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Abstract. Foreland fold-and-thrust belts record long-lived tectono-sedimentary activity, from passive 14	

margin sedimentation, flexuring, and further involvement into wedge accretion ahead of an advancing 15	

orogen. Therefore, dating fault activity is fundamental for plate movement reconstruction, resource 16	

exploration or earthquake hazard assessment. Here, we report U-Pb ages of syntectonic calcite 17	

mineralizations from four thrusts and three tear faults sampled at the regional scale, across the Jura 18	

fold-and-thrust belt in the northwestern Alpine foreland (eastern France). Three regional tectonic 19	

phases are recognized in the middle Eocene-Pliocene interval: (1) pre-orogenic faulting at 48.4 ± 1.5 20	

and 44.7	± 2.6 Ma associated to the far-field effect of the Alpine compression, (2) syn-orogenic 21	

thrusting at 11.4 ± 1.1, 10.6 ± 0.5, 9.7 ± 1.4, 9.6 ± 0.3, and 7.5 ± 1.1 Ma associated to the formation 22	

of the Jura fold-and-thrust belt with possible in-sequence thrust propagation, and (3) syn-orogenic 23	

tear faulting at 10.5 ± 0.4, 9.1 ± 6.5, 5.7 ± 4.7, and at 4.8 ± 1.7 Ma including the reactivation of a pre-24	

orogenic fault at 3.9 ± 2.9 Ma. Previously unknown faulting events at 48.4 ± 1.5 and 44.7 ± 2.6 Ma 25	

predate by ~10 Ma the reported late Eocene age for tectonic activity onset in the Alpine foreland. In 26	
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addition, we dated the previously inferred re-activation of pre-orogenic strike-slip faults as tear faults 27	

during Jura imbrication. The U-Pb ages document a minimal time frame for the evolution of the Jura 28	

FTB wedge by possible in-sequence thrust imbrication above the low-friction basal décollement 29	

consisting of evaporites. 30	

 31	

1. Introduction 32	

Foreland fold-and-thrust belts develop at the external edges of orogens and are characterized 33	

by a multiphase tectono-sedimentary history including: pre-orogenic sedimentation, uplift at the 34	

peripheral bulge of the advancing orogen, progressively accelerating subsidence followed by syn-35	

tectonic sedimentation, and accretion of the sedimentary cover into the foreland fold-and-thrust belt 36	

(Lacombe et al., 2007). Unraveling the timing of these tectonic events is fundamental for plate 37	

kinematic modelling, natural resource exploration, paleoseismicity, and topography evolution studies 38	

(Vergés et al., 1992; Craig and Warvakai, 2009). However, deciphering the different tectonic phases 39	

is complicated by the overprinting of inherited structures by progressively younger tectonic events. 40	

This issue is addressed by dating syn-tectonic sediments and, more recently, better constrained 41	

through dating of fault activity with K-Ar, 40Ar/39Ar, and U-Pb and U-Th methods (Van der Pluijm 42	

et al., 2009; Vrolijk et al., 2018). In particular, calcite U-Pb and U-Th geochronology (Roberts et al., 43	

2020) is the unique method for dating syntectonic calcite mineralizations. This technique has been 44	

applied for dating single faults in extensional, strike-slip, and compressional settings (Goodfellow et 45	

al., 2017; Nuriel et al., 2017; Hansman et al., 2018; Smeraglia et al., 2019; Carminati et al., 2020). 46	

So far, the dating of multiple faults at the regional scale across a foreland fold-and-thrust belt remains 47	

rare (Beaudoin et al., 2018; Looser et al., 2021). 48	

In this study, we dated syntectonic calcite mineralizations from four thrusts and three tear faults 49	

sampled across the Jura fold-and-thrust belt (Jura FTB, eastern France, Fig. 1) by laser ablation 50	

inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating. We reconstructed three 51	

tectonic phases having occurred in the middle Eocene-Pliocene period, documenting a long-lived 52	
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polyphase tectonic history of the northwestern Alpine foreland system along the convergent boundary 53	

between European and African plates. 54	

 55	

Figure 1. Geological map of the northwestern Alpine foreland and surrounding areas and stratigraphic column of the 56	

main lithological units of the Jura area. Modified from Rime et al. (2019). 57	

 58	
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2. Tectonic setting 59	

The Jura FTB is located in the foreland of the Western Alps and formed by the ongoing 60	

continental collision of the Eurasian plate with the African plate (Sommaruga, 1997; Mosar, 1999; 61	

Lacombe and Mouthereau, 2002; Affolter and Gratier 2004; Bellahsen et al., 2014) (Fig. 1). 62	

Shortening affected the Triassic-late Miocene sedimentary succession deposited on the European 63	

passive margin above the Hercynian crystalline basement and caused brittle-ductile deformation at 64	

several levels (Fig. 1) (Philippe et al., 1996; Homberg et al., 2002; Ustaszewski and Schmid, 2006). 65	

The sedimentary succession starts with Triassic shales and evaporites overlain by Jurassic-Cretaceous 66	

shales, marls, and limestones (Fig. 1) (Sommaruga et al., 2017). Following a Late Cretaceous-Eocene 67	

regional unconformity, Oligocene-Miocene shallow marine to continental clastic deposits of the 68	

Molasse Basin were deposited above Cretaceous limestones (Fig. 1). 69	

The post-Mesozoic tectonic history of the Jura area is assumed to have started in the middle 70	

Eocene with N-S shortening related to the far field effect of the "Pyrenean orogeny" generating strike-71	

slip faults (Bergerat, 1987). However, no absolute ages of this tectonic phase are available. Based on 72	

structural analyses and calcite U-Pb ages, two phases of normal faulting during the Late Eocene and 73	

Oligocene in the distal parts of the Molasse Basin in northern Switzerland have been documented. 74	

Normal faulting during the Late Eocene has been related to crustal extension due to the opening of 75	

the Rhine Graben, while normal faulting during the middle Miocene has been related to crustal tilting 76	

associated to uplift of the Black Forest Highlands and subsidence of the northern part of the Molasse 77	

Basin (Mazurek et al., 2018). 78	

Biostratigraphic dating of syn-orogenic deposits, geomorphological observations, 79	

interpretation of seismic reflection profiles, and syntectonic calcite U-Pb ages of fault activity in the 80	

eastern tip of Jura FTB indicate that orogenic shortening started ~14.5 Ma ago (Langhian times) at 81	

the latest (Looser et al., 2021 and references therein) and is still active (Mosar, 1999; Becker, 2000; 82	

Madritsch et al., 2008). Shortening was accomodated by N to NE-verging and NE-SW-striking thrusts 83	

and by NW-SE to N-S trending sinistral tear faults (Sommaruga, 1997) (Fig. 1). The main 84	
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décollement level of the thrust system developed along Triassic evaporites (Jordan, 1992; Pfiffner, 85	

2014; Gruber, 2017; Sommaruga et al., 2017). Therefore, there is a common agreement in considering 86	

the Jura FTB mainly as the product of thin-skinned tectonics (Sommaruga, 1997). However, thick-87	

skinned tectonics occurred in the late stage of deformation and only in the external part (Ustaszewski 88	

and Schmid, 2006, 2007; Madritsch et al., 2008; Lacombe and Bellahsen, 2016). 89	

Field cross-cutting relationships and U-Pb ages of syntectonic calcite mineralizations show that 90	

tear faults were synchronously active with thrusting and folding (Sommaruga, 1997; Looser et al., 91	

2021) and their movement continued after thrusting. In fact, in some cases, tear faults are still 92	

seismogenic (Thouvenot et al., 1998). Several authors suggested that pre-orogenic strike-slip and 93	

normal faults were reactivated in early Pliocene, respectively as tear and transpressional faults 94	

(Madritsch et al., 2008; Homberg et al., 1997; Ustaszewski and Schmid, 2006). Overall, no direct 95	

dating of this fault re-activation has been available up to date. 96	

 97	

3. Methods 98	

The following methods were used: (1) field structural analyses and vein/slickenfiber sampling 99	

from four major thrusts (From SE to NW: Montlebon, Buron, Fuans, and Arguel thrusts) and three 100	

NNE-SSW tear faults (Vue des Alpes, Pratz, and Buron) moving from the internal (most deformed) 101	

to the external (less deformed) parts of the Jura FTB (Fig. 1). In particular, we measured the 102	

orientation of sampled veins and the rake of sampled slickenfibers in order to combine U-Pb ages 103	

from veins and slickenfibers with structural measurements; (2) microstructural analyses with optical 104	

microscope and cathodoluminescence to unravel different phases of calcite precipitation; (3) calcite 105	

U-Pb LA-ICP-MS dating on veins and slickenfibers to date fault activity. In most cases, the U-Pb 106	

analyses were performed on calcite crystals showing a homogenous color or undisturbed growth-107	

zoning under cathodoluminescence light, indicating no open-system alteration after calcite 108	

precipitation by late fluid infiltration and/or recrystallization (Figs. S1-S3). As commonly done in 109	

LA-ICP-MS U–Pb carbonate dating, no disequilibrium correction for initial 234U/238U and 230Th was 110	



	6	

applied. This may cause underestimation of young (<10 Ma) samples (Roberts et al., 2020). 111	

Analytical details are described in the Supplementary Material. 112	

 113	

4. Results 114	

4.1 Structural and microstructural observations 115	

The Montlebon, Buron, Fuans, and Arguel thrusts are NNE- to SW-NE striking and N- to NW-116	

verging thrusts (Madritsch et al., 2008; Rime et al., 2019; Smeraglia et al., 2020) (Fig. 2a-d). In 117	

particular, the Montlebon thrust is characterized by E to ESE-dipping (30-90°) thrust planes with 118	

slickenfibers showing left-lateral transpressional movements with N to NNW tectonic transport 119	

directions (Fig. 2a). The Buron thrust is characterized by E to SE-dipping (20°-30°) thrust planes with 120	

slickenfibers showing left-lateral transpressional movements with NW tectonic transport directions 121	

(Fig. 2b). The Fuans thrust is characterized by E to SE-dipping (20°-40°) thrust planes with 122	

slickenfibers showing left-lateral transpressional movements with NNW to NW tectonic transport 123	

directions (Fig. 2c). The Arguel thrust is characterized by S-dipping (10-30°) thrust planes with 124	

slickenfibers showing right-lateral transpressional movements with NNW tectonic transport 125	

directions (Fig. 2d). 126	

The subvertical Vue des Alpes, Pratz, and Buron tear faults show a sinistral strike-slip 127	

displacement (Sommaruga, 1997) (Fig. 2de-g). In particular, the Vue des Alpes strike-slip fault is 128	

characterized by NE-SW-striking subvertical fault planes with slickenfibers showing sinistral 129	

movements and associated NW-SE-striking subvertical fault planes with slickenfibers showing 130	

dextral movements (Fig. 2e). Both the Pratz and Buron strike-slip faults are characterized by NE-SW-131	

striking subvertical fault planes with slickenfibers showing sinistral movements (Fig. 2f-g). 132	
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 133	

Figure 2. Lower Schmidt hemisphere projection of fault-slip data and slip vectors for thrust and strike-slip faults. (a) 134	

Montlebon thrust. (b) Buron thrust. (c) Fuans thrust. (d) Arguel thrust. (e) Vue des Alpes strike-slip fault. (f) Pratz strike-135	

slip fault. (g) Buron strike-slip fault- 136	

 137	

Both thrusts and strike-slip faults cut through Middle-Upper Jurassic and Lower Cretaceous 138	

limestones. The fault core zones are characterized by foliated fault rocks cut by sharp fault planes 139	

(Fig. 3a-d). Breccia lenses are developed in the Buron thrust core (Fig. 4d). Calcite mineralizations 140	

in extensional veins (Buron, Arguel, Montlebon, Vue des Alpes, and Pratz) and in slickenfibers 141	

(Fuans, Vue des Alpes, and Pratz) were sampled. 142	

Extensional veins occur in limestone fragments of foliated fault rocks (Fig. 3e,g) and in clasts 143	

from breccias (Figs. 3f and 4g). In limestone fragments of foliated fault rocks, extensional veins are 144	

oriented perpendicularly to stylolites (Fig. 3e,g), which occur along S- and C-planes. Extensional 145	

veins in clasts from breccias show a crackle-like texture and mutually cross-cutting relationships (Fig. 146	

3f). Extensional veins are filled by blocky to elongated-blocky calcite crystals and show syntaxial 147	

growth (Figs. 3i-k, 4g, S1a-d, S2a,b,g,h, S3a-h). 148	
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The fault planes are coated by slickenfibers (Figs. 3d,h and 4e,f). At the microscale, 149	

slickenfibers occur in dilational jogs along shear planes (Fig. 3h) and are filled by fibrous calcite 150	

crystals bounded by sharp shear planes (Figs. 3j, 4i, S1e-h, and S2c-f) and/or by blocky calcite crystals 151	

(Figs. 3l and 4h). Fibrous crystals are oriented parallel to shear planes. 152	

Most of the studied veins and slickenfibers show homogeneous cathodoluminescence colors, 153	

ranging from bright to dull red, and/or show cathodoluminescence zoning on the same crystal (Figs. 154	

3i-l, 4g-i, S1a,c,e,g, S2a,c,e,g, and S3a,c,e,g). In places, slickenfibers and extensional veins are cross-155	

cut by extensional veins showing black to dull red luminescence colors (Figs. S1e-h, S2c-f, and 156	

S3a,b,g,h) 157	

 158	

Figure 3. Foliated fault rocks in the fault core of the Montlebon thrust (a), Arguel thrust (b), and (c) Fuans thrust. (d) 159	

Detail of minor fault plane along the Vue des Alpes strike-slip fault showing calcite slickenfibers. (e) Hand sample from 160	

the Montlebon thrust showing host rock sigmoids bounded by stylolites and extensional veins perpendicular to stylolites. 161	

(f) Hand sample from the Fuans thrust showing host rock sigmoids bounded by stylolites and extensional veins 162	
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perpendicular to stylolites. (g) Hand sample from the Arguel thrust showing extensional veins with crackle-like texture. 163	

(h) Hand sample from a minor fault plane along the Vue des Alpes strike-slip fault showing slickenfibers developed along 164	

dissolution planes. (i-l) Cathodoluminescence microphotographs of thin sections showing extensional veins and 165	

slickenfibers from the studied faults with ablation craters of the U-Pb analyses. 166	

 167	

 168	

Figure 4. (a) Buron thrust. (b) Buron tear fault. (c) Pratz tear fault. (d) Brecciated fault rocks in the fault core of the 169	

Buron thrust. (e) Brecciated fault rocks cut by sharp fault planes in the fault core of the Buron tear fault. (f) Foliated fault 170	

rock cut by sharp fault planes in the fault core of the Pratz tear fault. (g-i) Cathodoluminescence microphotographs of 171	
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thin sections showing extensional veins and slickenfibers from the studied faults with ablation craters of the U-Pb 172	

analyses. 173	

 174	

4. 2 U-Pb dating 175	

A total of 12 reliable lower intercept ages (Figs. 5 and 6) out of 19 analyses (rejected age data 176	

is presented in Fig. S4) are reported with uncertainties at 2s absolute including counting statistics 177	

uncertainties, uncertainty of the primary reference material and inter-session variations (Guillong et 178	

al., 2020). The U-Pb ages indicate different phases of tectonic activity and related calcite precipitation 179	

in the middle Eocene to Pliocene period and also multiple precipitation ages along the same fault 180	

(Supplementary Information Table 1). 181	

An extensional vein from the Montlebon thrust shows a Serravallian age of 11.4 ± 1.1 Ma (Fig. 182	

5a). An extensional vein from the Buron thrust shows a Tortonian age of 10.6 ± 0.5 Ma (Fig. 5b). 183	

Two slickenfibers from the Fuans thrust yield Tortonian ages indistinguishable from each other of 184	

9.7 ± 1.4 Ma and 9.6 ± 0.3, respectively (Fig. 5c,d). An extensional vein from the Arguel thrust shows 185	

a Tortonian-Messinian age of 7.5 ± 1.1 Ma (Fig. 5e). Along the Vue des Alpes strike-slip fault, two 186	

slickenfibers yield Ypresian-Lutetian ages of 44.7 ± 2.6 and 48.4 ± 1.5 Ma (Fig. 6a,b), while an 187	

extensional vein shows a Pliocene age of 3.9 ± 2.9 Ma (Fig. 6c). An extensional vein from the Buron 188	

strike-slip fault shows a Messinian age of 5.7 ± 4.7 Ma (Fig. 6d). One slickenfiber and one extensional 189	

vein from the Pratz strike-slip fault show Tortonian-Messinian ages of 10.5 ± 0.4 and 9.1 ± 6.5 Ma 190	

(Fig. 6f-g), while one slickenfiber shows a younger age of 4.8 ± 1.7 Ma (Fig. 6e). Because of the 191	

common-lead rich 207Pb/206Pb compositions, the U-Pb ages of the samples DA2, BUS1, PR1-A, PR2-192	

2 of the strike-slip faults have larger uncertainties than those of the thrusts. 193	

 194	

 195	
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 196	

Figure 5. Tera-Wasserburg concordia diagrams of thrust faults. (a) Montlebon thrust. (a) Buron thrust. (c,d) Fuans thrust. 197	

(e) Arguel thrust. 198	
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	199	

 200	

Figure 6. Tera-Wasserburg concordia diagrams of strike-slip faults. (a-c) Vue des Alpes strike-slip fault. (d) Buron strike-201	

slip fault. (e-g) Pratz strike-slip fault. 202	

 203	

5. Discussion and conclusions 204	
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Slickenfibers on sharp fault planes are clear evidence of tectonic slip along faults (Figs. 3j-l, 4i, 205	

S1e-h, and S2c,f). In particular, blocky and fibrous crystals indicate respectively fast and slow vein 206	

opening rates associated with fault slip. Within slickenfibers, calcite crystal precipitated during syn- 207	

to early post-slip fluid influx in newly formed dilational sites formed along undulated and sharp slip 208	

planes (Gratier and Gamond, 1990; Urai et al., 1991; Holland and Urai, 2010; Fagereng et al., 2010; 209	

Bons et al., 2012; Woodcock et al., 2014). Extensional veins oriented perpendicular to stylolites (Fig. 210	

3e,g) are linked to syn-thrusting shortening (Gratier et al., 2013). The studied veins are therefore 211	

interpreted as the product of tectonic fault slip and their U-Pb ages are considered as representative 212	

of faulting activity. 213	

We recognize three regional tectonic phases between the middle Eocene and the Pliocene (Figs. 214	

7 and 8) which are linked to the long-lived tectonic activity of the Alpine foreland evolution. The 215	

presented ages should be regarded as minimum ages for the onset of deformation at the studied faults 216	

or as maximum ages for its termination as potentially older or younger deformation phases recorded 217	

by other veins and slickenfibers not sampled and analyzed here may have been missed. 218	

The U-Pb ages are regionally consistent in terms of tectonic evolution of the Jura FTB and the 219	

microstructures of the analyzed veins and slickenfibers indicate precipitation during syn- to early 220	

post-slip fluid influx. However, although U-Pb dating was performed on crystals with no indication 221	

of later open-system alteration based on CL-microscopy, possible late fluid infiltration and calcite 222	

recrystallization cannot be excluded as previously suggested by other studies (Beaudoin et al., 2018; 223	

Hoareau et al., 2021; Roberts et al., 2020, 2021). 224	

Sample BUS1 clearly shows multiple calcite phases indicating vein re-opening and potentially 225	

different ages (Fig. 4h). However, the Tera-Wasserburg diagram of BUS1 shows a single age trend 226	

with a low MSWD of 0.82 (Fig. 6d). This would not be observed in a sample that experienced 227	

crystallization at significantly different times. Therefore, sample BUS1 reflects calcite precipitation 228	

within a time interval smaller than what would result in multiple age trends. 229	
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The oldest tectonic phase is recorded by two horizontal slickenfibers dated at 44.7 ± 2.6 and 230	

48.4 ± 1.5 Ma in Ypresian-Lutetian times (middle Eocene) along the Vue des Alpes strike-slip fault 231	

(Fig. 7). These ages are ~10 Ma older than the onset of the extensional tectonic activity in Priabonian 232	

(late Eocene) related to Rhine Graben opening (Sissingh, 1998; Mazurek et al. 2018). The strike-slip 233	

faulting in Eocene times is consistent with fault-slip data of Homberg et al. (1997). We propose that 234	

the Ypresian-Lutetian tectonic activity can be related to the late Mesozoic-Eocene far field tectonic 235	

shortening in the European plate foreland due to the advancing Alpine orogen (Mazurek et al., 2006; 236	

Timar-Geng et al., 2006) (Fig. 8a). On the contrary, previous studies suggested that middle Eocene 237	

strike-slip faulting in the Jura area was related to the far-field effect of the Pyrenean compression 238	

(Bergerat, 1987; Homberg et al., 2002). The Pyrenean far field effect has also been recognized in the 239	

Paris Basin (eg, Lacombe et al., 1990; Lacombe and Mouthereau, 1999; Lacombe and Obert, 2000), 240	

in eastern France (Lacombe et al., 1993), and even in the UK (Hibsch et al., 1995) where Pyrenean-241	

related calcite veins were dated by U-Pb (Parrish et al., 2018). However, even though tectonic stresses 242	

have been shown to be transmitted more than thousand km away from the orogenic front (Craddock 243	

et al., 1993; Beaudoin and Lacombe, 2018), further studies are necessary to better constrain the origin 244	

of pre-Miocene fault activity in the European foreland. 245	

Structural analyses of the studied thrusts highlight N to NW oriented tectonic transport 246	

directions (Fig. 4a-d) consistent with the regional NW-SE to N-S compressional phase that has 247	

affected the Jura fold and thrust belt since the Miocene (Philippe et al, 1996; Becker, 2000; Homberg 248	

et al., 2002; Ustaszewski and Schmid, 2006; Madritsch et al., 2008; Looser et al., 2021). Although 249	

age uncertainties do not allow a distinction beyond doubt and the limited numbers of U-Pb ages and 250	

studied thrusts provide a limited picture, the Jura imbrication seems to have occurred by in-sequence 251	

thrusting. The oldest observed thrusts ages are Serravallian-Messinian and become progressively 252	

younger moving from the inner (SE) toward the external (NW) part, from 11.4 ± 1.1, 10.6 ± 0.5, 9.7 253	

± 1.4 and 9.6 ± 0.3 on the same thrust, and 7.5 ± 1.1 Ma, respectively, in the Montlebon, Buron, 254	

Fuans, and Arguel thrusts (Figs. 7 and 8b). These ages are consistent with the time interval of ~14.5-255	
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3.3 Ma suggested for thrusting activity from biostratigraphic dating of syn- to post-tectonic sediments 256	

(Becker, 2000 and references therein) and from calcite U-Pb ages of thrust activity in the eastern Jura 257	

FTB (Looser et al., 2021) (Fig. 7). 258	

Previous studies interpreted the subvertical strike-slip faults in the Jura FTB as tear faults, with 259	

activity during thrusting and folding (Sommaruga, 1997; Looser et al., 2021). Our structural analyses 260	

and U-Pb ages from the studied strike-slip faults support this interpretation. In particular, strike-slip 261	

faults are subvertical and are roughly parallel or oblique to the regional transport directions inferred 262	

from thrust kinematics (compare tectonic transport directions of Fig. 4a-d with those of Fig. 4f,g), a 263	

common feature of tear faults (Twiss and Moores, 1992). 264	

The Buron thrust, active at 10.6 ± 0.5 Ma, was cross-cut by the Buron tear fault ~5 Ma later, at 265	

5.7 ± 4.7 Ma (Figs. 7 and 8c). The Pratz tear fault was active at 10.5 ± 0.4 and 9.1 ± 6.5 Ma, indicating 266	

tear faulting generation during coeval thrust propagation, and further late-orogenic re-activation at 267	

4.8 ± 1.7 Ma (Figs. 7 and 8b). These data indicate that tear faulting occurred during syn- to late-268	

orogenic times (Fig. 8b,c). In addition, a late-orogenic phase is recorded by an extensional vein from 269	

the Vue des Alpes strike-slip fault showing a Pliocene age of 3.9 ± 2.9 Ma (Fig. 7). This age has been 270	

measured on an extensional vein that cannot be directly related to fault slip. Therefore, we cannot 271	

completely exclude that this age represents a late alteration event not directly linked to fault slip 272	

during the Pliocene. However, the 3.9 ± 2.9 Ma age is consistent with late orogenic deformation 273	

between 4.2 and 2.9 Ma documented in the frontal part of the Jura FTB (Madritsch et al., 2008 and 274	

references therein). The 3.9 ± 2.9 Ma age from the Vue des Alpes strike-slip fault is ~40 Ma younger 275	

than the middle Eocene ages (44.7 ± 2.6 and 48.4 ± 1.5 Ma) measured on the same fault, suggesting 276	

the reactivation of the Vue des Alpes strike-slip fault during late Jura shortening. This inference is 277	

also consistent with field cross-cutting relationships indicating re-activation of pre-existing strike-278	

slip faults as tear faults (Homberg et al., 1997). 279	

We consider the retrieved age as fault re-activation of the Vue des Alpes strike-slip fault and 280	

relate it to a stress change from pure compression to strike-slip state of stress coupled with the 281	
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occurrence of an inherited strike-slip fault favorably oriented with respect to the regional stress field. 282	

This stress change associated with tear fault development can be related to progressive fold-and-thrust 283	

belt thickening and erosion initiating only after ~4.5 Ma (Looser et al., 2021 and references therein), 284	

which led to an increase in the maximum vertical stress (sigma 3) and a switch between sigma 3 and 285	

2 (Ferril et al., 2021). Shortening is still active in the Jura FTB and tear faults (also re-activated tear 286	

faults) are seismogenic (Thouvenot et al., 1998). 287	

The presented tectonic reconstruction depicts a stable evolution of the Jura FTB wedge by 288	

possible in-sequence thrusting consistent with thrust imbrication above the low-friction décollement 289	

consisting of evaporites (Fig. 8a-c). Contrarily, out-of-sequence thrusting occurred as late as in 290	

Messinian-early Pliocene times in the proximal Molasse Basin (Von Hagke et al., 2012, 2014) and in 291	

the Alps (Bellahsen et al., 2014). This tectonic framework suggests a stable topographic evolution of 292	

the critical taper and topographic profile of the Jura fold-and-thrust belt. Finally, this study constrains 293	

a long-lived polyphase tectonic history of the northwestern Alpine foreland system along the 294	

convergent boundary between European and African plates from the middle Eocene to the Pliocene. 295	
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 296	

Figure 7. Main tectonic phases in the Alps and in the Alpine foreland. Age constraints shown as grey bars are from 297	

Burkhard and Sommaruga (1998), Ustaszewski et al. (2006), Madritsch et al. (2008), Bellahsen et al. (2014), and Von 298	

Hagke et al. (2014). For calcite U-Pb data, all uncertainties are represented as 2s. 299	
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 300	

Figure 8. (a-d) Schematic reconstruction of the main tectonic phases dated in the Jura area in the regional context of the 301	

Alpine foreland system evolution. 302	
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