for three clusters.  Left image shows the first step when the centroids (in this example 165 
three centroids) are randomly determined in a two dimension space. In the right image, each centroid has moved to the mean of the 
cluster after a number of iterations. 
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The clustering results in the k-means algorithm highly depend on the initial positions of the centroids in the data space. Hence, 

the algorithm was run 20 times, and the best result (i.e., the one with the minimum inertia) was chosen. 170 

The main drawback of the k-means algorithm is that the number of cluster k must be predefined. A fast and straightforward 

method is to determine k is to run the algorithm for a different number of clusters and calculate the cost function (inertia) each 

time (Ward Jr, 1963). Then, the optimum number of clusters will be the one that shows an elbow when plotting the inertia 

versus the number of clusters. In other words, inertia drops at a certain number of clusters and does not decrease much after 

that. 175 

Figure 6 presents the inertia values versus the number of clusters between 2 and 10. The figure shows no distinct elbow due to 

the low resolution of the CT images. One of the distinguishing characteristics of low-resolution images is that the distribution 

of pixel intensities is unimodal with long tails. This unimodal distribution was observed in all the images. Moreover, a negative 

skewness in the histogram (Fig. 6) shows that the image resolution is not adequate to separate the pores from the matrix, i.e., 

the pores sizes are mostly  below the image resolution (Nehler et al., 2019).  180 

 
Figure 6 Histogram of voxels’ intensity of core 19R3 indicates a negatively skewed distribution (left); in such a situation, there is no 
distinct elbow shape in the inertia plot (right). 

 

This low resolution will increase the risk of underestimation (or overestimation) of porosity or other subsequent quantification 185 

on the binary images. For this reason, and also because the results of segmentation by visual inspection were unsatisfactory, 

the number of the clusters was further explored with another index known as the Davies-Bouldin index (Davies & Bouldin, 

1979). 

Generally, the idea behind the different clustering approaches is to identify different groups in a given dataset. The more 

separated are the clusters, the better is the clustering. Furthermore, the data points belonging to each cluster should be as close 190 

as possible in terms of intensity values (Halkidi et al., 2001).  

Davies-Bouldin (DB) index is a measure of similarity between each cluster 𝐶𝐶𝑖𝑖 and the most similar one to it, 𝐶𝐶𝑗𝑗  (𝐼𝐼, 𝑗𝑗 = 1, … , 𝑘𝑘). 

The index is defined as follows: 
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𝐷𝐷𝐷𝐷 = 1
𝐾𝐾
∑ max𝑅𝑅𝑖𝑖𝑗𝑗    (𝐼𝐼 ≠ 𝑗𝑗)𝑘𝑘
𝑖𝑖=1  ,          (4) 

𝑅𝑅𝑖𝑖𝑗𝑗  in this equation is calculated as: 195 

𝑅𝑅𝑖𝑖𝑗𝑗 =
𝑠𝑠𝑖𝑖+𝑠𝑠𝑗𝑗
𝑑𝑑𝑖𝑖𝑗𝑗

,            (5) 

Where 𝑠𝑠𝑖𝑖 is cluster diameter, i.e., the average between the centroid of the cluster and its each datapoint 𝐼𝐼. 𝑑𝑑𝑖𝑖𝑗𝑗  is defined as the 

distance between two cluster centroids 𝐼𝐼 and 𝑗𝑗. 

Lower values for this index mean that the clusters are better separated from the other clusters, and the data points in each 

cluster are less dispersed (Halkidi et al., 2001). In this study, both inertia and DB indices are used to explore the possibility of 200 

merging some clusters. Our approach can be summarized as follows: 

1) For each core, k-means algorithm was run with a different number of clusters (between 2 and 10, and inertia and 

DB indices were calculated (Figs 7a, 7c, and 7e). 

2) Unlike inertia, the DB index shows an elbow shape on the profile after a certain number of clusters KDB. For 

example, this index drops sharply after 4 clusters (KDB= 4) in core 19R2 (Fig. 7a). Segmentation is then done by 205 

merging the different clusters after the KDB.  

3) The results of segmentation are converted to the threshold value in the intensity histogram of pixels. For example, 

if the data are grouped into 6 clusters (clusters are sorted in ascending order according to their centroids), and 

three of them are merged, the maximum pixel value in the third cluster indicates the threshold value (e.g., orange 

dashed line in Fig. 7b). On the other hand, one can calculate a threshold value that corresponds to a given porosity 210 

by an iterative approach, i.e., by changing the threshold value, segmenting the image, and calculating the porosity 

based on that value, the threshold porosity is obtained. Therefore, the maximum threshold value is the one that 

corresponds to the total porosity (maximum porosity) measured using the MAD method on board in expedition 

343 (Table 1). 

4) The next step involves selecting close thresholds. This step can be thought of as another clustering step, but this 215 

time the threshold values are clustered instead of pixel values. For example, in Fig. 7d, one can see that the 

threshold corresponding to 4 clusters coincides with 9 clusters (when 3 of them are merged). In the same way, 

segmentation with 3 clusters gives the very close threshold to 10 clusters (4 merged) in the core 17R illustrated 

in Fig. 7d. 

5) However, this method might provide more than one choice for the threshold (for example, in plots d and f in Fig. 220 

7). In these cases, the final threshold is selected by visual inspection of the binary images.  

6) Our approach can be seen as a semi-automatic segmentation in which the best candidates are identified using the 

k-means algorithm. Visual inspection is only a determining step if the situation in step 5 arises. This approach 

will reduce the effect of user subjectivity in the segmentation. All the calculations related to clustering are done 

using the Scikit-learn python package (Pedregosa et al., 2011). 225 
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Figure 7  Determining thresholds for segmentation by merging the clusters with the lowest DB index. Results are shown 
for core 19R2 (a and b), 17R (c and d), and 15R-1 (e and f). 230 
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2.2 Interstitial porosity from CEC 

As described earlier, porosity estimated with the MAD method refers to the total porosity of the sample. However, a fraction 

of this porosity relates to the water present in clay minerals (within the clays and adsorbed at their surfaces). Therefore, cation 

capacity exchange (CEC) was employed to correct the total porosity and obtain the interstitial porosity corresponding to the 

water contained within the pores. The resulting porosity can also be compared with that measured on CT scans. However, to 235 

estimate water-bound porosity, other imaging techniques such as transmission electron microscopy (TEM) and focused ion 

beam combined with scanning electron microscopy (FIB-SEM) are required to obtain images at submicron resolution. 

Unfortunately, such scanning resolutions were not available during IODP expedition 343. 

The water present in the minerals is calculated using CEC measurements on the core samples, and total porosity is corrected 

using the following equation: 240 

𝜙𝜙𝑖𝑖 = 𝜙𝜙𝑡𝑡 − 𝐼𝐼
𝜇𝜇𝑤𝑤

𝜌𝜌𝑤𝑤
.𝐶𝐶𝐶𝐶𝐶𝐶.𝜌𝜌𝑔𝑔(1 − 𝜙𝜙𝑡𝑡)                                                                            (6) 

Where 𝜙𝜙𝑡𝑡 and 𝜙𝜙𝑖𝑖 are total (i.e., MAD porosity) and interstitial porosity, respectively, 𝜇𝜇𝑤𝑤 is water molar mass (0.018 kg mol-

1), 𝜌𝜌𝑔𝑔 and 𝜌𝜌𝑤𝑤 are grain and water density, respectively, which are considered to be 2650 and 1024 kg m-3, CEC is the Cation 

Exchange Capacity, expressed in moles per kilogram of the sample in dry condition, and n is the average number of water 

molecules per cation charge. In theory, each cation charge present in a hydrated smectite interlayer is associated with 15 water 

molecules (Ransom & Helgeson, 1994). 245 

CEC is defined as the total amount of the ion extracted after mixing a given mass of sample with a specific volume of a 

solution. Several methods exist for measuring CEC, all of which involve the complete saturation of the sample with a mono-

ionic solution.  CEC is then calculated by measuring the difference between the ion concentration before and after the 

experiment (Aran et al., 2008). 

In the present study, CEC values were quantified by exchanging the cations with cobaltyhexammine chloride (Conin et al., 250 

2011; Henry & Bourlange, 2004). Measurements were performed at the Institute National de Recherche Agronomique (INRA) 

laboratory in Arras (France). 

3 Results  

Figure 7 shows the results of clustering analysis to determine the best threshold for the segmentation of core images. As 

described earlier, when two candidates exist for the segmentation, the best one is selected by visual inspection. For example, 255 

Figure 8 presents the segmentation results on a cropped slice of core 17R using the two thresholding candidates shown in 

Figure 7d. In this case, 10 clusters (of which four merged) are selected as the best for thresholding. 
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Figure 8. Results of segmentation in core 17R. Lower plots illustrate zoom within the red box. Comparing the binary images suggests 
that segmentation with 10 clusters (4 merged) gives the best results. 260 

Table 1 presents the results of CEC measurements and interstitial porosity estimated by Eq. 6. The CEC values range from 

0.19 to 0.47 meq/g, with the maximum value for core 17R1 taken from the decollement. The average difference between total 

porosity (MAD) and interstitial porosity is 8%, while the maximum difference is 14.8% for the decollement, which was 

expected because of the high content of smectite (see Kameda et al., 2017). 

To obtain a continuous estimation of porosity and compare the results with other methods, interstitial and MAD porosities 265 

were linearly interpolated. Figure 9 shows the results of porosity estimation with different methods (third column). Figure 10 

compares the results of interstitial porosity measurements with estimations using global thresholding (Figure 10a) and the 

proposed method in this study (Figure 10b). The correlation coefficient, R-squared value, and root mean square error (RMSE) 

indicate a clear improvement in porosity estimation using the clustering approach proposed in this study. 

4 Discussion 270 

The initial objective of this study was to propose a method for the estimation of the porosity of clayey rocks using low-

resolution XCT images. These rocks have small pores (i.e., micropores and mesopores), and this necessitates using high-

resolution imaging techniques to capture these small pores. However, high-resolution imaging instruments are expensive and 

not always available in many research projects. 
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Table 1. Results of CEC measurements and comparison of  the total (MAD) and interstitial porosity 

Core No. Depth (mbsf) CEC (meq/g) Interstitial porosity (%) MAD (%) 

12R1 786.1 0.19 35 42.9 

12R2 786.9 0.19 34.6 42.6 

13R1 801.5 0.23 37.5 46.4 

13R2 801.9 0.23 38.7 47.4 

14R1 810.3 0.24 36.9 46.2 

14R2 811.2 0.24 38.3 47.5 

15R1 816.9 0.25 44.1 52.7 

16R1 818.6 0.314 29.2 42.4 

17R1 822.5 0.467 30.5 48.2 

18R1 825.5 0.347 34.3 47.5 

19R1 826.9 0.289 22.4 35.9 

19R2 828 0.245 37.9 47.3 

19R3 828.7 0.213 38.1 46.4 

20R1 831.1 0.210 45.3 52.5 

20R2 832.4 0.210 42.6 50.2 

21R1 836.8 0.210 25 35 

 275 

The overall results presented in Figure 9 indicate that, considering interstitial porosity calculated by CEC measurements to be 

the ground truth (red markers), merging clusters in Otsu’s method provides more consistent estimations of porosity (black 

markers) than MAD-derived porosity measurements (green markers) made during expedition 343 (Chester et al., 2013). 

Furthermore, it can be seen that the results of the three methods follow a similar trend: lower porosity in the decollement with 

an increase towards the prism and Pacific sediments. This relatively low porosity in the decollement may be explained by the 280 

shear-enhanced compaction in the fault core which has formed a distinct scaly fabric observed in core in 17R (Chester et al., 

2013). It can also be observed that MAD porosity is higher than our estimations in all the cores as the MAD gives total porosity 

including water absorbed on the surface of clay minerals. Furthermore, we showed that our semi-automatic approach could 

significantly reduce errors due to user bias, which are common in manual thresholding approaches for the segmentation of 

XCT images (Figure 10). This is important because a bias in the segmentation of images will lead to an error in the subsequent 285 

analysis of pore network modeling. 
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Figure 9. Porosity estimations using different methods; the first and second columns indicate the lithology and the location of core 
samples. The third column presents porosity calculated by different methods. The fourth and fifth columns show the gamma-ray 
and the ratio of deep over medium resistivity, respectively. 290 
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Figure 10. Comparison between the results of manual thresholding (a) and the proposed method in this study (b). The amount of 
porosity estimated using these methods is compared to interstitial porosity. The correlation coefficient, r-squared, and RMSE shows 
an enhanced estimate of porosity using the k-means method. 

5 Conclusions 295 

The main aim of this study was to propose a new approach for the segmentation of low-resolution XCT images. K-means is 
one of the simplest and fastest clustering algorithms which can be used for automatic segmentation of XCT images. However, 
its application is limited to high-resolution images and samples containing minerals with distinct attenuation coefficients.  Our 
investigation suggests that merging clusters in k-means algorithm using both inertia and DB index can result in more accurate 
and unbiased segmentation when compared to independent experimental measurements. Although this study is only based on 300 
the XCT images of core samples from IODP expedition 343, our findings give new insights into dealing with low-resolution 
images. This will be of interest to researchers who do not have access to a high-resolution XCT scanner. However, to evaluate 
the generalizability of the proposed method, further research should be carried out on rock samples of different compositions. 
A reasonable approach could be to apply our method to XCT images of the same sample obtained at different resolutions. 
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