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Abstract. Foreland fold-and-thrust belts record long-lived tectono-sedimentary activity, from passive 14	

margin sedimentation, flexuring, and further involvement into wedge accretion ahead of an advancing 15	

orogen. Therefore, dating fault activity is fundamental for plate movement reconstruction, resource 16	

exploration or earthquake hazard assessment. Here, we report U-Pb ages of syntectonic calcite 17	

mineralizations from four thrusts and three tear faults sampled at the regional scale, across the Jura 18	

fold-and-thrust belt in the northwestern Alpine foreland (eastern France). Three regional tectonic 19	

phases are recognized in the middle Eocene-Pliocene interval: (1) pre-orogenic faulting at 48.4 ± 1.5 20	

and 44.7	± 2.6 Ma associated to the far-field effect of the Alpine or Pyrenean compression, (2) syn-21	

orogenic thrusting at 11.4 ± 1.1, 10.6 ± 0.5, 9.7 ± 1.4, 9.6 ± 0.3, and 7.5 ± 1.1 Ma associated to the 22	

formation of the Jura fold-and-thrust belt with possible in-sequence thrust propagation, and (3) syn-23	

orogenic tear faulting at 10.5 ± 0.4, 9.1 ± 6.5, 5.7 ± 4.7, and at 4.8 ± 1.7 Ma including the reactivation 24	

of a pre-orogenic fault at 3.9 ± 2.9 Ma. Previously unknown faulting events at 48.4 ± 1.5 and 44.7 ± 25	

2.6 Ma predate by ~10 Ma the reported late Eocene age for tectonic activity onset in the Alpine 26	
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foreland. In addition, we date the previously inferred re-activation of pre-orogenic strike-slip faults 27	

as tear faults during Jura imbrication. The U-Pb ages document a minimal time frame for the evolution 28	

of the Jura FTB wedge by possible in-sequence thrust imbrication above the low-friction basal 29	

décollement consisting of evaporites. 30	

 31	

1. Introduction 32	

Foreland fold-and-thrust belts develop at the external edges of orogens and are characterized 33	

by a multiphase tectono-sedimentary history including: pre-orogenic sedimentation, uplift at the 34	

peripheral bulge of the advancing orogen, progressively accelerating subsidence followed by syn-35	

tectonic sedimentation, and accretion of the sedimentary cover into the foreland fold-and-thrust belt 36	

(Lacombe et al., 2007). Unraveling the timing of these tectonic events is fundamental for plate 37	

kinematic modelling, natural resource exploration, paleoseismicity, and topography evolution studies 38	

(Vergés et al., 1992; Craig and Warvakai, 2009). However, deciphering the different tectonic phases 39	

is complicated by the overprinting of inherited structures by progressively younger tectonic events. 40	

This issue is addressed by dating syn-tectonic sediments and, more recently, better constrained 41	

through dating of fault activity with K-Ar, 40Ar/39Ar, and U-Pb and U-Th methods (Van der Pluijm 42	

et al., 2009; Vrolijk et al., 2018). In particular, calcite U-Pb and U-Th geochronology (Roberts et al., 43	

2020) is the unique method for dating syntectonic calcite mineralizations. This technique has been 44	

applied for dating single faults in extensional, strike-slip, and compressional settings (Goodfellow et 45	

al., 2017; Nuriel et al., 2017; Hansman et al., 2018; Smeraglia et al., 2019; Carminati et al., 2020). 46	

So far, the dating of multiple faults at the regional scale across a foreland fold-and-thrust belt remains 47	

rare (Beaudoin et al., 2018; Looser et al., 2021). 48	

In this study, we dated syntectonic calcite mineralizations from four thrusts and three tear faults 49	

sampled across the Jura fold-and-thrust belt (Jura FTB, eastern France, Fig. 1) by laser ablation 50	

inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating. We reconstructed three 51	

tectonic phases having occurred in the middle Eocene-Pliocene period, documenting a long-lived 52	
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polyphase tectonic history of the northwestern Alpine foreland system along the convergent boundary 53	

between European and African plates. 54	

 55	

Figure 1. Geological map of the northwestern Alpine foreland and surrounding areas and stratigraphic column of the 56	

main lithological units of the Jura area. Map modified from Rime et al. (2019), cross-section modified from Von Hagke 57	

et al., 2014. 58	

2. Tectonic setting 59	
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Located in the Western Alps foreland, the Jura FTB formed by the ongoing continental collision 60	

of the Eurasian plate with the African plate (Sommaruga, 1997; Mosar, 1999; Lacombe and 61	

Mouthereau, 2002; Affolter and Gratier 2004; Bellahsen et al., 2014) (Fig. 1). Shortening affected the 62	

Triassic-late Miocene sedimentary succession deposited on the European passive margin above the 63	

Hercynian crystalline basement and caused brittle-ductile deformation at several levels (Fig. 1) 64	

(Philippe et al., 1996; Homberg et al., 2002; Ustaszewski and Schmid, 2006). The sedimentary 65	

succession starts with Triassic shales and evaporites overlain by Jurassic-Cretaceous shales, marls, 66	

and limestones (Fig. 1) (Sommaruga et al., 2017). Following a Late Cretaceous-Eocene regional 67	

unconformity, Oligocene-Miocene shallow marine to continental clastic deposits of the Molasse 68	

Basin were deposited above Cretaceous limestones (Fig. 1). 69	

The post-Mesozoic tectonic history of the Jura area is assumed to have started in the middle 70	

Eocene with N-S shortening related to the far field effect of the "Pyrenean orogeny" generating strike-71	

slip faults (Bergerat, 1987). However, no absolute ages of this tectonic phase are available. Based on 72	

structural analyses and calcite U-Pb ages, three phases of normal faulting during the Late Eocene, 73	

Oligocene, and Miocene in the distal parts of the Molasse Basin in northern Switzerland and in the 74	

Jura area have been documented (Lacombe et al., 1993; Homberg et al., 2002; Mazurek et al., 2018; 75	

Radaideh and Mosar, 2021). Normal faulting during the Late Eocene-Oligocene is associated to 76	

crustal extension due to the opening of the Rhine Graben (Lacombe et al., 1993; Homberg et al., 77	

2002; Mazurek et al., 2018; Radaideh and Mosar, 2021) or to the coeval onset of Alpine collision 78	

(Merle and Michon, 2001), while normal faulting during the middle Miocene has been related to 79	

crustal tilting associated to uplift of the Black Forest Highlands and subsidence of the northern part 80	

of the Molasse Basin (Mazurek et al., 2018). 81	

Biostratigraphic dating of syn-orogenic deposits, geomorphological observations, 82	

interpretation of seismic reflection profiles, and syntectonic calcite U-Pb ages of fault activity in the 83	

eastern tip of Jura FTB indicate that orogenic shortening started ~14.5 Ma ago (Langhian times) at 84	

the latest (Looser et al., 2021 and references therein) and is still active (Mosar, 1999; Becker, 2000; 85	
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Lacombe and Mouthereau, 2002; Madritsch et al., 2008). Shortening was accomodated by N to NE-86	

verging and NE-SW-striking thrusts and by NW-SE to N-S trending sinistral tear faults (Sommaruga, 87	

1997) (Fig. 1). The main décollement level of the thrust system developed along Triassic evaporites 88	

(Jordan, 1992; Pfiffner, 2014; Gruber, 2017; Sommaruga et al., 2017). Therefore, there is a common 89	

agreement in considering the Jura FTB mainly as the product of thin-skinned tectonics (Sommaruga, 90	

1997). However, thick-skinned tectonics occurred in the late stage of deformation, mostly in the 91	

external part (Lacombe and Mouthereau, 2002; Ustaszewski and Schmid, 2006, 2007; Madritsch et 92	

al., 2008; Lacombe and Bellahsen, 2016). 93	

Field cross-cutting relationships and U-Pb ages of syntectonic calcite mineralizations show that 94	

tear faults were synchronously active with thrusting and folding (Sommaruga, 1997; Looser et al., 95	

2021) and their movement continued after thrusting. In fact, in some cases, tear faults are still 96	

seismogenic (Thouvenot et al., 1998). Several authors suggested that pre-orogenic strike-slip and 97	

normal faults were reactivated in early Pliocene, respectively as tear and transpressional faults 98	

(Madritsch et al., 2008; Homberg et al., 1997; Ustaszewski and Schmid, 2006). Overall, direct dating 99	

of this fault reactivation is so far not available. 100	

 101	

3. Methods 102	

The following methods were used: (1) field structural analyses and vein/slickenfiber sampling 103	

from four major thrusts (From SE to NW: Montlebon, Buron, Fuans, and Arguel thrusts) and three 104	

NNE-SSW tear faults (Vue des Alpes, Pratz, and Buron) moving from the internal (most deformed) 105	

to the external (less deformed) parts of the Jura FTB (Fig. 1). In particular, we measured the 106	

orientation of sampled veins and the rake of sampled slickenfibers in order to combine U-Pb ages 107	

from veins and slickenfibers with structural measurements; (2) microstructural analyses with optical 108	

microscope and cathodoluminescence to unravel different phases of calcite precipitation; (3) calcite 109	

U-Pb LA-ICP-MS dating on veins and slickenfibers to date fault activity. In most cases, the U-Pb 110	

analyses were performed on calcite crystals showing a homogenous color or undisturbed growth-111	
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zoning under cathodoluminescence light, indicating no open-system alteration after calcite 112	

precipitation by late fluid infiltration and/or recrystallization (Figs. S1-S3). Analytical details are 113	

described in the Supplementary Material. 114	

 115	

4. Results 116	

4.1 Structural and microstructural observations 117	

The Montlebon, Buron, Fuans, and Arguel thrusts are NNE-SSW- to SW-NE striking and N- 118	

to NW-verging thrusts (Madritsch et al., 2008; Rime et al., 2019; Smeraglia et al., 2020) (Fig. 2a-d). 119	

More precisely, the Montlebon thrust is characterized by E to ESE-dipping (30-90°) thrust planes 120	

with slickenfibers showing left-lateral transpressional movements with N to NNW tectonic transport 121	

directions (Fig. 2a). The Buron thrust is characterized by E to SE-dipping (20°-30°) thrust planes with 122	

slickenfibers showing left-lateral transpressional movements with NW tectonic transport directions 123	

(Fig. 2b). The Fuans thrust is characterized by E to SE-dipping (20°-40°) thrust planes with 124	

slickenfibers showing left-lateral transpressional movements with NNW to NW tectonic transport 125	

directions (Fig. 2c). The Arguel thrust is characterized by S-dipping (10-30°) thrust planes with 126	

slickenfibers showing right-lateral transpressional movements with NNW tectonic transport 127	

directions (Fig. 2d). 128	

The subvertical Vue des Alpes, Pratz, and Buron tear faults show sinistral strike-slip 129	

displacements (Sommaruga, 1997) (Fig. 2de-g). More precisely, the Vue des Alpes strike-slip fault is 130	

characterized by NE-SW-striking subvertical fault planes with slickenfibers showing sinistral 131	

movements and associated NW-SE-striking subvertical fault planes with slickenfibers showing 132	

dextral movements (Fig. 2e). Both the Pratz and Buron strike-slip faults are characterized by NE-SW-133	

striking subvertical fault planes with slickenfibers showing sinistral movements (Fig. 2f-g). 134	
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 135	

Figure 2. Lower Schmidt hemisphere projection of fault-slip data and slip vectors for thrust and strike-slip faults. Dated 136	

faults in red. (a) Montlebon thrust. (b) Buron thrust. (c) Fuans thrust. (d) Arguel thrust. (e) Vue des Alpes strike-slip fault. 137	

(f) Pratz strike-slip fault. (g) Buron strike-slip fault- 138	

 139	

Both thrusts and strike-slip faults cut through Middle-Upper Jurassic and Lower Cretaceous 140	

limestones. The fault core zones are characterized by foliated fault rocks cut by sharp fault planes 141	

(Fig. 3a-d). Breccia lenses are developed in the Buron thrust core (Fig. 4d). Calcite mineralizations 142	

in extensional veins (Buron, Arguel, Montlebon, Vue des Alpes, and Pratz) and in slickenfibers 143	

(Fuans, Vue des Alpes, and Pratz) were sampled. 144	

Extensional veins occur in limestone fragments of foliated fault rocks (Fig. 3e,g) and in clasts 145	

from breccias (Figs. 3f and 4g). In limestone fragments of foliated fault rocks, extensional veins are 146	

oriented perpendicularly to stylolites (Fig. 3e,g), which occur along S- and C-planes. Extensional 147	

veins in clasts from breccias show a crackle-like texture and mutually cross-cutting relationships (Fig. 148	

3f). Extensional veins are filled by blocky to elongated-blocky calcite crystals and show syntaxial 149	

growth (Figs. 3i-k, 4g, S1a-d, S2a,b,g,h, S3a-h). 150	
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The fault planes are coated by slickenfibers (Figs. 3d,h and 4e,f). At the microscale, 151	

slickenfibers occur in dilational jogs along shear planes (Fig. 3h) and are filled by fibrous calcite 152	

crystals bounded by sharp shear planes (Figs. 3j, 4i, S1e-h, and S2c-f) and/or by blocky calcite crystals 153	

(Figs. 3l and 4h). Fibrous crystals are oriented parallel to shear planes. 154	

Most of the studied veins and slickenfibers show homogeneous cathodoluminescence colors, 155	

ranging from bright to dull red, and/or show cathodoluminescence zoning on the same crystal (Figs. 156	

3i-l, 4g-i, S1a,c,e,g, S2a,c,e,g, and S3a,c,e,g). In places, slickenfibers and extensional veins are cross-157	

cut by extensional veins showing black to dull red luminescence colors (Figs. S1e-h, S2c-f, and 158	

S3a,b,g,h) 159	

 160	

Figure 3. Foliated fault rocks in the fault core of the Montlebon thrust (a), Arguel thrust (b), and (c) Fuans thrust. (d) 161	

Detail of minor fault plane along the Vue des Alpes strike-slip fault showing calcite slickenfibers. (e) Hand sample from 162	

the Montlebon thrust showing host rock sigmoids bounded by stylolites and extensional veins perpendicular to stylolites. 163	

(f) Hand sample from the Fuans thrust showing host rock sigmoids bounded by stylolites and extensional veins 164	
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perpendicular to stylolites. (g) Hand sample from the Arguel thrust showing extensional veins with crackle-like texture. 165	

(h) Hand sample from a minor fault plane along the Vue des Alpes strike-slip fault showing slickenfibers developed along 166	

dissolution planes. (i-l) Cathodoluminescence microphotographs of thin sections showing extensional veins and 167	

slickenfibers from the studied faults with ablation craters of the U-Pb analyses. 168	

 169	

 170	

Figure 4. (a) Buron thrust. (b) Buron tear fault. (c) Pratz tear fault. (d) Brecciated fault rocks in the fault core of the 171	

Buron thrust. (e) Brecciated fault rocks cut by sharp fault planes in the fault core of the Buron tear fault. (f) Foliated fault 172	

rock cut by sharp fault planes in the fault core of the Pratz tear fault. (g-i) Cathodoluminescence microphotographs of 173	
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thin sections showing extensional veins and slickenfibers from the studied faults with ablation craters of the U-Pb 174	

analyses. 175	

 176	

4. 2 U-Pb dating 177	

A total of 12 reliable lower intercept ages (Figs. 5 and 6) out of 19 analyses (rejected age data 178	

is presented in Fig. S4) are reported with uncertainties at 2s absolute including counting statistics 179	

uncertainties, uncertainty of the primary reference material and inter-session variations (Guillong et 180	

al., 2020). The U-Pb ages indicate different phases of tectonic activity and related calcite precipitation 181	

in the middle Eocene to Pliocene period and also multiple precipitation ages along the same fault 182	

(Supplementary Information Table 1). 183	

An extensional vein from the Montlebon thrust shows a Serravallian age of 11.4 ± 1.1 Ma (Fig. 184	

5a). An extensional vein from the Buron thrust shows a Tortonian age of 10.6 ± 0.5 Ma (Fig. 5b). 185	

Two slickenfibers from the Fuans thrust yield Tortonian ages indistinguishable from each other of 186	

9.7 ± 1.4 Ma and 9.6 ± 0.3, respectively (Fig. 5c,d). An extensional vein from the Arguel thrust shows 187	

a Tortonian-Messinian age of 7.5 ± 1.1 Ma (Fig. 5e). Along the Vue des Alpes strike-slip fault, two 188	

slickenfibers yield Ypresian-Lutetian ages of 44.7 ± 2.6 and 48.4 ± 1.5 Ma (Fig. 6a,b), while an 189	

extensional vein shows a Pliocene age of 3.9 ± 2.9 Ma (Fig. 6c). An extensional vein from the Buron 190	

strike-slip fault shows a Messinian age of 5.7 ± 4.7 Ma (Fig. 6d). One slickenfiber and one extensional 191	

vein from the Pratz strike-slip fault show Tortonian-Messinian ages of 10.5 ± 0.4 and 9.1 ± 6.5 Ma 192	

(Fig. 6f-g), while one slickenfiber shows a younger age of 4.8 ± 1.7 Ma (Fig. 6e). Because of the 193	

common-lead rich 207Pb/206Pb compositions, the U-Pb ages of the samples DA2, BUS1, PR1-A, PR2-194	

2 of the strike-slip faults have larger uncertainties than those of the thrusts. 195	

 196	

 197	
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 198	

Figure 5. Tera-Wasserburg concordia diagrams of thrust faults. (a) Montlebon thrust. (a) Buron thrust. (c,d) Fuans thrust. 199	

(e) Arguel thrust. 200	
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 201	

Figure 6. Tera-Wasserburg concordia diagrams of strike-slip faults. (a-c) Vue des Alpes strike-slip fault. (d) Buron strike-202	

slip fault. (e-g) Pratz strike-slip fault. 203	

 204	

5. Discussion and conclusions 205	

Slickenfibers on sharp fault planes are clear evidence of tectonic slip along faults (Figs. 3j-l, 4i, 206	

S1e-h, and S2c,f). In particular, blocky and fibrous crystals indicate respectively fast and slow vein 207	
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opening rates associated with fault slip. Within slickenfibers, calcite crystal precipitated during syn- 208	

to early post-slip fluid influx in newly formed dilational sites formed along undulated and sharp slip 209	

planes (Gratier and Gamond, 1990; Urai et al., 1991; Holland and Urai, 2010; Fagereng et al., 2010; 210	

Bons et al., 2012; Woodcock et al., 2014). Extensional veins oriented perpendicular to stylolites (Fig. 211	

3e,g) are linked to syn-thrusting shortening (Gratier et al., 2013). The studied veins are therefore 212	

interpreted as the product of tectonic fault slip and their U-Pb ages are considered as representative 213	

of faulting activity. 214	

We recognize three regional tectonic phases between the middle Eocene and the Pliocene (Figs. 215	

7 and 8), which are linked to the long-lived tectonic activity of the Alpine foreland evolution. The 216	

presented ages should be regarded as minimum ages for the onset of deformation at the studied faults 217	

or as maximum ages for its termination as potentially older or younger deformation phases recorded 218	

by other veins and slickenfibers not sampled and analyzed here may have been missed. As commonly 219	

done in carbonate LA-ICP-MS U-Pb dating, no disequilibrium correction for initial 234U/238U and 220	

230Th was applied. This may cause underestimation of young (<10 Ma) samples (Roberts et al. 2020) 221	

and accordingly, they should be regarded to reflect maximal ages.  222	

The U-Pb ages are regionally consistent in terms of the tectonic evolution of the Jura FTB, and 223	

the microstructures of the analyzed veins and slickenfibers indicate precipitation during syn- to early 224	

post-slip fluid influx. However, although U-Pb dating was performed on crystals with no indication 225	

of later open-system alteration based on CL-microscopy, possible late fluid infiltration and calcite 226	

recrystallization cannot be excluded as previously suggested by other studies (Beaudoin et al., 2018; 227	

Hoareau et al., 2021; Roberts et al., 2020, 2021). 228	

Sample BUS1 clearly shows multiple calcite phases indicating vein re-opening and potentially 229	

different ages (Fig. 4h). However, the Tera-Wasserburg diagram of BUS1 shows a single age trend 230	

with a low MSWD of 0.82 (Fig. 6d). This would not be observed in a sample that experienced 231	

crystallization at significantly different times. Therefore, sample BUS1 reflects calcite precipitation 232	

within a time interval smaller than what would result in multiple age trends. 233	
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The oldest tectonic phase is recorded by two horizontal slickenfibers dated at 44.7 ± 2.6 and 234	

48.4 ± 1.5 Ma in Ypresian-Lutetian times (middle Eocene) along the Vue des Alpes strike-slip fault 235	

(Fig. 7). These ages are ~10 Ma older than the onset of the extensional tectonic activity in Priabonian 236	

(late Eocene) related to Rhine Graben opening (Sissingh, 1998; Mazurek et al. 2018). The strike-slip 237	

faulting in Eocene times is consistent with fault-slip data of Homberg et al. (1997). We propose that 238	

the Ypresian-Lutetian tectonic activity can be related to the late Mesozoic-Eocene far field tectonic 239	

shortening in the European plate foreland due to the advancing Alpine orogen (Mazurek et al., 2006; 240	

Timar-Geng et al., 2006) (Fig. 8a). However, previous studies suggested that middle Eocene strike-241	

slip faulting in the Jura area can be also related to the far-field effect of the Pyrenean compression 242	

(Bergerat, 1987; Homberg et al., 2002). The Pyrenean far field effect is also recognized in the Paris 243	

Basin (e.g., Lacombe et al., 1990; Lacombe and Mouthereau, 1999; Lacombe and Obert, 2000), in 244	

eastern France (Lacombe et al., 1993), and even in the United Kingdom (Hibsch et al., 1995) where 245	

Pyrenean-related calcite veins were dated by U-Pb (ages between 55 and 25 Ma; Parrish et al., 2018). 246	

Therefore, we cannot fully distinguish if the strike-slip fault activity during Ypresian-Lutetian times 247	

is related to the Pyrenean or to the Alpine shortening. Further studies are necessary to better constrain 248	

the origin of pre-Miocene fault activity in the European foreland. 249	

Structural analyses of the studied thrusts highlight N to NW oriented tectonic transport 250	

directions (Fig. 4a-d) consistent with the regional NW-SE to N-S compressional phase that has 251	

affected the Jura fold and thrust belt since the Miocene (Philippe et al, 1996; Becker, 2000; Homberg 252	

et al., 2002; Ustaszewski and Schmid, 2006; Madritsch et al., 2008; Looser et al., 2021). Although 253	

age uncertainties do not allow a distinction beyond doubt and the limited numbers of U-Pb ages and 254	

studied thrusts provide a limited picture, the Jura imbrication seems to have occurred by in-sequence 255	

thrusting. The oldest observed thrusts ages are Serravallian-Messinian and become progressively 256	

younger moving from the inner (SE) toward the external (NW) part, from 11.4 ± 1.1, 10.6 ± 0.5, 9.7 257	

± 1.4 and 9.6 ± 0.3 on the same thrust, and 7.5 ± 1.1 Ma, respectively, in the Montlebon, Buron, 258	

Fuans, and Arguel thrusts (Figs. 7 and 8b). These ages are consistent with the time interval of ~14.5-259	
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3.3 Ma suggested for thrusting activity from biostratigraphic dating of syn- to post-tectonic sediments 260	

(Becker, 2000 and references therein) and from calcite U-Pb ages of thrust activity in the eastern Jura 261	

FTB (Looser et al., 2021) (Fig. 7). 262	

Previous studies interpreted the subvertical strike-slip faults in the Jura FTB as tear faults, with 263	

activity during thrusting and folding (Sommaruga, 1997; Looser et al., 2021). Our structural analyses 264	

and U-Pb ages from the studied strike-slip faults support this interpretation. In particular, strike-slip 265	

faults are subvertical and are roughly parallel or oblique to the regional transport directions inferred 266	

from thrust kinematics (compare tectonic transport directions of Fig. 4a-d with those of Fig. 4f,g), a 267	

common feature of tear faults (Twiss and Moores, 1992). 268	

The Buron thrust, active at 10.6 ± 0.5 Ma, was cross-cut by the Buron tear fault ~5 Ma later, at 269	

5.7 ± 4.7 Ma (Figs. 7 and 8c). The Pratz tear fault was active at 10.5 ± 0.4 and 9.1 ± 6.5 Ma, indicating 270	

tear faulting generation during coeval thrust propagation, and further late-orogenic re-activation at 271	

4.8 ± 1.7 Ma (Figs. 7 and 8b). These data indicate that tear faulting occurred during syn- to late-272	

orogenic times (Fig. 8b,c). In addition, a late-orogenic phase is recorded by an extensional vein from 273	

the Vue des Alpes strike-slip fault showing a Pliocene age of 3.9 ± 2.9 Ma (Fig. 7). This age has been 274	

measured on an extensional vein that cannot be directly related to fault slip. Therefore, we cannot 275	

completely exclude that this age represents a late alteration event not directly linked to fault slip 276	

during the Pliocene. However, the 3.9 ± 2.9 Ma age is consistent with late orogenic deformation 277	

between 4.2 and 2.9 Ma documented in the frontal part of the Jura FTB (Madritsch et al., 2008 and 278	

references therein). The 3.9 ± 2.9 Ma age from the Vue des Alpes strike-slip fault is ~40 Ma younger 279	

than the middle Eocene ages (44.7 ± 2.6 and 48.4 ± 1.5 Ma) measured on the same fault, suggesting 280	

the reactivation of the Vue des Alpes strike-slip fault during late Jura shortening. This inference is 281	

also consistent with field cross-cutting relationships indicating re-activation of pre-existing strike-282	

slip faults as tear faults (Homberg et al., 1997). 283	

We consider the retrieved age as fault re-activation of the Vue des Alpes strike-slip fault and 284	

relate it to a stress change from pure compression to strike-slip state of stress coupled with the 285	
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occurrence of an inherited strike-slip fault favorably oriented with respect to the regional stress field. 286	

This stress change associated with tear fault development can be related to progressive fold-and-thrust 287	

belt thickening initiating only after ~4.5 Ma (Looser et al., 2021 and references therein), which led to 288	

an increase in the principal vertical stress (sigma 3) and a switch between sigma 3 and sigma 2 (Ferril 289	

et al., 2021). Shortening is still active in the Jura FTB and tear faults (also re-activated tear faults) are 290	

seismogenic (Thouvenot et al., 1998). 291	

The presented tectonic reconstruction depicts a stable evolution of the Jura FTB wedge by 292	

possible in-sequence thrusting consistent with thrust imbrication above the low-friction décollement 293	

consisting of evaporites (Fig. 8a-c). Contrarily, out-of-sequence thrusting occurred as late as in 294	

Messinian-early Pliocene times in the proximal Molasse Basin (Von Hagke et al., 2012, 2014) and in 295	

the Alps (Bellahsen et al., 2014). This tectonic framework suggests a stable topographic evolution of 296	

the critical taper and topographic profile of the Jura fold-and-thrust belt. Finally, this study constrains 297	

a long-lived polyphase tectonic history of the northwestern Alpine foreland system along the 298	

convergent boundary between European and African plates from the middle Eocene to the Pliocene. 299	



	17	

 300	

Figure 7. Main tectonic phases in the Alps and in the Alpine foreland. Age constraints shown as grey bars are from 301	

Burkhard and Sommaruga (1998), Ustaszewski et al. (2006), Madritsch et al. (2008), Bellahsen et al. (2014), and Von 302	

Hagke et al. (2014). For calcite U-Pb data, all uncertainties are represented as 2s. 303	



	18	

 304	

Figure 8. (a-d) Schematic reconstruction of the main tectonic phases dated in the Jura area in the regional context of the 305	

Alpine foreland system evolution. 306	
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